WorldWideScience

Sample records for laser source power-scaled

  1. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  2. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  3. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  4. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  5. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  6. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    Science.gov (United States)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications 96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  7. Possible power source found for fiber optic lasers

    International Nuclear Information System (INIS)

    Krupa, Tyler J.

    2000-01-01

    Scientists at the US Department of Energy's Sandia National Laboratory are researching ways to use a new semiconductor alloy, indium gallium arsenide nitride (InGaAsN), as as photovoltaic power source for lasers in fiber optics and space communication satellites. The efficiency of electricity-generating solar cells utilizing InGaAsN is predicted to be 40%-nearly twice the efficiency rate of a standard silicon solar cell. The use of InGaAsN in solar cells is a potential power source for satellites and other space systems. (AIP) (c)

  8. Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1977-01-01

    The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed

  9. Power Scaling of Nonlinear Frequency Converted Tapered Diode Lasers for Biophotonics

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, A.

    2014-01-01

    Diode lasers have proven to be versatile light sources for a wide range of applications. Nonlinear frequency conversion of high brightness diode lasers has recently resulted in visible light power levels in the watts range enabling an increasing number of applications within biophotonics. This re...... and efficiency are included. Application examples within pumping of mode-locked Ti:sapphire lasers and implementation of such lasers in optical coherence tomography are presented showing the application potential of these lasers....

  10. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  11. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  12. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  13. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  14. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  15. Visible high power fiber coupled diode lasers

    Science.gov (United States)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  16. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  17. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  18. New power lasers

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  19. Lasers for switched-power linacs

    International Nuclear Information System (INIS)

    Bigio, I.J.

    1988-01-01

    Laser-switched power surges for particle accelerators, just as with direct laser-driven accelerator schemes, place unique demands on the specifications of the invoked laser systems. We review the laser requirements for switched power sources of the types described in other chapters of this volume. The relative advantages and disadvantages of selected lasers are listed, and the appropriateness and scalability of existing technology is discussed. 4 refs., 2 figs., 2 tabs

  20. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  1. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  2. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  3. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    International Nuclear Information System (INIS)

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  4. Ultrafast disk technology enables next generation micromachining laser sources

    Science.gov (United States)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  5. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  6. Power Scaling Feasibility or Chromium-Doped II-VI Laser Sources and the Demonstration of a Chromium-Doped Zinc Selenide Face-Cooled Disk Laser

    National Research Council Canada - National Science Library

    McKay, Jason

    2002-01-01

    ...+:ZnSe disk laser design that can produce sufficient output power. Cr2+:II-VI laser materials are found to be susceptible to overheating and thermal lensing, but are otherwise satisfactory laser materials...

  7. High-power laser source evaluation

    International Nuclear Information System (INIS)

    Back, C.A.; Decker, C.D.; Dipeso, G.J.; Gerassimenko, M.; Managan, R.A.; Serduke, F.J.D.; Simonson, G.F.; Suter, L.J.

    1997-07-01

    This document reports progress in these areas: EXPERIMENTAL RESULTS FROM NOVA: TAMPED XENON UNDERDENSE X-RAY EMITTERS; MODELING MULTI-KEV RADIATION PRODUCTION OF XENON-FILLED BERYLLIUM CANS; MAPPING A CALCULATION FROM LASNEX TO CALE; HOT X RAYS FROM SEEDED NIF CAPSULES; HOHLRAUM DEBRIS MEASUREMENTS AT NOVA; FOAM AND STRUCTURAL RESPONSE CALCULATIONS FOR NIF NEUTRON EXPOSURE SAMPLE CASE ASSEMBLY DESIGN; NON-IGNITION X-RAY SOURCE FLUENCE-AREA PRODUCTS FOR NUCLEAR EFFECTS TESTING ON NIF. Also appended are reprints of two papers. The first is on the subject of ''X-Ray Production in Laser-Heated Xe Gas Targets.'' The second is on ''Efficient Production and Applications of 2- to 10-keV X Rays by Laser-Heated Underdense Radiators.''

  8. Laser plasmas as x-ray sources for lithographic imaging of submicron structures

    International Nuclear Information System (INIS)

    Bijkerk, F.; van Dorssen, G.E.; van der Wiel, M.J.

    1988-01-01

    Laser radiation can be used efficiently to generate x-rays for lithographic imaging of submicron patterns, e.g., for VLSI device fabrication. Due to their short wavelength and high average power, excimer lasers show much potential for this application. Results are presented of scaling studies for high repetition rate excimer laser application, using the frequency doubled output of a low repetition rate Nd:YAG/Glass laser. Spectral and spatial characteristics of x-ray emission of the laser plasma are shown. The power density in the laser focus was 3 x 10 12 W/cm 2 . With this source Si x-ray masks with submicron Au absorber profiles are imaged into high sensitivity x-ray photoresist. For the exposures 80 laser shots sufficed to yield high quality submicron structures. Extrapolation of the results to a high power excimer laser reduces the exposure time of the photoresists to several seconds, enabling a wafer throughput at an industrial level

  9. High power laser source for space applications. Phase 1 study: Executive summary

    Science.gov (United States)

    1986-07-01

    A study to design a high power laser diode, to manufacture samples, to test them, and to identify the problems raised by the manufacture of such power sources in order to evaluate the effort required to overcome the difficulties in view of a component qualification was initiated. Theoretical modeling, manufacturing and test of samples, and environmental evaluation were completed. To obtain 200 mW monomode, a reversed CSP structure manufactured by chemical vapor deposition is recommended.

  10. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  11. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  12. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  13. Laser power supply

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Hartshorn, D.W.

    1975-01-01

    A method of energizing a laser source stimulating flash lamp directly from an ac power line is presented. Uncontrolled diodes couple the anode and cathode of the flash lamp directly to the ac line. The lamp is triggered by a separate triggering circuit which produces its trigger pulse at a predetermined phase of the ac power source. The use of high current carrying controlled rectifiers and large energy storage devices is thereby eliminated. (U.S.)

  14. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  15. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  16. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    International Nuclear Information System (INIS)

    Debus, Alexander

    2012-01-01

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  17. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  18. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA High-power EUV (13.5 nm) light source

    Science.gov (United States)

    Borisov, Vladimir M.; Borisova, Galina N.; Vinokhodov, Aleksandr Yu; Zakharov, S. V.; Ivanov, Aleksandr S.; Kiryukhin, Yurii B.; Mishchenko, Valentin A.; Prokof'ev, Aleksandr V.; Khristoforov, Oleg B.

    2010-10-01

    Characteristics of a discharge-produced plasma (DPP) light source in the spectral band 13.5±0.135 nm, developed for Extreme Ultra Violet (EUV) lithography, are presented. EUV light is generated by DPP in tin vapour formed between rotating disk electrodes. The discharge is ignited by a focused laser beam. The EUV power 1000 W/(2π sr) in the spectral band 13.5±0.135 nm was achieved with input power about of ~63 kW to the plasma at a pulse repetition rate ~7 kHz . The results of numerical simulation are compared with the experimental data.

  20. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  1. High-power copper vapour lasers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

    1995-08-01

    Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

  2. Atmospheric Propagation and Combining of High-Power Lasers

    Science.gov (United States)

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  3. On the use of a laser ablation as a laboratory seismic source

    Science.gov (United States)

    Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane

    2017-04-01

    Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the

  4. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  5. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  6. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  7. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  8. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Science.gov (United States)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  9. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  10. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Kanesue, Takeshi; Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-01-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11 , which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  11. Laser ion source with solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fuwa, Yasuhiro [Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-7501 (Japan); RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  12. Production of High Intracavity UV Power From a CW Laser Source

    Science.gov (United States)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  13. Comparison of CO2 Laser Cutting with Different Laser Sources

    DEFF Research Database (Denmark)

    Ketting, Hans-Ole; Olsen, Flemmming Ove

    1996-01-01

    This paper contains CO2 laser cutting results in mild and stainless steel with different laser sources. The main factors which affect the cutting speed and quality are the power, the cutting gas and focal point conditions. Keeping the power and cutting gas constant, the focal point conditions have...... size,for the maximum cutting speed. One of the 7 laser sources with different focal length and thus different minimum spot size, was then used to investigate more in details the importance of the focal spot size cutting stainless steel with high pressure nitrogen. It looks as if there is a strong...... connection between the smallest avail-able spot size and cutting speed in mild steel, whereas the conditions in stainless steel, depends strongly on the flow conditions in the cut kerf, and not only on the focal spot size....

  14. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  15. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  16. Development of high-power CO2 lasers and laser material processing

    Science.gov (United States)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  17. Laser-energy scaling law for neutrons generated from nano particles Coulomb-exploded by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Sakabe, Shuji; Hashida, Masaki

    2015-01-01

    To discuss the feasibility of compact neutron sources the yield of laser produced neutrons is scaled by the laser energy. High-energy ions are generated by Coulomb explosion of clusters through intense femtosecond laser-cluster interactions. The laser energy scaling law of the neutron yield is estimated using the laser intensity scaling law for the energy of ions emitted from clusters Coulomb-exploded by an intense laser pulse. The neutron yield for D (D, n) He shows the potential of compact neutron sources with modern laser technology, and the yield for p (Li, n) Be shows much higher than that for Li (p, n) Be with the assumption of 500 nm-class cluster Coulomb explosion. (author)

  18. Development of a Laser-Powered Dielectric Structure-Based Accelerator as a Stand-Alone Particle Source

    International Nuclear Information System (INIS)

    Yoder, R. B.; Travish, G.; Arab, E. R.; Fong, D.; Hoyer, Z.; Lacroix, U. H.; Vartanian, N.; Rosenzweig, J. B.

    2010-01-01

    An experimental program to develop and build a dielectric-based slab-symmetric structure (the micro-accelerator platform, or MAP) for generating and accelerating low-energy electrons is underway at UCLA and Manhattanville College. This optical acceleration structure is effectively a resonant cavity powered by a side-coupled laser, and has applications as a radiation source for medicine or industry. We present recent experimental and computational results on the accelerator, and progress toward its incorporation into a self-contained particle source. Such a particle source would incorporate a micron-scale electron emitter and a non-relativistic capture region to enable self-injection into the synchronous field within the accelerator. A prototype of the accelerator itself has been constructed from candidate dielectric materials using micromanufacturing techniques; the current status of the testing program is described. A novel electron emitter incorporating pyroelectric crystals with field-enhancing tips has been demonstrated to produce steady currents; the results are dependent on tip geometry, and appear suitable for injection into a microstructure. Extension of the MAP concept to non-relativistic velocities, as in the stand-alone source, requires a tapered structure that gives rise to numerous complications including beam defocusing and manufacturing challenges; approaches for addressing these complications are mentioned.

  19. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  20. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    Science.gov (United States)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  1. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    Science.gov (United States)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  2. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  3. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  4. A monolithic relativistic electron beam source based on a dielectric laser accelerator structure

    International Nuclear Information System (INIS)

    McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney

    2012-01-01

    Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

  5. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Gotz

    2011-01-01

    High-power narrow-spectrum diode laser systems based on tapered gain media in external cavity are demonstrated at 675 nm. Two 2-mm-long amplifiers are used, one with a 500-µm-long ridge-waveguide section (device A), the other with a 750-µm-long ridge-waveguide section (device B). The laser system...... of 1.0 W. The laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M2 is 1.13 at an output power of 0.93 W. The laser...... system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a BIBO crystal. An output power of 109 µW UV light, corresponding to a conversion efficiency of 0.026%W-1 is attained....

  6. Working Group VI Summary Report: New Ideas Employing High-Power Lasers

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1999-01-01

    The objectives of this working group were to provide the ''Future Light Source Community'' information on: Electron-Laser interaction based sources; Plasma based radiation sources and accelerators; and Present and future high-power laser technology. A summary of presentations, discussions and opinions is presented next. At the end of this report, a few references are given. The list is very far from being complete but is meant as a start for further exploring the various topics discussed in this working group. Based on presentations and discussions during the workshop, a summarizing table of the performance of three different types of laser systems has been made. The emphasis is on listing performance parameters of solid state, FEL and gas based lasers, relevant to the development of a future fourth generation light source. Two types of solid state lasers capable of producing peak power in the multi-terawatt range are described: Nd:glass and Ti:sapphire lasers [1]. The main development for these lasers is towards higher average power levels: from the 10 W to the > 100 W level. An infrared FEL has recently produced 1 kW average power but with peak power on the order of 0.1 GW [2]. A terawatt class, short pulse CO 2 based gas laser is under development at the Advanced Test Facility at BNL [3

  7. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  8. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  9. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  10. Centimeter-scale MEMS scanning mirrors for high power laser application

    Science.gov (United States)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  11. Laser ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  12. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  13. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A study of the laser power online detecting

    Science.gov (United States)

    Zhang, Qiue; Zhang, Rong; Li, Yongzheng

    2008-12-01

    This article introduced a fundamental of new intelligent instruments. It can be used in laser power online detecting. Based in this theory, we have made a new intelligent mini-power meter. The device adopt SPCE061A MPU to control and process the all detected data, Its CPU core is used 16-bits MPU, it is a perfect unit in industry field. It can process complicated digital signals. Its detecting parts adopt high-speed responding and high-sensitive photoelectric dynatron 3DU13 to detecting the beam's output. It respond spectrum is from 0.4 to 1.1µm, can detect any other laser source's online detecting. Which locate in this spectrum range, optical design is made up of 45 degrees high reflect device and dark body scattering structure. The detector receive a little scatter light, use on-chip ADC to sampling the detector's output. By subsection, insert value linearity, proportion calculate to beam's output powers. And then real-time to displaying by LCD. It can communicate to PC by RS232. By communicate to upper instrument and others, the users can use detected data to achieve laser power's closed-loop control, to control laser source's real time output correctly and calibrating by itself. This mini-power meter need use standard power meter to calibrate in installing, after this process, the device can detect laser power's output from 1 to 200 watts correctly. It error is less than 5 percent.

  15. Power-scaling of a Pr:YAlO.sub.3./sub. microchip laser operating at 747 nm wavelength at room temperature

    Czech Academy of Sciences Publication Activity Database

    Fibrich, Martin; Šulc, J.; Jelínková, H.

    2014-01-01

    Roč. 11, č. 10 (2014), s. 105802 ISSN 1612-2011 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : Pr:YAlO 3 * power scaling * diode pumping * InGaN laser diode * visible solid-state laser Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.458, year: 2014

  16. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  17. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  18. Industrial application of high power disk lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  19. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  20. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Brenner, Ceri M.; Stitt, Camilla A.; Armstrong, Chris; Rusby, Dean R.; Mirfayzi, Seyed R.; Wilson, Lucy A.; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M.H.; Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John

    2016-01-01

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10"7–10"9 neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm"2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  1. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  2. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  3. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Leily S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-02

    The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphide (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).

  4. High-power CO laser and its potential applications

    International Nuclear Information System (INIS)

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  5. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  6. Development of high power pulsed CO2 laser

    International Nuclear Information System (INIS)

    Nakai, Sadao; Matoba, Masafumi; Fujita, Hisanori; Daido, Hiroyuki; Inoue, Mitsuo

    1982-01-01

    The inertial nuclear fusion research using pellet implosion has rapidly progressed accompanying laser technique improvement and output increase. As the high output lasers for this purpose, Nd glass lasers or CO 2 lasers are used. The CO 2 lasers possess the characteristics required as reactor lasers, i.e., high efficiency, high frequency repetition, possibility of scale-up and economy. So, the technical development of high power CO 2 lasers assuming also as reactor drivers has been performed at a quick pace together with the research on the improvement of efficiency of pellet implosion by 10 μm laser beam. The Institute of Laser Engineering, Osaka University, stated to build a laser system LEKKO No. 8 of 8 beams and 10 kJ based on the experiences in laser systems LEKKO No. 1 and LEKKO No. 2, and the system LEKKO No. 8 was completed in March, 1981. The operation tests for one year since then has indicated as the laser characteristics that the system performance was as designed initially. This paper reviews the structure, problems and present status of the large scale CO 2 lasers. In other words, the construction of laser system, CO 2 laser proper, oscillator, booster amplifier, prevention of parasitic oscillation, non-linear pulse propagation and fairing of output pulse form, system control and beam alignment, and high power problems are described. The results obtained are to be reported in subsequent issues. (Wakatsuki, Y.)

