WorldWideScience

Sample records for laser-cooled fermionic isotopes

  1. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  2. Dual-channel amplification in a single-mode diode laser for multi-isotope laser cooling

    International Nuclear Information System (INIS)

    Booth, James L.; Van Dongen, Janelle; Lebel, Paul; Klappauf, Bruce G.; Madison, Kirk W.

    2007-01-01

    The output from two grating-stabilized external-cavity diode lasers were injected into a single-mode diode laser. Operating at a wavelength of 780 nm, this laser produced ∼50 mW of power with two main frequency components of the same spectral characteristics of the seed lasers. The power ratio of the amplified components was freely adjustable due to gain saturation, and amplification was observed for frequency differences of the two seed lasers in the range from 73 MHz to 6.6 GHz. This system was used to realize a dual isotope magneto-optic trap (MOT) for rubidium ( 85 Rb and 87 Rb). The resulting position and cloud size of the dual isotope MOT was the same as that of the single species MOTs to within ±10 and ±20 μm, respectively. We also characterized the additional spectral components produced by four wave mixing (FWM) in the diode laser amplifier and utilized a particular FWM sideband to realize hyperfine pumping and subsequent laser trapping of 85 Rb in the absence of a 'repump' laser dedicated to hyperfine pumping

  3. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  4. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  5. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  6. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  7. Fermions

    Directory of Open Access Journals (Sweden)

    Boyle Peter

    2018-01-01

    Full Text Available We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.

  8. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  9. Laser cooling and trapping of atoms

    International Nuclear Information System (INIS)

    Chu, S.

    1995-01-01

    The basic ideas of laser cooling and atom trapping will be discussed. These techniques have applications in spectroscopy, metrology, nuclear physics, biophysics, geophysics, and polymer science. (author)

  10. Sub-Doppler laser cooling of potassium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Landini, M. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Dipartimento di fisica, Universita di Trento, I-38123 Povo (Trento) (Italy); Roy, S.; Carcagni, L.; Trypogeorgos, D. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); Fattori, M.; Inguscio, M.; Modugno, G. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  11. Sub-Doppler laser cooling of potassium atoms

    International Nuclear Information System (INIS)

    Landini, M.; Roy, S.; Carcagni, L.; Trypogeorgos, D.; Fattori, M.; Inguscio, M.; Modugno, G.

    2011-01-01

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25±3 μK and 47±5 μK in high-density samples of the two isotopes 39 K and 41 K, respectively. Our findings should find application to other atomic systems.

  12. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  13. A description of odd mass Xe and Te isotopes in the Interacting Boson–Fermion Model

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Musleh, S. [National Center of Research, Gaza, Palestine (Country Unknown); Phys. Dep., Faculty of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); Abu-Zeid, H.M. [Phys. Dep., Faculty of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); Scholten, O. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA, Groningen (Netherlands)

    2014-07-15

    Recent interest in spectroscopic factors for single-neutron transfer in low-spin states of the even–odd Xenon {sup 125,127,129.131}Xe and even–odd Tellurium, {sup 123,125,127,129,131}Te isotopes stimulated us to study these isotopes within the framework of the Interacting Boson–Fermion Model. The fermion that is coupled to the system of bosons is taken to be in the positive parity 3s{sub 1/2}, 2d{sub 3/2}, 2d{sub 5/2}, 1g{sub 7/2} and in the negative 1h{sub 11/2} single-particle orbits, the complete 50–82 major shell. The calculated energies of low-spin energy levels of the odd isotopes are found to agree well with the experimental data. Also, B(E2), B(M1) values and spectroscopic factors for single-neutron transfer are calculated and compared with experimental data.

  14. II. The Standard Model in the Isotopic Foldy-Wouthuysen Representation without Higgs Bosons in the Fermion Sector. Spontaneous Breaking of Parity and "Dark Matter" Problems

    OpenAIRE

    Neznamov, V. P.

    2011-01-01

    The Standard Model with massive fermions is formulated in the isotopic Foldy-Wouthuysen representation. SU(2)xU(1) - invariance of the theory in this representation is independent of whether fermions possess mass or not, and, consequently, it is not necessary to introduce interactions between Higgs bosons and fermions. The study discusses a possible relation between spontaneous breaking of parity in the isotopic Foldy-Wouthuysen representation and the composition of elementary particles of "d...

  15. Laser cooling of atoms and ions

    International Nuclear Information System (INIS)

    Morigi, G.

    1999-02-01

    This thesis covers my work in the field of theoretical quantum optics, focusing on laser cooling of trapped atoms and ions. Laser cooling has been extensively investigated in the last twenty years, opening the possibility in experiments to move well into the quantum regime, where quantum statistical or quantum motional effects become pronounced. The successful preparation of cold atoms by means of laser cooling has recently raised the interest in the preparation of several or even many particles in a pure quantum state of the whole system. This goal imposes certain experimental circumstances, in particular the interaction between the atoms may play a significant role and affect the conditions for laser cooling considerably. Hence, there is great interest in developing cooling schemes which are compatible with such experimental conditions and in studying theoretically laser cooling of interacting particles. The work contained in this thesis contributes to this rapidly developing field, and it can be divided in two parts. In the first part, it presents an investigation of new schemes of laser cooling of single atoms or ions in traps where the amplitude of the particle's motion is comparable with the laser wavelength. This regime is typical of experiments with ultracold, weakly interacting atomic gases, and equally relevant to quantum information processing with trapped ions. In the second part, laser cooling of strongly interacting ions in a trap is investigated, with particular attention to the effect of the Coulomb interaction on the cooling process. This system is a paradigm for the experimental implementation of a quantum computer and is currently intensively studied. The thesis is divided into five chapters, of which the first one constitutes an introduction to laser cooling and to a series of concepts which are recurrent throughout this work. The other four chapters present my personal contributions to the field. Each of them contains first a general

  16. Detailed numerical simulations of laser cooling processes

    Science.gov (United States)

    Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.

    2001-01-01

    We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.

  17. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  18. Laser cooling and trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.

    1998-01-01

    The article is a translation of the lecture given on the occasion of the 1997 Nobel Prize awarding ceremony. The history of the discovery of laser cooling and trapping of neutral atoms is described. An explanation of this phenomenon is presented and the author's personal contribution to the discovery is highlighted. The article is completed by Dr. Phillips' autobiography. (Z.J.)

  19. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  20. Laser-Cooled Ions and Atoms in a Storage Ring

    International Nuclear Information System (INIS)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M.

    2003-01-01

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting 9 Be + beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of 12 C 6+ ions.

  1. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  2. Secondary laser cooling of strontium-88 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Strelkin, S. A.; Khabarova, K. Yu., E-mail: kseniakhabarova@gmail.com; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Kolachevsky, N. N.; Slyusarev, S. N. [Federal State Unitary Enterprise “All-Russia Research Institute for Physicotechnical and Radio Engineering Measurements” (VNIIFTRI) (Russian Federation)

    2015-07-15

    The secondary laser cooling of a cloud of strontium-88 atoms on the {sup 1}S{sub 0}–{sup 3}P{sub 1} (689 nm) intercombination transition captured into a magneto-optical trap has been demonstrated. We describe in detail the recapture of atoms from the primary trap operating on the strong {sup 1}S{sub 0}–{sup 1}P{sub 1} (461 nm) transition and determine the recapture coefficient κ, the number of atoms, and their temperature in the secondary trap as a function of experimental parameters. A temperature of 2 µK has been reached in the secondary trap at the recapture coefficient κ = 6%, which confirms the secondary cooling efficiency and is sufficient to perform metrological measurements of the {sup 1}S{sub 0}–{sup 3}P{sub 1} (698 nm) clock transition in an optical lattice.

  3. Laser-Cooled Ions and Atoms in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M., E-mail: m.weidemueller@mpi-hd.mpg.de [Max-Planck-Insitut fuer Kernphysik (Germany)

    2003-03-15

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting {sup 9}Be{sup +} beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of {sup 12}C{sup 6+} ions.

  4. Experiments with a laser cooled cloud of atoms

    International Nuclear Information System (INIS)

    Natarajan, Vasant; Banerjee, Ayan; Rapol, Umakant

    1999-01-01

    We discuss two experiments that can be performed using a cloud of laser-cooled and trapped atoms, namely Bose-Einstein condensation (BEC) and search for a permanent Electric Dipole Moment (EDM). BEC can be observed in Rb atoms in a magnetic trap by using forced evaporative cooling to continuously lower the temperature below the condensation limit. The cloud is cooled by preferentially ejecting the hottest atoms from a magnetic trap. The magnetic trap is loaded with laser-cooled atoms from a magneto-optic trap. The EDM experiment can be performed with a laser-cooled cloud of Yb atoms. The atoms are spin polarized and the precession of the spin is measured in the presence of a strong electric field applied perpendicular to the spin direction. The use of laser-cooled atoms should greatly enhance the sensitivity of the experiment. (author)

  5. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  6. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  7. COD correction for laser cooling at S-LSR

    International Nuclear Information System (INIS)

    Souda, Hikaru; Fujimoto, Shinji; Tongu, Hiromu; Shirai, Toshiyuki; Tanabe, Mikio; Ishikawa, Takehiro; Nakao, Masao; Ikegami, Masahiro; Wakita, Akihisa; Iwata, Soma; Fujimoto, Tetsuya; Takeuchi, Takeshi; Noda, Koji; Noda, Akira

    2008-01-01

    A closed orbit is corrected for single-turn injection to perform laser cooling experiments of 40 keV 24 Mg + beam at the small laser-equipped storage ring (S-LSR). Closed orbit distortion (COD) corrections have been carried out using a downhill simplex method, and CODs of less than ±0.5mm have been achieved throughout the whole circumference. The injection orbit and the CODs are optimized to pass through the two aperture holes in the alignment targets located in the laser cooling section with an algorithm to maximize beam lifetime. The CODs at the aperture holes are reduced to be less than ±0.2mm, assuring an overlap between the laser and the 24 Mg + ion beam.

  8. Is laser cooling for heavy-ion fusion feasible?

    International Nuclear Information System (INIS)

    Ho, D.D.-M.; Brandon, S.T.

    2010-01-01

    Heavy-ion beams, each with current in the kiloampere range and particle energy in the giga-electronvolt range, must be focused onto a millimetre-size spot to provide the power required for ignition of high-gain targets for inertial confinement fusion. However, the focal spot size is always enlarged by chromatic aberration generated by the thermal spread of the beam ions in the direction of beam propagation. Enlarged focal spot degrades the target performance. For high-current beams, the conventional remedy for chromatic aberration using sextupole magnets has been shown to be ineffective. If novel correction schemes can be found, then the spot size can be reduced to below that previously believed possible. Smaller spots can mean lower energy targets so that the heavy-ion fusion (HIF) scenario can look more attractive. Success in laser cooling of ion beams in storage rings has inspired us to explore the feasibility of applying laser cooling for HIF, and the recirculator configuration proposed for HIF appears to be well suited for this purpose. However, using particle-in-cell simulations and theoretical arguments, we demonstrate in this paper that although laser cooling of heavy-ion beams is feasible in principle, the rapid velocity-space diffusion of ions in the bump-in-tail distribution, set up by the cooling lasers, limits the velocity-space compressibility of the thermal spread along the beam. Consequently, laser cooling is impractical for high-current, heavy-ion beams for the proposed recirculator configuration. Nevertheless, if the recirculator architecture or the target requirement can reduce the beam current, then the cooling scheme described here would be useful. This scheme may also be applicable to the RF linac and storage ring approach to HIF.

  9. Laser-cooling and electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.; Migdall, A.L.; Metcalf, H.J.

    1986-01-01

    Until recently it has been impossible to confine and trap neutral atoms using electromagnetic fields. While many proposals for such traps exist, the small potential energy depth of the traps and the high kinetic energy of available atoms prevented trapping. We review various schemes for atom trapping, the advances in laser cooling of atomic beams which have now made trapping possible, and the successful magnetic trapping of cold sodium atoms

  10. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  11. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  12. Subrecoil laser cooling dynamics: a fractional derivative approach

    International Nuclear Information System (INIS)

    Uchaikin, Vladimir V; Sibatov, Renat T

    2009-01-01

    The subrecoil laser cooling process is considered in the framework of a model with two states (trapping and recycling), with instantaneous transitions between them. The key point of the work is the use of a fractional exponential function for waiting time distributions. This allows us to derive a general master equation covering both important cases: those with exponential and power type tails. Their solutions are expressed through fractionally stable distributions. The pdfs of the total trapping time of an atom and the proportion of trapped atoms are found. Analytical relationships show a good agreement with numerical results from Monte Carlo simulation

  13. Search for permanent EDM using laser cooled Fr atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirokazu, E-mail: kawamura@cyric.tohoku.ac.jp [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Arikawa, H.; Ezure, S. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Harada, K. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Hayamizu, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Imai, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S.; Sato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Shimizu, Y. [Tohoku University, Department of Physics (Japan); Wakasa, T. [Kyushu University, Department of Physics (Japan); Yoshida, H. P. [Osaka University, Research Center for Nuclear Physics (Japan); and others

    2013-03-15

    The existence of a non-zero electric dipole moment (EDM) implies the violation of time reversal symmetry. As the time-reversal symmetry violation predicted by the Standard Model (SM) for the electron EDM is too small to be observed with current experimental techniques and any a non-zero EDM would indicate new physics beyond the SM. The tiny signal from the electron EDM is enhanced in the heavy atoms such as francium (Fr). We are constructing the laser-cooled Fr factory to search for the electron EDM.

  14. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  15. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  16. Fractional fermions

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)

  17. High-spin level structure and Ground-state phase transition in the odd-mass 103-109Rh isotopes in the framework of exactly solvable sdg interacting boson-fermion model

    Science.gov (United States)

    Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.

    2018-03-01

    In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.

  18. Spot size predictions of a focused ion beam based on laser cooling

    NARCIS (Netherlands)

    Haaf, ten G.; Wouters, S.H.W.; Geer, van der S.B.; Mutsaers, P.H.A.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    The Atomic Beam Laser Cooled Ion Source (ABLIS) is a new source for focused ion beam instruments, which are used in the semiconductor industry, to image and modify structures on the nanometer length scale. The ABLIS employs laser cooling and compression of an atomic beam of rubidium to increase its

  19. Optimization of transfer of laser-cooled atom cloud to a quadrupole ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology,. Indore 452 013 ... Laser cooling; optical molasses; double-MOT; magnetic trapping; phase-space density. PACS Nos 52.55. ... this method, the transfer of laser-cooled atom cloud to magnetic trap is an important step,.

  20. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    [7,8,9]. Furthermore, in order to learn more about the chemistry in interstellar clouds, astrochemists can benefit greatly from direct measurements on cold reactions in laboratories [9]. Working with MgH+ molecular ions in a linear Paul trap, we routinely cool their translational degree of freedom...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...... results imply that, through this technique, cold molecular-ion experiments can now be carried out at cryogenic temperatures in room-temperature set-ups. References [1] Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. and Schiller, S., Phys. Rev. Lett. 98, 173002 (2007). [2] Hudson, J. J., Sauer, B...

  1. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    an excellent alternative to atomic qubits in the realization of a practical ion trap based quantum computer due to favourable internal state decoherence rates. In chemistry, state prepared molecular targets are an ideal starting point for uni-molecular reactions, including coherent control...... of photofragmentation through the application of various laser sources [5,6]. In cold bi-molecular reactions, where the effect of even tiny potential barriers becomes significant, experiments with state prepared molecules can yield important information on the details of the potential curves of the molecular complexes...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...

  2. Search for a permanent EDM using laser cooled radioactive atom

    International Nuclear Information System (INIS)

    Sakemi, Y; Harada, K; Hayamizu, T; Itoh, M; Kawamura, H; Liu, S; Nataraj, H S; Oikawa, A; Saito, M; Sato, T; Yoshida, H P; Aoki, T; Hatakeyama, A; Murakami, T; Imai, K; Hatanaka, K; Wakasa, T; Shimizu, Y; Uchida, M

    2011-01-01

    An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A non-zero EDM shows the violation of the time reversal symmetry, and under the CPT invariance it means the CP violation. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ∼ 895. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to perform the search for the EDM of Fr with the accuracy of 10 -29 e · cm. The important points to overcome the current accuracy limit of the EDM are to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ∼10 6 ions/s with the primary beam intensity 200 nA. The developments of the laser system and optical equipments are in progress, and the present status and future plan of the experimental project is reported.

  3. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  4. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    Aghajani-Talesh, Anoush

    2014-01-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  5. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  6. Laser cooling of a harmonic oscillator's bath with optomechanics

    Science.gov (United States)

    Xu, Xunnong; Taylor, Jacob

    Thermal noise reduction in mechanical systems is a topic both of fundamental interest for studying quantum physics at the macroscopic level and for application of interest, such as building high sensitivity mechanics based sensors. Similar to laser cooling of neutral atoms and trapped ions, the cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an efficient scheme for reducing the thermal load on a mechanical resonator while improving its quality factor. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA.

  7. Narrow-line laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  8. The beginnings of our research on the laser cooling of atomic gases

    International Nuclear Information System (INIS)

    Wang Yuzhu

    2011-01-01

    Reminiscences of the beginning of our research on the laser cooling of atomic gases are recounted, describing what motivated us to progress from atomic clocks to laser cooling. At the beginning, we pondered upon the mechanism of laser cooling, such as the cooling of atoms in red shifted diffuse light in an integrating sphere and using light frequency shifting (the A.C. Stark effect). A description of the atomic beam experimental equipment in our lab, which was used in laser cooling, is given, and some experimental results that we obtained are displayed. Finally, we summarize our experiences and lessons learnt. In looking back on our arduous beginnings, we cherish the present, and look forward to a bright future. (authors)

  9. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    Bussmann, Michael

    2008-01-01

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C 3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24 Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  10. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  11. Fermionic cosmologies

    International Nuclear Information System (INIS)

    Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L

    2011-01-01

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  12. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  13. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  14. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  15. Lattice fermions

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs

  16. Lattice fermions

    Energy Technology Data Exchange (ETDEWEB)

    Randjbar-Daemi, S

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.

  17. Fermion masses through four-fermion condensates

    Energy Technology Data Exchange (ETDEWEB)

    Ayyar, Venkitesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore, 560012 (India)

    2016-10-12

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

  18. Ultimate temperature for laser cooling of two-level neutral atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Zilio, S.C.

    1989-01-01

    We present a simple pedagogical method to evaluate the minimum attainable temperature for laser cooling of two-level neutral atoms. Results are given as a function of the laser detuning and intensity. We also discuss the use of this approach to predict the minimum temperature of neutral atoms confined in magnetic traps. (author) [pt

  19. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  20. Optimization of transfer of laser-cooled atom cloud to a quadrupole ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... We present here our experimental results on transfer of laser-cooled atom cloud to a quadrupole magnetic trap. We show that by choosing appropriately the ratio of potential energy in magnetic trap to kinetic energy of cloud in molasses, we can obtain the maximum phase-space density in the magnetic trap.

  1. First demonstration of 'white-light' laser cooling of a stored ion beam

    International Nuclear Information System (INIS)

    Atutov, S.N.; Biancalana, V.; Calabrese, R.; Clauser, T.; Grimm, R.; Guidi, V.; Lamanna, G.; Lauer, I.; Lenisa, P.; Luger, V.; Mariotti, E.; Moi, L.; Schramm, U.; Stagno, V.; Stoessel, M.; Tecchio, L.; Variale, V.

    1998-01-01

    'White-light' cooling of an ion beam confined in a storage ring has been demonstrated at Test Storage Ring in Heidelberg. Measurements aimed at comparing 'white-light' with single-mode laser cooling show that 'white-light' cooling gives lower temperatures at higher ion densities both in a coasting and in a bunched beam

  2. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  3. Technology development for laser-cooled clocks on the International Space Station

    Science.gov (United States)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  4. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Kim, Jae-Ihn

    2009-01-01

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  5. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  6. Wilson Fermions with Four Fermion Interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari

    2015-01-01

    We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak...

  7. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  8. Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap

    Science.gov (United States)

    Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael

    2013-05-01

    In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.

  9. Key technologies and applications of laser cooling and trapping "8"7Rb atomic system

    International Nuclear Information System (INIS)

    Ru, Ning; Zhang, Li; Wang, Yu; Fan, Shangchun

    2016-01-01

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain "8"7Rb cold atoms in our experiments are also discussed.

  10. Experimental and Theoretical Studies of Laser Cooling and Emittance Control of Neutral Beams.

    Science.gov (United States)

    1987-01-31

    the collective atomic recoil serves to op reduce the momentum spread of an atomic sample (laser cooling) or to produce a diffraction pattern from a...mtasured 1.5 m downstream from the OKDE interaction region, permits a measure of the ODKE momentum spread. We will discuss each of the various...spectrometer provides a real-time measure of the hydrogen flux, which can be monitored continuously during data collection . We were able to generate

  11. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  12. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  13. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  14. Mirror fermions and cosmology

    International Nuclear Information System (INIS)

    Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg

    1984-07-01

    Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)

  15. Preparation of a monoenergetic sodium beam by laser cooling and deflection

    International Nuclear Information System (INIS)

    Nellessen, J.; Sengstock, K.; Muller, J.H.; Ertmer, W.; Wallis, H.

    1989-01-01

    This paper reports on a sodium atomic beam with a density of approx. 10 5 at cm 3 within a velocity interval of less than 3 m/s with a mean velocity of typically 50-160 m/s which has been produced by laser deflection of a laser cooled atomic beam. Laser cooling with the frequency chirp method decelerates and cools a considerable part of an atomic beam into a narrow velocity group with a temperature of approx 30 mK as a part of the resulting atomic beam. This velocity group has been selectively deflected up to 30 degrees - 40 degrees using a light field with k vectors always perpendicular to the atomic trajectory. If the light field is prepared by use of a cylindrical lens, the angle of deflection is nearly independent from the actual orbit radius. For a laser frequency detuning of about one natural linewidth to the red, the strong frequency dependence of the light pressure force leads to a beam collimation via detuning-locking of the atomic trajectory. To avoid optical pumping we used a frequency modulated laser beam with a sideband spacing matched to the hyperfine splitting of the ground state. As the cooling was performed by the frequency chirp method, one can use a part of the cooling laser beam as deflecting laser beam. Typical velocity distributions in the deflected and undeflected atomic beam, measured 22 cm downstream the deflection zone. It shows the perfect transfer of the cooled velocity group from the laser cooled beam into the deflected beam; curve c) shows as comparison the result for the deflection of the initial thermal atomic beam

  16. Laser-cooling effects in few-ion clouds of Yb[sup +

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.S. (National Physical Lab., Teddington (United Kingdom)); Gill, P. (National Physical Lab., Teddington (United Kingdom)); Klein, H.A. (National Physical Lab., Teddington (United Kingdom)); Levick, A.P. (National Physical Lab., Teddington (United Kingdom)); Rowley, W.R.C. (National Physical Lab., Teddington (United Kingdom))

    1994-08-01

    We report some laser-cooling effects in a few [sup 172]Yb[sup +] ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb[sup +] fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb[sup +] clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb[sup +] cloud was also observed. (orig.)