  7. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  8. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  9. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  10. An Evaluation of the Cutting Potential of Different Types of High Power Lasers

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2006-01-01

    Laser cutting is a widespread industrial process. The boundaries for the performance of the lasers in terms of cutting capabilities is steadily moving towards higher cutting rates and thicker section cutting. In this paper the potential of different high power laser sources in cutting is evaluated...... based upon the historical development, the available cutting mechanisms understanding and the critical parameters involved in high power laser cutting. From the theoretical point of view, the new laser sources, the Disc-laser and the Fibre laser possess a potential of changing dramatically the limits...... for cutting performance. These theoretical considerations are evaluated against available cutting data....

  11. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin

    1997-01-01

    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  12. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  13. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  14. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  15. Efficiency limits of laser power converters for optical power transfer applications

    International Nuclear Information System (INIS)

    Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M

    2013-01-01

    We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)

  16. Efficiency limits of laser power converters for optical power transfer applications

    Science.gov (United States)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  17. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  18. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    Science.gov (United States)

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  19. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  20. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    Science.gov (United States)

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  1. Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    International Nuclear Information System (INIS)

    Borisov, V M; Vinokhodov, A Yu; Ivanov, A S; Kiryukhin, Yu B; Mishchenko, V A; Prokof'ev, A V; Khristoforov, O B

    2009-01-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz. (laser applications and other topics in quantum electronics)

  2. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  3. MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit

    Science.gov (United States)

    Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai

    2018-03-01

    Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].

  4. Stretchers and compressors for ultra-high power laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  5. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  6. High power YAG laser cutting; Koshutsuryoku YAG laser ni yoru setsudan gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-08-01

    This paper describes features of high power YAG cutting. The optical fiber transmission YAG laser machining system has some advantages in which optical path length compensation unit is not required and measures for low power loss and dust are not required, when compared with the CO2 laser system. Its application to the cutting of stainless steel plates has attracted attention. Cutting tests of SUS304 were conducted using high power YAG laser. Cutting of SUS304 plate with a thickness of 40 mm could be successfully done at the power of 3.5 kW. Cutting tests of SUS304 pipes with a thickness of 8 mm in water under the depth of 20 m were also conducted using air as assist gas at the power of 2.5 kW. Excellent results were obtained without scale deposition. For the tests by the composite beam using 3 kW and 4 kW systems, SUS304 plate with a thickness of 50 mm could be cut at the cutting speed of 0.1 m/min. Laser cutting of pipes from the internal surface was conducted using a newly developed small machining head which can rotate in the peripheral direction. Excellent quality for welding was confirmed. Cutting speed and plate thickness were improved by combining water jet cutter and YAG laser unit. 6 refs., 10 figs.

  7. Magnetically switched power supply system for lasers

    Science.gov (United States)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  8. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  9. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    Science.gov (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  10. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  11. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  12. Laser systems for on-line laser ion sources

    International Nuclear Information System (INIS)

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  13. 5.5 W of Diffraction-Limited Green Light Generated by SFG of Tapered Diode Lasers in a Cascade of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Andersen, Peter Eskil

    2015-01-01

    Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems.......Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems....

  14. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    Science.gov (United States)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  15. Gain-switched all-fiber lasers and quasi-continuous wave supercontinuum generation

    DEFF Research Database (Denmark)

    Larsen, Casper

    The extreme broadening phenomenon of supercontinuum (SC) generation in optical fibers is the basis of SC laser sources. These sources have numerous applications in areas, such as spectroscopy and microscopy due to the unique combination of extremely broad spectral bandwidths, high spectral power...... densities, and high spatial coherence. In this work the feasibility of applying gain-switched all-fiber lasers to SC generation is investigated. It is motivated by the simplicity of the architecture and the ability to scale the optical output power of such fiber lasers. The physics of fiber lasers......-switching of fiber lasers with a variety of different configurations are carried out. The peak power, pulse duration, bandwidth, and scaling with repetition rate are thoroughly described. General guidelines are submitted to enable designing of gainswitched fiber lasers with specifically tailored properties...

  16. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  17. High-Power 1180-nm GaInNAs DBR Laser Diodes

    DEFF Research Database (Denmark)

    Aho, Antti T.; Viheriala, Jukka; Korpijarvi, Ville-Markus

    2017-01-01

    We report high-power 1180-nm GaInNAs distributed Bragg reflector laser diodes with and without a tapered amplifying section. The untapered and tapered components reached room temperature output powers of 655 mW and 4.04 W, respectively. The diodes exhibited narrow linewidth emission with side...... and better carrier confinement compared with traditional GaInAs quantum wells. The development opens new opportunities for the power scaling of frequency-doubled lasers with emission at yellow-orange wavelengths....

  18. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  19. High-power fiber-coupled 100W visible spectrum diode lasers for display applications

    Science.gov (United States)

    Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens

    2013-02-01

    Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.

  20. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  1. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  2. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    Science.gov (United States)

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  3. Recent progress in high-power slab lasers in Japan

    International Nuclear Information System (INIS)

    Fujii, Y.

    1988-01-01

    Recently, many solid-state lasers have been widely employed in Japanese industries, especially in the electronics industries for precise and reliable processing. To expand the use of solid-state lasers and to achieve higher processing speed, the authors are developing slab lasers of high power, high repetition rate, and high beam quality. Metal processing systems with optical fibers for large and complex 3-D work, multiwork station systems linked to only one laser with optical fibers, and compact x-ray sources for lithography are promising areas for such lasers. Surnitomo Metal Mining is growing Nd:GGG and Nd:YAG crystals 60 mm in diameter and 200 mm long. From 2 at.% Nd-doped GGG crystals without central core regions. The authors obtained two slab materials with dimensions of 35 X 9 X 192 and 55 X 15 X 213 mm/sup 3/. By using the smaller slab, they constructed a slab laser and obtained 370-W laser output power at 24-kW lamp input power and 10-pps repetition rate. Now they are constructing a 1-kW slab laser using the other larger size slab

  4. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  5. Heterodyne interferometer laser source with a pair of two phase locked loop coupled He–Ne lasers by 632.8 nm

    International Nuclear Information System (INIS)

    Sternkopf, C; Diethold, C; Gerhardt, U; Manske, E; Wurmus, J

    2012-01-01

    Two He–Ne lasers are frequency and phase coupled by phase locking loop technique for a heterodyne laser interferometer. The heterodyne He–Ne laser is built of stabilized commercially used laser tubes. The two lasers create a high frequency stable heterodyne laser source with an output power of 2 mW. The laser source is coupled by two fibers (one fiber per laser) to the heterodyne laser head. This paper describes the configuration and the control theory basics of the laser system. The experimental setup and the equipment used are also described. First, experimental results with different parameters are represented. Then we discuss a novel heterodyne laser source which has achieved a master laser frequency stability of Δf 1 /f 1 = 1 · 10 −8 and a beat frequency stability of approximately Δf beat /f beat ≈ 4.5 · 10 −5 . (paper)

  6. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    Science.gov (United States)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  7. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  8. Laser power meters as an X-ray power diagnostic for LCLS-II.

    Science.gov (United States)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Science.gov (United States)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  10. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  11. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  12. Cold cathode electron guns in the LASL high power short-pulse CO2 laser program

    International Nuclear Information System (INIS)

    Singer, S.; Ladish, J.S.; Nutter, M.J.

    1975-01-01

    The Electron Beam Controlled Discharge CO 2 Laser is now firmly established as the only high power short pulse laser amplifier that has been demonstrated to have scaling capabilities to large apertures and energies much greater than 100 J. These devices require a beam of energetic electrons to control the gas discharge that produces the required population inversion. Until recently, the electron source was usually a thermionic emitter, even for rather large lasers, whose heater requirements dwarfed the pulsed energies associated with the transient operation of the laser. With the advent of reliable cold-cathode electron guns, the operation of these lasers has been greatly simplified. At LASL, there are four electron beam controlled laser systems which are in operation, under construction, or in design: the 1 kJ system, now operational; the 2.5 kJ system; the 10 kJ system; and the 100 kJ system. Only the first uses thermionic-emitter electron guns; the remainder use or will use cold cathode sources. The operation of the 200 x 35 cm 2 two sided cold cathode electron gun used in the 2.5 kJ laser system and to be used in the 10 kJ laser is described

  13. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  14. High-power fiber lasers for photocathode electron injectors

    Directory of Open Access Journals (Sweden)

    Zhi Zhao

    2014-05-01

    Full Text Available Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  15. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  16. Small-scale heat detection using catalytic microengines irradiated by laser

    Science.gov (United States)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  17. Pulse power technology application to lasers

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1975-01-01

    Recent developments of intense relativistic electron beam accelerators and the associated pulse power technology are reviewed. The design of specific accelerators for gas laser excitation sources is discussed. A 3 MV, 800 kA, 24 ns electron beam accelerator under development for the electron beam fusion program is described along with the low jitter multichannel oil-dielectric rail switches developed for this application. This technology leads to the design of a 20 kJ, short pulse accelerator optimized gas laser excitation with radially converging electron beams. Other gas laser research requirements have led to the development of an accelerator that will produce a 0.5 MV, 20 kJ, 1 μs electron beam pulse. (auth)

  18. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  19. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-01-01

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  20. High power green lasers for gamma source

    Science.gov (United States)

    Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine

    2018-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.

  1. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting

    International Nuclear Information System (INIS)

    Zhang Duanming; Li, Li; Li Zhihua; Guan Li; Tan Xinyu

    2005-01-01

    A non-Fourier conduction model with heat source term is presented to study the target temperature evolvement when the target is radiated by high power (the laser intensity is above 10 9 w/cm 2 ) and ultra short (the pulse width is less than 150 ps) pulsed laser. By Laplace transform, the analytical expression of the space- and time-dependence of temperature is derived. Then as an example of aluminum target, the target temperature evolvement is simulated. Compared with the results of Fourier conduction model and non-Fourier model without heat source term, it is found that the effect of non-Fourier conduction is notable and the heat source plays an important role during non-Fourier conduction which makes surface temperature ascending quickly with time. Meanwhile, the corresponding physical mechanism is analyzed theoretically

  2. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  3. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  4. Scaling of the helium--nitrogen charge transfer laser

    International Nuclear Information System (INIS)

    Collins, C.B.; Cunningham, A.J.

    1975-01-01

    The scaling to high powers of the nitrogen ion laser pumped by charge transfer from He + 2 is reported. Intense emission has been found from three laser lines at 3914, 4278, and 4709 A upon discharge of a fast-pulsed electron beam gun, APEX-1, into several atmospheres of a mixture of helium and nitrogen. Excitation current densities were 1.3 kA/cm 2 at 1 MV over a 1times10-cm transverse geometry. The efficiency of the 4278-A laser emission was found to be proportional to the total pressure raised to the 1.2 power. Outputs of 36 mJ have been obtained from the 16-cm 3 working volume at 30-atm pressure and a peak efficiency of 1.6% relative to the energy lost by the electron beam in this radiating volume has been achieved

  5. The JLab high power ERL light source

    International Nuclear Information System (INIS)

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  6. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  7. Development and Testing of a Laser-Powered Cryobot for Outer Planet Icy Moon Exploration

    Science.gov (United States)

    Siegel, V.; Stone, W.; Hogan, B.; Lelievre, S.; Flesher, C.

    2013-12-01

    Project VALKYRIE (Very-deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer) is a NASA-funded effort to develop the first laser powered cryobot - a self-contained intelligent ice penetrator capable of delivering science payloads through ice caps of the outer planet icy moons. The long range objective is to enable a full-scale Europa lander mission in which an autonomous life-searching underwater vehicle is transported by the cryobot and launched into the sub-surface Europan ocean. Mission readiness testing will involve an Antarctic sub-glacial lake cryobot sample return through kilometers of ice cap thickness. A key element of VALKYRIE's design is the use of a high energy laser as the primary power source. 1070 nm laser light is transmitted at a power level of 5 kW from a surface-based laser and injected into a custom-designed optical waveguide that is spooled out from the descending cryobot. Light exits the downstream end of the fiber, travels through diverging optics, and strikes a beam dump, which channels thermal power to hot water jets that melt the descent hole. Some beam energy is converted, via photovoltaic cells, to electricity for running onboard electronics and jet pumps. Since the vehicle can be sterilized prior to deployment and the melt path freezes behind it, preventing forward contamination, expansions on VALKYRIE concepts may enable cleaner and faster access to sub-glacial Antarctic lakes. Testing at Stone Aerospace between 2010 and 2013 has already demonstrated high power optical energy transfer over relevant (kilometer scale) distances as well as the feasibility of a vehicle-deployed optical waveguide (through which the power is transferred). The test vehicle is equipped with a forward-looking synthetic aperture radar (SAR) that can detect obstacles out to 1 kilometer from the vehicle. The initial ASTEP test vehicle will carry a science payload consisting of a DUV flow cytometer and a water sampling sub-system that will be

  8. Laser Cutting of CFRP with a Fibre Guided High Power Nanosecond Laser Source - Influence of the Optical Fibre Diameter on Quality and Efficiency

    Science.gov (United States)

    Bluemel, S.; Bastick, S.; Staehr, R.; Jaeschke, P.; Suttmann, O.; Overmeyer, L.

    For the development of a robot based laser cutting process of automotive 3D parts consisting of carbon fibre reinforced plastics (CFRP), investigations with a newly developed fibre guided nanosecond pulsed laser with an average power of PL = 1.5 kW were conducted. In order to investigate the best combination of quality and process time 2 different optical fibres were used, with diameters of df = 400 μm and df = 600 μm. The main differences between the two setups are the resulting focal diameter and the maximum available pulse energy up to EP = 80 mJ. In a first instance, a comparable investigation was performed with both fibres for a constant pulse overlap. For each fibre the minimum required line energy was investigated and cuts were performed, distributed over the complete parameter range of the laser source. The influences of the fibre diameter on the quality and efficiency of the cutting process are summarized and discussed.

  9. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    International Nuclear Information System (INIS)

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  10. Really Large Scale Computer Graphic Projection Using Lasers and Laser Substitutes

    Science.gov (United States)

    Rother, Paul

    1989-07-01

    This paper reflects on past laser projects to display vector scanned computer graphic images onto very large and irregular surfaces. Since the availability of microprocessors and high powered visible lasers, very large scale computer graphics projection have become a reality. Due to the independence from a focusing lens, lasers easily project onto distant and irregular surfaces and have been used for amusement parks, theatrical performances, concert performances, industrial trade shows and dance clubs. Lasers have been used to project onto mountains, buildings, 360° globes, clouds of smoke and water. These methods have proven successful in installations at: Epcot Theme Park in Florida; Stone Mountain Park in Georgia; 1984 Olympics in Los Angeles; hundreds of Corporate trade shows and thousands of musical performances. Using new ColorRayTM technology, the use of costly and fragile lasers is no longer necessary. Utilizing fiber optic technology, the functionality of lasers can be duplicated for new and exciting projection possibilities. The use of ColorRayTM technology has enjoyed worldwide recognition in conjunction with Pink Floyd and George Michaels' world wide tours.

  11. Scaling of electron beam sources for laser fusion applications

    International Nuclear Information System (INIS)

    Schlitt, L.G.; Bradley, L.P.