  17. Laser-cooling effects in few-ion clouds of Yb+

    International Nuclear Information System (INIS)

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  18. Laser cooling and optical detection of excitations in a LC electrical circuit

    DEFF Research Database (Denmark)

    Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed

    2011-01-01

    We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...... coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an “optical loud speaker” are outlined....

  19. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  20. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    International Nuclear Information System (INIS)

    You-Hua, Jia; Biao, Zhong; Xian-Ming, Ji; Jian-Ping, Yin

    2008-01-01

    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ul-traBne particles, which can be achieved by the enhancement of local Geld around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material

  1. Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH

    Science.gov (United States)

    Moore, Keith; Lane, Ian C.

    2018-05-01

    Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are analysed in detail. The lifetimes of the A2Π1/2, H2Δ3/2 and E2Π1/2 states are calculated (136 ns, 5.8 μs and 46 ns respectively) for the first time, while the theoretical value for B2 Σ1/2+ is in good agreement with experiments. Using a simple rate model the numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are determined, and it is clearly demonstrated that the A2Π - X2Σ+ transition is superior to B2Σ+ - X2Σ+ , where multiple tiny decay channels degrade its efficiency. Further possible improvements to the cooling method are proposed.

  2. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  3. Long-time dynamics of laser-cooled ions in the TSR storage ring

    International Nuclear Information System (INIS)

    Mudrich, M.

    2000-01-01

    This diploma thesis studies experimentally the long-time dynamics of laser-cooled 9 Be + -beams at the TSR under different cooling conditions. The goal is to enlarge the understanding of ultra-cold, non-neutral plasma at high center-of-mass energies. By means of improved measurement capabilities one can now for the first time monitor the entire phase-space over a long time. This makes it possible to quantitatively analyse the possibilities and limitations of laser cooling at a storage ring. Under optimum cooling conditions a regime of high phase-space density is reached, close to the region where influences of Coulomb coupling are expected. Furthermore, a Monte-Carlo model is worked out that qualitatively describes the beam dynamics. The model includes the influence of transverse-longitudinal coupling due to intra beam scattering on the longitudinal phase-space distribution. At high phase-space density a sudden disappearance of intra beam collisions is observed experimentally and possible interpretations are given. (orig.)

  4. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  5. Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process

    Science.gov (United States)

    Freitas, Nahuel; Paz, Juan Pablo

    2018-03-01

    We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017), 10.1103/PhysRevE.95.012146]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.

  6. Fermion production despite fermion number conservation

    International Nuclear Information System (INIS)

    Bock, W.; Hetrick, J.E.; Smit, J.

    1995-01-01

    Lattice proposals for a nonperturbative formulation of the Standard Model easily lead to a global U(1) symmetry corresponding to exactly conserved fermion number. The absence of an anomaly in the fermion current would then appear to inhibit anomalous processes, such as electroweak baryogenesis in the early universe. One way to circumvent this problem is to formulate the theory such that this U(1) symmetry is explicitly broken. However we argue that in the framework of spectral flow, fermion creation and annihilation still in fact occurs, despite the exact fermion number conservation. The crucial observation is that fermions are excitations relative to the vacuum, at the surface of the Dirac sea. The exact global U(1) symmetry prohibits a state from changing its fermion number during time evolution, however nothing prevents the fermionic ground state from doing so. We illustrate our reasoning with a model in two dimensions which has axial-vector couplings, first using a sharp momentum cutoff, then using the lattice regulator with staggered fermions. The difference in fermion number between the time evolved state and the ground state is indeed in agreement with the anomaly. Both the sharp momentum cutoff and the lattice regulator break gauge invariance. In the case of the lattice model a mass counterterm for the gauge field is sufficient to restore gauge invariance in the perturbative regime. A study of the vacuum energy shows however that the perturbative counterterm is insufficient in a nonperturbative setting and that further quartic counterterms are needed. For reference we also study a closely related model with vector couplings, the Schwinger model, and we examine the emergence of the θ-vacuum structure of both theories. ((orig.))

  7. Majorana fermion codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard

    2010-01-01

    We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.

  8. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  9. Lattice degeneracies of fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-10-01

    We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)

  10. Laser cooling of quasi-free atoms in a nondissipative optical lattice

    International Nuclear Information System (INIS)

    Matveeva, N. A.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    A quasi-classical theory of laser cooling is applied to the analysis of cooling of unbound atoms with the angular momenta 1/2 in the ground and excited states in a one-dimensional nondissipative optical lattice. In the low-saturation limit with respect to the pumping field, the mechanisms of cooling can be interpreted within the framework of an effective two-level system of ground-state sublevels. In the limit of weak Raman transitions, the mechanism of cooling of unbound atoms is similar to the Doppler mechanism known in the theory of a two-level atom; in the limit of strong transitions, the mechanism of cooling is analogous to the well-known Sisyphys mechanism. In the slow-atom approximation, analytical expressions are obtained for the friction (drag) coefficient and the induced and spontaneous diffusion, and the kinetic temperature is estimated

  11. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Michan, J. Mario [TRIUMF (Canada); Polovy, Gene; Madison, Kirk W. [The University of British Columbia, Department of Physics and Astronomy (Canada); Fujiwara, Makoto C. [TRIUMF (Canada); Momose, Takamasa, E-mail: momose@chem.ubc.ca [The University of British Columbia, Department of Chemistry, Department of Physics and Astronomy (Canada)

    2015-11-15

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  12. Laser Cooling without Repumping: A Magneto-Optical Trap for Erbium Atoms

    International Nuclear Information System (INIS)

    McClelland, J.J.; Hanssen, J.L.

    2006-01-01

    We report on a novel mechanism that allows for strong laser cooling of atoms that do not have a closed cycling transition. This mechanism is observed in a magneto-optical trap (MOT) for erbium, an atom with a very complex energy level structure with multiple pathways for optical-pumping losses. We observe surprisingly high trap populations of over 10 6 atoms and densities of over 10 11 atoms cm -3 , despite the many potential loss channels. A model based on recycling of metastable and ground state atoms held in the quadrupole magnetic field of the trap explains the high trap population, and agrees well with time-dependent measurements of MOT fluorescence. The demonstration of trapping of a rare-earth atom such as erbium opens a wide range of new possibilities for practical applications and fundamental studies with cold atoms

  13. Laser cooling of 85Rb atoms to the recoil-temperature limit

    Science.gov (United States)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  14. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    International Nuclear Information System (INIS)

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Femtosecond quantum dynamics and laser-cooling in thermal molecular systems

    International Nuclear Information System (INIS)

    Warmuth, C.

    2000-01-01

    This work deals with coherent and incoherent vibrational phenomena in thermal systems, wave packet motion and laser-cooling. In the first part, the principle of COIN (Coherence Observation by Interference Noise) has been applied as a new approach to measuring wave packet motion. In the experiment pairs of phase-randomized femtosecond pulses with relative delay-time τ prepare interference fluctuations in the excited state population, so the variance of the correlated fluorescence intensity directly mimics the dynamics of the propagating wave packet. The scheme is demonstrated by measuring the vibrational coherence of wave packet-motion in the B-state of gaseous iodine. The COIN-interferograms obtained recover propagation, recurrences, spreading, and revivals as the typical signature of wave packets. Due to the disharmony of the B-state-potential, fractional revivals have also been found showing the potential of the COIN-technique in quantum-dynamical research. In the second part the fluorescence lifetime of trans-stilbene, isolated and in the presence of 1 atm of Ar gas, respectively, was measured as a function of the detuning of the excitation frequency from the frequency of the 0-0-transition ω 0 . The lifetime was found to decrease on both sides of ω 0 , but the dependence of the lifetime on detuning in the presence of Ar gas is much weaker than for the isolated molecule. Both observations corroborate previous theoretical predictions of laser-cooling of thermal trans-stilbene upon excitation at the ω 0 frequency. The experimental results are in good agreement with theoretical analysis. (author)

  16. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  17. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  18. Dynamical triangulated fermionic surfaces

    International Nuclear Information System (INIS)

    Ambjoern, J.; Varsted, S.

    1990-12-01

    We perform Monte Carlo simulations of randomly triangulated random surfaces which have fermionic world-sheet scalars θ i associated with each vertex i in addition to the usual bosonic world-sheet scalar χ i μ . The fermionic degrees of freedom force the internal metrics of the string to be less singular than the internal metric of the pure bosonic string. (orig.)

  19. Fermion masses and multiplicity

    International Nuclear Information System (INIS)

    Ramond, P.

    1986-01-01

    A general survey and analysis of fermion masses is presented in terms of both the known low energy gauge structure and of the simplest GUT structure. The replication of fermion families is discussed in the context of possible family group structures. Sample family gauge groups are presented in the cases of three and four chiral families, using ABJ and Witten anomalies to restrict the maximal gauged family group. The possible relevance of the family group to the fermion mass hierarchy is discussed in the context of various models. (author)

  20. Bootstrapping 3D fermions

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  1. Fermion number in supersymmetric models

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    1975-01-01

    The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)

  2. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Directory of Open Access Journals (Sweden)

    J. G. H. Franssen

    2017-07-01

    Full Text Available We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps but hot (∼104 K electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K and ultrafast (∼25 ps electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  3. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  4. Pharao: study of an atomic clock using laser-cooled atoms and realization of a prototype

    International Nuclear Information System (INIS)

    Lemonde, P.

    1997-01-01

    Thermal jets and atomic fountains are two different principles on which atomic clocks are based. In atomic fountains the velocity of atoms can be reduced to a few cm/s so the classical limitations of thermal jets such as phase shift between two Ramsey impulses, second order Doppler effect become negligible. The new limitations set by atomic fountain clocks are now collisions between cold atoms and the radiation emitted by the black body. Weightlessness leads to a different running of the atomic clock and can imply an enhancement of its performances. In micro-gravity an interatomic interaction time of several seconds can be reached. The application of such atomic clocks can go beyond time or frequency metrology. This work is dedicated to the development of a spatial atomic clock to fully use the extremely low velocity of laser-cooled atoms and to quantify what can be expected of weightlessness. This study has involved the realization of a prototype and its testing in a zero-g plane. The experimental results are presented and it is highlighted that an accuracy and a one-day stability of 10 -16 are within reach with an optimized version of this atomic clock. (A.C.)

  5. Fermions from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.

  6. Superstrings fermionic solutions

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    1990-06-01

    The solutions proposed by the superstring theory are classified and compared. In order to obtain some of the equivalences, the demonstration is based on the coincidence of the excitation spectrum and the quantum numbers from different states. The fermionic representation of the heterotical strings is discussed. The conformal invariance and the supersymmetric results extended to two dimensions are investigated. Concerning the fermionic strings, the formalism and a phenomenological solution involving three families of quarks, chiral leptons and leptons from the E 6 gauge group are presented. The equivalence between real and complex fermions is discussed. The similarity between some of the solutions of the Wess-Zumino-Witten model and the orbifolds is considered. The formal calculation program developed for reproducing the theory's low energy spectra, in the fermionic string formalism is given [fr

  7. Dynamical FLIC fermions

    International Nuclear Information System (INIS)

    Kamleh, W.; Leinweber, D.B.; Williams, A.G.

    2004-01-01

    The use of APE smearing or other blocking techniques in fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard. Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants

  8. Effects of spin-orbit coupling on laser cooling of BeI and MgI

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Mingjie, E-mail: wanmingjie1983@sina.com; Huang, Duohui; Shao, Juxiang; Li, Yuanyuan [Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007 (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225 (China); Li, Song [College of Physical Science and Technology, Yangtze University, Jingzhou 434023 (China)

    2015-10-28

    We present the ab initio study of spin-orbit coupling effects on laser cooling of BeI and MgI molecules. Potential energy curves for the X{sup 2}Σ{sup +}{sub 1/2}, A{sup 2}Π{sub 1/2,3/2}, and 2{sup 2}Π{sub 3/2,1/2} states are calculated using multi-reference configuration interaction method plus Davidson corrections. Spectroscopic parameters of BeI and MgI are in excellent agreement with available experimental and theoretical values. The A{sup 2}Π{sub 3/2} state of MgI is a repulsive state. It is an unsuitable scheme for the A{sup 2}Π{sub 3/2}(υ′)← X{sup 2}Σ{sup +}{sub 1/2} (υ″) transition for laser cooling of MgI. Highly diagonally distributed Franck-Condon factors f{sub 00} for the A{sup 2}Π{sub 1/2,3/2} (υ′ = 0) ← X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transitions and suitable radiative lifetimes τ for the A{sup 2}Π{sub 1/2,3/2} (υ′ = 0) of BeI and MgI are obtained. Three laser wavelength drives are required for the A{sup 2}Π{sub 1/2,3/2}(υ′)←X{sup 2}Σ{sup +}{sub 1/2} (υ″) transitions of BeI and MgI. The proposed cooling wavelengths of BeI and MgI are both in the violet region. The results imply the feasibility of laser cooling of BeI and MgI, and that laser cooling of BeI is more possible.

  9. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng

    1994-01-01

    In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs

  10. Fermionic Markov Chains

    OpenAIRE

    Fannes, Mark; Wouters, Jeroen

    2012-01-01

    We study a quantum process that can be considered as a quantum analogue for the classical Markov process. We specifically construct a version of these processes for free Fermions. For such free Fermionic processes we calculate the entropy density. This can be done either directly using Szeg\\"o's theorem for asymptotic densities of functions of Toeplitz matrices, or through an extension of said theorem to rates of functions, which we present in this article.

  11. Fermion masses from dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)

  12. Fermion masses from dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).

  13. Heavy fermion materials

    International Nuclear Information System (INIS)

    Smith, J.L.; Cooke, D.W.

    1986-01-01

    The heavy-fermion ground state occurs in a few select metallic compounds as a result of interactions between f-electron and conduction-electron spins. A characteristically large electronic heat capacity at low temperature indicates that the effective electron mass of these materials is more than two orders of magnitude greater than that expected for a free-electron metal. This heavy-fermion ground state can become superconducting or antiferromagnetic, exhibiting very unusual properties. These materials and the role of muon spin rotation in their study are briefly discussed

  14. Magnetic Majorana Fermions

    Science.gov (United States)

    Moessner, Roderich

    Condensed matter systems provide emergent mini-universes in which quasiparticles may exist which do not correspond to any experimentally detected elementary particle. Topological quantum materials have been particularly productive in this regard, with the present search focussing on Majorana fermions, known theoretically already for decades. Here, we discuss manifestations of magnetic Majorana fermions in the Kitaev model. We place particular emphasis on their fate when perturbations, such as Heisenberg terms, are added to the ideal model system, and address experimental signatures of their vestiges in phases adjacent to the spin liquid.

  15. Molecular dynamics for fermions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Schnack, J.

    2000-02-01

    The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular dynamics models to describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials as well as more recent models which work with antisymmetrized many-body states are reviewed under these premises. (orig.)

  16. Renormalization of fermion mixing

    International Nuclear Information System (INIS)

    Schiopu, R.

    2007-01-01

    Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by

  17. Renormalization of fermion mixing

    Energy Technology Data Exchange (ETDEWEB)

    Schiopu, R.

    2007-05-11

    Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by

  18. Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J. M.; Colombano, M.; Doménech, J.; Rodríguez, D., E-mail: danielrodriguez@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Institut für Kernchemie, University of Mainz, 55099 Mainz (Germany); Delahaye, P. [Grand Accélérateur National d’Ions Lourds, 14000 Caen (France)

    2015-10-15

    A special ion trap was initially built up to perform β-ν correlation experiments with radioactive ions. The trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single {sup 40}Ca{sup +} ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on {sup 40}Ca{sup +} ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at radioactive ion beam facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.

  19. Fermions and link invariants

    International Nuclear Information System (INIS)

    Kauffman, L.; Saleur, H.

    1991-01-01

    Various aspects of knot theory are discussed when fermionic degrees of freedom are taken into account in the braid group representations and in the state models. It is discussed how the R matrix for the Alexander polynomial arises from the Fox differential calculus, and how it is related to the quantum group U q gl(1,1). New families of solutions of the Yang Baxter equation obtained from ''linear'' representations of the braid group and exterior algebra are investigated. State models associated with U q sl(n,m), and in the case n=m=1 a state model for the multivariable Alexander polynomial are studied. Invariants of links in solid handlebodies are considered and it is shown how the non trivial topology lifts the boson fermion degeneracy is present in S 3 . (author) 36 refs

  20. On ghost fermions

    International Nuclear Information System (INIS)

    Grensing, G.

    2002-01-01

    The path integral for ghost fermions, which is heuristically made use of in the Batalin-Fradkin-Vilkovisky approach to quantization of constrained systems, is derived from first principles. The derivation turns out to be rather different from that of physical fermions since the definition of Dirac states for ghost fermions is subtle. With these results at hand, it is then shown that the nonminimal extension of the Becchi-Rouet-Stora-Tyutin operator must be chosen differently from the notorious choice made in the literature in order to avoid the boundary terms that have always plagued earlier treatments. Furthermore it is pointed out that the elimination of states with nonzero ghost number requires the introduction of a thermodynamic potential for ghosts; the reason is that Schwarz's Lefschetz formula for the partition function of the time-evolution operator is not capable, despite claims to the contrary, to get rid of nonzero ghost number states on its own. Finally, we comment on the problems of global topological nature that one faces in the attempt to obtain the solutions of the Dirac condition for physical states in a configuration space of nontrivial geometry; such complications give rise to anomalies that do not obey the Wess-Zumino consistency conditions. (orig.)

  1. Interacting composite fermions

    DEFF Research Database (Denmark)

    nrc762, nrc762

    2016-01-01

    Numerical studies by Wójs, Yi, and Quinn have suggested that an unconventional fractional quantum Hall effect is plausible at filling factors ν=1/3 and 1/5, provided the interparticle interaction has an unusual form for which the energy of two fermions in the relative angular momentum three channel...... as fractional quantum Hall effect of electrons at ν=4/11, 4/13, 5/13, and 5/17. I investigate in this article the nature of the fractional quantum Hall states at ν=4/5, 5/7, 6/17, and 6/7, which correspond to composite fermions at ν∗=4/3, 5/3, and 6/5, and find that all these fractional quantum Hall states...... are conventional. The underlying reason is that the interaction between composite fermions depends substantially on both the number and the direction of the vortices attached to the electrons. I also study in detail the states with different spin polarizations at 6/17 and 6/7 and predict the critical Zeeman...

  2. Fermion masses from superstrings

    International Nuclear Information System (INIS)

    Tanaka, K.

    1986-01-01

    It is assumed that the E 8 gauge group of the E 8 x E 8 heterotic superstring can be broken into SO(10) x SU(4). The mass relations among fermions m/sub u//m/sub d/ = m/sub c//m/sub s/ = m/sub t//m/sub b/ and m/sub ν e//m/sub e/ = m/sub ν mu//m/sub μ/ = m/sub ν tau//m/sub tau/ are discussed. 18 refs

  3. Heavy fermion and actinide materials

    International Nuclear Information System (INIS)

    1993-01-01

    During this period, 1/N expansions have been systematically applied to the calculation of the properties of highly correlated electron systems. These studies include examinations of (a) the class of materials known as heavy fermion semi-conductors, (b) the high energy spectra of heavy fermion systems, and (c) the doped oxide superconductors

  4. Fermion fractionization and index theorem

    International Nuclear Information System (INIS)

    Hirayama, Minoru; Torii, Tatsuo

    1982-01-01

    The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)

  5. Phenomenology of colour exotic fermions

    International Nuclear Information System (INIS)

    Luest, D.

    1986-01-01

    The authors discuss the phenomenological consequences of a dynamical scenario according to which the electroweak symmetry breaking and generation of fermion masses is due to fermions that transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the spectrum of high colour boundstates. (Auth.)

  6. Ultracold fermion race is on

    International Nuclear Information System (INIS)

    Hulet, R.

    1999-01-01

    At the quantum level, particles behave very differently depending on whether their spin angular momentum is an integer or a half-integer. Half-integer spin particles are known as fermions, and include all the constituents of atoms: electrons, protons and neutrons. Bosons, on the other hand, are particles with integer spin, such as photons. Atoms are fermions if they are composed of an odd number of particles, like helium-3 or lithium-6. If they have an even number of constituents, like hydrogen, helium-4 or lithium-7, they are known as bosons. Fermions and bosons behave in profoundly different ways under certain conditions, especially at low temperatures. Four years ago, physicists created a Bose condensate, a quantum degenerate gas of bosons. Now the race is on to do the same with fermions. Deborah Jin's group at the US National Institute of Standards and Technology (NIST) and the University of Colorado has cooled a fermion gas to the lowest temperature yet (B DeMarco 1999 Phys. Rev. Lett. 82 4208). And John Thomas and co-workers at Duke University have set a new record for the length of time that fermions can be trapped using lasers (K O'Hara 1999 Phys. Rev. Lett. 82 4204). In this article the author describes the latest advances in the race to create a quantum degenerate gas of fermions. (UK)

  7. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  8. Fermions and non-Abelian vortex

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1986-01-01

    Some aspectos of the fermion-non-Abelian vortex system are discussed. It is shown that this system presents properties analogous to the fermion-non-Abelian magnetic monopole one. But, differrently from the fermion-monopole case, this system does not present fermion condensate V = 0. (Author) [pt

  9. Low energy fermion number violation

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1989-01-01

    After a brief aside on charge quantization in the standard electroweak theory, I concentrate on various aspects of anomaly induced fermion number violation in the standard model. A critical analysis of the role of sphalerons for the universe's baryon asymmetry is presented and the importance of calculating directly fermion number violating Green's functions is stressed. A physical interpretation of the recent observation of Ringwald, that coherent effects in the electroweak theory lead to catastrophic fermion number violation at 100 TeV, is discussed. Possible quantum effects which might spoil this semi-classical picture are examined

  10. Lattice degeneracies of geometric fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-05-01

    We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)

  11. Probabilistic simulation of fermion paths

    International Nuclear Information System (INIS)

    Zhirov, O.V.

    1989-01-01

    Permutation symmetry of fermion path integral allows (while spin degrees of freedom are ignored) to use in its simulation any probabilistic algorithm, like Metropolis one, heat bath, etc. 6 refs., 2 tabs

  12. Super boson-fermion correspondence

    International Nuclear Information System (INIS)

    Kac, V.G.; Leur van de, J.W.