    1975-01-01

    The purpose of this study is to develop a scheme for constructing electron beam machines capable of pumping large volumes of gas, to analyze their performance within the framework of existing knowledge of the physical mechanisms involved, to use this analysis to assess the viability of the overall concept, pinpoint weaknesses in the understanding of the physics, identify the most important limiting physical processes, and hence to propose a program to prepare for the eventual construction of a large scale gas laser system. (auth)

  12. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Backus, Sterling [KMLabs Inc., Boulder, CO (United States)

    2017-01-31

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibited low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.

  13. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  14. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  15. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  16. Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell

    Science.gov (United States)

    Lengden, Michael; Cunningham, Robert; Johnstone, Walter

    2011-10-01

    A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.

  17. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    Science.gov (United States)

    Lizotte, Todd

    2010-08-01

    Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level

  18. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    Science.gov (United States)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  19. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  20. Lasertron, a pulsed RF-source using laser triggered photocathode

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu.

    1988-12-01

    A new pulsed RF-source, 'Lasertron', are being developed as a possible RF-power source for future electron-positron linear colliders. In a series of systematic study, a prototype lasertron has been fabricated and tested. A peak power of 80 kW is attained at 2.856 GHz RF-frequency in 1-μs time duration. This paper describes the experimental results of the lasertron including the developments of the photocathode and the laser system. Test results are compared with the analysis of beam dynamics in the lasertron. (author)

  1. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  2. Resonant laser power build-up in ALPS. A 'light-shining-through-walls' experiment

    International Nuclear Information System (INIS)

    Ehret, Klaus; Ghazaryan, Samvel; Frede, Maik

    2009-05-01

    The ALPS collaboration runs a light-shining-through-walls (LSW) experiment to search for photon oscillations into weakly interacting sub-eV particles (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run. (orig.)

  3. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  4. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  5. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  6. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    International Nuclear Information System (INIS)

    Ficini, G.; Campbell, J.H.

    1996-01-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm 3 ) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology

  7. Development of a Laser Driven Photocathode Injector and Femtosecond Scale Laser Electron Synchronization for Next Generation Light Sources

    CERN Document Server

    Le Sage, G P; Ditmire, T R; Rosenzweig, J

    2000-01-01

    A high brightness photoinjector has been developed at LLNL. This injector combined with the 100 TW FALCON laser and the LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements, based on Thomson scattering. Short pulse x-rays enable time-resolved characterization of shock dynamics, and examination of materials under extremes of pressure and temperature. Examples include Equation of State characterization on high-density materials, Crystal disorganization and re-growth in shocked and heated materials, and measurement of short time scale phase transition phenomena. Single shot evaluation, requiring high peak flux, is important for complex experiments such as probing of laser shocked actinides. A low emittance electron beam synchronized with femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This project will lead development of ultrafast x-ray dynamics research on ...

  8. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  9. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  10. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  11. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  12. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  13. High power visible diode laser for the treatment of eye diseases by laser coagulation

    Science.gov (United States)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  14. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  15. Trace contaminant determination in fish scale by laser-ablation technique

    International Nuclear Information System (INIS)

    Lee, I.; Coutant, C.C.; Arakawa, E.T.

    1993-01-01

    Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish's chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations

  16. 970-nm ridge waveguide diode laser bars for high power DWBC systems

    Science.gov (United States)

    Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther

    2018-02-01

    de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.

  17. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1992-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components.

  18. Theoretical and experimental aspects of laser cutting with a direct diode laser

    Science.gov (United States)

    Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.

    2014-10-01

    Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.

  19. Power balance on a multibeam laser

    Science.gov (United States)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  20. Laser-powered Martian rover

    Science.gov (United States)

    Harries, W. L.; Meador, W. E.; Miner, G. A.; Schuster, Gregory L.; Walker, G. H.; Williams, M. D.

    1989-01-01

    Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived.

  1. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    DEFF Research Database (Denmark)

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  2. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    Science.gov (United States)

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  4. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  5. Target life time of laser ion source for low charge state ion production

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.

  6. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  7. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  8. Narrow-stripe broad-area lasers with distributed-feedback surface gratings as brilliant sources for high power spectral beam combining systems

    Science.gov (United States)

    Decker, J.; Crump, P.; Fricke, J.; Wenzel, H.; Maaβdorf, A.; Erbert, G.; Tränkle, G.

    2014-03-01

    Laser systems based on spectral beam combining (SBC) of broad-area (BA) diode lasers are promising tools for material processing applications. However, the system brightness is limited by the in-plane beam param- eter product, BPP, of the BA lasers, which operate with a BPP of BPP and vertical far eld angle (95% power content), μV 95. The resulting diode lasers are fabricated as mini- bars for reduced assembly costs. Gratings are integrated into the mini-bar, with each laser stripe emitting at a different wavelength. In this way, each emitter can be directed into a single bre via low-cost dielectric filters. Distributed-feedback narrow-stripe broad-area (DFB-NBA) lasers are promising candidates for these SBC sys- tems. We review here the design process and performance achieved, showing that DFB-NBA lasers with stripe width, W = 30 μm, successfully cut of higher-order lateral modes, improving BPP. Uniform, surface-etched, 80th-order Bragg gratings are used, with weak gratings essential for high e ciency. To date, such DFB-NBA sources operate with BPP BPP is half that of a DFB-BA lasers with W = 90 um. We conclude with a review of options for further performance improvements.

  9. Resonant laser power build-up in ALPS-A 'light shining through a wall' experiment

    International Nuclear Information System (INIS)

    Ehret, Klaus; Frede, Maik; Ghazaryan, Samvel; Hildebrandt, Matthias; Knabbe, Ernst-Axel; Kracht, Dietmar; Lindner, Axel; List, Jenny; Meier, Tobias; Meyer, Niels; Notz, Dieter; Redondo, Javier; Ringwald, Andreas; Wiedemann, Guenter; Willke, Benno

    2009-01-01

    The ALPS Collaboration runs a 'light shining through a wall' (LSW) experiment to search for photon oscillations into 'weakly interacting sub-eV particles' (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical resonant cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run.

  10. Laboratory astrophysics. Model experiments of astrophysics with large-scale lasers

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    2012-01-01

    I would like to review the model experiment of astrophysics with high-power, large-scale lasers constructed mainly for laser nuclear fusion research. The four research directions of this new field named 'Laser Astrophysics' are described with four examples mainly promoted in our institute. The description is of magazine style so as to be easily understood by non-specialists. A new theory and its model experiment on the collisionless shock and particle acceleration observed in supernova remnants (SNRs) are explained in detail and its result and coming research direction are clarified. In addition, the vacuum breakdown experiment to be realized with the near future ultra-intense laser is also introduced. (author)

  11. Soft x-ray source by laser produced Xe plasma

    International Nuclear Information System (INIS)

    Amano, Sho; Masuda, Kazuya; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-01-01

    The laser plasma soft X-ray source in the wavelength rage of 5-17 nm was developed, which consisted of the rotating drum system supplying cryogenic Xe target and the high repetition rate pulse Nd:YAG slab laser. We found the maximum conversion efficiency of 30% and it demonstrated the soft X-ray generation with the high repetition rate pulse of 320 pps and the high average power of 20 W. The soft X-ray cylindrical mirror was developed and successfully focused the soft X-ray with an energy intensity of 1.3 mJ/cm 2 . We also succeeded in the plasma debris mitigation with Ar gas. This will allow a long lifetime of the mirror and a focusing power intensity of 400 mW/cm 2 with 320 pps. The high power soft X-ray is useful for various applications. (author)

  12. Disk laser: a new generation of industrial lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2009-02-01

    The disk laser concept aggregates high efficiency, excellent beam quality, high average and peak power with moderate cost and high reliability. Therefore it became one major technology in industrial laser material processing. In several large scale installations in the automotive industry, high power cw- systems make already use of the high brightness and high efficiency of disk lasers, e.g. in remote welding [1,2]. Other applications including cutting, drilling, deep welding and hybrid welding are arising. This report highlights the latest results in cw disk laser development. A 1.5 kW source with a beam parameter product (BPP) of 2 mm mrad is described as well as the demonstration of a 14 kW system out of three disks with a BPP of 8 mm mrad. The future prospects regarding increased power and even further improved productivity and economics are presented. A new industrial disk laser series with output powers up to 16 kW and a beam parameter product of 8 mm*mrad will enable both, new applications in the thick sheet area and very cost efficient high productive applications like welding and cutting of thin sheets.

  13. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  14. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  15. High power excimer laser

    International Nuclear Information System (INIS)

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  16. Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness

    International Nuclear Information System (INIS)

    Hu Guangyue; Zheng Jian; Shen Baifei; Lei Anle; Xu Zhizhan; Liu Shenye; Zhang Jiyan; Yang Jiamin; Ding Yongkun; Hu Xin; Huang Yixiang; Du Huabing; Yi Rongqing

    2008-01-01

    The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size

  17. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  18. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  19. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B

    2002-01-01

    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  20. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1991-02-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  1. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Migliorati, B.; Difino, M.; Manassero, G.

    1990-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (Fiat-CIEI and Fiat-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: (i) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; (ii) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; (iii) study of long-distance transmission of the laser beam power performed with a 5KW laser source with an evaluation of the power loss and beam characteristic modifications; (iv) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long-distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme

  2. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G; De Zaiacomo, T; Melandri, C; Formignani, M; Barilli, L [ENEA - Area Energia, Ambiente e Salute - Centro Ricerche Energia ' Ezio Clementel' - Bologna (Italy); Di Fino, M [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Frascati, Rome (Italy); Picini, P; Galuppi, G; Rocca, C [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Casaccia, Rome (Italy); Manassero, G [Centro Ricerche FIAT, Orbassano, Torino (Italy); Migliorati, B [FIAT-CIEI, Torino (Italy)

    1991-02-15

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  3. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1998-01-01

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  4. The high-power iodine laser

    Science.gov (United States)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  5. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  6. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  7. Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF)

    International Nuclear Information System (INIS)

    Andersson, Patrik U.; Loenn, Benny; Holmlid, Leif

    2011-01-01

    A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10 12 W cm -2 is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.

  8. Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF)

    Science.gov (United States)

    Andersson, Patrik U.; Lönn, Benny; Holmlid, Leif

    2011-01-01

    A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤1012 W cm-2 is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.

  9. NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Philip R Nicovich

    Full Text Available Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available.

  10. Laser Cutting of Thick Diamond Films Using Low-Power Laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Baik, Y.J. [Korea Institute of Science and Technology, Seoul (Korea)

    2000-02-01

    Laser cutting of thick diamond films is studied rising a low-power(10 W) copper vapor laser. Due to the existence of the saturation depth in laser cutting, thick diamond films are not easily cut by low-power lasers. In this study, we have adopted a low thermal- conductivity underlayer of alumina and a heating stage (up to 500 deg. C in air) to prevent the laser energy from consuming-out and, in turn, enhance the cutting efficiency. Aspect ratio increases twice from 3.5 to 7 when the alumina underlayer used. Adopting a heating stage also increases aspect ratio and more than 10 is obtained at higher temperatures than 400 deg. C. These results show that thick diamond films can be cut, with low-power lasers, simply by modifying the thermal property of underlayer. (author). 13 refs., 5 figs.

  11. Constant-Fluence Area Scaling for Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.

    2008-01-01

    A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin registered ) propellants in air at atmospheric pressure. A TEA CO 2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (C m ) and specific impulse (I sp ) for spot areas within a range of about 0.05-0.25 cm 2 are presented. Experimental measurements of imparted impulse, C m , I sp , and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed

  12. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  13. High power laser research and development at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    Soures, J.M.; McCrory, R.L.; Cerqua, K.A.

    1986-01-01

    As part of its research mission - to investigate the interaction of intense radiation with matter - the Laboratory for Laser Energetics (LLE) of the University of Rochester is developing a number of high-peak power and high-average-power laser systems. In this paper we highlight some of the LLE work on solid-state laser research, development and applications. Specifically, we discuss the performance and operating characteristics of Omega, a twenty-four beam, 4000 Joule, Nd:glass laser system which is frequently tripled using the polarization mismatch scheme. We also discuss progress in efforts to develop high-average-power solid-state laser systems with active-mirror and slab geometries and to implement liquid-crystal devices in high-power Nd:glass lasers. Finally we present results from a program to develop a compact, ultrahigh-peak-power solid-state laser using the concept of frequency chirped pulse amplification

  14. Resonant laser power build-up in ALPS. A 'light-shining-through-walls' experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehret, Klaus; Ghazaryan, Samvel [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Frede, Maik [Laser Zentrum Hannover e.V. (DE)] (and others)

    2009-05-15

    The ALPS collaboration runs a light-shining-through-walls (LSW) experiment to search for photon oscillations into weakly interacting sub-eV particles (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run. (orig.)

  15. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  16. High Power Q-Switched Dual-End-Pumped Ho:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ming, Duan; Ying-Jie, Shen; Tong-Yu, Dai; Bao-Quan, Yao; Wang Yue-Zhu, E-mail: xmduan@hit.edu.cn [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    We report the high power acousto-optically Q-switched operation of a dual-end-pumped Ho:YAG laser at room temperature. For the Q-swithched mode, a maximum pulse energy of 2.4 mJ and a minimum pulse width of 23 ns at the repetition rate of 10 kHz are achieved, resulting in a peak power of 104.3 kW. The beam quality factor of M{sup 2} {approx} 1.5, which is demonstrated by a knife-edge method. In addition, the Ho:YAG laser is employed as a pumping source of ZGP optical parametric oscillator, and its total average output power is 13.2 W at 3.9 {mu}m and 4.4 {mu}m with a slope efficiency of 68.4%.

  17. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  18. Solar-pumped lasers for space power transmission

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  19. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  20. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  1. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  2. Compact RGBY light sources with high luminance for laser display applications

    Science.gov (United States)

    Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther

    2018-02-01

    Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.

  3. Power balancing of multibeam laser fusion lasers

    International Nuclear Information System (INIS)

    Seka, W.; Morse, S.; Letzring, S.; Kremens, R.; Kessler, T.J.; Jaanimagi, P.; Keck, R.; Verdon, C.; Brown, D.

    1989-01-01

    The success of laser fusion depends to a good degree on the ability to compress the target to very high densities of ≥1000 times liquid DT. To achieve such compressions require that the irradiation nonuniformity must not exceed ∼1% rms over the whole time of the compression, particularly during the early phases of irradiation. The stringent requirements for the irradiation uniformity for laser fusion have been known for quite some time but until recently the energy balance was mistakenly equated to power balance. The authors describe their effort on energy balance and irradiation patterns on the target. They significantly improved the laser performance with respect to overall intensity distributions on target including the implementation of distributed (random) phase plates in each high power beam. However, the slightly varying performance of the third harmonic conversion crystals in the twenty-four beams of their laser system was generally compensated for by appropriately adjusted 1.054μm input laser energy. Computational analysis of the results of the recent high density campaign are shown

  4. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  5. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  6. Low power consumption O-band VCSEL sources for upstream channels in PON systems

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes Lopez, Roberto; Tafur Monroy, Idelfonso

    2012-01-01

    This paper presents an experimental validation of a low power optical network unit employing vertical-cavity surface-emitting lasers as upstream sources for passive optical networks with an increased power budget, enabling even larger splitting ratios....

  7. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  8. LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*

    Science.gov (United States)

    Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.

    2010-11-01

    The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.

  9. The effect of prepulse on x-ray laser development using a powerful subpicosecond KrF* laser

    International Nuclear Information System (INIS)

    Nam, C.H.; Tighe, W.; Valeo, E.; Suckewer, S.