    1987-01-01

    Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies

  13. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  14. Highly imbalanced fermion-fermion mixtures in one dimension

    International Nuclear Information System (INIS)

    Recher, Christian

    2013-01-01

    In the framework of exactly solvable quantum many-body systems we study models of interacting spin one-half Fermions in one dimension. The first part deals with systems of spin one-half Fermions which interact via repulsive contact interaction. A reformulation of the Bethe-Ansatz solvable many-body wave function is presented. This simplifies considerably the calculations for the highly imbalanced case, where very few particles of one species (minority Fermions) are present. For the other particle species (majority Fermions) the thermodynamic limit is taken. We assume the majority Fermions to be in the ground state such that their non-interacting momentum distribution is a Fermi-sea. Upon this we consider excitations where the particles of the minority species may occupy an arbitrary state within the Fermi-sea. In the case of only a single minority Fermion, the many-body wave function can be expressed as a determinant. This allows us to derive exact thermodynamic expressions for several expectation values as well as for the density-density correlation function. Moreover it is possible to find closed expressions for the single particle Green's function. All of the above mentioned quantities show a non-trivial dependence on the minority particle's momentum. In particular the Green's function in the Tonks-Girardeau regime of hardcore interaction is shown to undergo a transition from the one of impenetrable Bosons to that of free Fermions as the extra particle's momentum varies from the core to the edge of the Fermi-sea. This transition becomes manifest in an algebraic asymptotic decay of the Green's function. If two minority Fermions are present, the many-body wave function turns out to be more complicated. Nevertheless it is possible to derive exact expressions for the two and the three particle density-density correlation functions. Furthermore we calculate the system's total energy and based on that, identify terms which have a natural

  15. Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

    OpenAIRE

    Chandrasekharan, Shailesh; Li, Anyi

    2010-01-01

    We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...

  16. Actinides and heavy fermions

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Ott, H.R.

    1987-01-01

    The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity

  17. Fermions in curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Lippoldt, Stefan

    2016-01-21

    In this thesis we study a formulation of Dirac fermions in curved spacetime that respects general coordinate invariance as well as invariance under local spin base transformations. We emphasize the advantages of the spin base invariant formalism both from a conceptual as well as from a practical viewpoint. This suggests that local spin base invariance should be added to the list of (effective) properties of (quantum) gravity theories. We find support for this viewpoint by the explicit construction of a global realization of the Clifford algebra on a 2-sphere which is impossible in the spin-base non-invariant vielbein formalism. The natural variables for this formulation are spacetime-dependent Dirac matrices subject to the Clifford-algebra constraint. In particular, a coframe, i.e. vielbein field is not required. We disclose the hidden spin base invariance of the vielbein formalism. Explicit formulas for the spin connection as a function of the Dirac matrices are found. This connection consists of a canonical part that is completely fixed in terms of the Dirac matrices and a free part that can be interpreted as spin torsion. The common Lorentz symmetric gauge for the vielbein is constructed for the Dirac matrices, even for metrics which are not linearly connected. Under certain criteria, it constitutes the simplest possible gauge, demonstrating why this gauge is so useful. Using the spin base formulation for building a field theory of quantized gravity and matter fields, we show that it suffices to quantize the metric and the matter fields. This observation is of particular relevance for field theory approaches to quantum gravity, as it can serve for a purely metric-based quantization scheme for gravity even in the presence of fermions. Hence, in the second part of this thesis we critically examine the gauge, and the field-parametrization dependence of renormalization group flows in the vicinity of non-Gaussian fixed points in quantum gravity. While physical

  18. MSW-resonant fermion mixing during reheating

    Science.gov (United States)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-10-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.

  19. MSW-resonant fermion mixing during reheating

    International Nuclear Information System (INIS)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-01-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario

  20. Fermions on the electroweak string

    CERN Document Server

    Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M

    1995-01-01

    We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...

  1. How real are composite fermions?

    International Nuclear Information System (INIS)

    Kang, W.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.

    1995-01-01

    A new picture of fractional quantum Hall effect (FQHE) in terms of a novel particle called composite fermion has emerged recently. A composite fermion is a composite of two flux quanta which are effectively bound to an electron as a result of electron-electron interaction. A system of electrons at half-filled Landau level can be transformed to an equivalent system of composite fermions at zero effective magnetic field with a distinct Fermi surface. The FQHE is then viewed as the integral quantum Hall effect of composite fermions away from half-filling. In order to test for these new particles, we have studied transport of anti-dot superlattices in a two-dimensional electron gas. At low magnetic fields electron transport exhibits well-known resonances at fields where the classical cyclotron orbit becomes commensurate with the anti-dot lattice. At half-filling we observe the same dimensional resonances. This establishes the ''semi-classical'' behavior of composite fermions. (orig.)

  2. Finite boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Johnson, C.W.; Ginocchio, J.N.

    1994-01-01

    We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian

  3. Fermionic One-Way Quantum Computation

    International Nuclear Information System (INIS)

    Cao Xin; Shang Yun

    2014-01-01

    Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n → 2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+〉 f (fermionic Bell state) being free

  4. Null-plane quantization of fermions

    International Nuclear Information System (INIS)

    Mustaki, D.

    1990-01-01

    Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields

  5. Three mirror pairs of fermion families

    International Nuclear Information System (INIS)

    Montvay, I.

    1988-01-01

    A simple model with three mirror pairs of fermion families is considered which allows for a substantial mixing between the mirror fermion partners without conflicting with known phenomenology. (orig.)

  6. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  7. On the disordered fermion couplings

    International Nuclear Information System (INIS)

    Bernaschi, M.; Cabasino, S.; Marinari, E.; Rome-2 Univ.; Sarno, R.; Rome-1 Univ.

    1989-01-01

    We study the possibility of avoiding the fermion doubling problem by using a random coupling. We use numerical simulations in order to study the theory in the strong disorder region. We find a sharp crossover as a function of the strength of the disorder. For weak quenched disorder we find that the species doubling survives, while for strong quenched disorder only with a particular choice of the random term (antihermitian) it is possible to get a theory that seems to avoid fermion doubling. (orig.)

  8. Fermions as generalized Ising models

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-04-01

    Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  9. Improved lattice fermion action for heavy quarks

    International Nuclear Information System (INIS)

    Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias

    2015-01-01

    We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.

  10. 2-fermion and 4-fermion production at LEP2

    CERN Document Server

    van Vulpen, Ivo B

    2000-01-01

    We present the measurements on 2-fermion and 4-fermion production in e + e - collisions at centre-of-mass energies ranging from 192 to 202 Ge V as collected by the 4 LEP experiments in 1999. For processes with 2-fermions in the final state we present both production cross sections and asymmetries for event samples at low and high effective centre-of-mass energies, where the latter process is sensitive to possible contributions from various non-SM physics, like contact interactions or Z' exchange, and can therefore be used to set limits on parameters in those models. We also report on the measured cross sections for a subset of processes leading to 4 fermions in the final state: pair production of heavy vector bosons w+w- (NC03) and ZZ (NC02) followed by single-W production. A measurement of the leptonic branching ratio of the W-boson is used to extract information on IV c• I

  11. Dynamical fermions in lattice quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Kalman

    2007-07-01

    The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)

  12. Dynamical fermions in lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Szabo, Kalman

    2007-01-01

    The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)

  13. Gauge invariance and fermion mass dimensions

    International Nuclear Information System (INIS)

    Elias, V.

    1979-05-01

    Renormalization-group equation fermion mass dimensions are shown to be gauge dependent in gauge theories possessing non-vector couplings of gauge bosons to fermions. However, the ratios of running fermion masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) x U(1) examples of such theories. (author)

  14. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  15. Fermions and bosons : a 'spinless' approach

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Ribeiro, S.C.

    1980-07-01

    The fundamental difference between fermions and bosons is presented. The treatment used is based only on indistinguishability and its related implications on interference, with no mention to spin. Comparison between indistinguishable (fermions or bosons) and distinguishable identical particles are also made, yielding the enhancement (bosons) or inhibition (fermions) factors which determine the quantum distribution equations. (Author) [pt

  16. Look-ahead fermion algorithm

    International Nuclear Information System (INIS)

    Grady, M.

    1986-01-01

    I describe a fast fermion algorithm which utilizes pseudofermion fields but appears to have little or no systematic error. Test simulations on two-dimensional gauge theories are described. A possible justification for the algorithm being exact is discussed. 8 refs

  17. The fermion stochastic calculus I

    International Nuclear Information System (INIS)

    Streater, R.F.

    1984-01-01

    The author describes the stochastic calculus of quantum processes with fermions. After a description of the Clifford algebra as the csup(*)-algebra generated by spinor fields the damped harmonic oscillator with quantum noise is considered as example. Then the Clifford process is described. Finally the Ito-Clifford integral and the Ito-Clifford isometry are presented. (HSI)

  18. Lattices, supersymmetry and Kaehler fermions

    International Nuclear Information System (INIS)

    Scott, D.M.

    1984-01-01

    It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)

  19. Sextet Model with Wilson Fermions

    DEFF Research Database (Denmark)

    Hansen, Martin; Pica, Claudio

    2017-01-01

    We present new results from our ongoing study of the SU(3) sextet model with two flavors in the two-index symmetric representation of the gauge group. In the simulations use unimproved Wilson fermions to investigate the infrared properties of the model. We have previously presented results...

  20. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  1. Alternative to domain wall fermions

    International Nuclear Information System (INIS)

    Neuberger, H.

    2002-01-01

    An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions

  2. Wilson fermions at finite temperature

    International Nuclear Information System (INIS)

    Creutz, M.

    1996-01-01

    The author conjectures on the phase structure expected for lattice gauge theory with two flavors of Wilson fermions, concentrating on large values of the hopping parameter. Numerous phases are expected, including the conventional confinement and deconfinement phases, as well as an Aoki phase with spontaneous breaking of flavor and parity and a large hopping phase corresponding to negative quark masses

  3. Simulating lattice fermions by microcanonically averaging out the nonlocal dependence of the fermionic action

    International Nuclear Information System (INIS)

    Azcoiti, V.; Cruz, A.; Di Carlo, G.; Grillo, A.F.; Vladikas, A.

    1991-01-01

    We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calculating the fermionic determinant just once for all the values of the theory's gauge coupling and flavor number. Our proposal is based on the determination of an effective fermionic action by the calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The feasibility of our method is justified by the observed volume dependence of the fluctuations of the logarithm of the determinant. The algorithm we have used in order to calculate the fermionic determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test the method by simulating compact lattice QED, finding good agreement with other standard calculations. New results on the phase transition of compact QED with massless fermions on 6 4 and 8 4 lattices are also presented

  4. Transport properties of chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Puhr, Matthias

    2017-04-26

    Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume

  5. Searches for Fourth Generation Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.; /Fermilab

    2011-09-01

    We present the results from searches for fourth generation fermions performed using data samples collected by the CDF II and D0 Detectors at the Fermilab Tevatron p{bar p} collider. Many of these results represent the most stringent 95% C. L. limits on masses of new fermions to-date. A fourth chiral generation of massive fermions with the same quantum numbers as the known fermions is one of the simplest extensions of the SM with three generations. The fourth generation is predicted in a number of theories, and although historically have been considered disfavored, stands in agreement with electroweak precision data. To avoid Z {yields} {nu}{bar {nu}} constraint from LEP I a fourth generation neutrino {nu}{sub 4} must be heavy: m({nu}{sub 4}) > m{sub Z}/2, where m{sub Z} is the mass of Z boson, and to avoid LEP II bounds a fourth generation charged lepton {ell}{sub 4} must have m({ell}{sub 4}) > 101 GeV/c{sup 2}. At the same time due to sizeable radiative corrections masses of fourth generation fermions cannot be much higher the current lower bounds and masses of new heavy quarks t' and b' should be in the range of a few hundred GeV/c{sup 2}. In the four-generation model the present bounds on the Higgs are relaxed: the Higgs mass could be as large as 1 TeV/c{sup 2}. Furthermore, the CP violation is significantly enhanced to the magnitude that might account for the baryon asymmetry in the Universe. Additional chiral fermion families can also be accommodated in supersymmetric two-Higgs-doublet extensions of the SM with equivalent effect on the precision fit to the Higgs mass. Another possibility is heavy exotic quarks with vector couplings to the W boson Contributions to radiative corrections from such quarks with mass M decouple as 1/M{sup 2} and easily evade all experimental constraints. At the Tevatron p{bar p} collider 4-th generation chiral or vector-like quarks can be either produced strongly in pairs or singly via electroweak production, where the

  6. Measurement of the ratio of C3+ and O4+ ions produced by ECRIS to prepare a laser cooling experiment at storage rings

    International Nuclear Information System (INIS)

    Zhu, X.L.; Wen, W.Q.; Ma, X.; Li, J.Y.; Feng, W.T.; Zhang, R.T.; Wang, Enliang; Yan, S.; Guo, D.L.; Hai, B.; Qian, D.B.; Zhang, P.; Xu, S.; Zhao, D.M.; Yang, J.; Zhang, D.C.; Li, B.; Gao, Y.; Huang, Z.K.; Wang, H.B.

    2014-01-01

    To prepare the upcoming laser cooling of relativistic C 3+ ion beams at the experimental Cooler Storage Ring (CSRe), a novel experiment was performed using a reaction microscope to determine the ratio of C 3+ ions in mixed ion beams of C 3+ and O 4+ that are produced by an Electron Cyclotron Resonance Ion Source (ECRIS). The mixed ion beams at an energy of 4 keV/u were directed to collide on a supersonic helium gas target. Using the single-electron capture channel and the coincidence technique, the fractions of C 3+ and O 4+ ions in the primary beam were obtained. Using different injection gases for ECRIS, including O 2 , CO, CO 2 , and CH 4 , at a fixed radio-frequency power of 300 W, the measured results showed that the fraction of C 3+ ions was greater than 70% for the injection gases of CO and CO 2 . These measured results are very important and helpful for the upcoming laser cooling experiments

  7. Towards a spectroscopically accurate set of potentials for heavy hydride laser cooling candidates: Effective core potential calculations of BaH

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Keith; McLaughlin, Brendan M.; Lane, Ian C., E-mail: i.lane@qub.ac.uk [School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG (United Kingdom)

    2016-04-14

    BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio {sup 2}Σ{sup +} potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron effective core-potential and even-tempered augmented polarized core-valence basis sets (aug-pCVnZ-PP, n = 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy D{sub e} for the X{sup 2}Σ{sup +} state (extrapolated to the CBS limit) is 16 895.12 cm{sup −1} (2.094 eV), which agrees within 0.1% of a revised experimental value of <16 910.6 cm{sup −1}, while the calculated r{sub e} is within 0.03 pm of the experimental result.

  8. Chiral fermions on the lattice

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-01-01

    The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs

  9. Fermion to boson mappings revisited

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1996-01-01

    We briefly review various mappings of fermion pairs to bosons, including those based on mapping operators, such as Belyaev-Zelevinskii, and those on mapping states, such as Marumori; in particular we consider the work of Otsuka-Arima-Iachello, aimed at deriving the Interacting Boson Model. We then give a rigorous and unified description of state-mapping procedures which allows one to systematically go beyond Otsuka-Arima-Iachello and related approaches, along with several exact results. (orig.)

  10. Fermion determinants in lattice QCD

    International Nuclear Information System (INIS)

    Johnson, Christopher Andrew

    2001-01-01

    The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)

  11. Superdeformations and fermion dynamical symmetries

    International Nuclear Information System (INIS)

    Wu, Cheng-Li

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs

  12. Light fermions in quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2011-01-01

    We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)

  13. Axial anomalies of Lifshitz fermions

    CERN Document Server

    Bakas, Ioannis

    2011-01-01

    We compute the axial anomaly of a Lifshitz fermion theory with anisotropic scaling z=3 which is minimally coupled to geometry in 3+1 space-time dimensions. We find that the result is identical to the relativistic case using path integral methods. An independent verification is provided by showing with spectral methods that the eta-invariant of the Dirac and Lifshitz fermion operators in three dimensions are equal. Thus, by the integrated form of the anomaly, the index of the Dirac operator still accounts for the possible breakdown of chiral symmetry in non-relativistic theories of gravity. We apply this framework to the recently constructed gravitational instanton backgrounds of Horava-Lifshitz theory and find that the index is non-zero provided that the space-time foliation admits leaves with harmonic spinors. Using Hitchin's construction of harmonic spinors on Berger spheres, we obtain explicit results for the index of the fermion operator on all such gravitational instanton backgrounds with SU(2)xU(1) isom...

  14. Symmetry between bosons and fermions

    International Nuclear Information System (INIS)

    Ohnuki, Y.; Kamefuchi, S.

    1986-01-01

    By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table

  15. FLIC-overlap fermions and topology

    International Nuclear Information System (INIS)

    Kamleh, W.; Kusterer, D.J.; Leinweber, D.B.; Williams, A.G.

    2003-01-01

    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F μν in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(α 4 )-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice

  16. Fermions in noncommutative emergent gravity

    International Nuclear Information System (INIS)

    Klammer, D.

    2010-01-01

    Noncommutative emergent gravity is a novel framework disclosing how gravity is contained naturally in noncommutative gauge theory formulated as a matrix model. It describes a dynamical space-time which itself is a four-dimensional brane embedded in a higher-dimensional space. In noncommutative emergent gravity, the metric is not a fundamental object of the model; rather it is determined by the Poisson structure and by the induced metric of the embedding. In this work the coupling of fermions to these matrix models is studied from the point of view of noncommutative emergent gravity. The matrix Dirac operator as given by the IKKT matrix model defines an appropriate coupling for fermions to an effective gravitational metric of noncommutative four-dimensional spaces that are embedded into a ten-dimensional ambient space. As it turns out this coupling is non-standard due to a spin connection that vanishes in the preferred but unobservable coordinates defined by the model. The purpose of this work is to study the one-loop effective action of this approach. Standard results of the literature cannot be applied due to this special coupling of the fermions. However, integrating out these fields in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the noncommutative structure to the Riemann tensor, and a dilaton-like term. It remains to be understood what the effects of these terms are and whether they can be avoided. In a second step, the existence of a duality between noncommutative gauge theory and gravity which explains the phenomenon of UV/IR mixing as a gravitational effect is discussed. We show how the gravitational coupling of fermions can be interpreted as a coupling of fermions to gauge fields, which suffers then from UV/IR mixing. This explanation does not render the model finite but it reveals why some UV/IR mixing remains even in supersymmetric models, except in the N

  17. Superconductivity in mixed boson-fermion systems

    International Nuclear Information System (INIS)

    Ioffe, L.; Larkin, A.I.; Ovchinnikov, Yu.N.; Yu, L.

    1989-12-01

    The superconductivity of mixed boson-fermion systems is studied using a simple boson-fermion transformation model. The critical temperature of the superconducting transition is calculated over a wide range of the narrow boson band position relative to the Fermi level. The BCS scenario and boson condensation picture are recovered in two limiting cases of high and low positions of boson band, respectively, with modifications due to boson-fermion interaction. (author). 11 refs

  18. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  19. Lattice quantum chromodynamics with approximately chiral fermions

    International Nuclear Information System (INIS)

    Hierl, Dieter

    2008-05-01

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  20. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  1. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  2. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  3. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  4. More on random-lattice fermions

    International Nuclear Information System (INIS)

    Kieu, T.D.; Institute for Advanced Study, Princeton, NJ; Markham, J.F.; Paranavitane, C.B.

    1995-01-01

    The lattice fermion determinants, in a given background gauge field, are evaluated for two different kinds of random lattices and compared to those of naive and wilson fermions in the continuum limit. While the fermion doubling is confirmed on one kind of lattices, there is positive evidence that it may be absent for the other, at least for vector interactions in two dimensions. Combined with previous studies, arbitrary randomness by itself is shown to be not a sufficient condition to remove the fermion doublers. 8 refs., 3 figs

  5. Feynman rules for fermion-number-violating interactions

    International Nuclear Information System (INIS)

    Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.

    1992-01-01

    We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)

  6. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  7. Muon studies of heavy fermions

    International Nuclear Information System (INIS)

    Heffner, R.H.

    1991-01-01

    Recent muon spin relaxation (μSR) studies have been particularly effective in revealing important properties of the unusual magnetism and superconductivity found in heavy fermion (HF) systems. In this paper μSR experiments elucidating the symmetry of superconducting order parameter in UPt 3 and UBe 13 doped with thorium and reviewed. Also discussed is the correlation between the enhanced superconducting specific heat jump and the reduced Kondo temperature in B-doped UBe 13 , indicating possible direct experimental evidence for a magnetic pairing mechanism in HF superconductors. 23 refs., 3 figs

  8. Probing kink interactions with fermions

    International Nuclear Information System (INIS)

    Carlitz, R.; Chakrabarti, R.

    1985-01-01

    A dilute gas of kinks exhibits strong but short-ranged intrinsic interactions. When these intrinsic interactions are supplemented by other ''extrinsic'' interactions, a phase transition can occur in which kinks and antikinks bind to form a gas of bounces. The extrinsic interactions arise from the coupling of kinks to an additional degree of freedom, which we take to be a fermion field. The class of quantum-mechanical models which we study includes examples of supersymmetry. The way in which kinks and antikinks bind depends in detail on aspects of the intrinsic interactions. This structure is probably shared by field-theoretic models

  9. Fermionic quantum mechanics and superfields

    International Nuclear Information System (INIS)

    Marnelius, R.

    1990-01-01

    The explicit forms of consistent eigenstate representations for finite dimensional fermionic quantum theories are considered in detail. In particular are the possible Grassmann characters of the eigenstates determined. A straightforward Schrodinger representation is shown to exist if they are even or odd. For an odd number of real eigenvalues, the eigenstates cannot be even or odd. Still a consistent Schrodinger picture is shown to exist provided the basic canonical operators are antilinearly represented. Since the wave functions within the Schrodinger picture are super-fields, the class of superfields which also are first quantized wave functions is determined

  10. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.

    1999-01-01

    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  11. Development of the Measurement System for the Search of an Electric Dipole Moment of the Electron with Laser-Cooled Francium Atoms

    Directory of Open Access Journals (Sweden)

    Inoue T.

    2014-03-01

    Full Text Available We plan to measure the permanent electric dipole moment (EDM of the electron, which has the sensitivity to the CP violation in theories beyond the standard model by using the laser-cooled francium (Fr atom. This paper reports the present status of the EDM measurement system. A high voltage application system was constructed in order to produce the strong electric field (100 kV/cm needed for the experiment. After conditioning, the leakage current was 10 pA when a high voltage of 43 kV was applied. Also, a drift of an environmental field was measured at the planned location of the Fr-EDM experiment. The drift is suppressed at present down to the level of 10 pT by installing a 4-layermagnetic shield. Improvements are still needed to reach the required field stability of 1 fT.

  12. S-wave scattering of fermion revisited

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2011-01-01

    A model where a Dirac fermion is coupled to background dilaton field is considered to study s-wave scattering of fermion by a back ground dilaton black hole. It is found that an uncomfortable situation towards information loss scenario arises when one loop correction gets involved during bosonization.

  13. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.

  14. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  15. Dynamic origins of fermionic D -terms

    Science.gov (United States)

    Hudson, Jonathan; Schweitzer, Peter

    2018-03-01

    The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.

  16. Flavor symmetries and fermion masses

    International Nuclear Information System (INIS)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model

  17. Fermion hierarchy from sfermion anarchy

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni

    2014-01-01

    We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification

  18. Bosonization of free Weyl fermions

    Science.gov (United States)

    Marino, E. C.

    2017-03-01

    We generalize the method of bosonization, in its complete form, to a spacetime with 3  +  1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).

  19. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  20. Fermion condensation and gapped domain walls in topological orders

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yidun [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing 210093 (China); Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada); Wang, Chenjie [Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada)

    2017-03-31

    We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.

  1. Composite fermions in the quantum Hall effect

    International Nuclear Information System (INIS)

    Johnson, B.L.; Kirczenow, G.

    1997-01-01

    The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)

  2. Phase space methods for Majorana fermions

    Science.gov (United States)

    Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.

    2018-06-01

    Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.

  3. Tool kit for staggered fermions

    International Nuclear Information System (INIS)

    Kilcup, G.W.; Sharpe, S.R.

    1986-01-01

    The symmetries of staggered fermions are analyzed both discrete and continuous. Tools are presented that allow a simple decomposition of representations of the continuum symmetries into representations of the discrete lattice symmetries, both at zero and non-zero spatial momenta. These tools are used to find the lattice transcriptions of the operators that appear in the weak interaction Hamiltonian. The lattice Ward Identities are derived that follow from the single partially conserved axial symmetry. Using these identities, the lattice equivalents of the continuum PCAC relations are found. Combining all these tools, Ward Identities are obtained, for the matrix elements of the weak interaction Hamiltonian, from which the behavior of the matrix elements as the pion and kaon masses vanish are derived. The same behavior as in the continuum is found

  4. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  5. Thermalization of fermionic quantum fields

    International Nuclear Information System (INIS)

    Berges, Juergen; Borsanyi, Szabolcs; Serreau, Julien

    2003-01-01

    We solve the nonequilibrium dynamics of a (3+1)-dimensional theory with Dirac fermions coupled to scalars via a chirally invariant Yukawa interaction. The results are obtained from a systematic coupling expansion of the 2PI effective action to lowest nontrivial order, which includes scattering as well as memory and off-shell effects. The dynamics is solved numerically without further approximation, for different far-from-equilibrium initial conditions. The late-time behavior is demonstrated to be insensitive to the details of the initial conditions and to be uniquely determined by the initial energy density. Moreover, we show that at late time the system is very well characterized by a thermal ensemble. In particular, we are able to observe the emergence of Fermi-Dirac and Bose-Einstein distributions from the nonequilibrium dynamics

  6. Multigrid for Staggered Lattice Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.

    2018-01-23

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  7. Chiral composite fermions without U(1)'s

    International Nuclear Information System (INIS)

    Nelson, A.E.

    1986-01-01

    Some models are discussed which seem likely to produce composite fermions with masses protected only by nonabelian global symmetries. A subgroup of the original global symmetries can be weakly gauged to produce small masses for the fermions. A new feature of these models is that the original global symmetries contain no abelian factors and below the confinement scale there are neither exactly massless fermions nor Goldstone bosons. A candidate is given for a potentially realistic model with up to six families of quarks and leptons. (orig.)

  8. Instantons and Massless Fermions in Two Dimensions

    Science.gov (United States)

    Callan, C. G. Jr.; Dashen, R.; Gross, D. J.

    1977-05-01

    The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.

  9. Baby Skyrme model and fermionic zero modes

    Science.gov (United States)

    Queiruga, J. M.

    2016-09-01

    In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.

  10. Ladder physics in the spin fermion model

    Science.gov (United States)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  11. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  12. Quantum geometry of the Dirac fermions

    International Nuclear Information System (INIS)

    Korchemskij, G.P.

    1989-01-01

    The bosonic path integral formalism is developed for Dirac fermions interacting with a nonabelian gauge field in the D-dimensional Euclidean space-time. The representation for the effective action and correlation functions of interacting fermions as sums over all bosonic paths on the complex projective space CP 2d-1 , (2d=2 [ D 2] is derived where all the spinor structure is absorbed by the one-dimensional Wess-Zumino term. It is the Wess-Zumino term that ensures all necessary properties of Dirac fermions under quantization. i.e., quantized values of the spin, Dirac equation, Fermi statistics. 19 refs

  13. Fermionic NNLO contributions to Bhabha scattering

    International Nuclear Information System (INIS)

    Actis, S.; Riemann, T.; Czakon, M.; Uniwersytet Slaski, Katowice; Gluza, J.

    2007-10-01

    We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or with hadronic data allows to determine numerical results for small electron mass m e , combined with arbitrary values of the fermion mass m f in the loop, m 2 e 2 f , or with hadronic insertions. We present numerical results for m f =m μ , m τ ,m top at typical small- and large-angle kinematics ranging from 1 GeV to 500 GeV. (orig.)

  14. Grassmann phase space theory for fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Bryan J. [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria, 3122 (Australia); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow, G4 ONG (United Kingdom); Barnett, Stephen M. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2017-06-15

    A phase space theory for fermions has been developed using Grassmann phase space variables which can be used in numerical calculations for cold Fermi gases and for large fermion numbers. Numerical calculations are feasible because Grassmann stochastic variables at later times are related linearly to such variables at earlier times via c-number stochastic quantities. A Grassmann field version has been developed making large fermion number applications possible. Applications are shown for few mode and field theory cases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Fermionic quantum critical point of spinless fermions on a honeycomb lattice

    International Nuclear Information System (INIS)

    Wang, Lei; Corboz, Philippe; Troyer, Matthias

    2014-01-01

    Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)

  16. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  17. An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions

    International Nuclear Information System (INIS)

    Berlin, J.; Heller, U.M.

    1991-01-01

    We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)

  18. Fermion bag solutions to some sign problems in four-fermion field theories

    International Nuclear Information System (INIS)

    Li, Anyi

    2013-01-01

    Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z 2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.

  19. Fermion bag solutions to some sign problems in four-fermion field theories

    Science.gov (United States)

    Li, Anyi

    2013-04-01

    Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.

  20. Fermion number non-conservation and cold neutral fermionic matter in (V-A) gauge theories

    International Nuclear Information System (INIS)

    Matveev, V.A.; Rubakov, V.A.; Tavkhelidze, A.N.; Tokarev, V.F.

    1987-01-01

    It is shown that in four-dimensional abelian (V-A) theories, the ground state of cold neutral fermionic matter is an anomalous state containing domains of abnormal phase surrounded by the normal vacuum. Inside these domains, there exists a gauge field condensate which makes real fermions disappear both inside and outside the domains. In non-abelian theories, the abnormal matter is unstable in its turn, and the system rolls back down into the normal state with a small number of fermions above the topologically non-trivial vacuum. Thus, in several non-abelian gauge theories, the fermion number density of cold neutral matter cannot exceed some critical value. (orig.)

  1. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  2. Chiral fermions in asymptotically safe quantum gravity.

    Science.gov (United States)

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  3. The principle of the Fermionic projector

    CERN Document Server

    Finster, Felix

    2006-01-01

    The "principle of the fermionic projector" provides a new mathematical framework for the formulation of physical theories and is a promising approach for physics beyond the standard model. This book begins with a brief review of relativity, relativistic quantum mechanics, and classical gauge theories, emphasizing the basic physical concepts and mathematical foundations. The external field problem and Klein's paradox are discussed and then resolved by introducing the fermionic projector, a global object in space-time that generalizes the notion of the Dirac sea. At the mathematical core of the book is a precise definition of the fermionic projector and the use of methods of hyperbolic differential equations for detailed analysis. The fermionic projector makes it possible to formulate a new type of variational principle in space-time. The mathematical tools are developed for the analysis of the corresponding Euler-Lagrange equations. A particular variational principle is proposed that gives rise to an effective...

  4. Pseudoclassical fermionic model and classical solutions

    International Nuclear Information System (INIS)

    Smailagic, A.

    1981-08-01

    We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)

  5. Nonequilibrium fermion production in quantum field theory

    International Nuclear Information System (INIS)

    Pruschke, Jens

    2010-01-01

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  6. Nonequilibrium fermion production in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pruschke, Jens

    2010-06-16

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  7. Fermions in Brans-Dicke cosmology

    International Nuclear Information System (INIS)

    Samojeden, L. L.; Devecchi, F. P.; Kremer, G. M.

    2010-01-01

    Using the Brans-Dicke theory of gravitation we put under investigation a hypothetical universe filled with a fermionic field (with a self-interaction potential) and a matter constituent ruled by a barotropic equation of state. It is shown that the fermionic field [in combination with the Brans-Dicke scalar field φ(t)] could be responsible for a final accelerated era, after an initial matter dominated period.

  8. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  9. Fermion mass hierarchies in theories of technicolor

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1981-01-01

    Models in which light fermion masses result from dynamical symmetry breaking often produce these masses in a hierarchial pattern. The author exhibits two scenarios for obtaining such hierarchies and illustrates each with a simple model of mass generation. In the first scenario, the light fermion masses are separated by powers of a weak coupling constant; in the second scenario, they are separated by a ratio of large mass scales

  10. Anomalous diffusion of fermions in superlattices

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.

    1996-03-01

    Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)

  11. The physics and chemistry of heavy Fermions

    International Nuclear Information System (INIS)

    Fisk, Z.; Sarrao, J.L.

    1994-01-01

    The heavy Fermions are a subset of the f-element intermetallics straddling the magnetic/non-magnetic boundary. Their low temperature properties are characterized by an electronic energy scale of order 1--10 K. Among the low temperature ground states observed in heavy Fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems

  12. Singlet fermionic dark matter with Veltman conditions

    OpenAIRE

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-01-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormaliz...

  13. The Continuum Limit of Causal Fermion Systems

    OpenAIRE

    Finster, Felix

    2016-01-01

    This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries." The dynamics is described by...

  14. The effective action for chiral fermions

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.

    1985-01-01

    This paper reports on recent work which given an exact characterization of the imaginary part of the effective action for chiral fermions in 2n dimensions in terms of the spectral asymmetry of a suitable (2n+1)-dimensional operator. In order to keep the discussion as simple as possible, the author concentrates on four dimensional fermions with arbitrary external gauge fields. This approach can be extended without difficulty to higher dimensions and also to include external gravitational fields

  15. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  16. Fermion-induced quantum critical points.

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  17. Interacting fermions on a random lattice

    International Nuclear Information System (INIS)

    Perantonis, S.J.; Wheater, J.F.

    1988-01-01

    We extend previous work on the properties of the Dirac lagrangian on two-dimensional random lattices to the case where interaction terms are included. Although for free fermions the chiral symmetry of the doubles is spontaneously broken by their interaction with the lattice and tehy decouple from long-distance physics, our results in this paper show that all is undone by quantum corrections in an interacting field theory and taht the end result is very similar to what is found with Wilson fermions. Two field-theoretical models with interacting fermions are studied by perturbation expansion in the field theory coupling constant. These are a model with one fermion and one boson species interacting via a scalar Yukawa coupling and the massive Thirring model. It is shown that on the random lattice ultraviolet finite diagrams and finite parts of ultraviolet divergent diagrams have the correct continuum limit. Ultraviolet divergent parts can be removed by the same renormalisation procedure as in the continuum, but do not exhibit the same dependence on the lagrangian mass. In the case of the massive Thirring model this causes a fermion mass correction of order the cut-off scale, which breaks the chiral symmetry of the remaining light fermion; there is consequently a fine-tuning problem. In the context of the same model we discuss the effect of the Goldstone boson associated with the spontaneous breakdown of the chiral symmetry of the doubles on two-dimensional models with vector couplings. (orig.)

  18. Boson-fermion symmetries in the W-Pt region

    International Nuclear Information System (INIS)

    Warner, D.D.

    1985-01-01

    The concept of symmetry in the Interacting Boson Model (IBM) description of even-even nuclei has proved to be one of the model's most important elements, because they provide benchmarks in the formulation of a unified description of a broad range of nuclei. The importance of the recently proposed symmetries in odd-even systems can thus be viewed in the same light, and their role in pointing to a simple prescription for the changing collective structure in odd A nuclei throughout a major shell is likely to prove even more essential, given the much greater complexity of the boson-fermion (IBFM) Hamiltonian. The group structure of a boson-fermion system is described by U/sup B/(6) x U/sup F/(m) where m specifies the number of states available to the odd fermion, and thus depends on the single particle space assumed. The ability to construct group chains corresponding to the symmetries SU(5), SU(3) or 0(6) depends on the value of m. Of the structures studied in detail to date, the case of m = 12 is the one with the broadest potential. The fermion is allowed to occupy orbits with j = 1/2, 3/2 and 5/2, so that the assumed single particle space corresponds to the negative parity states available to an odd neutron at the end of the N = 82-126 shell, namely, P/sub 1/2/, p/sub 3/2/ and f/sub 5/2/. The region of interest thus spans the W-Pt nuclei, and since one prerequisite for an odd-A symmetry is the existence of that same symmetry in the neighboring even-even core nucleus, the odd Pt nuclei around A = 196 offer the obvious testing ground for the 0(6) limit of U(6/12). The heavier even-even W nuclei, on the other hand, have the characteristics of an axial rotor, and hence the negative parity structure of the neighboring odd W isotopes offers the possibility to study the validity of the SU(3) limit. Given a definition and understanding of these two limits, the construction of a simple description of the transitional Os nuclei can be considered

  19. Iterants, Fermions and Majorana Operators

    Science.gov (United States)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  20. Fermionic pentagons and NMHV hexagon

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-05-01

    Full Text Available We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N=4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4 R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

  1. Fermion bag solutions to some unsolved sign problems

    Science.gov (United States)

    Li, Anyi; Chandrasekharan, Shailesh

    2012-03-01

    Some interesting lattice four-fermion models containing N flavors of staggered fermions with Z2 and U(1) chiral symmetries suffer from sign problems in the auxiliary field approach. Earlier calculations have either ignored these sign problems or have circumvented them by adding conjugate fermion fields which changes the model. In this talk we show that the recently proposed fermion bag approach solves these sign problems. The basic idea of the new approach is to collect unpaired fermionic degrees of freedom inside a fermion bag. A resummation of all fermion world lines inside the bag is then sufficient to solve the sign problems. The fermion bag approach provides new opportunities to solve in these ``unsolved'' four-fermion models in the chiral limit efficiently.

  2. Measurement of the lifetime and the proportion of 12C3+ ions in stored relativistic ion beams as a preparation for laser cooling experiments at the CSRe

    Science.gov (United States)

    Wang, H. B.; Wen, W. Q.; Huang, Z. K.; Zhang, D. C.; Hai, B.; Zhu, X. L.; Zhao, D. M.; Yang, J.; Li, J.; Li, X. N.; Mao, L. J.; Mao, R. S.; Wu, J. X.; Yang, J. C.; Yuan, Y. J.; Eidam, L.; Winters, D.; Beck, T.; Kiefer, D.; Rein, B.; Walther, Th.; Loeser, M.; Schramm, U.; Siebold, M.; Bussmann, M.; Ma, X.

    2017-10-01

    We report on an experiment that was conducted in preparation of laser cooling experiments at the heavy-ion storage ring CSRe. The lifetimes of ion beams made up of 12C3+ and 16O4+ ions stored at an energy of 122 MeV/u in the CSRe were determined by two independent methods, firstly via a DC current transformer (DCCT) and secondly via a Schottky resonator. Using electron-cooling, the signals of the 12C3+ and 16O4+ ions could be separated and clearly observed in the Schottky spectrum. The obtained individual lifetimes of the 12C3+ and 16O4+ components were 23.6 s and 17.8 s, respectively. The proportion of 12C3+ ions in the stored ion beam was measured to be more than 70% at the beginning of the injection and increasing as a function of time. In addition to these measurements, the operation and remote control of a pulsed laser system placed directly next to the storage ring was tested in a setup similar to the one envisaged for future laser experiments.

  3. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  4. The hidden fermions in Z(2) theories

    International Nuclear Information System (INIS)

    Srednicki, M.

    1983-01-01

    Low dimensional Z(2) gauge theories have been rewritten in terms of locally coupled fermionic degrees of freedom by means of the Jordan-Wigner transformation. In this paper it is shown that higher dimensional Z(2) gauge theories are also fermionic theories in disguise. The SML solution to the 1+1 dimension Ising model is reviewed. Psi operators are represented pictorially as arrows, psi 1 points to the left, psi 2 to the right, each site of H a multiple of two operators. The 2+1 dimension Ising model is then considered. A fermion plaquette operator is introduced as the generator of a gauge symmetry for the fermionic H. Findings in 1+1 and 2+1 are then applied to 3+1 dimensional Z(2) gauge theory. A construction of this lattice is undertaken. Psi formalism replaces sigma formalism, as it permits extremely simple duality transformations to be made on any Z(2) Hamiltonian. It is shown that the fermionic formalism will lead to new ideas in Z(2) theories

  5. Adding gauge fields to Kaplan's fermions

    International Nuclear Information System (INIS)

    Blum, T.; Kaerkkaeinen, L.

    1994-01-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U(1) gauge theory we use an inhomogeneous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field. (orig.)

  6. Ladder physics in the spin fermion model

    International Nuclear Information System (INIS)

    Tsvelik, A. M.

    2017-01-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  7. Entanglement negativity bounds for fermionic Gaussian states

    Science.gov (United States)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  8. Exotic fermions and electric dipole moments

    International Nuclear Information System (INIS)

    Joshipura, A.S.

    1991-01-01

    The contributions of mirror fermions to the electric dipole moments (EDM's) of leptons and neutrons are studied using the available limits on the mixing of the relevant fermions to their mirror partners. These limits imply EDM's several orders of magnitude larger than the current experimental bounds in the case of the electron and the neutron if the relevant CP-violating phases are not unnaturally small. If these phases are large, then the bounds on the EDM's can be used to improve upon the limits on mixing between the ordinary (f) and the mirror (F) fermions. In the specific case of the latter mixing angle being given by (m f /M F ) 1/2 , one can obtain the electron and the neutron EDM's close to experimental bounds

  9. Improved formulation of GNO fermionization theorem

    International Nuclear Information System (INIS)

    Fre, P.; Gliozzi, F.; Piras, A.

    1989-01-01

    It is pointed out that in the Kac-Moody algebras fulfilling the fermionization criterion of Goddard, Nahm and Olive and having a non-minimal value of the central charge κ, only a proper subset of the allowed unitary highest weight representations can actually be encoded in a free fermion theory. These truly fermionizable representations are selected by a very specific non-regular embedding of the fermionizable Kac-Moody algebra into the lowest level SO(N F ) Kac-Moody algebra, N F being both the number of fermions and the dimension of the GNO symmetric space. This embedding is a particular case of the embeddings considered by Bais and Bouwknegt and by Schellekens and Warner, for which the Virasoro central charge of the subgroup is equal to that of the group. Furthermore, these fermionizable representations span an orbit of the modular group always leading to a non-trivial modular invariant partition function

  10. Vacuum polarization and chiral lattice fermions

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-09-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs

  11. Thermofield dynamics and Casimir effect for fermions

    International Nuclear Information System (INIS)

    Queiroz, H.; Silva, J.C. da; Khanna, F.C.; Malbouisson, J.M.C.; Revzen, M.; Santana, A.E.

    2005-01-01

    A generalization of the Bogoliubov transformation is developed to describe a space compactified fermionic field. The method is the fermionic counterpart of the formalism introduced earlier for bosons [Phys. Rev. A 66 (2002) 052101], and is based on the thermofield dynamics approach. We analyze the energy-momentum tensor for the Casimir effect of a free massless fermion field in a d-dimensional box at finite temperature. As a particular case the Casimir energy and pressure for the field confined in a three-dimensional parallelepiped box are calculated. It is found that the attractive or repulsive nature of the Casimir pressure on opposite faces changes depending on the relative magnitude of the edges. We also determine the temperature at which the Casimir pressure in a cubic box changes sign and estimate its value when the edge of the cube is of the order of the confining lengths for baryons

  12. Thermal radiation of fermions by an accelerated wall

    International Nuclear Information System (INIS)

    Horibe, Minoru

    1979-01-01

    The theory of particle production by an accelerated wall is extended to the massless Dirac particle. It is shown that the mean occupation number of fermions (anti-fermions) is given by the Fermi distribution function. (author)

  13. Construction of an apparatus for the magnetic capture of fermionic lithium atoms

    International Nuclear Information System (INIS)

    Jochim, S.

    2000-01-01

    This thesis reports on the construction of an apparatus for the magneto-optical trapping of the fermionic 6 Li-Isotope. This represents a first step towards experiments on the quantum degeneracy of dilute fermionic gases. The magneto-optical trap (MOT) will serve as a cold atom source for loading an optical trap. The apparatus consists of a laser system that excites the two 6 Li-D 2 -lines at 671 nm, an arrangement of coils generating the magnetic fields necessary to operate the MOT and a Zeeman slower, and a UHV-apparatus. The MOT is loaded from a thermal atomic beam. The Zeeman slower decelerates atoms with a velocity smaller than 600 m/s to about 40 m/s, so that they can be captured in the MOT. We expect to trap at least 10 8 atoms at a temperature of about 400 μK. (orig.)

  14. Four fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    It is known that field theories with attractive four-point fermion interactions can produce scalar bound states: Fermion mass generation by spontaneous chiral symmetry breaking associated with such fermion bound states provides an attractive mechanism for building models of composite Higgs bosons. The ratio of fermion and boson masses can then be predicted while it seems to be a free parameter in similar models where a boson field explicitly appears in the action. The main problem is that the corresponding models are renormalizable only in two dimensions, in contrast with models with explicit bosons. Many fermion models with four-point interaction are asymptotically free in two dimensions and then behave also like renormalizable models in higher dimensions, at least within the framework of some 1/N expansion. On the other hand mass ratio predictions also follow in the models with explicit bosons, when they have an IR fixed point, from the additional natural assumption that coupling constants have generic values at the cut-off scale. To the model with a four fermion interaction one can associate an effective model containing an additional scalar field, renormalizable in four dimensions, which has the same large distance, small momentum physics, at least to all orders in some 1/N expansion. Even the leading corrections corresponding to irrelevant or marginal operators are identical. This property is important in four dimensions where the IR fixed point coupling constants vanish: The correction amplitudes can be varied by changing the coupling constants in the renormalizable model and the cut-off function in the perturbatively non-renormalizable model. We shall consider here for definiteness only the Gross-Neveu model but it will be clear that the arguments are more general

  15. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  16. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  17. Cosmic expansion from boson and fermion fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2011-01-01

    This paper consists in analyzing an action that describes boson and fermion fields minimally coupled to the gravity and a common matter field. The self-interaction potentials of the fields are not chosen a priori but from the Noether symmetry approach. The Noether forms of the potentials allow the boson field to play the role of dark energy and matter and the fermion field to behave as standard matter. The constant of motion and the cyclic variable associated with the Noether symmetry allow the complete integration of the field equations, whose solution produces a universe with alternated periods of accelerated and decelerated expansion.

  18. On the magnetoresistance of heavy fermion compounds

    International Nuclear Information System (INIS)

    Lee Chengchung; Chen Chung

    1992-09-01

    Starting from two-conduction-band Anderson lattice model, the magneto-transport properties of heavy fermion systems are studied in the slave boson mean field theory. The residual magnetoresistivity induced by different kinds of impurities is calculated, and the experimentally detected positive maximum structure in the residual magnetoresistance of heavy fermion systems is reproduced. The transition of field-dependent resistivity from nonmonotonic to monotonic behaviour with increasing temperature can be explained naturally by including the charge fluctuation effect. The influence of applied pressure is also investigated. (author). 22 refs, 5 figs

  19. Parametrization relating the fermionic mass spectra

    International Nuclear Information System (INIS)

    Kleppe, A.