    1990-03-01

    A high power uv laser has been developed as a pump source for short wavelength (down to 1 nm) x-ray lasers. Various schemes are considered and theoretical analysis is discussed. Spectroscopic studies of laser-target interaction have been performed and, in particular, the effect of a prepulse on plasma generation has been investigated. Analysis of the observed spectra indicates that reduction of the prepulse energy results in a higher temperature plasma. Investigation of the interaction using thin layered targets is also presented. These data provide evidence for initially hot plasma conditions generated from target layers ≤150 angstrom. Discussions of proposed laser schemes at 1-5 nm are presented. 45 refs., 8 figs., 1 tab

  10. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  11. Laser welding parameters for manufacturing iridium-192 (Ir-192) source

    International Nuclear Information System (INIS)

    Anung Pujiyanto; Moch Subechi; Hotman Lubis; Diandono KY

    2013-01-01

    Number of cervical cancer patients in Indonesia is growing every year. One of cervical cancer treatment was fairly effective use brachytherapy treatment with radioisotope sources of iridium-192. Manufacturing of iridium sources for brachytherapy can be done by incorporating the iridium-192 into stainless steel microcapsules then welding using laser welder which the quality of the welding of iridium source (Ir-192) was determined by the welding parameters such as full power, energy frequency, average power and speed. Based on the result of leakage test using pressure -20 inch Hg and tensile test 2.5 bar showed the welding parameters III and IV did not have leakage and damaged. So that parameters III and IV are recommended to be applied to Ir-192 HDR's source. (author)

  12. Factors affecting potential market penetration of laser fusion power plants

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Fraley, D.W.

    1979-08-01

    A mini-model has been constructed to estimate the optimal size of laser fusion power plants and to estimate the allowable cost of the first such plant in relation to the next best alternative. In estimating the costs of laser fusion, the mini-model incorporates such factors as market penetration, learning, economies of scale, system size, transmission costs, reserve requirements, development and licensing costs and site costs. The results of the mini-model simulations indicate that the optimal laser fusion plant size is approximately 3 GWe; risk considerations unincorporated in the mini-model suggest an optimal size closer to 2.5 GWe

  13. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    Science.gov (United States)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  14. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  15. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-01-01

    A prototype C 6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4

  16. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  17. Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate

    Science.gov (United States)

    Hermanns, Thomas; Sulser, Tullio; Hefermehl, Lukas J.; Strebel, Daniel; Michel, Maurice-Stephan; Müntener, Michael; Meier, Alexander H.; Seifert, Hans-Helge

    2009-02-01

    It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output

  18. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  19. A reliable cw Lyman-{alpha} laser source for future cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel, E-mail: kolbed@uni-mainz.de; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen [Johannes Gutenberg-Universitaet, Institut fuer Physik (Germany)

    2012-12-15

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S-2 P transition in (anti)hydrogen at 121.56 nm (Lyman-{alpha}) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-{alpha} source and is well investigated.

  20. A reliable cw Lyman-α laser source for future cooling of antihydrogen

    International Nuclear Information System (INIS)

    Kolbe, Daniel; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen

    2012-01-01

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S–2 P transition in (anti)hydrogen at 121.56 nm (Lyman-α) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-α source and is well investigated.

  1. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ Al

  2. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    Science.gov (United States)

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  3. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  4. Effect of different diode laser powers in photodynamic therapy

    CSIR Research Space (South Africa)

    Maduray, K

    2010-09-01

    Full Text Available ?, Radiation and Oncology 37, p 131-135. Fig. 2: The cell viability of fibroblast cells after photosensitization with 50 µg/ml of ZnTSPc and photoactivation using a light dose of 4.5 J/cm2 an emitting output power of 31.8 mW from a CW laser source. Fig...

  5. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    Science.gov (United States)

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  6. High-power fiber-coupled pump lasers for fiber lasers

    Science.gov (United States)

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  7. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, Brian E.; Park, Jesung; Carbajal, Esteban [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States); Oghalai, John S. [Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex user developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.

  8. Analog phase lock between two lasers at LISA power levels

    International Nuclear Information System (INIS)

    Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten

    2009-01-01

    This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 μW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.

  9. Analog phase lock between two lasers at LISA power levels

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten, E-mail: Christian.Diekmann@aei.mpg.d [Max-Planck-Institute for Gravitational Physics, Callinstr. 38, D-30167 Hannover (Germany)

    2009-03-01

    This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 muW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.

  10. The laser control system for the TRIUMF optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Kadantsev, S.G.; Levy, C.D.P.; Mouat, M.M.

    1994-08-01

    The optically pumped polarized H - ion source at TRIUMF produces up to 100 μΑ dc of 78% polarized beam within an emittance of 1.0 π mm mrad and is now being prepared for an upcoming experiment at TRIUMF that will measure parity violation in pp scattering at 230 MeV. The optical pumping is accomplished by argon laser pumped Ti-sapphire lasers. The laser control system provides monitoring and precision control of the lasers for fast spin reversal up to 200 s -1 . To solve the problems of laser power and frequency stabilization during fast spin flipping, techniques and algorithms have been developed that significantly reduce the variation of laser frequency and power between spin states. The upgraded Faraday rotation system allows synchronous measurement of Rb thickness and polarization while spin flipping. The X Window environment provides both local and remote control to laser operators via a local area network and X window terminals. In this new environment issues such as access authorization, response time, operator interface consistency and ease of use are of particular importance. (author)

  11. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  12. Development of laser material processing and laser metrology techniques. Development of the power supply of high power CO{sub 2} laser for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Yong Hak; Jang, Do Hyun; Kim, Su Hun [Cheju National University, Cheju (Korea, Republic of)

    1994-08-01

    The 2 Kw solid state RF power supply has been designed and fabricated The power supply was composed of oscillator, driver amplifier and power amplifier. Each part of the power supply was developed and tested. The impedance matching circuit to apply this RF power supply for laser discharge excitation was fabricated also. The RF discharge experiment for the excitation of CO{sub 2} laser was performed. The radiofrequency power supply which has the output power of 2 Kw has been developed. The subsystems of the power supply have been fabricated and their performances were reliable. The RF discharge experiment to generate the laser plasma has been performed and input power density of 6 W/cm{sub 3} has been achieved. (author). 5 refs., 28 figs., 8 tabs.

  13. Powerful lasers for thermonuclear fusion

    International Nuclear Information System (INIS)

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  14. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  15. Developing a Methodology for Elaborating a Pulsed Optical Safety Area for High Power Laser Diodes

    National Research Council Canada - National Science Library

    Yankov, Plamen

    2006-01-01

    The laser diodes are efficient sources of optical radiation. The maximum optical peak power depends on the pulse duration of the driving current pulse - reducing the pulse duration the safety peak power is increased...

  16. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  17. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  18. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  19. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  20. The role of fusion as a future power source

    International Nuclear Information System (INIS)

    Kintner, E.E.; Hirsch, R.L.

    1977-01-01

    Nations of western Europe, Japan, the Soviet Union, and the United States are working together to demonstrate the practicality of fusion power early in the 21st century. Many difficult engineering problems make fusion development one of the most formidable scientific and technological challenges ever attempted. However, the outlook is promising for achieving an inexhaustible energy source that is safe, economic, and with acceptable environmental effects. The United States magnetic fusion power development program aims at producing fusion energy experimentally in the early 1980's and demonstrating power production on a commercial scale before 2000. This prognosis reflects the confidence gained in scientific successes of the late 1960's through the present. However, many physics problems remain to be solved and many complex engineering problems without obvious solutions await attention. In response to experimental successes and the perceived importance of the fusion energy alternative, the United States effort has grown rapidly. Scientific investigations of plasma physics continue while planned engineering studies lead toward the practical goal of a commercial technology that will take a prominent place among available energy sources of the next century. Development of laser and electron beam fusion proceeds. Alternative fusion devices are investigated for their potential feasibility while the tokamak configuration is used for principal experimental devices. A national program plan and budget coordinates the efforts of federal laboratories, universities and industry. The utilities industry conducts an independent program which is increasingly coordinated with government-sponsored activity. Fusion energy programs of several nations benefit one another and should cooperate more closely in specific problem areas. Achievement of practical fusion power could be advanced through more effective mutually supporting fusion development programs. The economic and technical

  1. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  2. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  3. Nuclear-pumped lasers for large-scale applications

    International Nuclear Information System (INIS)

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs

  4. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  5. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  6. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  7. Modified two beam accelerator driven by a D.C. pelletron free electron laser

    International Nuclear Information System (INIS)

    Larson, D.

    1985-01-01

    Assembling the next generation of linear particle accelerators requires progress in three areas. (1) Sources must be developed to provide the coherent electromagnetic radiation used to power the device. (2) Physical structures must be designed which efficiently transfer the power to the high energy beam. (3) Cooling techniques must be developed in order to enhance beam transport and to provide sufficient luminosity. This paper will describe a method of obtaining a highly efficient coherent radiation source by using a continuous wave Free Electron Laser (FEL). Several possibilities exist for an accelerating structure which could use this radiation as a power source. These include scaling down the size of traditional RF cavities, inverse free electron lasers, and surface grating schemes. Inverse free electron lasers have the possibility of intrinsic cooling of the high energy beam

  8. Development of a high power HCN waveguide laser for plasma diagnostic

    International Nuclear Information System (INIS)

    Deng Zhongchao; Zhou Yan; Tang Yiwu; Yi Jiang; Gao Bingyi; Tian Chongli

    2007-06-01

    Both design and development of a high power cw HCN waveguide laser is described for multichannel FIR laser interferometer on the HL-2A divertor tokamak. The geometry parameters of stracture of the HCN laser are calculated according to scaling laws for cw 337 μm HCN waveguide laser offered by P. Belland et al. The designed value of output power of the laser that is more than 400 mW with discharge length of 5.6 m and 6.3 cm inner diameter of tube have been chosen in case of external loss of the cavity of 2%. At the same time, in order to get a laser system of stable output both of configuration and operating condition is discussed. In developed laser a hot LaB 6 cathode is employed to en- sure a stable discharge, the cavity mirrors are spaced using four invar rod of φ25 mm in diameter and an structure of adjusting machine for axially movable flat mirror in cavity has been also designed, and that it can be taken down many times without badly destroying alignment of the cavity etc.. A suit of pipes sys- tem of cw HCN laser is schemed out so that some experiments of operating parameter optimization can be done. The results of primary test of operating waveguide HCN laser are briefly showed. (authors)

  9. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  10. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers

    International Nuclear Information System (INIS)

    Belyaev, V. S.; Batishchev, P. A.; Bolshakov, V. V.; Elkin, K. S.; Karabadzhak, G. F.; Kovkov, D. V.; Matafonov, A. P.; Raykunov, G. G.; Yakhin, R. A.; Pikuz, S. A.; Skobelev, I. Yu.; Faenov, A. Ya.; Fortov, V. E.; Krainov, V. P.; Rozanov, V. B.

    2013-01-01

    The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosions and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10 18 –10 22 W/cm 2 and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.

  11. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  12. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  13. Quality and performance of laser cutting with a high power SM fiber laser

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Selchau, Jacob; Olsen, F. O.

    2013-01-01

    The introduction of high power single mode fiber lasers allows for a beam of high power and a good beam quality factor (M2 ” 1.2), compared to the multimode fiber lasers often utilised in macro laser metal cutting. This paper describes fundamental studies of macro laser metal cutting with a singl...

  14. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  15. Resonant laser power build-up in ALPS-A 'light shining through a wall' experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehret, Klaus [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Frede, Maik [Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover (Germany); Ghazaryan, Samvel [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Hildebrandt, Matthias [Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover (Germany); Knabbe, Ernst-Axel [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kracht, Dietmar [Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover (Germany); Lindner, Axel, E-mail: axel.lindner@desy.d [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); List, Jenny [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Meier, Tobias [Max-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute, and Institut fuer Gravitationsphysik, Leibniz Universitaet, Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Meyer, Niels; Notz, Dieter; Redondo, Javier; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Wiedemann, Guenter [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Willke, Benno [Max-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute, and Institut fuer Gravitationsphysik, Leibniz Universitaet, Hannover, Callinstrasse 38, D-30167 Hannover (Germany)

    2009-12-21

    The ALPS Collaboration runs a 'light shining through a wall' (LSW) experiment to search for photon oscillations into 'weakly interacting sub-eV particles' (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical resonant cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run.

  16. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  17. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  18. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  19. Allometric Scaling and Central Source Systems

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2001-01-01

    Allometric scaling relations abound in nature. Examples include the power law relating the metabolic rate of animals and plants to their masses and the power law describing the dependence of the size of the drainage basin of a river on the total amount of water contained in that river. The exponent is of the form D/D+1 , where D is the dimension of the system. We show that this scaling exponent is simply a consequence of the source distribution of the systems considered and requires no further assumptions. To demonstrate the wide range of validity of the result we present a simple experiment that shows the predicted behavior in one dimension

  20. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  1. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  2. Quantum Dot Laser for a Light Source of an Athermal Silicon Optical Interposer

    Directory of Open Access Journals (Sweden)

    Nobuaki Hatori

    2015-04-01

    Full Text Available This paper reports a hybrid integrated light source fabricated on a silicon platform using a 1.3 μm wavelength quantum dot array laser. Temperature insensitive characteristics up to 120 °C were achieved by the optimum quantum dot structure and laser structure. Light output power was obtained that was high enough to achieve an optical error-free link of a silicon optical interposer. Furthermore, we investigated a novel spot size convertor in a silicon waveguide suitable for a quantum dot laser for lower energy cost operation of the optical interposer.

  3. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    Science.gov (United States)

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  4. Optimization of reactor power by taking into consideration temperature increase in a reactor pumped 3He-Xe laser

    International Nuclear Information System (INIS)

    Cetin, Fuesun

    2009-01-01

    In nuclear pumped lasers, gas parameters are optimized in a manner such that output power is increased for constructing a high power laser. Since output power increases with the increase of energy deposited in the gas, high output power requires high pumping power. However, the high energy loading results in elevated gas temperature. Temperature increase of this magnitude can detrimentally influence the laser gain and efficiency, since it negatively impacts several important laser kinetic.processes. This fact may cause laser output to abruptly terminate before the peak of the pump pulse [1-3]. A nuclear pumped laser using a volumetric energy source through the 3 He(n, p) 3 H reaction has here been considered. It is assumed that TRIGA Mark II Reactor at Istanbul Technical University is used for nuclear pumping as the neutron source. In the previous papers, the optimal parameters for improving both output power and optical homogeneity were determined [4-5]. Spatial and temporal variations of gas temperature during pumping pulse for maximum peak power (1200 MW) were determined for various operating pressures in Ref. [6]. It was seen that gas temperature reaches up to 1000 0 K near the peak of the pumping pulse for the initial pressures of 1-4 atm. This means that laser output may terminate before the peak of the pump pulse due to overheating of laser gas. Under these conditions, a question arises about a further optimisation taking into consideration gas temperature. This question has been examined in this study. Experimental results (Batyrbekov et al, 1989) showed that temperature rise up to 650 C had no influence on Xe laser characteristics [ 7]. Therefore, It has here been assumed that the lasing will terminate when gas temperature reaches 1000 0 K for a Xe-laser with 3 He buffer gas. Under these conditions optimum reactor power is investigated by taking into consideration lasing duration also. (orig.)