    1993-01-01

    When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum

  20. A Search for Excited Fermions at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Negri, I.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2000-01-01

    A search for excited fermions f^* of the first generation in e^+p scattering at the collider HERA is presented using H1 data with an integrated luminosity of 37 pb^(-1). All electroweak decays of excited fermions, f^* -> f gamma, f W, f Z are considered and all possible final states resulting from the Z or W hadronic decays or decays into leptons of the first two generations are taken into account. No evidence for f^* production is found. Mass dependent exclusion limits on cross-sections and on the ratio of coupling constants to the compositeness scale are derived.

  1. On the origin of fermion masses

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1992-01-01

    We review some recent work on nonperturbative properties of fermions and connections with chiral gauge theories. In particular, we consider one of the ultimate goals of this program: The understanding of the actual fermion mass spectrum. It is pointed out that if quarks and leptons are composite, their masses may be set by the physics of the preons and their interactions in such a manner as to differ considerably from the Yukawa form m f ∝v (where v is the electroweak symmetry breaking scale) or analogous forms involving v. Some ideas of how this might work are given, and some implications are discussed. (orig.)

  2. Fermionic formula for double Kostka polynomials

    OpenAIRE

    Liu, Shiyuan

    2016-01-01

    The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...

  3. Fermionic determinant in two and four dimensions

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Rego Monteiro, M.A. do.

    1985-01-01

    The fermionic determinant of the two-dimensional Schwinger model and QCD and a four-dimensional model with a pseudo-vectorial coupling are discussed. It is observed that in both cases the Dirac operator can be expressed as a path-ordered product of the gauge field and the fermionic determinant is computed exactly without reference to a particular gauge. The two point Green's function is obtained in all cases as a free particle two point function times a model dependent term. (Author) [pt

  4. Fermion fields in η-ξ spacetime

    International Nuclear Information System (INIS)

    Gui, Y.

    1992-01-01

    Fermion fields in η-ζ spacetime are discussed. By the path-integral formulation of quantum field theory, we show that the (zero-temperature) Green's functions for Dirac fields on the Euclidean section in η-ζ spacetime are equal to the imaginary-time thermal Green's functions in Minkowski spacetime, and that the (zero-temperature) Green's functions on the Lorentzian section in η-ζ spacetime correspond to the real-time thermal Green's functions in Minkowski spacetime. The antiperiodicity of fermion fields in η-ζ spacetime originates from Lorentz transformation properties of the fields

  5. Noether symmetry for non-minimally coupled fermion fields

    International Nuclear Information System (INIS)

    Souza, Rudinei C de; Kremer, Gilberto M

    2008-01-01

    A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period, behaving as a standard matter field

  6. The bosonic mother of fermionic D-branes

    OpenAIRE

    Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne

    2002-01-01

    We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...

  7. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  8. Zero-energy modes, charge conjugation, and fermion number

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Yajnik, U.A.

    1986-01-01

    States with a half-integer fermion number occur when a fermionic field coupled to a soliton possesses a zero mode. This paper spells out the circumstances under which one can retain an integer fermion number as also a charge-conjugation-invariant ground state. It is necessary to make the representation reducible but it is kept irreducible by introducing an additional operator

  9. Simulating an arbitrary number of flavors of dynamical overlap fermions

    International Nuclear Information System (INIS)

    DeGrand, T.; Schaefer, S.

    2006-05-01

    We present a set of related Hybrid Monte Carlo methods to simulate an arbitrary number of dynamical overlap fermions. Each fermion is represented by a chiral pseudo-fermion field. The new algorithm reduces critical slowing down in the chiral limit and for sectors of nontrivial topology. (Orig.)

  10. Extra Z neutral bosons, families and heavy fermions

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-08-01

    The minimal Grand Unified Theories with three-family should include two extra Z neufral bosons which belong to the different broken scales. Georgi's argument on heavy Dirac fermions has been realized. These fermions should not be bizarre. The extra Z and Dirac fermions are not too heavy. The difficulty of the proton decay may be resolved

  11. Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions

    International Nuclear Information System (INIS)

    Dimopoulos, P.; Giusti, L.; Hernandez, P.; Palombi, F.; Pena, C.; Vladikas, A.; Wennekers, J.; Wittig, H.

    2006-01-01

    We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS=1 and ΔS=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays

  12. Axial gravity, massless fermions and trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica

    2017-08-15

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  13. Stable simulations of many fermion systems

    International Nuclear Information System (INIS)

    Loh, E.Y. Jr.; Gubernatis, J.E.; Scalapino, D.J.; Sugar, R.L.; White, S.R.; Scalettar, R.T.; Los Alamos National Lab., NM; California Univ., Santa Barbara, CA; Illinois Univ., Urbana, IL

    1989-01-01

    As the inverse temperature β becomes large, the diverse numerical scales present in exp(-βH) plague simulations of many-fermion systems on finite-precision computers. Representation of matrices in factorized form stabilizes these calculations, allowing efficient, low-temperature studies of condensed-matter models

  14. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    Deh, Benjamin

    2008-01-01

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  15. Compact lattice QED with Wilson fermions

    International Nuclear Information System (INIS)

    Hoferichter, A.

    1994-08-01

    We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)

  16. Probabilistic representation of fermionic lattice systems

    International Nuclear Information System (INIS)

    Beccaria, Matteo; Presilla, Carlo; De Angelis, Gian Fabrizio; Jona-Lasinio, Giovanni

    2000-01-01

    We describe an exact Feynman-Kac type formula to represent the dynamics of fermionic lattice systems. In this approach the real time or Euclidean time dynamics is expressed in terms of the stochastic evolution of a collection of Poisson processes. From this formula we derive a family of algorithms for Monte Carlo simulations, parametrized by the jump rates of the Poisson processes

  17. Axial gravity, massless fermions and trace anomalies

    International Nuclear Information System (INIS)

    Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi

    2017-01-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  18. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  19. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  20. Strong correlations in few-fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergschneider, Andrea

    2017-07-26

    In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.

  1. Dual of QCD with One Adjoint Fermion

    DEFF Research Database (Denmark)

    Mojaza, Matin; Nardecchia, Marco; Pica, Claudio

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound...

  2. Fermions Living in a Flat World

    International Nuclear Information System (INIS)

    Jesus Anguiano-Galicia, Ma. de; Bashir, A.

    2006-01-01

    In a plane, parity transformation, which changes the sign of only one spatial coordinate, swaps the fermion fields living in two inequivalent representations. A parity invariant Lagrangian thus contains fields corresponding to both the representations. For such a Lagrangian, we show that we can also define a chiral symmetry

  3. Fermionic dimensions and Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Delbourgo, R.; Zhang, R.B.

    1988-01-01

    Instead of appending extra bosonic dimensions to spacetime and needing to exorcise the higher modes, it is possible to construct Kaluza-Klein models in which the additional coordinates are fermionic and the higher modes do not arise. We erect a unified gravity/Yang-Mills theory on such a grassmannian framework and then discuss possible generalisations to other internal groups. (orig.)

  4. Mirror fermions in chiral gauge theories

    International Nuclear Information System (INIS)

    Montvay, I.

    1992-06-01

    Mirror fermions appear naturally in lattice formulations of the standard model. The phenomenological limits on their existence and discovery limits at future colliders are discussed. After an introduction of lattice actions for chiral Yukawa-models, a recent numerical simulation is presented. In particular, the emerging phase structures and features of the allowed region in renormalized couplings are discussed. (orig.)

  5. Unorthodox lattice fermion derivatives and their shortcomings

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Kovacs, E.V.

    1987-01-01

    We discuss the DWY (Lagrangian), Quinn-Weinstein, and Rebbi proposals for incorporating fermions into lattice gauge theory and analyze them in the context of weak coupling perturbation theory. We find that none of these proposals leads to a completely satisfactory lattice transcription of fully-interacting gauge theory

  6. SU(3) sextet model with Wilson fermions

    DEFF Research Database (Denmark)

    Hansen, Martin; Drach, Vincent; Pica, Claudio

    2017-01-01

    to be inside or very close to the lower boundary of the conformal window. We use the Wilson discretization for the fermions and map the phase structure of the lattice model. We study several spectral and gradient flow observables both in the bulk and the weak coupling phases. While in the bulk phase we find...

  7. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  8. Nonperturbative treatment of reduced model with fermions

    International Nuclear Information System (INIS)

    Gutierrez, W.R.

    1983-01-01

    A nonperturbative method is presented to show that the reduced model produces the correct leading large-N contribution to the fermion Green's functions. A new form of the reduced model is introduced, which avoids the quenching procedure. Also the equation for the meson bound states is discussed. The method is illustrated in the case of two-dimensional QCD

  9. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...

  10. Superconductivity in Correlated Fermions System | Babalola ...

    African Journals Online (AJOL)

    We have studied the Hubbard model which is a model that is used to describe the physics of strongly correlated Fermions systems. Using the Hubbard model, we worked on some systems in one dimension (1-D) at half fillings. We employed the numerical exact diagonalization technique and found out that there was a ...

  11. Hidden supersymmetry and Fermion number fractionalization

    International Nuclear Information System (INIS)

    Akhoury, R.

    1985-01-01

    This paper discusses how a hidden supersymmetry of the underlying field theories can be used to interpret and to calculate fermion number fractionalization in different dimensions. This is made possible by relating it to a corresponding Witten index of the hidden supersymmetry. The closely related anomalies in odd dimensions are also discussed

  12. Hidden symmetry of a free fermion model

    International Nuclear Information System (INIS)

    Bazhanov, V.V.; Stroganov, Yu.G.

    1984-01-01

    A well-known eight-vertex free fermion model on a plane lattice is considered. Solving triangle equations and using the symmetry properties of the model, an elliptic parametrization for Boltzmann vertex weights is constructed. In the parametrization the weights are meromorphic functions of three complex variables

  13. Geometry of non-degenerate Susskind fermions

    International Nuclear Information System (INIS)

    Mitra, P.

    1983-01-01

    The Dirac-Kaehler equation on the lattice is known to describe the degenerate ''flavours'' appering in Susskind's approach to lattice fermions. We study the modification that has to be made in this equation in order to lift the degeneracy and give the flavours arbitrary different masses. (orig.)

  14. Kaon decay amplitudes using staggered fermions

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1986-12-01

    A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model

  15. Fermion pair physics at LEP2

    International Nuclear Information System (INIS)

    Georgios, Anagnostou

    2004-01-01

    Combined measurements of the 4 LEP collaborations for the fermion pair processes e + e - →f anti f are presented. The results show no significant deviations when compared with the Standard Model predictions and are used to set limits on contact interactions, Z' gauge bosons and low scale gravity models with large extra dimensions. (orig.)

  16. Evaluating the fermionic determinant of dynamical configurations

    International Nuclear Information System (INIS)

    Hasenfratz, Anna; Alexandru, Andrei

    2002-01-01

    We propose and study an improved method to calculate the fermionic determinant of dynamical configurations. The evaluation or at least stochastic estimation of the ratios of fermionic determinants is essential for a recently proposed updating method of smeared link dynamical fermions. This update creates a sequence of configurations by changing a subset of the gauge links by a pure gauge heat bath or over-relaxation step. The acceptance of the proposed configuration depends on the ratio of the fermionic determinants on the new and original configurations. We study this ratio as a function of the number of links that are changed in the heat bath update. We find that even when every link of a given direction and parity of a 10 fm 4 configuration is updated, the average of the determinant ratio is still close to one and with the improved stochastic estimator the proposed change is accepted with about 20% probability. This improvement suggests that the new updating technique can be efficient even on large lattices and could provide an updating method for dynamical overlap actions

  17. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  18. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  19. Large cutoff effects of dynamical Wilson fermions

    International Nuclear Information System (INIS)

    Sommer, R.; Hoffmann, R.; Knechtli, F.; Rolf, J.; Wolff, U.; Wetzorke, I.

    2003-09-01

    We present and discuss results for cutoff effects in the PCAC masses and the mass dependence of r 0 for full QCD and various fermion actions. Our discussion of how one computes mass dependences - here of r 0 - is also relevant for comparisons with chiral perturbation theory. (orig.)

  20. Dual fermion approach to disordered correlated systems

    International Nuclear Information System (INIS)

    Haase, Patrick

    2015-01-01

    Disorder is ubiquitous in real materials and influences the physical properties like the conductivity to varying degrees. If electron-electron interactions are strong, theoretical and numerical treatment of these systems becomes challenging. In this thesis a numerical approach is developed to address these systems, treating both interactions and disorder on equal footing. The approach is based on the dual fermion approach for interacting systems developed by Rubtsov et al. Terletska et al. applied the ideas of the dual fermion approach to disordered non-interacting systems. In this approach, the replica trick is used to integrate out the disorder in favor of an effective electron-electron interaction. We extended the approach from Terletska et al. to treat disordered interacting systems. Dual Fermions allow to take into account non-local fluctuations by means of a perturbative expansion around an impurity problem. The impurity reference system is determined self-consistently, analogously to the dynamical mean-field theory. The perturbative expansion is expected to yield good results for small and large values of interaction strength and disorder. A priori, it is not clear what to expect for intermediate values, but experience shows that oftentimes good results are obtained for this region. An advantage of the dual fermion approach is that there is no sign-problem for a single orbital model if quantum Monte Carlo is used to solve the interacting reference system. Additionally, perturbation theory is usually numerically much cheaper than fully solving an interacting lattice or cluster problem. Thus, the dual fermion approach allows to address regions of parameter space that are not accessible to lattice quantum Monte Carlo calculations or cluster extension of dynamical mean-field theory. Cluster extensions of the dynamical mean-field theory are for example the dynamical cluster approximation or the cellular dynamical mean-field theory. The new approach is benchmarked

  1. Multi-boson block factorization of fermions

    Science.gov (United States)

    Giusti, Leonardo; Cè, Marco; Schaefer, Stefan

    2018-03-01

    The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g - 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.

  2. Excitation spectrum of correlated Dirac fermions

    Science.gov (United States)

    Jalali, Z.; Jafari, S. A.

    2015-04-01

    Motivated by the puzzling optical conductivity measurements in graphene, we speculate on the possible role of strong electronic correlations on the two-dimensional Dirac fermions. In this work we employ the slave-particle method to study the excitations of the Hubbard model on honeycomb lattice, away from half-filling. Since the ratio U/t ≈ 3.3 in graphene is not infinite, double occupancy is not entirely prohibited and hence a finite density of doublonscan be generated. We therefore extend the Ioff-Larkin composition rule to include a finite density of doublons. We then investigate the role played by each of these auxiliary particles in the optical absorption of strongly correlated Dirac fermions.

  3. Perturbative analysis for Kaplan's lattice chiral fermions

    International Nuclear Information System (INIS)

    Aoki, S.; Hirose, H.

    1994-01-01

    Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls

  4. A nonperturbative fermion-boson vertex

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2002-01-01

    We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking

  5. 4d fermionic superstrings with arbitrary twists

    International Nuclear Information System (INIS)

    Antoniadis, I.; Bachas, C.

    1988-01-01

    We present the rules for systematically constructing all consistent four-dimensional string theories, using free world-sheet fermions which pick up arbitrary phases when parallel transported around the string. These rules are necessary and sufficient for multi-loop modular invariance. They lead to theories with general Z N (GSO-type) projections, whose merits for model-building we discuss. We classify all boundary conditions yielding massless space-time spinors. We show that, in contrast to the case of only real 2d fermions, all possible realizations of world-sheet supersymmetry are now allowed. This opens the way for the construction of a new class of supersymmetric string models. (orig.)

  6. SU(2) with fundamental fermions and scalars

    Science.gov (United States)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna

    2018-03-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

  7. Arbitrary spin fermions on the lattice

    International Nuclear Information System (INIS)

    Bullinaria, J.A.

    1985-01-01

    Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out

  8. On charged fermions in two dimensions

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Salam, A.; Strathdee, J.

    1990-09-01

    The integer quantum Hall effect and associated magnetic phenomena are reconsidered in a 2-dimensional system with a flat boundary. The electromagnetic properties of this system are governed by an effective Lagrangian which includes an induced Chern-Simons term. The effective lagrangian is relevant for the description of fields which are slowly varying about a uniform magnetic background associated with a fermionic ground state in which a whole number of Landau levels is filled. It is singular for field values that correspond to partially filled levels. The underlying assumption of translation invariance of the fermionic ground state fails in the vicinity of boundaries where the effective field theory is essentially non-local. The width of the boundary layer and the current flowing in it are estimated. (author). 12 refs, 5 figs

  9. Bosonic and fermionic dipoles on a ring

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Pethick, C. J.; Bruun, Georg Morten

    2011-01-01

    We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state...... to an inhomogeneous crystal-like one. For small enough angles between the dipoles and the plane of the ring, there are regions with attractive interactions, and clustered states can form....

  10. Semiclassical expansions for confined N fermion systems

    International Nuclear Information System (INIS)

    Krivine, H.; Martorell, J.; Casas, M.

    1989-01-01

    A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail

  11. SU (2) with fundamental fermions and scalars

    DEFF Research Database (Denmark)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  12. Extended nonabelian symmetries for free fermionic model

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1993-08-01

    The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs

  13. Numerical properties of staggered overlap fermions

    CERN Document Server

    de Forcrand, Philippe; Panero, Marco

    2010-01-01

    We report the results of a numerical study of staggered overlap fermions, following the construction of Adams which reduces the number of tastes from 4 to 2 without fine-tuning. We study the sensitivity of the operator to the topology of the gauge field, its locality and its robustness to fluctuations of the gauge field. We make a first estimate of the computing cost of a quark propagator calculation, and compare with Neuberger's overlap.

  14. Constraints on fermion mixing with exotics

    International Nuclear Information System (INIS)

    Nardi, E.; Tommasini, D.

    1991-11-01

    We analyze the constraints on the mixing angles of the standard fermions with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets), that appear in many extensions of the electroweak theory. The updated Charged Current and Neutral Current experimental data, including also the recent Z-peak measurements, are considered. The results of the global analysis of all these data are then presented

  15. Supersymmetric Extension of Technicolor & Fermion Mass Generation

    DEFF Research Database (Denmark)

    Antola, Matti; Di Chiara, Stefano; Sannino, Francesco

    2012-01-01

    We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....

  16. Nucleon electromagnetic form factors with Wilson fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-10-01

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  17. Nucleon electromagnetic form factors with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-10-15

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  18. Fermion dynamical symmetry and identical bands

    International Nuclear Information System (INIS)

    Guidry, M.

    1994-01-01

    Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation

  19. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  20. Magnetic properties of heavy-fermion superconductors

    International Nuclear Information System (INIS)

    Rauchschwalbe, U.

    1986-01-01

    In the present thesis the magnetic properties of heavy-fermion superconductors are investigated. The magnetoresistance and the critical magnetic fields show a variety of anomalous phenomena. The Kondo lattices CeCu 2 Si and CeAl 3 are analysed by magnetoresistance and the field dependence of the resistivitis of UBe 13 , UPt 3 , URu 2 Si 2 and CeRu 3 Si are measured for temperatures < or approx. 1 K. (BHO)

  1. Chiral Schwinger model and lattice fermionic regularizations

    International Nuclear Information System (INIS)

    Kieu, T.D.; Sen, D.; Xue, S.

    1988-01-01

    The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations

  2. Four-fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    A large class of models with four-fermion interactions is known to be renormalizable and asymptotically free in two dimensions. It has been noticed very early, in the example of the U(N)-invariant Gross-Neveu model and within the framework of the 1/N expansion, that then these models behave also like renormalizable models in higher dimensions. Some of them are thus natural candidates for composite models of scalar particles like for example the Higgs boson. An important question, however, has to be answered: Are these models more predictive, in four dimensions, than the effective models containing the bosons explicitly? We shall show here that, like for the non-linear σ-model which has been investigated earlier, the answer, at least in some perturbative sense, is negative for a large class of models. The reason can be easily understood: These models are more short-distance sensitive than normal renormalizable models. The new parameters are hidden in the cut-off procedure. In particular in some models the fermions receive masses by spontaneous chiral symmetry breaking. The property that ratio of fermion and boson masses can be predicted is simply a consequence of the IR freedom of both type of models and the natural assumption that coupling constants have generic values at the cut-off scale. We shall consider in this article for definiteness the Gross-Neveu model but it will be clear that the arguments are rather general. (orig.)

  3. Quantum computing with Majorana fermion codes

    Science.gov (United States)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  4. The Bethe-Salpeter equation with fermions

    International Nuclear Information System (INIS)

    Efimov, G.V.

    2007-01-01

    The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)

  5. Symmetries of Ginsparg-Wilson chiral fermions

    International Nuclear Information System (INIS)

    Mandula, Jeffrey E.

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.

  6. Effect of quintessence on holographic fermionic spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Xiao-Mei [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Wu, Jian-Pin [Bohai University, Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Jinzhou (China)

    2017-10-15

    In this letter, we investigate the holographic fermionic spectrum without/with dipole coupling dual to the Reissner-Nordstroem anti-de Sitter (RN-AdS) black brane surrounded by quintessence. We find that the low energy excitation of this fermionic system without dipole coupling behaves as a non-Fermi liquid. In particular, the introduction of quintessence aggravates the degree of deviation from a Fermi liquid. For the system with dipole coupling, the phase transition from (non-)Fermi liquid to Mott phase can be observed. The ratio between the width of gap and the critical temperature, beyond which the gap closes, is also worked out. We find that this ratio is larger than that of the holographic fermionic system dual to the RN-AdS black brane and even the material of V O{sub 2}. It means that our holographic system with quintessence can model new phenomena of the condensed matter system and provide some new insights in their regard. (orig.)

  7. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  8. Kinetic theory of fermions in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian [Catholic University of Louvain, Center for Cosmology, Particle Physics and Phenomenology (CP3), 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Pitrou, Cyril, E-mail: christian.fidler@uclouvain.be, E-mail: pitrou@iap.fr [Institut d' Astrophysique de Paris, CNRS-UMR 7095, UPMC—Paris VI, Sorbonne Universités, 98 bis Bd Arago, 75014 Paris (France)

    2017-06-01

    We build a statistical description of fermions, taking into account the spin degree of freedom in addition to the momentum of particles, and we detail its use in the context of the kinetic theory of gases of fermions particles. We show that the one-particle distribution function needed to write a Liouville equation is a spinor valued operator. The degrees of freedom of this function are covariantly described by an intensity function and by a polarisation vector which are parallel transported by free streaming. Collisions are described on the microscopic level and lead to a Boltzmann equation for this operator. We apply our formalism to the case of weak interactions, which at low energies can be considered as a contact interaction between fermions, allowing us to discuss the structure of the collision term for a few typical weak-interaction mediated reactions. In particular we find for massive particles that a dipolar distribution of velocities in the interacting species is necessary to generate linear polarisation, as opposed to the case of photons for which linear polarisation is generated from the quadrupolar distribution of velocities.

  9. Mode entanglement of Gaussian fermionic states

    Science.gov (United States)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  10. Fidelity Witnesses for Fermionic Quantum Simulations

    Science.gov (United States)

    Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.

    2018-05-01

    The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.