  5. High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, Tommi E-mail: tommi.jokinen@vtt.fi; Kujanpaeae, Veli E-mail: veli.kujanpaa@lut.fi

    2003-09-01

    Laser welding has shown many advantages over traditional welding methods in numerous applications. The advantages are mainly based on very precise and powerful heat source of laser light, which change the phenomena of welding process when compared with traditional welding methods. According to the phenomena of the laser welding, penetration is deeper and thus welding speed is higher. Because of the precise power source and high-welding speed, the heat input to the workpiece is small and distortions are reduced. Also, the shape of laser weld is less critical for distortions than traditional welds. For welding thick sections, the usability of lasers is not so practical than with thin sheets, because with power levels of present Nd:YAG lasers depth of penetration is limited up to about 10 mm by single-pass welding. One way to overcome this limitation is to use multi-pass laser welding, in which narrow gap and filler wire is applied. By this process, thick sections can be welded with smaller heat input and then smaller distortions and the process seems to be very effective comparing 'traditional' welding methods, not only according to the narrower gap. Another way to increase penetration and fill the groove is by using the so-called hybrid process, in which laser and GMAW (gas metal arc welding) are combined. In this paper, 20-mm thick austenitic stainless steel was welded using narrow gap configuration with a multi-pass technique. Two welding procedures were used: Nd:YAG laser welding with filler wire and with addition of GMAW, the hybrid process. In the welding experiments, it was noticed that both processes are feasible for welding thicker sections with good quality and with minimal distortions. Thus, these processes should be considered when the evaluation of the welding process is done for joining vacuum vessel sectors of ITER.

  6. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    Science.gov (United States)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  7. Spectral, spatial and temporal control of high-power diode lasers through nonlinear optical feedback

    NARCIS (Netherlands)

    van Voorst, P.D.

    2008-01-01

    A high-power diode laser offers multi-Watt output power from a small and efficient device, which makes them an interesting source for numerous applications. The spatial and spectral output however, are of reduced quality which limits the applicability. This limited quality is connected to the design

  8. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    Science.gov (United States)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  9. Effect of volatile compounds on excimer laser power delivery.

    Science.gov (United States)

    Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K

    2002-01-01

    To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.

  10. Material Processing with High Power CO2-Lasers

    Science.gov (United States)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  11. Advanced laser architectures for high power eyesafe illuminators

    Science.gov (United States)

    Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2018-02-01

    Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.

  12. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  13. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... Keywords. Nd:YAG laser; fibre-optic beam delivery; laser cutting; laser welding; nuclear reactor. ... Author Affiliations. D N Sanyal1. Remote Tooling Section, Technology Development Group, Nuclear Power Corporation of India Ltd., Mumbai 400 094, India ...

  14. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    Science.gov (United States)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  15. Development of high power solid-state laser for inertial fusion energy driver

    International Nuclear Information System (INIS)

    Yoshida, K.; Yamanaka, M.; Nakatsuka, M.; Sasaki, T.; Nakai, S.

    1997-01-01

    The design study of the laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories, and industries in Japan and also with international collaborations. In the design of KOYO, the gain scaling of direct drive implosion with 0.35 μ m wavelength laser light is used. A driver of diode pumped solid state laser (DPSSL) generates 4 MJ/pulse with 12 Hz and the output pulses are switched to deliver the laser energy successively to four chambers, which operate with 3 Hz. The chamber wall is protected with thick liquid metal which flows down in a SiC woven tube. Following to the conceptual design study, the critical key issues which may affect the technical and economical feasibility of the commercial power plant KOYO have been examined. Research and development of some key technologies have been performed. As the results of the studies on KOYO, it is concluded that the technical and economical feasibility of laser fusion reactor is well in our scope to reach

  16. Surface processing by high power excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Stehle, M [SOPRA, 92 - Bois-Colombes (France)

    1995-03-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at {lambda} = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : (a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. (b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. (c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. (d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.).

  17. Surface processing by high power excimer laser

    International Nuclear Information System (INIS)

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  18. Laser accelerated protons captured and transported by a pulse power solenoid

    OpenAIRE

    Burris-Mog, T.; Harres, K.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.

    2011-01-01

    Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we prese...

  19. New generation of compact high power disk lasers

    Science.gov (United States)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  20. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  1. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  2. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  3. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  4. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    Science.gov (United States)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  5. Surface Modification Technology of ODS Alloying Treatment by using Laser Heat Source

    International Nuclear Information System (INIS)

    Kim, H. G.; Kim, I. H.; Choi, B. K.; Park, J. Y.; Koo, Y. H.

    2012-01-01

    The ODS (Oxide Dispersion Strengthed) alloys can be applied as structural materials for components in the core of a nuclear power plants since these components must have a high mechanical strength at high temperature up to 700 .deg. C. This type of alloy was generally manufactured by mechanical alloying from its source metal and Y 2 O 3 powders. The mechanical alloyed powder is subjected to the HIP (Hot Isotatic Pressing) or hot extrusion: and this product is heat treated at target temperature and time. Thus, the Y 2 O 3 particles are dispersed in the metal matrix. These manufacturing process of ODS alloy is very complex and expensive. Also, it is necessary the special techniques to obtain the uniform dispersion and volume control of Y 2 O 3 particles. Another problem is the final product forming such as tube and sheet because the intermediated-product has a high mechanical strength due to the dispersion of Y 2 O 3 particles. The laser cladding techniques was applied on the surface cladding of ceramics and inter-metallic compounds on metal base and ceramic base components to increase corrosion and wear resistance. The laser heat source can be used to the alloying the metal and ceramic materials, because thermally melting of metal and ceramic is possible. So, we are applied on ODS alloy manufacturing by using the laser heat source. The main advantages and disadvantage of this technology can be resumed as follows: · It is possible to apply to the sheet and tube shape component, directly. · Metallurgical damage such as HAZ and severe grain growth is considerably reduced. · Good control of the alloying element of the treated zone · Highly reproducible homogeneous zone · The pores and cracks are suppressed in the treated zone · Oxidation can be prevented during the process. · Good control is possible for the irregular shaped components. · The bulk material alloying is limited by the power of laser source. So, this work is studied on the ODS alloy manufacturing

  6. Optical power equalization for upstream traffic with injection-locked Fabry-Perot lasers in TDM-PON

    Science.gov (United States)

    Huang, Ting-Tsan; Sheu, Lih-Gen; Chi, Sien

    2010-10-01

    An optical power equalization of upstream traffic in time-division-multiplexed passive optical network (TDM-PON) based on injection-locked Fabry-Perot lasers has been experimentally investigated. The upstream transmitters with stable spectrum are achieved by using an external injection light source in the optical line terminal (OLT). The different upstream powers can be equalized by injection locking a Fabry-Perot laser diode (FP-LD) biased below threshold current in OLT. The dynamic upstream power range from - 8.5 to - 19.5 db m is reduced to a 1.6 dB maximal power variation, when the uplink signal is directly modulated at 1.25 Gb/s.

  7. Engineering design of the interaction waveguide for high-power accelerator-driven microwave free-electron lasers

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Clay, H.W.; Stallard, B.W.; Throop, A.L.; Listvinsky, G.; Makowski, M.A.

    1989-01-01

    Linear induction accelerators (LIAs) operating at beam energies of a few million electron volts and currents of a few thousand amperes are suitable drivers for free-electron lasers (FELs). Such lasers are capable of producing gigawatts of peak power and megawatts of average power at microwave frequencies. Such devices are being studied as possible power sources for future high-gradient accelerators and are being constructed for plasma heating applications. At high power levels, the engineering design of the interaction waveguide presents a challenge. This paper discusses several concerns, including electrical breakdown and metal fatigue limits, choice of material, and choice of operating propagation mode. 13 refs., 3 figs

  8. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  9. High-powered CO2 -lasers and noise control

    Science.gov (United States)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  10. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings

    Science.gov (United States)

    Heck, Maximilian; Bock, Victor; Krämer, Ria G.; Richter, Daniel; Goebel, Thorsten A.; Matzdorf, Christian; Liem, Andreas; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2018-02-01

    The average output power of fiber lasers have been scaled deep into the kW regime within the recent years. However a further scaling is limited due to nonlinear effects like stimulated Raman scattering (SRS). Using the special characteristics of femtosecond laser pulse written transmission fiber gratings, it is possible to realize a notch filter that mitigates efficiently this negative effect by coupling the Raman wavelength from the core into the cladding of the fiber. To the best of our knowledge, we realized for the first time highly efficient gratings in large mode area (LMA) fibers with cladding diameters up to 400 μm. The resonances show strong attenuation at design wavelength and simultaneously low out of band losses. A high power fiber amplifier with an implemented passive fiber grating is shown and its performance is carefully investigated.

  11. Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, V. M., E-mail: borisov@triniti.ru; Trofimov, V. N.; Sapozhkov, A. Yu.; Kuzmenko, V. A.; Mikhaylov, V. B.; Cherkovets, V. Ye.; Yakushkin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Yakushin, V. L.; Dzhumayev, P. S. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature (T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al{sub 2}O{sub 3}, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppression of corrosion in liquid lead to the temperature of 720°C are shown.

  12. Creation and investigation of powerful EUV sources (λ ∼ 13.5 nm)

    International Nuclear Information System (INIS)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-01-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ∼4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  13. Creation and investigation of powerful EUV sources (λ ≈ 13.5 nm)

    Science.gov (United States)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-03-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ˜4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  14. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    Science.gov (United States)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  15. Optical power calibrator based on a stabilized green He-Ne laser and a cryogenic absolute radiometer

    International Nuclear Information System (INIS)

    Varpula, T.; Seppa, H.; Saari, J.M.

    1989-01-01

    This paper describes an optical power calibrator whose overall calibration uncertainty is less than 10 -4 for an optical power of 0.13 mW. The laser light source of the system operates at a wavelength of 543.5 nm, being close to the wavelength at which the candela is defined, 555 nm. A stable optical power is achieved by stabilizing the intensity and the frequency of a green He-Ne laser. The optical power is detected by a cryogenic absolute radiometer based on the principle of electrical substitution radiometry. It can be employed to measure optical power up to 0.5 mW in the visible and near infrared region

  16. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  17. Large scale integration of intermittent renewable energy sources in the Greek power sector

    International Nuclear Information System (INIS)

    Voumvoulakis, Emmanouil; Asimakopoulou, Georgia; Danchev, Svetoslav; Maniatis, George; Tsakanikas, Aggelos

    2012-01-01

    As a member of the European Union, Greece has committed to achieve ambitious targets for the penetration of renewable energy sources (RES) in gross electricity consumption by 2020. Large scale integration of RES requires a suitable mixture of compatible generation units, in order to deal with the intermittency of wind velocity and solar irradiation. The scope of this paper is to examine the impact of large scale integration of intermittent energy sources, required to meet the 2020 RES target, on the generation expansion plan, the fuel mix and the spinning reserve requirements of the Greek electricity system. We perform hourly simulation of the intermittent RES generation to estimate residual load curves on a monthly basis, which are then inputted in a WASP-IV model of the Greek power system. We find that the decarbonisation effort, with the rapid entry of RES and the abolishment of the grandfathering of CO 2 allowances, will radically transform the Greek electricity sector over the next 10 years, which has wide-reaching policy implications. - Highlights: ► Greece needs 8.8 to 9.3 GW additional RES installations by 2020. ► RES capacity credit varies between 12.2% and 15.3%, depending on interconnections. ► Without institutional changes, the reserve requirements will be more than double. ► New CCGT installed capacity will probably exceed the cost-efficient level. ► Competitive pressures should be introduced in segments other than day-ahead market.

  18. Investigation toward laser driven IFE power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.

    2001-01-01

    Inertial fusion energy (IFE) is becoming feasible due to the increasing understanding of implosion physics. Reactor technology issues have begun to be developed. Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues that affect the feasibility of power plant have been proceeded taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. It is concluded that the technical feasibility of IFE power plant seems to be reasonably high. Coordination and collaboration scheme of reactor technology experts in Japan on Laser Driven IFE Power Plant is being proceeded. (author)

  19. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  20. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  1. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH

    2010-10-01

    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  2. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  3. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  4. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    Science.gov (United States)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  5. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  6. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  7. Study into the applicabilities of lasers for the dismantling of decommissioned nuclear power plant

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Vinke, T.; Kinzel, A.; Mack, N.; Kuboschek, M.; Grobe, K.

    1989-01-01

    The project was intended to screen current laser technology for potential applications of laser beams in the dismantling of decommissioned nuclear power plant. As with CO 2 , Nd-YAG, or excimer lasers, developments clearly proceed towards higher output power. The market survey shows the CO 2 -laser to be the most efficient at present, with a great number of laser units available on the market in the range up to 5 kW, and some in the range up to 15 kW. The CO 2 -laser has exclusively been used so far for cutting work in steel plates thicker than 10 mm. Characteristic conditions of application include the high output power of more than 2 kW, long beam lengths, oxygen supply at strongly increased working pressure, sometimes from external sources. The maximum cutting work achieved in the laboratory was 110 mm in structural steel, 90 mm in austenitic steel, and 160 mm in concrete, all under conditions of easy access to the material. It remains to be examined whether steel cutting work at constrained positions will allow separation of wall thicknesses of more than 10 mm. Laser beam cutting under water is feasible in principle but has not been much studied yet. There also are only few sampling results of measurements of dust and aerosol quantities resulting from laser beam cutting work. (orig.) [de

  8. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    Science.gov (United States)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  9. Efficient 1.6 Micron Laser Source for Methane DIAL

    Science.gov (United States)

    Shuman, Timothy; Burnham, Ralph; Nehrir, Amin R.; Ismail, Syed; Hair, Johnathan W.

    2013-01-01

    Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 µm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of 95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.

  10. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  11. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  12. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  13. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  14. Benefits of low-power lasers on oral soft tissue

    Science.gov (United States)

    Eduardo, Carlos d. P.; Cecchini, Silvia C. M.; Cecchini, Renata C.

    1996-04-01

    The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.

  15. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  16. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  17. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  18. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  19. Development of high-power dye laser chain

    Science.gov (United States)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  20. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  1. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  2. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  3. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  4. Effect of Low-power Laser on Treatment of Orofacial Pain

    Directory of Open Access Journals (Sweden)

    Hamid Reza Khalighi

    2010-09-01

    Full Text Available Low-power lasers are a group of lasers with a power less than 250 mW and unlike high-power lasers they have no effect on tissue temperature; they produce light-dependent chemical reactions in tissues. These lasers have analgesic features with their ability to trigger reactions that reduce pain and inflammatory mediators. Low-power lasers can also be used instead of needles in acupuncture to decrease pain. Due to these features they have been used in the treatment of orofacial pain, including tooth hypersensitivity, post-operative flare-ups, mucositis, facial myalgia, temporomandibular joint disorders and neuralgia. In this article we review the effects of low-power lasers and their success rate in different studies. As the name implies (LASER: Light Amplification by the Stimulated Emission of Radiation, laser amplifies light by stimulated and excited radiation; in other words, it is amplification of excited light emission. Such radiation usually has some characteristic features, including mono-chromaticity, coherency, high intensity and polarity. There are various classifications for lasers based on their active material (solid, fluid and gas, wavelength, emission type and power.

  5. Scaling studies of solar pumped lasers

    Science.gov (United States)

    Christiansen, W. H.; Chang, J.

    1985-01-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  6. Design of laser-aided diagnostics for the negative hydrogen ion source SPIDER

    International Nuclear Information System (INIS)

    Pasqualotto, R

    2012-01-01

    ITER nuclear fusion experiment requires additional heating via neutral beams by means of two injectors, delivering 16.5 MW each, up to one hour. This power level results from the neutralization of negative deuterium ions generated by an RF source and accelerated to 1 MeV. Such specifications have never been simultaneously achieved so far and therefore a test facility is being constructed at Consorzio RFX, to demonstrate the feasibility of a prototype neutral beam injector. The facility will host two experimental devices: SPIDER, a 100 kV negative hydrogen/deuterium RF source, full size prototype of the ITER source, and MITICA, a prototype of the full ITER injector. SPIDER will be devoted to optimize the extracted negative ion current density and its spatial uniformity and to minimize the co-extracted electron current. Negative hydrogen is mainly produced by conversion of hydrogen particles at the cesium coated surface of the plasma grid. The interplay of these two species is fundamental to understand and optimize the source performance. Two laser-aided diagnostics play an important role in measuring the negative hydrogen and cesium density: cavity ring down spectroscopy and laser absorption spectroscopy. Cavity ring down spectroscopy will use the photo-detachment process to measure the absolute line-of-sight integrated negative ion density in the extraction region of the source. Laser absorption spectroscopy will be employed to measure the line integrated neutral cesium density, allowing to study the cesium distribution in the source volume, during both the plasma and the vacuum phases. In this paper, the design of the laser-aided diagnostic systems on SPIDER is presented, supported by a review of results obtained in other operating experiments.

  7. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  8. Cutting and drilling studies using high power visible lasers

    International Nuclear Information System (INIS)

    Kautz, D.D.; Dragon, E.P.; Werve, M.E.; Hargrove, R.S.; Warner, B.E.

    1993-01-01

    High power and radiance laser technologies developed at Lawrence Livermore National Laboratory such as copper-vapor and dye lasers show great promise for material processing tasks. Evaluation of models suggests significant increases in welding, cutting, and drilling capabilities, as well as applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper lasers currently operate at 1.8 kW output at approximately three times the diffraction limit and achieve mean time between failures of more than 1,000 hours. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratios (> 60:1) and features with micron scale (5-50 μm) sizes. The paper gives a description of the equipment; discusses cutting theory; and gives experimental results of cutting and drilling studies on Ti-6Al-4V and 304 stainless steel

  9. Pulsed power magnet technology for laser particle acceleration and laser plasma physics - a survey of developments at Helmholtz-Zentrum Dresden-Rossendorf

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Joost, Martin [Helmholtz-Zentrum Dresden-Rossendorf (Germany); TU Dresden (Germany); Burris-Mog, Trevor; Herrmannsdoerfer, Thomas; Kraft, Stephan; Masood, Umar; Schlenvoigt, Hans-Peter; Sobiella, Manfred; Wustmann, Bernd; Zherlitsyn, Sergei; Cowan, Thomas; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2013-07-01

    Since the mid-1950s, pulsed high-field magnets have become a common, versatile research tool with application mostly in solid state physics and material research. Recently developed pulsed power magnet technology, specifically designed to meet the demands of laser acceleration and laser plasma experiments, open up new research opportunities: We present a pulsed air core solenoid (up to 20 T) for effective collection and focusing of laser accelerated particles. It could function as a crucial part of a compact, laser-based ion source (pursued by the LIGHT collaboration) or of beam guidance systems. Furthermore, the poster shows a split pair coil, utterly compact and with optical access in between the coil pairs and on axis, to study laser-driven plasma expansion under high magnetic fields (30 T). To power such devices, portable capacitor-based pulse generators have been developed at Helmholtz-Zentrum Dresden-Rossendorf. We present first results of the functional testing of our third-generation pulse generator. Looking forward, we outline a concept for a medical gantry based on pulsed high field beam optics.

  10. Low power laser in Odonto-stomathology

    International Nuclear Information System (INIS)

    Valiente Zaldivar, Carolina

    2009-01-01

    The use of low power laser technology in our country, and mainly in Odonto-stomathology, have gad a constant evolution and development since the 80's, being significant the social repercution between professionals and patients, achieving and alternative of treatment, which is non painful, and the results, either analgesic, anti-inflammatory, and stimulating of the tissue regeneration. This work intends to show the therapeutic procedure, and the different clinical entities, treated with Cuban instruments, that contains red or infrared diode lasers. The experience, during more than 20 years of the use of this kind of low power lasers, with different radiation techniques, includes: laser therapy or their combination with acupuncture points, so-called Laser puncture, which makes this technology an alternative of treatment for several clinical entities in correspondence with alterations of the tissues of the tooth, the mucose, neuronal alterations, and so on, procedures that are generalized in more that 60 services of our country. (Author)

  11. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  12. Temporal scaling law and intrinsic characteristic of laser induced damage on the dielectric coating

    Science.gov (United States)

    Zhou, Li; Jiang, Youen; Wang, Chao; Wei, Hui; Zhang, Peng; Fan, Wei; Li, Xuechun

    2018-01-01

    High power laser is essential for optical manipulation and fabrication. When the laser travels through optics and to the target finally, irreversible damage on the dielectric coating is always accompanied without knowing the law and principle of laser induced damage. Here, an experimental study of laser induced damage threshold (LIDT) Fth of the dielectric coating under different pulse duration t is implemented. We observe that the temporal scaling law of square pulse for high-reflectivity (HR) coating and anti-reflectivity (AR) coating are Fth = 9.53t0.47 and Fth = 6.43t0.28 at 1064 nm, respectively. Moreover, the intrinsic LIDT of HR coating is 62.7 J/cm2 where the coating is just 100% damaged by gradually increasing the fluence densities of a 5ns-duration pulse, which is much higher than the actual LIDT of 18.6 J/cm2. Thus, a more robust and reliable high power laser system will be a reality, even working at very high fluence, if measures are taken to improve the actual LIDT to a considerable level near the intrinsic value.

  13. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  14. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection.

    Science.gov (United States)

    Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A

    2008-06-23

    In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

  15. Evaluation of the performance of small diode pumped UV solid state (DPSS) Nd:YAG lasers as new radiation sources for atmospheric pressure laser ionization mass spectrometry (APLI-MS).

    Science.gov (United States)

    Kersten, Hendrik; Lorenz, Matthias; Brockmann, Klaus J; Benter, Thorsten

    2011-06-01

    The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.5 cm(2), 3 MW/cm(2)). The DPSS laser, operating at 266 nm, provides higher power densities, however, on a two orders of magnitude smaller illuminated area (60 μJ/pulse, 1 ns pulse duration, beam waist area 2 × 10(-3) cm(2), 30 MW/cm(2)). In a common LC-APLI MS setup with direct infusion of a 10 nM pyrene solution, the DPSS laser yields a significantly smaller ion signal (0.9%) and signal to noise ratio (1.4%) compared with the excimer laser. With respect to the determined low detection limits (LODs) for PAHs of 0.1 fmol using an excimer laser, LODs in DPSS laser LC-APLI MS in the low pmol regime are expected. The advantages of the DPSS laser with respect to applicability (size, cost, simplicity) may render this light source the preferred one for APLI applications not focusing on ultimately high sensitivities. Furthermore, the impact of adjustable ion source parameters on the performance of both laser systems is discussed in terms of the spatial sensitivity distribution described by the distribution of ion acceptance (DIA) measurements. Perspectives concerning the impact on future APLI-MS applications are given.

  16. Power and energy scaling of a diode-end-pumped Nd:YLF laser through gain optimization

    CSIR Research Space (South Africa)

    Bollig, C

    2010-06-01

    Full Text Available An end-pumped Nd:YLF laser was demonstrated, which delivered 60.3 W continuous-wave and more than 52 W Q-switched average power for all repetition rates from 5 to 30 kHz. To achieve this, an analytical solution to estimate and optimize...

  17. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  18. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  19. Design of laser source for electricity generation

    International Nuclear Information System (INIS)

    Nasrullah, K.; Mariun, N.; Yeak, J.

    2000-01-01

    New sources of energy are being investigated to meet socioeconomic needs and other trivialities. Systems employing nuclear, thermal, hydro, solar, volcano, tidal and wind power generation techniques already exist. This work describes our attempt to utilize the off-planet charge to store in super electrolytic batteries or super capacitors. The electrostatic charge on clouds can be shifted to earth through a conductive air plasma channel created by appropriate high power Q-switched and mode-locked laser. The pulsed laser may create a conducting path consisting of ionised air particles from earth to some upper atmosphere. An antenna connected to anode of the super cell or positive terminal of the super capacitor will accumulate and store this charge for future use. The cathode of the battery or negative terminal of the super capacitor may be connected to earth to complete the circuit. A large number of such series and parallel units constitute a super battery or super capacitor bank system that can be connected to the national grid through DC to AC converters (DAC) and step-up transformers. According to published data, the lightning strokes may consist of 10 - 40 strokes of 2 - 80 pts duration separated in time by 6 - 530 ms intervals. The total time elapsed in lightning strike may last as long as 1 second. Due to tropical dependence, further detailed work is required to be done on lightning regarding its temporal and spatial profiles to develop a reasonable model to explore transient charging characteristics of storage devices. Experimental work in respect of laser-inducted charge-shifting, transient charging capabilities of super storage batteries or super capacitors is underway. (Author)

  20. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    International Nuclear Information System (INIS)

    Montgomery, Edward E. IV

    2010-01-01

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  1. A high-peak-power passively Q-switched composite variable-cut vanadate laser

    International Nuclear Information System (INIS)

    Sirotkin, A A

    2014-01-01

    We present laser sources based on a novel method of controlling spectral parameters in diode-pumped vanadate lasers. Angular dependences of the luminescence intensity of Stark transitions at the 4F3/2‒4I11/2 transition in vanadate crystals are investigated. The operation of diode-pumped passively Q-switched composite variable-cut (θ = var, φ = 0) YVO 4 –Nd 3+  : YVO 4 lasers with Cr 4+  : YAG saturable absorber is demonstrated (the narrowest pulse of 2 ns with the highest peak power of 24.3 kW). In the experiment, an efficient self-Raman laser was realized, based on the multifunctional variable-cut (θ = 25°, φ = 0) YVO 4 –Nd 3+  : YVO 4 laser crystal with the passive Q-switched. (letters)

  2. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  3. Development of copper bromide laser master oscillator power

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at 110 W average power is reported. The spectral distribution of power at green (510.6 nm) and yellow (578.2 nm) components in the output of a copper bromide laser is studied as a function of ...

  4. High-Power Lasers for Science and Society

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haefner, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-05

    Since the first demonstration of the laser in 1960 by Theodore Maiman at Hughes Research Laboratories, the principal defining characteristic of lasers has been their ability to focus unprecedented powers of light in space, time, and frequency. High-power lasers have, over the ensuing five and a half decades, illuminated entirely new fields of scientific endeavor as well as made a profound impact on society. While the United States pioneered lasers and their early applications, we have been eclipsed in the past decade by highly effective national and international networks in both Europe and Asia, which have effectively focused their energies, efforts, and resources to achieve greater scientific and societal impact. This white paper calls for strategic investment which, by striking an appropriate balance between distributing our precious national funds and establishing centers of excellence, will ensure a broad pipeline of people and transformative ideas connecting our world-leading universities, defining flagship facilities stewarded by our national laboratories, and driving innovation across industry, to fully exploit the potential of high-power lasers.

  5. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  6. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  7. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  8. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  9. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Science.gov (United States)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  10. Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber

    Science.gov (United States)

    Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.

    2018-02-01

    In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.

  11. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  12. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  13. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  14. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  15. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  16. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors will describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They will also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  17. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  18. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  19. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  20. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  1. Development of the power control system for semiconductor lasers

    International Nuclear Information System (INIS)

    Kim, Kwang Suk; Kim, Cheol Jung

    1997-12-01

    For the first year plan of this program, we developed the power control system for semiconductor lasers. We applied the high-current switching mode techniques to fabricating a power control system. Then, we investigated the direct side pumping techniques with GaA1As diode laser bars to laser crystal without pumping optics. We obtained 0.5W average output power from this DPSSL. (author). 54 refs., 3 tabs., 18 figs

  2. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    Science.gov (United States)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  3. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  4. High-power free-electron lasers-technology and future applications

    Science.gov (United States)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  5. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines

    Science.gov (United States)

    Rocha, M. V.; Sthel, M. S.; Silva, M. G.; Paiva, L. B.; Pinheiro, F. W.; Miklòs, A.; Vargas, H.

    2012-03-01

    In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were employed. A detection limit of 45 ppbv in nitrogen was achieved as well as a great selectivity. The same methodology was also tested in the detection of methane issued from natural gas powered vehicles (VNG) in Brazil, which demonstrates the excellent potential of this arrangement for greenhouse gas detection emitted from real sources.

  6. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  7. Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application

    Science.gov (United States)

    Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico

    2006-09-01

    Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.

  8. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  9. High power laser downhole cutting tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  10. Energy loading effects in the scaling of atomic xenon lasers

    International Nuclear Information System (INIS)

    Ohwa, M.; Kushner, M.J.

    1990-01-01

    The intrinsic power efficiency of the atomic xenon (5d → 6p) infrared (1.73--3.65 μm) laser is sensitive to the rate of pumping due to electron collision mixing of the laser levels. Long duration pumping at moderate power deposition may therefore result in higher energy efficiencies than pumping at higher powers. In this paper the authors examine the consequences of high energy deposition (100's J/1 atm) during long pumping pulses (100's μs) on the intrinsic power and energy efficiency and optimum power deposition of the atomic xenon laser. The dominant effect of high energy loading, gas heating, causes an increase in the electron density and therefore an increase in the electron collision mixing of the laser levels. The optimum power deposition for a given gas density therefore shifts to lower values with increasing gas temperature. For sufficiently long pumping pulses, nonuniform gas heating results in convection and rarification of highly pumped regions. The optimum power deposition therefore shifts to even lower values as the length of the pumping pulse increases. As a result, laser efficiency depends on the spatial distribution of power deposition as well as its magnitude

  11. A review of biomedical multiphoton microscopy and its laser sources

    International Nuclear Information System (INIS)

    Lefort, Claire

    2017-01-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. (topical review)

  12. A review of biomedical multiphoton microscopy and its laser sources

    Science.gov (United States)

    Lefort, Claire

    2017-10-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. Dedicated to Martin.

  13. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  14. Combining infrared- and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Murray, A.S.

    2003-01-01

    A system designed for measurement of the optically stimulated luminescence (OSL) from individual sand-sized mineral grains has been constructed. Previously, this system was equipped only with a green laser emitting at 532 run, but now an infrared (IR) laser at 830 run has been added. It is now...... possible to interchangeably use the two laser sources for optical stimulation. This is especially valuable for the measurement of feldspars. The power density using the IR laser at the grain is similar to500 W cm(-2), and stimulation for 1 s reduces the OSL signal to near background level. Initial results...

  15. Laser-driven polarized sources of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Green, M.C.; Kowalczyk, R.S.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin exchange optical pumping is described. The advantages of this method over conventional polarized sources for internal target experiments are presented. Technological difficulties which prevent ideal source operation are outlined along with proposed solutions. At present, the laser-driven polarized hydrogen source delivers 8 /times/ 10 16 atoms/s with a polarization (P/sub z/) of 24%. 9 refs., 2 figs

  16. Laser accelerated protons captured and transported by a pulse power solenoid

    Directory of Open Access Journals (Sweden)

    T. Burris-Mog

    2011-12-01

    Full Text Available Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.

  17. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  18. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  19. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  20. Development of small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Kim, D.; Suckewer, S.; Princeton Univ., NJ; Skinner, C.H.; Voorhees, D.