  11. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  12. Dirac Fermions in an Antiferromagnetic Semimetal

    Science.gov (United States)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  13. Goldstone fermions in supersymmetric theories at finite temperature

    International Nuclear Information System (INIS)

    Aoyama, H.; Boyanovsky, D.

    1984-01-01

    The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators

  14. arXiv Charged Fermions Below 100 GeV

    CERN Document Server

    Egana-Ugrinovic, Daniel; Ruderman, Joshua T.

    2018-05-03

    How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75–100 GeV mass range serve as a target for future monojet and disappearing track searches.

  15. FCNC Effects in a Minimal Theory of Fermion Masses

    CERN Document Server

    Buras, Andrzej J; Pokorski, Stefan; Ziegler, Robert

    2011-01-01

    As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.

  16. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  17. Gauge-invariant dressed fermion propagator in massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement

  18. Pole mass, width, and propagators of unstable fermions

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Sirlin, A.

    2008-01-01

    The concepts of pole mass and width are extended to unstable fermions in the general framework of parity-nonconserving gauge theories, such as the Standard Model. In contrast with the conventional on-shell definitions, these concepts are gauge independent and avoid severe unphysical singularities, properties of great importance since most fundamental fermions in nature are unstable particles. General expressions for the unrenormalized and renormalized dressed propagators of unstable fermions and their field-renormalization constants are presented. (orig.)

  19. Continuum-limit scaling of overlap fermions as valence quarks

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Herdoiza, Gregorio; Jansen, Karl

    2009-10-01

    We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L∼1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)

  20. Fermionic covariant prolongation structure theory for supernonlinear evolution equation

    International Nuclear Information System (INIS)

    Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong

    2010-01-01

    We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.

  1. Squeezed fermions and back-to-back correlations

    International Nuclear Information System (INIS)

    Panda, P.K.; Krein, G.; Padula, S.S.; Csoergoe, T.; Hama, Y.

    2001-01-01

    Back-to-back correlations of asymptotic fermion pairs appear if in-medium interactions lead to mass modifications of fermion states in a thermalized medium. The back-to-back correlations of protons and anti-protons will be experimentally observable in ultrarelativistic heavy ion collisions. The strength of back-to-back correlations of fermions can be unlimitedly large, diverging as the momentum of the pair increases and the net baryon density decreases. (author)

  2. Squeezed fermions and back-to-back correlations

    Energy Technology Data Exchange (ETDEWEB)

    Panda, P.K.; Krein, G.; Padula, S.S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Csoergoe, T. [Hungarian Academy of Sciences, Budapest (Hungary). Research Institute for Particle and Nuclear Physics (RMKI, KFKI); Hama, Y. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2001-07-01

    Back-to-back correlations of asymptotic fermion pairs appear if in-medium interactions lead to mass modifications of fermion states in a thermalized medium. The back-to-back correlations of protons and anti-protons will be experimentally observable in ultrarelativistic heavy ion collisions. The strength of back-to-back correlations of fermions can be unlimitedly large, diverging as the momentum of the pair increases and the net baryon density decreases. (author)

  3. Spin-excited oscillations in two-component fermion condensates

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Bertsch, George F.

    2006-01-01

    We investigate collective spin excitations in two-component fermion condensates with special consideration of unequal populations of the two components. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. As the fermion-fermion coupling is varied, the system shows various phases of the spin configuration. We demonstrate that spin oscillations have more sensitivity to the spin phase structures than the density oscillations

  4. Quantum Hall effect of massless Dirac fermions and free fermions in Hofstadter's butterfly

    International Nuclear Information System (INIS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2016-01-01

    We propose a new physical interpretation of the Diophantine equation of σ xy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called 'subcells', which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σ xy , that are consistent with the Diophantine equation: Landau quantization of (1) massless Dirac fermions or (2) free fermions in Hofstadter's butterfly. (author)

  5. Fermion structures of state vectors of the Schwinger model with multi-fermions

    International Nuclear Information System (INIS)

    Nakawaki, Yuji

    1983-01-01

    Coulomb-gauge Schwinger model with multi-fermions is formulated consistently in a box [-L, L] by introducing true dynamical degrees of freedom of electromagnetic fields, namely zero-mode part A 1 sup((0)) of A 1 and its canonical conjugate momentum π 1 sup((0)). State vectors are constructed of free massless fermion operators and zero-mode operators A 1 sup((0)) and π 1 sup((0)) and it is clarified how and why multifermion condensations become degenerate ground states and chiral invariance is spontaneously broken. It is also examined that physical space of covariant gauge Schwinger model is isomorphic to that of Coulomb-gauge Schwinger model. (author)

  6. On the trace anomaly of a Weyl fermion

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo; Martelli, Riccardo [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2016-11-29

    We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa’s method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.

  7. Fermions in nonrelativistic AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Akhavan, Amin; Alishahiha, Mohsen; Davody, Ali; Vahedi, Ali

    2009-01-01

    We extend the nonrelativistic AdS/CFT correspondence to the fermionic fields. In particular, we study the two point function of a fermionic operator in nonrelativistic CFTs by making use of a massive fermion propagating in geometries with Schroedinger group isometry. Although the boundary of the geometries with Schroedinger group isometry differ from that in AdS geometries where the dictionary of AdS/CFT is established, using the general procedure of AdS/CFT correspondence, we see that the resultant two point function has the expected form for fermionic operators in nonrelativistic CFTs, though a nontrivial regularization may be needed.

  8. Functional approach without path integrals to finite temperature free fermions

    International Nuclear Information System (INIS)

    Souza, S.M. de; Santos, O. Rojas; Thomaz, M.T.

    1999-01-01

    Charret et al applied the properties of Grassmann generators to develop a new method to calculate the coefficients of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d ≥1). The methodology explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. we apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the β-independent and μindependent infinities that plague the continuum path integral formulation. (author)

  9. Wilson Fermions and Axion Electrodynamics in Optical Lattices

    International Nuclear Information System (INIS)

    Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.

    2010-01-01

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  10. Phases of renormalized lattice gauge theories with fermions

    International Nuclear Information System (INIS)

    Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)

    1979-01-01

    Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory

  11. Bosonization of fermions coupled to topologically massive gravity

    Science.gov (United States)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  12. Bosonization of fermions coupled to topologically massive gravity

    International Nuclear Information System (INIS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-01-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  13. Bosonization of fermions coupled to topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)

    2014-03-07

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  14. Calculation of CWKB envelope in boson and fermion productions

    International Nuclear Information System (INIS)

    Biswas, S.; Chowdhury, I.

    2007-01-01

    We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)

  15. Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8

    International Nuclear Information System (INIS)

    1998-01-01

    The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U A (1) symmetry and the η' for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk

  16. On the regularized fermionic projector of the vacuum

    Science.gov (United States)

    Finster, Felix

    2008-03-01

    We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.

  17. On the regularized fermionic projector of the vacuum

    International Nuclear Information System (INIS)

    Finster, Felix

    2008-01-01

    We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed

  18. Massive chiral fermions: a natural account of chiral phenomenology in the framework of Dirac's fermion theory

    International Nuclear Information System (INIS)

    Ziino, G.

    1989-01-01

    We assume a strictly invariant definition of the Dirac parity operator under fermion ↔ antifermion exchange. We see that the opposite-intrinsic-parity condition then requires two opposite-mass Dirac equations for the fermion and the antifermion. This leads us to introduce an asymptotically left-handed (fermion) and right-handed (antifermion) chiral field, as just an alternative basis in the internal space spanned by the new pair of charge-conjugate Dirac fields. Hence a dual intrinsic model of a spin - 1/2 massive fermion is drawn: it predicts the coexistence of two anticommuting general varieties of conserved charges, namely a scalar variety, responsible for parity-invariant phenomenology, plus a pseudoscalar one, responsible for chiral phenomenology. In this light, CP-symmetry is seen to be nothing but P-symmetry; and a spontaneous CP-violation mechanism is also derived, that should work in any single process occurring via both scalar-and pseudoscalar-charge interactions. We show, at last, that our scheme automatically yields Weyl's one for a merely left-handed neutrino and a merely right-handed antineutrino, further assigning them the special meaning of pure pseudoscalar-charge objects. Some general consequences as regards magnetic monopoles are briefly discussed too

  19. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  20. Clifford Algebra Implying Three Fermion Generations Revisited

    International Nuclear Information System (INIS)

    Krolikowski, W.

    2002-01-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √p 2 → Γ (N) ·p works, leading to a sequence N=1, 2, 3, ... of Dirac-type equations, where four Dirac-type matrices Γ (N) μ are embedded into a Clifford algebra via a Jacobi definition introducing four ''centre-of-mass'' and (N - 1) x four ''relative'' Dirac-type matrices. These define one ''centre-of-mass'' and N - 1 ''relative'' Dirac bispinor indices. Secundo, the ''centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while N - 1 ''relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ''relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1, 3, 5 in the case of N odd, and two with N = 2, 4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3 x 3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is m τ = 1776.80 MeV, when the input of experimental m e and m μ is used. (author)

  1. The quantum HMF model: I. Fermions

    International Nuclear Information System (INIS)

    Chavanis, Pierre-Henri

    2011-01-01

    We study the thermodynamics of quantum particles with long-range interactions at T = 0. Specifically, we generalize the Hamiltonian mean-field (HMF) model to the case of fermions. We consider the Thomas–Fermi approximation that becomes exact in a proper thermodynamic limit N→+∞ with a coupling constant k ∼ N. The equilibrium configurations, described by the mean-field Fermi (or waterbag) distribution, are equivalent to polytropes of index n = 1/2. We show that the homogeneous phase, which is unstable in the classical regime, becomes stable in the quantum regime. The homogeneous phase is stabilized by the Pauli exclusion principle. This takes place through a first-order phase transition where the control parameter is the normalized Planck constant. The homogeneous phase is unstable for ℎ c ≡2/√(π), metastable for ℎ c t ≡1.16 and stable for ℎ>ℎ t . The inhomogeneous phase is stable for ℎ t , metastable for ℎ t * ≡1.18 and disappears for ℎ>ℎ * (for ℎ c * , there exists an unstable inhomogeneous phase with magnetization 0 * ≡ 0.37). We point out analogies between the fermionic HMF model and the concept of fermion stars in astrophysics. Finally, as a by-product of our analysis, we obtain new results concerning the Vlasov dynamical stability of the waterbag distribution which is the ground state of the Lynden-Bell distribution in the theory of violent relaxation of the classical HMF model. We show that spatially homogeneous waterbag distributions are Vlasov-stable iff ε ≥ ε c = 1/3 and spatially inhomogeneous waterbag distributions are Vlasov-stable iff ε ≤ ε * = 0.379 and b ≥ b * = 0.37, where ε and b are the normalized energy and magnetization. The magnetization curve displays a first-order phase transition at ε t = 0.352 and the domain of metastability ranges from ε c to ε *

  2. Clifford Algebra Implying Three Fermion Generations Revisited

    Science.gov (United States)

    Krolikowski, Wojciech

    2002-09-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.

  3. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  4. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order......, the nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...

  5. Einstein equations and Fermion degrees of freedom

    International Nuclear Information System (INIS)

    Luetz, E.F.; Vasconcellos, C.A.Z.

    2001-01-01

    When Dirac derived the special relativistic quantum equation which brings his name, it became evident that the spin is a consequence of the space-time geometry. However, taking gravity into account (as for, instance, in the study of neutron stars), most authors do not take into account the relation between hyperbolic geometry and spin and derive an Einstein equation which implicitly takes into account only boson degrees of freedom. In this work we introduce a consistent quantum general relativistic formalism which allows us to study the effects of the existence of fermion degrees of freedom. (author)

  6. Einstein equations and Fermion degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Luetz, E.F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    2001-07-01

    When Dirac derived the special relativistic quantum equation which brings his name, it became evident that the spin is a consequence of the space-time geometry. However, taking gravity into account (as for, instance, in the study of neutron stars), most authors do not take into account the relation between hyperbolic geometry and spin and derive an Einstein equation which implicitly takes into account only boson degrees of freedom. In this work we introduce a consistent quantum general relativistic formalism which allows us to study the effects of the existence of fermion degrees of freedom. (author)

  7. Fermions, Skyrmions and the 3-sphere

    International Nuclear Information System (INIS)

    Goatham, Stephen W; Krusch, Steffen

    2010-01-01

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.

  8. Fermion dynamical symmetry and identical bands

    International Nuclear Information System (INIS)

    Guidry, M.

    1995-01-01

    Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basis principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation. (author). 9 refs., 11 figs., 1 tab

  9. An ambiguity in fermionic string perturbation theory

    International Nuclear Information System (INIS)

    Atick, J.J.; Rabin, J.M.

    1988-01-01

    Recent investigation by Verlinde and Verlinde has shown that the fermionic string loop amplitudes change by a total derivative term in the moduli space under a change of basis of the supermoduli. This ambiguity is addressed in the context of the heterotic string theory, and shown to be a consequence of an inherent ambiguity in defining integration over the variables of a Grassmann algebra - in this case the Grassmann-valued coordinates of the supermoduli space. A resolution of this ambiguity in genus-two within this formalism is also presented. (orig.)

  10. A possible model of heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1986-08-01

    We have used the periodic Anderson Hamiltonian to study the behaviour of heavy fermion systems. It has been argued that the properly large mixing between f and the conduction electrons, the strong Coulomb correlation between f electrons and the related renormalization effect are the main causes of the large effective mass of the quasiparticle. Further, we have introduced phenomenologically the BCS attractive interaction between the heavy quasiparticles and explained that the value of ΔC/γT c and T c may be quite different from that of the BCS theory as a result of the interaction between two branches of the quasiparticles. (author)

  11. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  12. Higher level WZW sectors from free fermions

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1996-02-01

    We introduce a gauge group of internal symmetries of an ambient algebra as a new tool for investigating the superselection structure of WZW theories and the representation theory of the corresponding affine Lie algebras. The relevant ambient algebra arises from the description of these conformal field theories in terms of free fermions. As an illustration we analyze in detail the so(N) WZW theories at level two. In this case there is actually a homorphism from the representation ring of the gauge group to the WZW fusion ring, even though the level-two observable algebra is smaller than the gauge invariant subalgebra of the field algebra. (orig.)

  13. Heavy-fermion quasiparticles in UPt3

    International Nuclear Information System (INIS)

    Taillefer, L.; Lonzarich, G.G.

    1988-01-01

    The quasiparticle band structure of the heavy-fermion superconductor UPt 3 has been investigated by means of angle-resolved measurements of the de Haas--van Alphen effect. Most of the results are consistent with a model of five quasiparticle bands at the Fermi level corresponding to Fermi surfaces similar to those calculated by band theory. However, as inferred from the extremely high cyclotron masses, the quasiparticle bands are much flatter than the calculated ones. The nature of the observed quasiparticles and their relationship to thermodynamic properties are briefly considered

  14. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  15. Fermions in interaction with time dependent fields

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1988-01-01

    We solve a two dimensional model describing the interaction of fermions with time dependent external fields. We work out the second quantized formulation and obtain conditions for equivalence of representations at different times. This implies the existence of sectors which describe charged states. We obtain the time dependence of charges and observe that charge differences become integer for unitary equivalent states. For scattering we require the equivalence of in- and out-representations; nevertheless charged sectors may be reached by suitable interactions and ionization is possible. 20 refs. (Author)

  16. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)

    2016-06-15

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  17. Zero-point energy of confined fermions

    International Nuclear Information System (INIS)

    Milton, K.A.

    1980-01-01

    A closed form for the reduced Green's function of massless fermions in the interior of a spherical bag is obtained. In terms of this Green's function, the corresponding zero-point or Casimir energy is computed. It is proposed that a resulting quadratic divergence can be absorbed by renormalizing a suitable parameter in the bag model (that is, absorbed by a contact term). The residual Casimir stress is attractive, but smaller than the repulsive Casimir stress of gluons in the model. The result for the total zero-point energy is in substantial disagreement with bag model phenomenological values

  18. Instanton induced compactification and fermion chirality

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1983-07-01

    The question of fermion chirality in Kaluza-Klein theories with coupling to Yang-Mills fields is discussed. The argument is illustrated in eight dimensions where an SU(2) Yang-Mills field assumes the 1-instanton form on the internal space. This serves not only to trigger spontaneous compactification of the internal space but will ensure the emergence of nsub(L)-nsub(R)=2/3t(t+1) (2t+1) zero modes in an irreducible 8-spinor belonging to the (2t+1)-dimensional representation of SU(2). (author)

  19. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  20. Parameters of the lowest order chiral Lagrangian from fermion eigenvalues

    International Nuclear Information System (INIS)

    DeGrand, T.; Schaefer, S.

    2007-08-01

    Recent advances in Random Matrix Theory enable one to determine the pseudoscalar decay constant from the response of eigenmodes of quenched fermions to an imaginary isospin chemical potential. We perform a pilot test of this idea, from simulations with two flavors of dynamical overlap fermions. (orig.)

  1. Composite fermions a unified view of the quantum Hall regime

    CERN Document Server

    1998-01-01

    One of the most exciting recent developments to have emerged from the quantum Hall effect is the subject of composite fermions. This important volume gives a self-contained, comprehensive description of the subject, including fundamentals, more advanced theoretical work, and results from experimental observations of composite fermions.

  2. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  3. Nambu-Jona-Lasinio model with Wilson fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Pica, Claudio

    2017-01-01

    We present a lattice study of a Nambu-Jona-Lasinio (NJL) model using Wilson fermions. Four-fermion interactions are a natural part of several extensions of the Standard Model, appearing as a low-energy description of a more fundamental theory. In models of dynamical electroweak symmetry breaking...

  4. Tuning up an oldtimer: hybrid Monte Carlo with Wilson fermions

    International Nuclear Information System (INIS)

    Schilling, K.; Hannemann, V.; Lippert, T.; Noeckel, B.

    1995-01-01

    We show that BiCGStab inversion algorithm helps to speed up by 50% the computation of the fermionic force inside the Hybrid Monte Carlo (HMC) simulation of full QCD with Wilson fermions, in the chiral regime of small quark masses. ((orig.))

  5. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  6. The Chiral Index of the Fermionic Signature Operator

    OpenAIRE

    Finster, Felix

    2014-01-01

    We define an index of the fermionic signature operator on even-dimensional globally hyperbolic spin manifolds of finite lifetime. The invariance of the index under homotopies is studied. The definition is generalized to causal fermion systems with a chiral grading. We give examples of space-times and Dirac operators thereon for which our index is non-trivial.

  7. Fermionic constructions of exceptional Kac-Moody algebras

    International Nuclear Information System (INIS)

    Schwimmer, A.

    1985-01-01

    The author discusses the fermionic representations of SO(2n) Kac Moody algebras. He describes construction of the E/sub 8/ algebra in terms of free fermionic operators, and generalises procedures for the basic representations of the Kac-Moody algebras appearing in Freudenthal's magic square

  8. Worldline path integrals for fermions with general couplings

    International Nuclear Information System (INIS)

    D'Hoker, E.; Gagne, D.G.

    1996-01-01

    We derive a worldline path integral representation for the effective action of a multiplet of Dirac fermions coupled to the most general set of matrix-valued scalar, pseudoscalar, vector, axial vector and antisymmetric tensor background fields. By representing internal degrees of freedom in terms of worldline fermions as well, we obtain a formulation which manifestly exhibits chiral gauge invariance. (orig.)

  9. Landau levels of Majorana fermions in a spin liquid

    NARCIS (Netherlands)

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-01-01

    Majorana fermions were originally proposed as elementary particles acting as their own antiparticles. In recent years, it has become clear that Majorana fermions can instead be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here

  10. Fermion field as inflaton, dark energy and dark matter

    International Nuclear Information System (INIS)

    Grams, Guilherme; Souza, Rudinei C de; Kremer, Gilberto M

    2014-01-01

    The search for constituents that can explain the periods of accelerating expansion of the Universe is a fundamental topic in cosmology. In this context, we investigate how fermionic fields minimally and non-minimally coupled with the gravitational field may be responsible for accelerated regimes during the evolution of the Universe. The forms of the potential and coupling of the model are determined through the technique of the Noether symmetry for two cases. The first case comprises a Universe filled only with the fermion field. Cosmological solutions are straightforwardly obtained for this case and an exponential inflation mediated by the fermion field is possible with a non-minimal coupling. The second case takes account of the contributions of radiation and baryonic matter in the presence of the fermion field. In this case the fermion field plays the role of dark energy and dark matter, and when a non-minimal coupling is allowed, it mediates a power-law inflation. (paper)

  11. Fermion tunneling from higher-dimensional black holes

    International Nuclear Information System (INIS)

    Lin Kai; Yang Shuzheng

    2009-01-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  12. Anomalous fermion number nonconservation: Paradoxes in the level crossing picture

    International Nuclear Information System (INIS)

    Burnier, Y.

    2006-01-01

    In theories with anomalous fermion number nonconservation, the level-crossing picture is considered a faithful representation of the fermionic quantum number variation. It represents each created fermion by an energy level that crosses the zero-energy line from below. If several fermions of various masses are created, the level-crossing picture contains several levels that cross the zero-energy line and cross each other. However, we know from quantum mechanics that the corresponding levels cannot cross if the different fermions are mixed via some interaction potential. The simultaneous application of these two requirements on the level behavior leads to paradoxes. For instance, a naive interpretation of the resulting level-crossing picture gives rise to charge nonconservation. In this paper, we resolve this paradox by a precise calculation of the transition probability, and discuss what are the implications for the electroweak theory. In particular, the nonperturbative transition probability is higher if top quarks are present in the initial state

  13. Perturbative improvement of staggered fermions using fat links

    International Nuclear Information System (INIS)

    Lee, Weonjong

    2002-01-01

    We study the possibility of improving staggered fermions using various fat links in order to reduce perturbative corrections to the gauge-invariant staggered fermion operators. We prove five theorems on SU(3) projection, triviality in renormalization, multiple SU(3) projections, uniqueness, and equivalence. As a result of these theorems, we show that, at the one-loop level, the renormalization of staggered fermion operators is identical between SU(3) projected Fat7 links and hypercubic links, as long as the action and operators are constructed by imposing the same perturbative improvement condition. In addition, we propose a new view of SU(3) projection as a tool of tadpole improvement for the staggered fermion doublers. As a conclusion, we present alternative choices of constructing fat links to improve the staggered fermion action and operators, which deserve further investigation

  14. Hybrid Monte Carlo algorithm with fat link fermion actions

    International Nuclear Information System (INIS)

    Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.

    2004-01-01

    The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions

  15. Field theories with multiple fermionic excitations

    International Nuclear Information System (INIS)

    Crawford, J.P.