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183 angstrom has been obtained with relatively low pump laser energies (as low as 6J) in a ''portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs

  1. Department of Defense high power laser program guidance

    Science.gov (United States)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  2. Optical engineering for high power laser applications

    International Nuclear Information System (INIS)

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  3. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  4. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  5. Unattended power sources for remote, harsh environments

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1994-01-01

    Forest fires that have endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) has prompted the assessment of power generating systems as substitutes for RTGs in small scale (10--120 watt) applications. A team of scientists and engineers of the US Air Forces' Wright Laboratory conducted an assessment of electrical power technologies for use by the Air Force in remote, harsh environments. The surprisingly high logistic costs of operating fossil fuel generators resulted in the extension of the assessment to non-RTG sites. The candidate power sources must operate unattended for long periods at a high level of operations reliability. Selection of the optimum power generation technology is complicated and heavily driven by the severe operating environment compounded by the remoteness of the location. It is these site-related characteristics, more than any other, that drive the selection of a safe and economical power source for Arctic applications. A number of proven power generation technologies were evaluated. The assessment concluded that continued use of the RTGs is clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to access locations

  6. JAERI femtosecond pulsed and tens-kilowatts average-powered free-electron lasers and their applications of large-scaled non-thermal manufacturing in nuclear energy industry

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2004-01-01

    We first reported the novel method that femto-second (fs) lasers of the low average power Ti: Sapphire one, the JAERI high average power free-electron laser, excimer laser, fiber laser and so on could peel off and remove both stress corrosion cracking (SCC) origins of the cold-worked (CW) and very crack-susceptible material, and residual tensile stress in the hardened surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the last and third origin of corrosive environment. Because it has been successfully demonstrated that the fs lasers could clearly remove the two SCC origins, we could resultantly prevent the cold-worked SCC in many field near future. The SCC is a well known phenomenon in modern material sciences, technologies, and industries, and defined as an insidious failure mechanism that is caused by the corrosive environment, and the crack-susceptible material and the surface residual tensile stress simultaneously. There are a large number of famous SCC examples for damaging stainless steels, aluminum alloys, brass and other alloy metals in many different cases. In many boiling light-water reactor (BWR) nuclear power plants and a few pressurized light water reactor (PWR) ones in Japan and the world up to now, a large number of the deep and wide cracks have been recently found in the reactor-grade low-carbon stainless steel components of core shroud, control-blade handle, re-circulating pipes, sheath and other internals in the reactor vessel under very low or no applied stresses. These cracks have been thought to be initiated from the crack-susceptible like very small-sized cracks, pinholes, concentrated dislocation defects and so on in the hardened surface, which were originated from cold-work machining processes in reactor manufacturing factories, and to be insidiously penetrated widely into the deep inside under the residual tensile stress and corrosive environment, and under no

  7. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  8. Laser chemical vapor deposition of millimeter scale three-dimensional shapes

    Science.gov (United States)

    Shaarawi, Mohammed Saad

    2001-07-01

    Laser chemical vapor deposition (LCVD) has been successfully developed as a technique to synthesize millimeter-scale components directly from the gas phase. Material deposition occurs when heat generated by the interaction of a laser beam with a substrate thermally decomposes the gas precursor. Selective illumination or scanning the laser beam over portions of a substrate forms the single thin layer of material that is the building block of this process. Sequential scanning of the laser in a pre-defined pattern on the substrate and subsequent deposit causes the layers to accumulate forming the three-dimensional shape. The primary challenge encountered in LCVD shape forming is the synthesis of uniform layers. Three deposition techniques are studied to address this problem. The most successful technique, Active Surface Deposition, is based on the premise that the most uniform deposits are created by measuring the deposition surface topology and actively varying the deposition rate in response to features at the deposition surface. Defects observed in the other techniques were significantly reduced or completely eliminated using Active Surface Deposition. The second technique, Constant Temperature Deposition, maintains deposit uniformity through the use of closed-loop modulation of the laser power to sustain a constant surface temperature during deposition. The technique was successful in depositing high quality graphite tubes >2 mm tall from an acetylene precursor and partially successful in depositing SiC + C composite tubes from tetramethylsilane (TMS). The final technique, Constant Power Deposition, is based on the premise that maintaining a uniform power output throughout deposition would result in the formation of uniform layers. Constant Power Deposition failed to form coherent shapes. Additionally, LCVD is studied using a combination of analytic and numerical models to gain insight into the deposition process. Thermodynamic modeling is used to predict the

  9. Compact laser-diode-based femtosecond sources

    International Nuclear Information System (INIS)

    Brown, C T A; Cataluna, M A; Lagatsky, A A; Rafailov, E U; Agate, M B; Leburn, C G; Sibbett, W

    2004-01-01

    This paper describes the development of compact femtosecond laser systems that are capable of being directly pumped by laser diodes or are based directly on laser diodes. The paper demonstrates the latest results in a highly efficient vibronic based gain medium and a diode-pumped Yb:KYW laser is reported that has a wall plug efficiency >14%. A Cr 4+ :YAG oscillator is described that generates transform-limited pulses of 81 fs duration at a pulse repetition frequency of >4 GHz. The development of Cr 3+ :LiSAF lasers that can be operated using power supplies based on batteries is briefly discussed. We also present a summary of work being carried out on the generation of fs-pulses from laser diodes and discuss the important issues in this area. Finally, we outline results obtained on the generation of pulses as short as 550 fs directly from a two-section quantum dot laser without any external pulse compression

  10. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  11. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  12. CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating.

    Science.gov (United States)

    Zhang, Jun; Peng, Hangyu; Fu, Xihong; Liu, Yun; Qin, Li; Miao, Guoqing; Wang, Lijun

    2013-02-11

    An external cavity structure based on the -1st transmission grating is introduced to spectral beam combining a 970 nm diode laser bar. A CW output power of 50.8 W, an electro-optical conversion efficiency of 45%, a spectral beam combining efficiency of 90.2% and a holistic M(2) value of 10.9 are achieved. This shows a way for a diode laser source with several KW power and diffraction-limited beam quality at the same time.

  13. Power Play, Laser Style

    Science.gov (United States)

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.

  14. Proton beam transport experiments with pulsed high-field magnets at the Dresden laser acceleration source Draco

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Kraft, Stephan; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2016-07-01

    Compact laser-driven ion accelerators are a potential alternative to large and expensive conventional accelerators. High-power short-pulse lasers, impinging on e.g. thin metal foils, enable multi-MeV ion acceleration on μm length and fs to ps time scale. The generated ion bunches (typically protons) show unique beam properties, like ultra-high pulse dose. Nevertheless, laser accelerators still require substantial development in reliable beam generation and transport. Recently developed pulsed magnets meet the demands of laser acceleration and open up new research opportunities: We present a pulsed solenoid for effective collection and focusing of laser-accelerated protons that acts as link between fundamental research and application. The solenoid is powered by a capacitor-based pulse generator and can reach a maximum magnetic field of 20 T. It was installed in the target chamber of the Draco laser at HZDR. The transported beam was detected by means of radiochromic film, scintillator and Thomson parabola spectrometer. We present the characterization of the solenoid with regard to future application in radiobiological irradiation studies. Furthermore, a detailed comparison to previous experiments with a similar magnet at the PHELIX laser at GSI, Darmstadt is provided.

  15. Control system for high power laser drilling workover and completion unit

    Science.gov (United States)

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  16. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  17. Novel short-pulse laser diode source for high-resolution 3D flash lidar

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-06-01

    Imaging based on laser illumination is present in various fields of applications such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified the recent years. Among the various technologies currently studied, automotive lidars are a fast-growing one due to their accuracy to detect a wide range of objects at distances up to a few hundreds of meters in various weather conditions. First commercialized devices for ADAS were laser scanners. Since then, new architectures have recently appeared such as solid-state lidar and flash lidar that offer a higher compactness, robustness and a cost reduction. Flash lidars are based on time-of-flight measurements, with the particularity that they do not require beam scanners because only one short laser pulse with a large divergence is used to enlighten the whole scene. Depth of encountered objects can then be recovered from measurement of echoed light at once, hence enabling real-time 3D mapping of the environment. This paper will bring into the picture a cutting edge laser diode source that can deliver millijoule pulses as short as 12 ns, which makes them highly suitable for integration in flash lidars. They provide a 100-kW peak power highly divergent beam in a footprint of 4x5 cm2 (including both the laser diode and driver) and with a 30-% electrical-to-optical efficiency, making them suitable for integration in environments in which compactness and power consumption are a priority. Their emission in the range of 800-1000 nm is considered to be eye safe when taking into account the high divergence of the output beam. An overview of architecture of these state-of-the-art pulsed laser diode sources will be given together with some solutions for their integration in 3D mapping systems. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.

  18. Research with high-power short-wavelength lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-01-01

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1μm) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm 3 and a pressure of 10 10 atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se +24 ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y +29 was also demonstrated

  19. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  20. Efficient power combiner for THz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131-0001 (United States)

    2016-08-15

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  1. Efficient power combiner for THz radiation

    Directory of Open Access Journals (Sweden)

    Hamide Seidfaraji

    2016-08-01

    Full Text Available Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC-made power combiner were achieved in simulations. Also, it is shown that the TE01 output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  2. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  3. Teacher Views on School Administrators' Organizational Power Sources and Their Change Management Behaviours

    Science.gov (United States)

    Argon, Türkan; Dilekçi, Ümit

    2016-01-01

    This study aimed to determine school administrators' organizational power sources and change management behaviours based on Bolu central district primary and secondary school teachers' views. The study conducted with relational screening model reached 286 teachers. School Administrators' Organizational Power Sources Scale and Change Management…

  4. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    Science.gov (United States)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  5. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  6. Measurement and simulation of laser power noise in GEO 600

    International Nuclear Information System (INIS)

    Smith, J R; Degallaix, J; Freise, A; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B

    2008-01-01

    This paper describes measurements and simulations related to power fluctuations of the laser light in the GEO 600 laser-interferometric gravitational wave detector. Measurements of the relative fluctuations of the light power at three different ports of the main interferometer are presented. In addition, measurements and simulations of the coupling transfer functions from power fluctuations at the input laser to these ports are shown. The transfer function from the input laser to the output port of the interferometer is found to be non-trivial. Despite this, the numerical simulation produces an excellent match to it and gives insight to the mechanisms leading to the complicated shape. Furthermore, the coupling transfer functions of power fluctuations to the main (heterodyne) detector outputs are measured and simulated. These are used to evaluate the level with which laser power fluctuations contribute to the overall noise level of the instrument

  7. Power source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1998-09-29

    The present invention concerns a power plant, in which power is supplied from an ordinary system battery to an ordinary DC bus system when all of the AC power sources should be lost and a generator is driven by a steam turbine. A generator is connected with an ordinary system battery charger by way of a channel. If all of power sources should be lost, the ordinary system battery charger is driven by using emergency steam turbine generator facilities, and reactor steams are supplied thereby enabling to supply power to the ordinary system DC bus system for a long period of time. (N.H.)

  8. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  9. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  10. Improving the Selectivity of the ISOLDE Resonance Ionization Laser Ion Source and In-Source Laser Spectroscopy of Polonium

    CERN Document Server

    Fink, Daniel Andreas; Jochim, Selim

    Exotic atomic nuclei far away from stability are fascinating objects to be studied in many scientic elds such as atomic-, nuclear-, and astrophysics. Since these are often short-lived isotopes, it is necessary to couple their production with immediate extraction and delivery to an experiment. This is the purpose of the on-line isotope separator facility, ISOLDE, at CERN. An essential aspect of this laboratory is the Resonance Ionization Laser Ion Source (RILIS) because it provides a fast and highly selective means of ionizing the reaction products. This technique is also a sensitive laser-spectroscopy tool for the development and improvement of electron excitation schemes for the resonant laser photoionization and the study of the nuclear structure or fundamental atomic physics. Each of these aspects of the RILIS applications are subjects of this thesis work: a new device for the suppression of unwanted surface ionized contaminants in RILIS ion beams, known as the Laser Ion Source and Trap (LIST), was impleme...

  11. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    Science.gov (United States)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.

  12. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  13. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  14. Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.

  15. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  16. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  17. Use of high-power diode lasers for hardening and thermal conduction welding of metals

    Science.gov (United States)

    Klocke, Fritz; Demmer, Axel; Zaboklicki, A.

    1997-08-01

    CO2 and Nd:YAG high power lasers have become established as machining tools in industrial manufacturing over the last few years. The most important advantages compared to conventional processing techniques lie in the absence of forces introduced by the laser into the workpiece and in the simple arid highly accurate control in terms ofpositioning and timing making the laser a universally applicable, wear-free and extremely flexible tool /1,2/. The laser can be utilised costeffectively in numerous manufacturing processes but there are also further applications for the laser which produce excellent results from a technical point of view, but are not justified in terms of cost. The extensive use of lasers, particularly in small companies and workshops, is hindered by two main reasons: the complexity and size ofthe laser source and plant and the high investment costs /3/. A new generation of lasers, the high power diode lasers (HDL), combines high performance with a compact design, making the laser a cheap and easy to use tool with many applications /3,4,5,6/. In the diode laser, the laser beam is generated by a microelectronic diode which transforms electrical energy directly into laser energy. Diode lasers with low power outputs have, for some time, been making their mark in our everyday lives: they are used in CD players, laser printers and scanners at cash tills. Modern telecommunications would be impossible without these lasers which enable information to be transmitted in the form oflight impulses through optical fibres. They can also be found in compact precision measurement instrumentation - range fmders, interferometers and pollutant analysis devices /3,6/. In the field of material processing, the first applications ofthe laser, such as for soldering, inscribing, surface hardening and plastic or heat conduction welding, will exceed the limits ofthe relatively low performance output currently available. The diode laser has a shorter wavelength than the CO2 and

  18. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    International Nuclear Information System (INIS)

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10 12 watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10 9 watts) and can be focussed to intensities of /approximately/10 16 W/cm 2 . Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs

  19. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  20. Trends in high power laser applications in civil engineering

    Science.gov (United States)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  1. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    Science.gov (United States)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  2. High-power Nd:YAG lasers using stable-unstable resonators

    CERN Document Server

    Mudge, D; Ottaway, D J; Veitch, P J; Munch, J P; Hamilton, M W

    2002-01-01

    The development of a power-scalable diode-laser-pumped continuous-wave Nd:YAG laser for advanced long-baseline interferometric detectors of gravitational waves is described. The laser employs a chain of injection-locked slave lasers to yield an efficient, frequency-stable, diffraction-limited laser beam.

  3. Final Report: High Power Semiconductor Laser Sources,

    Science.gov (United States)

    1989-01-01

    Mittelstein, Yasuhiko Arakawa, ) Anders Larssonb) and Amnon Yariv California Institute of Technology, Pasadena, California 91 125~412 (Received 7 July...Electronics and Commu- nication Engineers of Japan. He is a member of the Institute of Electronics Yasuhiko Arakawa S󈨑-M󈨔) was born in Ai- and...Gain, Modulation Response, and Spectral Linewidth in AlGaAs Quantum Well Lasers YASUHIKO ARAKAWA. MEMBER, IEEE. AND AMNON YARIV. FELLOW. IEEE Abstract

  4. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    Science.gov (United States)

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  5. Five Wavelength DFB Fibre Laser Source for WDM Systems

    DEFF Research Database (Denmark)

    Hübner, Jörg; Varming, Poul; Kristensen, Martin

    1997-01-01

    Singlemode UV-induced distributed feedback (DFB) fibre lasers with a linewidth of lasers is verified by a 10 Gbit/s transmission experiment. Five DFB fibre lasers are cascaded and pumped by a single...... semiconductor laser, thereby forming a multiwavelength source for WDM systems...

  6. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  7. Design of pulsed laser diode drive power for ZY3(02) laser altimeter

    Science.gov (United States)

    Feng, Wen; Li, Mingshan; Meng, Peibei; Yan, Fanjiang; Li, Xu; Wang, Chunhui

    2017-11-01

    Solid laser pumped by semiconductor laser has the large value in the area of space laser technology, because of the advantages of high efficiency, small volume and long life. As the indispensable component of laser, laser power is also very important. Combined with ZY3(02) laser altimeter project, a high voltage(0-300V), high current(0-80A), long pulse width(0-230us) and high precision temperature semiconductor laser power is developed. IGBT is applied in the driving circuit as the switch to provide a current pulse for LD. The heating or cooling capacity of TEC is controlled by PID compensation circuit quickly adjusts the duty cycle of the UC1637 PWM signal, to realize the high accuracy controlling of LD working temperature. The tests in the external ambient temperature of 5°C, 20°C, 30°C show that the LD current pulse is stable and the stability of LD working temperature up to +/-0.1°C around the set point temperature, which ensure the highly stable operation of DPL.