    1978-01-01

    The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation

  16. Quantum chaos in a fermion system

    International Nuclear Information System (INIS)

    Pal, Santanu

    1992-01-01

    With the growing realisation that the dynamics of a system with a few degrees of freedom is chaotic more as a rule than an exception, the relevance of quantum chaos in nuclear single-particle motion is now receiving closer scrutinisation. This on one hand is helping to gain a deeper understanding of dissipative processes in nuclear dynamics as well as revealing certain interesting features of a fermion system on the other. In the present talk, we would discuss the chaotic features of the single-particle motion in a di nucleus with a view to study the signatures of an effective underlying classical dynamics in the system. As the present day understanding of quantum chaos relies quite heavily on the existence of classical trajectories, it is rather interesting to study how far such considerations can be pushed for systems which do not have a obvious classical analogue such as the spin-orbit interaction in our system. This question has been further investigated for a relativistic fermion system, similar to the Bogoliubov bag. This model is particularly suited as spin, without a classical analogue, has its natural place in the Dirac equation. The results of this study have been presented in the talk. (author). 25 refs., 14 figs

  17. UPt3, heavy fermions and superconductivity

    International Nuclear Information System (INIS)

    Visser, A. de.

    1986-01-01

    In this thesis an experimental study is presented of one of the heavy-fermion superconductors: UPt 3 (T c =0.5 K). The normal-state properties of this material are governed by pronounced spin-fluctuation effects. The unusual coexistence of spin-fluctuations and superconductivity is strongly suggestive for an unconventional type of superconductivity, mediated by spin-fluctuations instead of phonons, with the condensate formed out of odd-parity electron states. In the first chapter a general introduction is given to the field of the heavy-fermions. In the second chapter a theoretical background for the properties of UPt 3 is presented. Chapter 3 deals with the sample preparation and measuring techniques. In chapter 4 a series of experiments is presented on the normal-phase of UPt 3 , among which are studies of the specific heat, thermal expansion, sound velocity, magnetization, electrical resistivity, magnetoresistivity and magnetostriction. Also the influence of high-magnetic fields (35 T) and high-pressures (5 kbar) has been studied. The superconducting phase of UPt 3 has been discussed in chapter 5. In chapter 6 a series of pseudobinary U(Pt 1-x Pd x ) 3 compounds (x≤0.30) are studied. In the last chapter some final remarks and conclusions are presented. (Auth.)

  18. Free Fermions and the Classical Compact Groups

    Science.gov (United States)

    Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil

    2018-06-01

    There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.

  19. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  20. Free Fermions and the Classical Compact Groups

    Science.gov (United States)

    Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil

    2018-04-01

    There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.

  1. Monotop signature from a fermionic top partner

    Science.gov (United States)

    Gonçalves, Dorival; Kong, Kyoungchul; Sakurai, Kazuki; Takeuchi, Michihisa

    2018-01-01

    We investigate monotop signatures arising from phenomenological models of fermionic top partners, which are degenerate in mass and decay into a bosonic dark matter candidate, either spin 0 or spin 1. Such a model provides a monotop signature as a smoking gun, while conventional searches with t t ¯ + missing transverse momentum are limited. Two such scenarios, (i) a phenomenological third generation extradimensional model with excited top and electroweak sectors, and (ii) a model where only a top partner and a dark matter particle are added to the standard model, are studied in the degenerate mass regime. We find that in the case of extra dimension a number of different processes give rise to effectively the same monotop final state, and a great gain can be obtained in the sensitivity for this channel. We show that the monotop search can explore top-partner masses up to 630 and 300 GeV for the third generation extradimensional model and the minimal fermionic top-partner model, respectively, at the high luminosity LHC.

  2. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  3. Quantum phases of AB2 fermionic chains

    International Nuclear Information System (INIS)

    Murcia-Correa, L S; Franco, R; Silva-Valencia, J

    2016-01-01

    A fermionic chain is a one-dimensional system with fermions that interact locally and can jump between sites in the lattice, in particular an AB n chain type, where A and B are sites that exhibit a difference in energy level of Δ and site B is repeated n-times, such that the unit cell has n +1 sites. A limit case of this model, called the ionic Hubbard model (n = 1), has been widely studied due to its interesting physics and applications. In this paper, we study the ground state of an AB 2 chain, which describes the material R 4 [Pt 2 (P 2 O 5 H 2 ) 4 X] · nH 2 O. Specifically, we consider a filling with two electrons per unit cell, and using the density matrix renormalization group method we found that the system exhibits the band insulator and Mott correlated insulator phases, as well as an intermediate phase between them. For couplings of Δ = 2,10 and 20, we estimate the critical points that separate these phases through the structure factor and the energy gap in the sector of charge and spin, finding that the position of the critical point rises as a function of Δ. (paper)

  4. Path integral for gauge theories with fermions

    International Nuclear Information System (INIS)

    Fujikawa, K.

    1980-01-01

    The Atiyah-Singer index theorem indicates that a naive unitary transformation of basis vectors for fermions interacting with gauge fields is not allowed in general. On the basis of this observation, it was previously shown that the path-integral measure of a gauge-invariant fermion theory is transformed nontrivially under the chiral transformation, and thus leads to a simple derivation of ''anomalous'' chiral Ward-Takahashi identities. We here clarify some of the technical aspects associated with the discussion. It is shown that the Jacobian factor in the path-integral measure, which corresponds to the Adler-Bell-Jackiw anomaly, is independent of any smooth regularization procedure of large eigenvalues of D in Euclidean theory; this property holds in any even-dimensional space-time and also for the gravitational anomaly. The appearance of the anomaly and its connection with the index theorem are thus related to the fact that the primary importance is attached to the Lorentz-covariant ''energy'' operator D and that D and γ 5 do not commute. The abnormal behavior of the path-integral measure at the zero-frequency sector in the presence of instantons and its connection with spontaneous symmetry breaking is also clarified. We comment on several other problems associated with the anomaly and on the Pauli-Villars regularization method

  5. Fermion families and vacuum in the two measures theory

    International Nuclear Information System (INIS)

    Guendelman, E.; Kaganovich, A.

    2005-01-01

    We present an alternative gravity and matter fields theory where the consistency condition of equations of motion yields strong correlation between states of 'primordial' fermion fields and local value of the scalar fields (dilaton and Higgs) energy density. The same 'primordial' fermion field at different densities can be either in states of regular fermionic matter or in states presumably corresponding to the dark fermionic matter. In regime of the fermion densities typical for normal particle physics, each of the primordial fermions splits into three generations identified with regular fermions. When restricting ourselves to the first two fermion generations, the theory reproduces general relativity and regular particle theory. As fermion energy density is comparable with vacuum energy density, the theory allows new type of states. Such Cosmo-Low Energy Physics (CLEP) state is studied in the framework of the model where FRW universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos. Neutrinos in CLEP state are drawn into cosmological expansion by means of dynamically changing their own parameters. Some of the features of the CLEP state in the late time universe: neutrino mass increases as α 3/2 (α = α(t) is the scale factor); its energy density scales as a sort of dark energy and approaches constant as α→∞; this cold dark matter possesses negative pressure and its equation of state approaches that of the cosmological constant as α→∞; the total energy density of such universe is less than it would be in the universe free of fermionic matter at all. The latter means that nonrelativistic neutrinos are able to produce expanding bubbles of the CLEP state playing the role of a true 'cosmological vacuum' surrounded by a 'regular' vacuum. (authors)

  6. Renormalization group analysis of order parameter fluctuations in fermionic superfluids

    International Nuclear Information System (INIS)

    Obert, Benjamin

    2014-01-01

    In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.

  7. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, Skender; Bekteshi, Sadik

    2007-01-01

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model

  8. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Zhou; LIU Wei

    2002-01-01

    In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.

  9. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIUGuang-Zhou; LIUWei

    2002-01-01

    In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.

  10. Model space dimensionalities for multiparticle fermion systems

    International Nuclear Information System (INIS)

    Draayer, J.P.; Valdes, H.T.

    1985-01-01

    A menu driven program for determining the dimensionalities of fixed-(J) [or (J,T)] model spaces built by distributing identical fermions (electrons, neutrons, protons) or two distinguihable fermion types (neutron-proton and isospin formalisms) among any mixture of positive and negative parity spherical orbitals is presented. The algorithm, built around the elementary difference formula d(J)=d(M=J)-d(M=J+1), takes full advantage of M->-M and particle-hole symmetries. A 96 K version of the program suffices for as compilated a case as d[(+1/2, +3/2, + 5/2, + 7/2-11/2)sup(n-26)J=2 + ,T=7]=210,442,716,722 found in the 0hω valence space of 56 126 Ba 70 . The program calculates the total fixed-(Jsup(π)) or fixed-(Jsup(π),T) dimensionality of a model space generated by distributing a specified number of fermions among a set of input positive and negative parity (π) spherical (j) orbitals. The user is queried at each step to select among various options: 1. formalism - identical particle, neutron-proton, isospin; 2. orbits -bumber, +/-2*J of all orbits; 3. limits -minimum/maximum number of particles of each parity; 4. specifics - number of particles, +/-2*J (total), 2*T; 5. continue - same orbit structure, new case quit. Though designed for nuclear applications (jj-coupling), the program can be used in the atomic case (LS-coupling) so long as half integer spin values (j=l+-1/2) are input for the valnce orbitals. Mutiple occurrences of a given j value are properly taken into account. A minor extension provides labelling information for a generalized seniority classification scheme. The program logic is an adaption of methods used in statistical spectroscopy to evaluate configuration averages. Indeed, the need for fixed symmetry leve densities in spectral distribution theory motivated this work. The methods extend to other group structures where there are M-like additive quantum labels. (orig.)

  11. Physics of heavy fermions heavy fermions and strongly correlated electrons systems

    CERN Document Server

    Onuki, Yoshichika

    2018-01-01

    A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challengin...

  12. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  13. Fermion-number violation in regularizations that preserve fermion-number symmetry

    Science.gov (United States)

    Golterman, Maarten; Shamir, Yigal

    2003-01-01

    There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.

  14. Interacting fermions in one spatial dimensions

    International Nuclear Information System (INIS)

    Wolf, D.

    1982-01-01

    This thesis contains in its first part a critical survey about the method of the bosonization of fermi fields in one spatial dimension and its application to the Luttinger and the massive Thirring model. The first chapter served for the explanation of the term of the unitary inequivalence. Thereby two generally valid facts could be demonstrated very illustratively by the example of a fermion algebra and its representations, namely first that infinite, direct product space are not separable, and second that weak equivalence of the vacua is equivalent to the unitary equivalence of the corresponding representations of the field algebra. In the second part the statement first studied by Luther (1976) and since then often cited, that the continuum limit of the Heisenberg model is the massive Thirring model. It is concluded that it can up to today not be considered as proved although indications for its validity can be found. (orig./HSI) [de

  15. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  16. Reasonable fermionic quantum information theories require relativity

    International Nuclear Information System (INIS)

    Friis, Nicolai

    2016-01-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory. (paper)

  17. Fermionic functional integrals and the renormalization group

    CERN Document Server

    Feldman, Joel; Trubowitz, Eugene

    2002-01-01

    This book, written by well-known experts in the field, offers a concise summary of one of the latest and most significant developments in the theoretical analysis of quantum field theory. The renormalization group is the name given to a technique for analyzing the qualitative behavior of a class of physical systems by iterating a map on the vector space of interactions for the class. In a typical nonrigorous application of this technique, one assumes, based on one's physical intuition, that only a certain finite dimensional subspace (usually of dimension three or less) is important. The material in this book concerns a technique for justifying this approximation in a broad class of fermionic models used in condensed matter and high energy physics. This volume is based on the Aisenstadt Lectures given by Joel Feldman at the Centre de Recherches Mathematiques (Montreal, Canada). It is suitable for graduate students and research mathematicians interested in mathematical physics. Included are many problems and so...

  18. Fermionic Casimir effect with helix boundary condition

    International Nuclear Information System (INIS)

    Zhai, Xiang-hua; Li, Xin-zhou; Feng, Chao-Jun

    2011-01-01

    In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Feng and Li (Phys. Lett. B 691:167, 2010), Zhai et al. (Mod. Phys. Lett. A 26:669, 2011) is something like that between a Moebius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the (D+1)-dimensional space-time. For both massless and massive cases, there is a Z 2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity. (orig.)

  19. Electron spectroscopy studies in heavy fermions

    International Nuclear Information System (INIS)

    Arko, A.J.

    1986-02-01

    Photoemission experiments (whereby an electron absorbs a packet of light energy and is able to escape from the host material due to its increased energy) can measure directly the energy distribution of electrons in various materials. Our measurements on a recently-discovered class of metallic materials called ''heavy fermions'' show that the electrons that actually carry the electric current in these metals exist only within an extremely narrow range of energies. This range, which we will call the bandwidth, is narrower than that found in ordinary metals like copper by at least a factor of 10. Indeed it is surprising that they can carry electric current at all since such narrow energy ranges (or band widths) are characteristic of electrons confined to their host atoms, as in a non-metal, rather than of electrons that are free to wander through a metal. 8 refs

  20. Instantons, fermions and Chern-Simons terms

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2008-01-01

    In five spacetime dimensions, instantons are finite energy, solitonic particles. We describe the dynamics of these objects in the presence of a Chern-Simons interaction. For U(N) instantons, we show that the 5d Chern-Simons term induces a corresponding Chern-Simons term in the ADHM quantum mechanics. For SU(N) instantons, we provide a description in terms of geodesic motion on the instanton moduli space, modified by the presence of a magnetic field. We show that this magnetic field is equal to the first Chern character of an index bundle. All of these results are derived by a simple method which follows the fate of zero modes as fermions are introduced, made heavy, and subsequently integrated out.

  1. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  2. Heavy-light fermion mixtures at unitarity

    Energy Technology Data Exchange (ETDEWEB)

    Gezerlis, Alexandros [Los Alamos National Laboratory; Carlson, Joseph [Los Alamos National Laboratory; Gandol, S [UNIV. ILL; Schmidt, E [ITALY

    2009-01-01

    We investigate fermion pairing in the unitary regime for a mass ratio corresponding to a {sup 6}Li-{sup 40}K mixture using quantum Monte Carlo methods. The ground-state energy and the average light- and heavy-particle excitation spectrum for the unpolarized superfluid state are nearly independent of the mass ratio. In the majority light system, the polarized superfluid is close to the energy of a phase separated mixture of nearly fully polarized normal and unpolarized superfluid. For a majority of heavy particles, we find an energy minimum for a normal state with a ratio of {approx}3:1 heavy to light particles. A slight increase in attraction to k{sub F}a{approx}2.5 yields a ground state energy of nearly zero for this ratio. A cold unpolarized system in a harmonic trap at unitarity should phase separate into three regions, with a shell of unpolarized superfluid in the middle.

  3. Multiplicities of states od equivalent fermion shells

    International Nuclear Information System (INIS)

    Savukinas, A.Yu.; Glembotskij, I.I.

    1980-01-01

    Classification of states of three or four equivalent fermions has been studied, i.e. possible terms and their multiplicities have been determined. For this purpose either the group theory or evident expressions for the fractional-parentage coefficients have been used. In the first approach the formulas obtained by other authors for the multiplicities of terms through the characters of the transformation matrices of bond moments have been used. This approach happens to be more general as compared with the second one, as expressions for the fractional-parentage coefficients in many cases are not known. The multiplicities of separate terms have been determined. It has been shown that the number of terms of any multiplicity becomes constant when l or j is increased [ru

  4. Ambiguities of functional integrals for fermionic systems

    International Nuclear Information System (INIS)

    Cordero, P.

    1981-01-01

    We study the path integral quantization of a purely fermionic system in the semiclassical approximation. It is crucial that the analogue of the usual method of stationary phase works for integrals over Grassmann variables. Our analysis is based on a quite trivial example (the exact solution is known), and therefore we can check when the results make sense. It is shown that just as in the boson case the path integral method depends on the discretization (we use the Faddeev discretization) and some attempts to do the same derivations directly in the continuous time limit are shown to yield either ill-defined objects or simply wrong results. It seems correct to conclude that the key point is the discretization

  5. Domain decomposition and multilevel integration for fermions

    International Nuclear Information System (INIS)

    Ce, Marco; Giusti, Leonardo; Schaefer, Stefan

    2016-01-01

    The numerical computation of many hadronic correlation functions is exceedingly difficult due to the exponentially decreasing signal-to-noise ratio with the distance between source and sink. Multilevel integration methods, using independent updates of separate regions in space-time, are known to be able to solve such problems but have so far been available only for pure gauge theory. We present first steps into the direction of making such integration schemes amenable to theories with fermions, by factorizing a given observable via an approximated domain decomposition of the quark propagator. This allows for multilevel integration of the (large) factorized contribution to the observable, while its (small) correction can be computed in the standard way.

  6. Actinides: from heavy fermions to plutonium metallurgy

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Hecker, S.S.

    1984-01-01

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe 13 and UPt 3 . Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  7. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  8. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  9. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  10. Boundary effects and gapped dispersion in rotating fermionic matter

    Directory of Open Access Journals (Sweden)

    Shu Ebihara

    2017-01-01

    Full Text Available We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  11. Lattice fermions at non-zero temperature and chemical potential

    International Nuclear Information System (INIS)

    Bender, I.

    1993-01-01

    We study the free fermion gas at finite temperature and chemical potential in the lattice regularized version proposed by Hasenfratz and Karsch. Special emphasis is placed on the identification of the particle and antiparticle contributions to the partition function. In the case of naive fermions we show that the partition function no longer separates into particle-antiparticle contributions in the way familiar from the continuum formulation. The use of Wilson fermions, on the other hand, eliminates this unpleasant feature, and leads, after subtracting the vacuum contributions, to the familiar expressions for the average energy and charge densities. (orig.)

  12. Collective Interference of Composite Two-Fermion Bosons

    DEFF Research Database (Denmark)

    Tichy, Malte; Bouvrie, Peter Alexander; Mølmer, Klaus

    2012-01-01

    The composite character of two-fermion bosons manifests itself in the interference of many composites as a deviation from the ideal bosonic behavior. A state of many composite bosons can be represented as a superposition of different numbers of perfect bosons and fermions, which allows us...... to provide the full Hong–Ou–Mandel-like counting statistics of interfering composites. Our theory quantitatively relates the deviation from the ideal bosonic interference pattern to the entanglement of the fermions within a single composite boson....

  13. Massless fermions and Kaluza--Klein theory with torsion

    International Nuclear Information System (INIS)

    Wu, Y.; Zee, A.

    1984-01-01

    A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail

  14. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  15. Trapped Fermions with Density Imbalance in the Bose-Einstein Condensate Limit

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2006-01-01

    We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms

  16. Propagator of the lattice domain wall fermion and the staggered fermion

    International Nuclear Information System (INIS)

    Furui, S.

    2009-01-01

    We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 16 3 x 32 x 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling a s,g1 (q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling a s,g1 (q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling a s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2 ) with c ∼ 2.8 GeV 2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling a s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling a s,g1 (q) in the infrared region increases monotonically as q → 0. Above 2 GeV, the quark-gluon coupling a s,g1 (q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste. An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4. (author)

  17. A group property for the coherent state representation of fermionic squeezing operators

    Science.gov (United States)

    Fan, Hong-yi; Li, Chao

    2004-06-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation.

  18. A group property for the coherent state representation of fermionic squeezing operators

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation

  19. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  20. Wigner functions for fermions in strong magnetic fields

    Science.gov (United States)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  1. Strongly-interacting mirror fermions at the LHC

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2017-01-01

    Full Text Available The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. “mirror mesons”, with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  2. Projective flatness in the quantisation of bosons and fermions

    Science.gov (United States)

    Wu, Siye

    2015-07-01

    We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.

  3. Ambiguities and symmetry relations associated with fermionic tensor densities

    International Nuclear Information System (INIS)

    Dallabona, G.; Battistel, O. A.

    2004-01-01

    We consider the consistent evaluation of perturbative (divergent) Green functions associated with fermionic tensor densities and the derivation of symmetry relations for them. We show that, in spite of current algebra methods being not applicable, it is possible to derive symmetry properties analogous to the Ward identities of vector and axial-vector densities. The proposed method, which is applicable to any previously chosen order of perturbative calculation, gives the same results as those of current algebra when such a tool is applicable. By using a very general calculational strategy, concerning the manipulations and calculations involving divergent Feynman integrals, we evaluate the purely fermionic two-point functions containing tensor vertices and derive their symmetry properties. The present investigation is the first step in the study and characterization of possible anomalies involving fermionic tensor densities, particularly in purely fermionic three-point functions

  4. Mixed fermion-photon condensate in strongly coupled quantum electrodynamics

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Kushnir, V.A.

    1989-01-01

    The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs

  5. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  6. Quarks and leptons as quasi Nambu-Goldstone fermions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Peccei, R.D.; Yanagida, T.

    1983-01-01

    We discuss a new idea for constructing composite quarks and leptons which have (approximately) vanishing mass. They are associated with fermionic partners of Goldstone bosons arising from the spontaneous breakdown of an internal symmetry Gsub(f) in a supersymmetric preon theory. For Gsub(f)=SU(5) being broken to SU(3) x U(1)sub(em) there arise as quasi Goldstone fermions, naturally and unequivocally, precisely the quarks and leptons of one family. The dynamics of these quasi Goldstone fermions is explored by constructing a general supersymmetric nonlinear effective lagrangian. By means of a reduced model, we show that the first nontrivial interactions of the quasi Goldstone fermions can give rise, in an effective way, to the weak interactions. Issues connected with the incorporation of families in the scheme and the generation of masses, as well as the possible structure of the underlying preon theory are briefly discussed. (orig.)

  7. Iterative methods for overlap and twisted mass fermions

    International Nuclear Information System (INIS)

    Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.

    2006-09-01

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  8. Iterative methods for overlap and twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

    2006-09-15

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  9. The GL(1 vertical stroke 1)-symplectic fermion correspondence

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Roenne, Peter B.

    2008-12-01

    In this note we prove a correspondence between the Wess-Zumino-Novikov-Witten model of the Lie supergroup GL(1 vertical stroke 1) and a free model consisting of two scalars and a pair of symplectic fermions. This model was discussed earlier by LeClair. Vertex operators for the symplectic fermions include twist fields, and correlation functions of GL(1 vertical stroke 1) agree with the known results for the scalars and symplectic fermions. We perform a detailed study of boundary states for symplectic fermions and apply them to branes in GL(1 vertical stroke 1). This allows us to compute new amplitudes of strings stretching between branes of different types and confirming Cardy's condition. (orig.)

  10. The GL(1 vertical stroke 1)-symplectic fermion correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas; Roenne, Peter B.

    2008-12-15

    In this note we prove a correspondence between the Wess-Zumino-Novikov-Witten model of the Lie supergroup GL(1 vertical stroke 1) and a free model consisting of two scalars and a pair of symplectic fermions. This model was discussed earlier by LeClair. Vertex operators for the symplectic fermions include twist fields, and correlation functions of GL(1 vertical stroke 1) agree with the known results for the scalars and symplectic fermions. We perform a detailed study of boundary states for symplectic fermions and apply them to branes in GL(1 vertical stroke 1). This allows us to compute new amplitudes of strings stretching between branes of different types and confirming Cardy's condition. (orig.)

  11. B-Parameters of 4-Fermion Operators from Lattice QCD

    International Nuclear Information System (INIS)

    Gupta, Rajan

    1997-07-01

    This talk summarizes the status of the calculations of B K , B 7 , B 8 , and B s , done in collaboration with T. Bhattacharya, C. Kilcup, and S. Sharpe. Results for staggered, Wilson, and Clover fermions are presented

  12. Exotic fermions in the left-right symmetric model

    International Nuclear Information System (INIS)

    Choi, J.; Volkas, R.R.