  8. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  9. Autonomous Laser-Powered Vehicle

    Science.gov (United States)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)

    2017-01-01

    An autonomous laser-powered vehicle designed to autonomously penetrate through ice caps of substantial (e.g., kilometers) thickness by melting a path ahead of the vehicle as it descends. A high powered laser beam is transmitted to the vehicle via an onboard bare fiber spooler. After the beam enters through the dispersion optics, the beam expands into a cavity. A radiation shield limits backscatter radiation from heating the optics. The expanded beam enters the heat exchanger and is reflected by a dispersion mirror. Forward-facing beveled circular grooves absorb the reflected radiant energy preventing the energy from being reflected back towards the optics. Microchannels along the inner circumference of the beam dump heat exchanger maximize heat transfer. Sufficient amount of fiber is wound on the fiber spooler to permit not only a descent but also to permit a sample return mission by inverting the vehicle and melting its way back to the surface.

  10. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis

    Directory of Open Access Journals (Sweden)

    Imed Miraoui

    2016-01-01

    Full Text Available The thermal effect of CO2 high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ, the heat affected zone depth (HAZ, and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE. The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.

  11. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  12. Performance Test Results for the Laser-Powered Microthruster

    International Nuclear Information System (INIS)

    Phipps, Claude R.; Luke, James R.; Helgeson, Wesley; Johnson, Richard

    2006-01-01

    Microthrusters are useful for orienting and repositioning small craft above the atmosphere. We report technical results obtained during a successful 5-year program to develop a commercially-viable laser-powered microthruster. Its main advantage is the ability to generate a broad thrust range under programmable electronic control with minimal electrical power. The device applies millisecond-duration diode-laser pulses to a fuel tape to produce an ablation jet. By employing laser-initiated energetic polymers in our ablation fuel tapes, we obtained momentum coupling coefficients as large as 3mN/W of incident laser power, giving a continuous thrust range from 50μN to 10mN. With our standard 30m x 8mm fuel tape, fueled thruster mass is 0.5kg and 50N-s lifetime impulse is achieved. With an order-of-magnitude greater fuel mass, the thruster could accomplish re-entry or substantial orbit-raising of a 10-kg microsatellite. In its usual configuration, specific impulse is 200 seconds, and ablation efficiency, the ratio of exhaust kinetic energy to incident laser optical energy is 180%. We compare performance of several laser-initiated micropropellants which we studied, including polyvinyl nitrate (PVN), glycidyl azide polymer (GAP), and nitrocellulose (NC). All were doped with a laser-absorbing component, either carbon nanopearls with 10nm mean diameter or dyes tuned to the 920-nm laser wavelength but transparent at visible wavelengths. Our demonstrated momentum coupling coefficient is sufficient to levitate a 0.15-kg object with a 500-W laser beam having appropriate characteristics

  13. Laser cleaning of sulfide scale on compressor impeller blade

    International Nuclear Information System (INIS)

    Tang, Q.H.; Zhou, D.; Wang, Y.L.; Liu, G.F.

    2015-01-01

    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  14. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    DEFF Research Database (Denmark)

    Jain, Deepak; Sidharthan, R.; Moselund, Peter M.

    2016-01-01

    the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source...... based on silica and germania fiber ever demonstrated to the date. (C) 2016 Optical Society of America......We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped...

  15. Large-scale laser-microwave synchronization for attosecond photon science facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shafak, Kemal

    2017-04-15

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  16. Large-scale laser-microwave synchronization for attosecond photon science facilities

    International Nuclear Information System (INIS)

    Shafak, Kemal

    2017-04-01

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  17. Compact laser-produced plasma EUV sources for processing polymers and nanoimaging

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Wachulak, P.

    2010-01-01

    Complete text of publication follows. Extreme ultraviolet (EUV) can be produced form a high-temperature plasma generated by interaction of high power laser pulses with matter. Laser plasma EUV sources are considered to be used in various applications in physics, material science, biomedicine, and technology. In the paper new compact laser plasma EUV sources developed for processing polymers and imaging are presented. The sources are based on a gas puff target formed by pulsed injection of a small amount of gas under high-pressure into a laser focus region. The use of the gas puff target instead of a solid target allows for efficient generation of EUV radiation without debris production. The compact laser plasma EUV source based on a gas puff target was developed for metrology applications. The EUV source developed for processing polymers is equipped with a grazing incidence axisymmetrical ellipsoidal mirror to focus EUV radiation in the relatively broad spectral range with the strong maximum near 10 nm. The size of the focal spot is about 1.3 mm in diameter with the maximum fluence up to 70 mJ/cm 2 . EUV radiation in the wavelength range of about 5 to 50 nm is produced by irradiation of xenon or krypton gas puff target with a Nd:YAG laser operating at 10 Hz and delivering 4 ns pulses of energy up to 0.8 J per pulse. The experiments on EUV irradiation of various polymers have been performed. Modification of polymer surfaces was achieved, primarily due to direct photo-etching with EUV photons and formation of micro- and nanostructures onto the surface. The mechanism of the interaction is similar to the UV laser ablation where energetic photons cause chemical bonds of the polymer chain to be broken. However, because of very low penetration depth of EUV radiation, the interaction region is limited to a very thin surface layer (<100 nm). This makes it possible to avoid degradation of bulk material caused by deeply penetrating UV radiation. The results of the studies

  18. Orange fiber laser for ophthalmology

    Science.gov (United States)

    Adachi, M.; Kojima, K.; Hayashi, K.

    2007-02-01

    For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.

  19. Characterisation of beams of low power infrared lasers for medical uses

    International Nuclear Information System (INIS)

    Welch, M.; Ramsay, D.

    1996-01-01

    Full text: The initial aim of this work was to investigate the power stability, both temporally and spatially, of the beams of low power infrared diode lasers of the type used by physiotherapists and vascular surgeons. Most of the lasers in this category are small, handheld devices, often with on/off switches which are manually held on while the laser is running. Two of those tested were larger, on stands, and could be set to run for a nominated time. Measurements made by one of us prior to the project had indicated that the power output of at least one of the lasers in use at Westmead Hospital was varying significantly over the treatment time. It is not at present known whether or not uniformity of power output is a significant factor in low power laser therapy, which has been shown to have beneficial effects for conditions ranging from torn muscles and arthritis to birth marks. Dramatic improvement in the healing of skin ulcers and wounds such as amputation scars has also been recorded. Equipment was chosen and a set of techniques developed for analysing the laser beams (some of which operated in continuous wave mode, some in pulsed mode, and some in both) with respect to: power output over time; power distribution within the beam, ie., beam profile; beam divergence; and pulse repetition frequency and pulse shape, if applicable. The fact that some of the lasers were continuous wave, some were pulsed and that some had very high pulse repetition frequencies placed restrictions on the type of power meter which could be used. Eventually a surface absorbing thermal power meter, responsive over a wide range of wavelengths, was chosen for temporal power measurements. Pulse repetition rates and pulse shapes were shown on a CRO; and spatial power distribution, beam shape, power distribution and divergence were recorded via a CCD camera and Spiricon laser beam analyser. 3D printouts from the Spiricon were made showing distribution of beam power. Nine lasers were analysed

  20. Sandia high-power atomic iodine photodissociation laser

    International Nuclear Information System (INIS)

    Palmer, R.E.; Padrick, T.D.

    1975-01-01

    One of the more promising candidates for a laser to demonstrate the feasibility of laser fusion is the 1.315 μ atomic iodine laser. In a relatively short time it has been developed into a viable subnanosecond, high energy laser. Although at present the iodine laser cannot equal the output capabilities of a large Nd:glass laser system, there are no foreseeable obstacles in the construction of a 100 psec, 10 KJ or greater atomic iodine laser system. A 100 joule system being constructed at Sandia to investigate many of the scaling parameters essential to the design of a 10 KJ or greater system is described. (U.S.)

  1. Investigation toward laser driven IFE (inertial fusion energy) power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.; Yamanaka, M.; Kanabe, T.; Kato, Y.; Norimatsu, T.; Nagai, K.; Nakatsuka, M.; Jitsuno, T.; Yamanaka, T.

    2000-01-01

    Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues which affect the feasibility of power plant has been performed taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. The coordination and collaboration organization of reactor technology experts in Japan on Laser Driven IFE Power Plant are reviewed. (authors)

  2. High power diode laser remelting of metals

    International Nuclear Information System (INIS)

    Chmelickova, H; Tomastik, J; Ctvrtlik, R; Supik, J; Nemecek, S; Misek, M

    2014-01-01

    This article is focused on the laser surface remelting of the steel samples with predefined overlapping of the laser spots. The goal of our experimental work was to evaluate microstructure and hardness both in overlapped zone and single pass ones for three kinds of ferrous metals with different content of carbon, cast iron, non-alloy structural steel and tool steel. High power fibre coupled diode laser Laserline LDF 3600-100 was used with robotic guided processing head equipped by the laser beam homogenizer that creates rectangular beam shape with uniform intensity distribution. Each sample was treated with identical process parameters - laser power, beam diameter, focus position, speed of motion and 40% spot overlap. Dimensions and structures of the remelted zone, zone of the partial melting, heat affected zone and base material were detected and measured by means of laser scanning and optical microscopes. Hardness progress in the vertical axis of the overlapped zone from remelted surface layer to base material was measured and compared with the hardness of the single spots. The most hardness growth was found for cast iron, the least for structural steel. Experiment results will be used to processing parameters optimization for each tested material separately.

  3. Inertial fusion energy with krypton fluoride lasers

    International Nuclear Information System (INIS)

    Sethian, J.D.

    2010-01-01

    Complete text of publication follows. We are developing the science and technologies needed for a practical fusion energy source using high energy krypton fluoride (KrF) lasers. The physics basis for this work is a family of simulations that exploit the unique advantages of KrF lasers. KrF lasers provide uniform enough laser light to illuminate the capsule directly, greatly improving the laser-target coupling efficiency, as well as simplifying the target design. KrF's shorter wavelength allows higher ablation pressures and helps suppress laser-plasma instabilities. These advantages are being demonstrated on the NRL Nike KrF laser facility. A particularly promising approach is shock ignition, in which a high intensity laser pulse drives an intense shock at peak compression. Simulations with experimentally benchmarked codes predict a 1 MJ KrF laser can produce 200 MJ of pure fusion energy. We have similarly advanced the laser technology. We have developed a KrF laser, using technologies that scale to a reactor beamline, that fires 5 times per second for long duration runs and is projected be efficient enough for a reactor. The science and the technology for the key components are developed at the same time as part of a coherent system. A multi-institutional team from industry, national labs, and universities has developed credible solutions for these components. This includes methods to fabricate the spherical pellets on mass production basis, a means to repetitively inject the capsules into the chamber and precisely hit them with the laser, scaled tests to develop the laser optics, and designs for the reaction vessel. Based on these advances NRL and its collaborators have formulated a three stage plan that could lead to practical fusion energy on a much faster time scale than currently believed. Stage I develops full scale components: a laser beam line, target factory and injector, and chamber technologies. Stage II is the Fusion Test Facility (FTF). Simulations

  4. Adjustable supercontinuum laser source with low coherence length and low timing jitter

    Science.gov (United States)

    Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe

    2010-04-01

    This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.

  5. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  6. Laser Ion Source Development for ISOL Systems at RIA

    CERN Document Server

    Liu, Yuan; Beene, James R; Bilheux, Hassina Z; Brueck, Kim; Geppert, Christopher; Havener, Charles; Kessler, Thomas; Krause, Herbert F; Schultz, David R; Stracener, Dan; Vane, C R; Wendt, Klaus

    2005-01-01

    The isobaric purity of radioactive ion beams (RIBs) is of crucial importance to many experiments. Laser ion sources based on resonant photoionization have already proved to be of great value at existing ISOL RIB facilities. In these ion sources, ions of a selected isotope are produced by laser radiation via stepwise atomic resonant excitations followed by ionization in the last transition. Because each element has its own unique atomic energy levels, the resonant photoionization process can provide elemental selectivity of nearly 100%. We have initiated a research effort to develop a prototype laser ion source with the potential to achieve the high selectivity and high efficiency required for research with ISOL-generated RIBs at the Rare Isotope Accelerator (RIA). A pilot experiment has been conducted to demonstrate resonant photoionization of three atomic species using all-solid-state tunable Ti:Sapphire lasers. Three Ti:Sapphire lasers were provided by the University of Mainz and used in the experiment for ...

  7. Research on laser detonation pulse circuit with low-power based on super capacitor

    Science.gov (United States)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  8. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  9. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  10. New horizons for high-power lasers: applications in civil engineering

    Science.gov (United States)

    Wignarajah, Sivakumaran

    2000-01-01

    Although material processing with high power lasers has found widespread use in a variety of industries such as the automotive industry, electrical and electronics industries, aerospace industry etc., civil engineering construction is one field that has lagged behind in the use of lasers for material processing. This is in spite of the fact that a large variety of materials including ceramics, metals and plastics are used in very large quantities for civil engineering construction. The main reasons for the delay in the adopting of laser for processing construction material seem to be the high costs involved and the lack of sufficient power for processing heavy and thick materials. However, with the advent of more compact lasers with higher powers, higher efficiencies and lower photon costs, greater interest has been shown in recent years in the possible uses of high power lasers for material processing in the construction industry. The author traces some of the past work carried out both in Japan and abroad on the use of lasers in civil engineering, specially with respect to the processing of inorganic material such as concrete, natural stones, tiles and rocks. Recent developments regarding laser decontamination and laser assisted rock excavation are also introduced.

  11. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  12. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  13. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  14. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  15. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  16. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  17. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  18. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    Science.gov (United States)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  19. Micron-scale resolution radiography of laser-accelerated and laser-exploded foils using an yttrium x-ray laser

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.; Celliers, P.; Moreno, J.C.; Mrowka, S.; Perry, T.S.; Wan, A.S.

    1994-09-01

    The authors have imaged laser-accelerated foils and exploding foils on the few-micron scale using an yttrium x-ray laser (155 angstrom, 80 eV, ∼200 ps duration) and a multilayer mirror imaging system. At the maximum magnification of 30, resolution was of order one micron. The images were side-on radiographs of the foils. Accelerated foils showed significant filamentation on the rear-side (away from the driving laser) of the foil, although the laser beam was smoothed. In addition to the narrow rear-side filamentation, some shots revealed larger-scale plume-like structures on the front (driven) side of the Al foil. These plumes seem to be little-affected by beam smoothing and are likely a consequence of Rayleigh-Taylor instability. The experiments were carried out at the Nova two-beam facility

  20. Average Power and Brightness Scaling of Diamond Raman Lasers

    Science.gov (United States)

    2012-01-07

    J. Appl. Phys. 92(2), 649–653 (2002). 26. J. Smedley , C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface...nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009). 27. J. Smedley , J. Bohon, Q. Wu, and T. Rao, “Laser patterning...Singh, Dianyuan Fan, Jianquan Yao, Robert F. Walter, Proc. of SPIE Vol. 8551, 85510U · © 2012 SPIE CCC code: 0277-786/12/$18 · doi: 10.1117/12.999857 Proc

  1. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  2. Power-Law Template for Infrared Point-Source Clustering

    Science.gov (United States)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; hide

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  3. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  4. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources

    International Nuclear Information System (INIS)

    Christ-Koch, Sina

    2007-01-01

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  5. A resonant ionization laser ion source at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Stracener, D.W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  6. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  7. Low-power-laser therapy used in tendon damage

    Science.gov (United States)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  8. Cutting-Edge High-Power Ultrafast Thin Disk Oscillators

    Directory of Open Access Journals (Sweden)

    Thomas Südmeyer

    2013-04-01

    Full Text Available A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40