    1992-01-01

    A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab

  13. Production and decay of exotic fermions in high energy collisions

    International Nuclear Information System (INIS)

    Queiroz Filho, Pedro Pacheco de

    1995-05-01

    In this work, we investigate the production and decay of exotic fermions predicted by some extensions of the standard model. We select for our study the more popular models: vector singlet, vector doublet and Fermion Mirror-Fermion. We want to establish the differences between these models and also in relation to the Standard Model. We make investigations by Monte Carlo simulations, to study the phenomenology of the particles expected in these models, particularly the exotic fermions. These studies were done for electron-proton collisions at DESY HERA energies. We considered the investigation of exotic quark production, electron-positron collisions in LEP II and NLC energies in order to study the production of exotic leptons, and virtual exotic lepton contribution in the specific process e + e - → ιν-bar ι W + . (author)

  14. Confinement in (1+1) dimensions and fermions

    International Nuclear Information System (INIS)

    Boya, L.J.; Gomez, C.

    1979-01-01

    The sign ambiguity in fermions in (1+1) dimensions leads to half-integer gauge transformations and to non-zero vacuum expectation values of the physical fermi field which strongly suggest confinement. (Auth.)

  15. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  16. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  17. Grassmann phase space methods for fermions. II. Field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-02-15

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  18. End States, Ladder Compounds, and Domain-Wall Fermions

    International Nuclear Information System (INIS)

    Creutz, M.

    1999-01-01

    A magnetic field applied to a cross-linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain-wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses. copyright 1999 The American Physical Society

  19. A gauge field theory of fermionic continuous-spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, X., E-mail: xavier.bekaert@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science, Daejeon (Korea, Republic of); Najafizadeh, M., E-mail: mnajafizadeh@gmail.com [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of)

    2016-09-10

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  20. A gauge field theory of fermionic continuous-spin particles

    International Nuclear Information System (INIS)

    Bekaert, X.; Najafizadeh, M.; Setare, M.R.

    2016-01-01

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  1. The derivative expansion of the fermion number current

    International Nuclear Information System (INIS)

    D'Hoker, E.; Goldstone, J.

    1985-01-01

    The fermion number current is evaluated to leading order in the derivative expansion for chiral fermions in the background of arbitrary Higgs and chiral gauge fields. This current is given by the gauged topological current plus a total divergence term. The total divergence term is absent in Weinberg-Salam theory with one scalar Higgs doublet, even for an arbitrary mass matrix, but appears when several Higgs doublets are present. (orig.)

  2. Hierarchy in fermion masses and the phantom axion

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1981-01-01

    An SU(5) model is presented with hierarchical fermion masses without strong CP violation and with an almost unobservable axion. The key point is to ''tie'' the highly desirable U(1)sub(P-Q) symmetry to the symmetry needed for the fermion mass hierarchy. Since the symmetry is broken at super-high energies (10 15 GeV), the axion becomes super-difficult to detect. This is the Phantom Axion. (author)

  3. Dirac and Weyl fermion dynamics on two-dimensional surface

    International Nuclear Information System (INIS)

    Kavalov, A.R.; Sedrakyan, A.G.; Kostov, I.K.

    1986-01-01

    Fermions on 2-dimensional surface, embedded into a 3-dimensional space are investigated. The determinant of induced Dirac operator for the Dirac and Weyl fermions is calculated. The reparametrization-invariant effective action is determined by conformal anomaly (giving Liouville action) and also by Lorentz anomaly leading to Wess-Zumino term, the structure of which at d=3 is determined by the Hopf topological invariant of the S 3 → S 2 map

  4. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    Science.gov (United States)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  5. Fermion Bag Approach to Lattice Hamiltonian Field Theories

    Science.gov (United States)

    Huffman, Emilie

    2018-03-01

    Using a model in the Gross-Neveu Ising universality class, we show how the fermion bag idea can be applied to develop algorithms to Hamiltonian lattice field theories. We argue that fermion world lines suggest an alternative method to the traditional techniques for calculating ratios of determinants in a stable manner. We show the power behind these ideas by extracting the physics of the model on large lattices.

  6. Grassmann phase space methods for fermions. II. Field theory

    International Nuclear Information System (INIS)

    Dalton, B.J.; Jeffers, J.; Barnett, S.M.

    2017-01-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  7. A study of block algorithms for fermion matrix inversion

    International Nuclear Information System (INIS)

    Henty, D.

    1990-01-01

    We compare the convergence properties of Lanczos and Conjugate Gradient algorithms applied to the calculation of columns of the inverse fermion matrix for Kogut-Susskind and Wilson fermions in lattice QCD. When several columns of the inverse are required simultaneously, a block version of the Lanczos algorithm is most efficient at small mass, being over 5 times faster than the single algorithms. The block algorithm is also less susceptible to critical slowing down. (orig.)

  8. The Dirac-Kaehler equation and fermions on the lattice

    International Nuclear Information System (INIS)

    Becher, P.

    1982-05-01

    The geometrical description of spinor fields by E. Kaehler is used to formulate a consistent lattice approximation of fermions. The relation to free simple Dirac fields as well as to Susskind's description of lattice fermions is clarified. The first steps towards a quantized interacting theory are given. The correspondence between the calculus of differential forms and concepts of algebraic topology is shown to be a useful method for a completely analogous treatment of the problems in the continuum and on the lattice. (orig.)

  9. Fermion interactions with a Kaluza-Klein dyon

    International Nuclear Information System (INIS)

    Xi, Z.M.

    1986-04-01

    The fermion dynamics in the background of a five-dimensional Kaluza-Klein dyon is studied. It is found that the hamiltonian is self-adjoint despite the singular nature of the origin, and the fermion scattering on the dyon in the lowest angular momentum j = 0 channel is a helicity flip process. The possibility for charge-exchange process in the non-Abelian Kaluza-Klein theories is discussed

  10. Standard model fermion hierarchies with multiple Higgs doublets

    International Nuclear Information System (INIS)

    Solaguren-Beascoa Negre, Ana

    2016-01-01

    The hierarchies between the Standard Model (SM) fermion masses and mixing angles and the origin of neutrino masses are two of the biggest mysteries in particle physics. We extend the SM with new Higgs doublets to solve these issues. The lightest fermion masses and the mixing angles are generated through radiative effects, correctly reproducing the hierarchy pattern. Neutrino masses are generated in the see-saw mechanism.

  11. SO(10) - Grand unification and fermion masses

    International Nuclear Information System (INIS)

    Oezer, A.D.

    2005-01-01

    In this work, we study SO(10) grand unification in its full extent by using different explicit matrix representations which exhibit the structure of SO(10) in a very transparent way. Our approach consists mainly of two stages: We derive the explicit expressions of the mass-eigenvalues and mass-eigenstates of the physical gauge bosons from a mass squared-matrix that contains all the information about the mixing parameters among the gauge fields and the phases which are sources for CP violation. In the light of this analysis, we derive the explicit expressions for the interaction Lagrangians of the charged currents, the neutral currents and the charged and colored currents in SO(10). We present explicit expressions of the vector and axial-vector couplings of the two neutral currents in SO(10). We show how the baryon, lepton and baryon minus lepton number violating processes and their explicit CP violating phases are accommodated in the SO(10) theory. The Higgs potential that we use to implement in the Higgs mechanism is constructed in a most general fashion through a careful study of the Higgs fields of SO(10), where we give special emphasis on illustrating the explicit matrix representation of these Higgs fields. The potential part of the Higgs Lagrangian will give us the properties of the minimum of the vacuum, and the kinetic part will give us the mass-squared matrix of the gauge bosons via spontaneous symmetry breakdown. The same Higgs multiplets will be coupled to fermions through a democratic Yukawa matrix. Thereby, we derive explicit expressions for the fermion masses of the third family including Majorana and Dirac masses for neutrinos. We introduce a flavor-eigenbasis for neutrinos and find the mass-eigenstates and mass-eigenvalues of the neutrinos. Explicit expressions for CP violation in the neutrino sector are obtained. In the second stage of our work, we evaluate all the above mentioned quantities. In addition, we present the values of the physical

  12. Improved continuum limit lattice action for QCD with Wilson fermions

    International Nuclear Information System (INIS)

    Sheikholeslami, B.; Wohlert, R.

    1985-03-01

    Two possible ways of extending Symanzik's improvement programme to lattice fermions namely improvement to first and second order in the lattice spacing 'a' are discussed. The corresponding lattice actions for fermions are constructed and tree level improvement conditions are derived by considering classical improvement. The concept of on shell improvement is generalized to the lattice fermions studied here and the free parameters are determined for O(a) and O(a 2 ) on shell improved actions to all orders of perturbation theory. No evidence is found that the complicated structure of the O(a 2 ) on shell improved action especially the arising fermion contact terms can be removed beyond tree level. The effect of terms in the action that explicitly break chiral symmetry and therefore remove the phenomenon of species doubling are investigated by considering the energy momentum relations of the arising tree level improved actions. Our main result is that the O(a) improved action is a slightly modified Wilson fermion action which can still be written with only nearest neighbour fermion interactions. (orig.)

  13. Monopole-fermion and dyon-fermion bound states. Pt. 4

    International Nuclear Information System (INIS)

    Osland, P.; Harvard Univ., Cambridge, MA; Tai Tsun Wu

    1985-01-01

    In the first part of the paper, we give analytic, approximate results for dyon-fermion binding energies and wave functions, valid for large values of A = 1/2 Zvertical strokeegvertical strokeK, where K is the magnetic moment. In the second part, more general results are obtained for the same problem that are valid when either A is large or the binding is weak. Numerical results for the binding energy are tabulated and compared. The case of very strong binding is also discussed. (orig.)

  14. Monopole-fermion and dyon-fermion bound states. Pt. 5

    International Nuclear Information System (INIS)

    Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.

    1985-02-01

    We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)

  15. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  16. Isotope angiocardiography

    International Nuclear Information System (INIS)

    Stepinska, J.; Ruzyllo, W.; Konieczny, W.

    1979-01-01

    Method of technetium isotope 99 m pass through the heart recording with the aid of radioisotope scanner connected with seriograph and computer is being presented. Preliminary tests were carried out in 26 patients with coronary disease without or with previous myocardial infarction, cardiomyopathy, ventricular septal defect and in patients with artificial mitral and aortic valves. The obtained scans were evaluated qualitatively and compared with performed later contrast X-rays of the heart. Size of the right ventricle, volume and rate of left atrial evacuation, size and contractability of left ventricle were evaluated. Similarity of direct and isotope angiocardiographs, non-invasional character and repeatability of isotope angiocardiography advocate its usefulness. (author)

  17. Conduction properties of strongly interacting Fermions

    Science.gov (United States)

    Brantut, Jean-Philippe; Stadler, David; Krinner, Sebastian; Meineke, Jakob; Esslinger, Tilman

    2013-05-01

    We experimentally study the transport process of ultracold fermionic atoms through a mesoscopic, quasi two-dimensional channel connecting macroscopic reservoirs. By observing the current response to a bias applied between the reservoirs, we directly access the resistance of the channel in a manner analogous to a solid state conduction measurement. The resistance is further controlled by a gate potential reducing the atomic density in the channel, like in a field effect transistor. In this setup, we study the flow of a strongly interacting Fermi gas, and observe a striking drop of resistance with increasing density in the channel, as expected at the onset of superfluidity. We relate the transport properties to the in-situ evolution of the thermodynamic potential, providing a model independant thermodynamic scale. The resistance is compared to that of an ideal Fermi gas in the same geometry, which shows an order of magnitude larger resistance, originating from the contact resistance between the channel and the reservoirs. The extension of this study to a channel containing a tunable disorder is briefly outlined.

  18. Algorithms for Monte Carlo calculations with fermions

    International Nuclear Information System (INIS)

    Weingarten, D.

    1985-01-01

    We describe a fermion Monte Carlo algorithm due to Petcher and the present author and another due to Fucito, Marinari, Parisi and Rebbi. For the first algorithm we estimate the number of arithmetic operations required to evaluate a vacuum expectation value grows as N 11 /msub(q) on an N 4 lattice with fixed periodicity in physical units and renormalized quark mass msub(q). For the second algorithm the rate of growth is estimated to be N 8 /msub(q) 2 . Numerical experiments are presented comparing the two algorithms on a lattice of size 2 4 . With a hopping constant K of 0.15 and β of 4.0 we find the number of operations for the second algorithm is about 2.7 times larger than for the first and about 13 000 times larger than for corresponding Monte Carlo calculations with a pure gauge theory. An estimate is given for the number of operations required for more realistic calculations by each algorithm on a larger lattice. (orig.)

  19. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T.; Schomerus, V.

    2007-06-15

    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  20. Fermionic greybody factors in dilaton black holes

    International Nuclear Information System (INIS)

    Abedi, Jahed; Arfaei, Hessamaddin

    2014-01-01

    In this paper the question of the emission of fermions in the process of dilaton black hole evolution and its characteristics for different dilaton coupling constants α are studied. The main quantity of interest, the greybody factors, are calculated both numerically and in analytical approximation. The dependence of the rates of evaporation and behaviour on the dilaton coupling constant is analysed. Having calculated the greybody factors, we are able to address the question of the final fate of the dilaton black hole. For that we also need to perform dynamical treatment of the solution by considering the backreaction, which will show a crucial effect on the final result. We find a transition line in the (Q/M,α) plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable. (paper)

  1. On heterotic vacua with fermionic expectation values

    Energy Technology Data Exchange (ETDEWEB)

    Minasian, Ruben [Institut de Physique Theorique, Universite Paris Saclay, CEA, CNRS, Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Universites, CNRS, LPTHE, UPMC Paris 06, UMR 7589, Paris (France); Svanes, Eirik Eik [Sorbonne Universites, CNRS, LPTHE, UPMC Paris 06, UMR 7589, Paris (France); Sorbonne Universites, Institut Lagrange de Paris, Paris (France)

    2017-03-15

    We study heterotic backgrounds with non-trivial H-flux and non-vanishing expectation values of fermionic bilinears, often referred to as gaugino condensates. The gaugini appear in the low energy action via the gauge-invariant three-form bilinear Σ{sub MNP} = tr anti χΓ{sub MNP}χ. For Calabi-Yau compactifications to four dimensions, the gaugino condensate corresponds to an internal three-form Σ{sub mnp} that must be a singlet of the holonomy group. This condition does not hold anymore when an internal H-flux is turned on and O(α{sup '}) effects are included. In this paper we study flux compactifications to three and four-dimensions on G-structure manifolds. We derive the generic conditions for supersymmetric solutions. We use integrability conditions and Lichnerowicz type arguments to derive a set of constraints whose solution, together with supersymmetry, is sufficient for finding backgrounds with gaugino condensate. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Langevin simulations of QCD, including fermions

    International Nuclear Information System (INIS)

    Kronfeld, A.S.

    1986-02-01

    We encounter critical slow down in updating when xi/a -> infinite and in matrix inversion (needed to include fermions) when msub(q)a -> 0. A simulation that purports to solve QCD numerically will encounter these limits, so to face the challenge in the title of this workshop, we must cure the disease of critical slow down. Physically, this critical slow down is due to the reluctance of changes at short distances to propagate to large distances. Numerically, the stability of an algorithm at short wavelengths requires a (moderately) small step size; critical slow down occurs when the effective long wavelength step size becomes tiny. The remedy for this disease is an algorithm that propagates signals quickly throughout the system; i.e. one whose effective step size is not reduced for the long wavelength conponents of the fields. (Here the effective ''step size'' is essentially an inverse decorrelation time.) To do so one must resolve various wavelengths of the system and modify the dynamics (in CPU time) of the simulation so that all modes evolve at roughly the same rate. This can be achieved by introducing Fourier transforms. I show how to implement Fourier acceleration for Langevin updating and for conjugate gradient matrix inversion. The crucial feature of these algorithms that lends them to Fourier acceleration is that they update the lattice globally; hence the Fourier transforms are computed once per sweep rather than once per hit. (orig./HSI)

  3. Veselago focusing of anisotropic massless Dirac fermions

    Science.gov (United States)

    Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.

    2018-05-01

    Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.

  4. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  5. Decaying fermionic dark matter search with CALET

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Torii, S. [Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 (Japan); Motz, H. [International Center for Science and Engineering Programs, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 (Japan); Asaoka, Y., E-mail: saptashwab@ruri.waseda.jp, E-mail: motz@aoni.waseda.jp, E-mail: torii.shoji@waseda.jp, E-mail: yoichi.asaoka@aoni.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 (Japan)

    2017-08-01

    The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:10{sup 5}) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with either a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS−02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.

  6. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T; Schomerus, V

    2007-06-15

    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  7. Illuminating the chirality of Weyl fermions

    Science.gov (United States)

    Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Hsin; Jia, Shuang; Lee, Patrick; Gedik, Nuh; Jarillo-Herrero, Pablo

    In particle physics, Weyl fermions (WF) are elementary particles that travel at the speed of light and have a definite chirality. In condensed matter, it has been recently realized that WFs can arise as magnetic monopoles in the momentum space of a novel topological metal, the Weyl semimetal (WSM). Their chirality, given by the sign of the monopole charge, is the defining property of a WSM, since it directly serves as the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Moreover, the two chiralities, analogous to the two valleys in 2D materials, lead to a new degree of freedom in a 3D crystal, suggesting novel pathways to store and carry information. By shining circularly polarized light on the WSM TaAs, we illuminate the chirality of the WFs and achieve an electrical current that is highly controllable based on the WFs' chirality. Our results open up a wide range of new possibilities for experimentally studying and controlling the WFs and their associated quantum anomalies by optical and electrical means, which suggest the exciting prospect of ``Weyltronics''.

  8. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  9. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  10. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  11. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  12. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  13. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  14. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  15. Issues related to the Fermion mass problem

    Science.gov (United States)

    Murakowski, Janusz Adam

    1998-09-01

    This thesis is divided into three parts. Each illustrates a different aspect of the fermion mass issue in elementary particle physics. In the first part, the possibility of chiral symmetry breaking in the presence of uniform magnetic and electric fields is investigated. The system is studied nonperturbatively with the use of basis functions compatible with the external field configuration, the parabolic cylinder functions. It is found that chiral symmetry, broken by a uniform magnetic field, is restored by electric field. Obtained result is nonperturbative in nature: even the tiniest deviation of the electric field from zero restores chiral symmetry. In the second part, heavy quarkonium systems are investigated. To study these systems, a phenomenological nonrelativistic model is built. Approximate solutions to this model are found with the use of a specially designed Pade approximation and by direct numerical integration of Schrodinger equation. The results are compared with experimental measurements of respective meson masses. Good agreement between theoretical calculations and experimental results is found. Advantages and shortcommings of the new approximation method are analysed. In the third part, an extension of the standard model of elementary particles is studied. The extension, called the aspon model, was originally introduced to cure the so called strong CP problem. In addition to fulfilling its original purpose, the aspon model modifies the couplings of the standard model quarks to the Z boson. As a result, the decay rates of the Z boson to quarks are altered. By using the recent precise measurements of the decay rates Z → bb and Z /to [/it c/=c], new constraints on the aspon model parameters are found.

  16. Algebraic fermion models and nuclear structure physics

    International Nuclear Information System (INIS)

    Troltenier, Dirk; Blokhin, Andrey; Draayer, Jerry P.; Rompf, Dirk; Hirsch, Jorge G.

    1996-01-01

    Recent experimental and theoretical developments are generating renewed interest in the nuclear SU(3) shell model, and this extends to the symplectic model, with its Sp(6,R) symmetry, which is a natural multi-(ℎ/2π)ω extension of the SU(3) theory. First and foremost, an understanding of how the dynamics of a quantum rotor is embedded in the shell model has established it as the model of choice for describing strongly deformed systems. Second, the symplectic model extension of the 0-(ℎ/2π)ω theory can be used to probe additional degrees of freedom, like core polarization and vorticity modes that play a key role in providing a full description of quadrupole collectivity. Third, the discovery and understanding of pseudo-spin has allowed for an extension of the theory from light (A≤40) to heavy (A≥100) nuclei. Fourth, a user-friendly computer code for calculating reduced matrix elements of operators that couple SU(3) representations is now available. And finally, since the theory is designed to cope with deformation in a natural way, microscopic features of deformed systems can be probed; for example, the theory is now being employed to study double beta decay and thereby serves to probe the validity of the standard model of particles and their interactions. A subset of these topics will be considered in this course--examples cited include: a consideration of the origin of pseudo-spin symmetry; a SU(3)-based interpretation of the coupled-rotor model, early results of double beta decay studies; and some recent developments on the pseudo-SU(3) theory. Nothing will be said about other fermion-based theories; students are referred to reviews in the literature for reports on developments in these related areas

  17. Superconducting gap anomaly in heavy fermion systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Ojha, M.S.; Behera, S.N.

    2008-01-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)

  18. Three-dimensional Majorana fermions in chiral superconductors.

    Science.gov (United States)

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  19. Majorana and Majorana-Weyl fermions in lattice gauge theory

    International Nuclear Information System (INIS)

    Inagaki, Teruaki; Suzuki, Hiroshi

    2004-01-01

    In various dimensional Euclidean lattice gauge theories, we examine a compatibility of the Majorana decomposition and the charge conjugation property of lattice Dirac operators. In 8n and 1 + 8n dimensions, we find a difficulty to decompose a classical lattice action of the Dirac fermion into a system of the Majorana fermion and thus to obtain a factorized form of the Dirac determinant. Similarly, in 2 + 8n dimensions, there is a difficulty to decompose a classical lattice action of the Weyl fermion into a system of the Majorana-Weyl fermion and thus to obtain a factorized form of the Weyl determinant. Prescriptions based on the overlap formalism do not remove these difficulties. We argue that these difficulties are reflections of the global gauge anomaly associated to the real Weyl fermion in 8n dimensions. For this reason (besides other well-known reasons), a lattice formulation of the N = 1 super Yang-Mills theory in these dimensions is expected to be extremely difficult to find. (author)

  20. Coupled fermion-kink system in Jackiw-Rebbi model

    International Nuclear Information System (INIS)

    Amado, A.; Mohammadi, A.

    2017-01-01

    In this paper, we study Jackiw-Rebbi model, in which a massless fermion is coupled to the kink of λφ"4 theory through a Yukawa interaction. In the original Jackiw-Rebbi model, the soliton is prescribed. However, we are interested in the back-reaction of the fermion on the soliton besides the effect of the soliton on the fermion. Also, as a particular example, we consider a minimal supersymmetric kink model in (1 + 1) dimensions. In this case, the bosonic self-coupling, λ, and the Yukawa coupling between fermion and soliton, g, have a specific relation, g = √(λ/2). As the set of coupled equations of motion of the system is not analytically solvable, we use a numerical method to solve it self-consistently. We obtain the bound energy spectrum, bound states of the system and the corresponding shape of the soliton using a relaxation method, except for the zero mode fermionic state and threshold energies which are analytically solvable. With the aid of these results, we are able to show how the soliton is affected in general and supersymmetric cases. The results we obtain are consistent with the ones in the literature, considering the soliton as background. (orig.)