WorldWideScience

Sample records for laser pulses control

  1. Pulse shape control in a dual cavity laser: numerical modeling

    Science.gov (United States)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  2. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    Science.gov (United States)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  3. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  4. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  5. Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    NARCIS (Netherlands)

    Groenen, Rik; Smit, Jasper; Orsel, Kasper; Vailionis, Arturas; Bastiaens, Bert; Huijben, Mark; Boller, Klaus; Rijnders, Guus; Koster, Gertjan

    2015-01-01

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO3 thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was

  6. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability) oscilla...

  7. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  8. Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    CERN Document Server

    Tibbetts, Katharine Moore; Rabitz, Herschel

    2013-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...

  9. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    Science.gov (United States)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  10. Quantum coherent control of ultra short laser pulses

    Institute of Scientific and Technical Information of China (English)

    ZHOU JianYing; ZENG JianHua; LI JunTao

    2008-01-01

    The effective photonic control is one of the key issues in photo-physics. Significant advancement in photonic crystals, quantum optics, ultrafast optics as well as micro-nano-optics gives rise to new op-portunities to manipulate the emission and propagation in optical fields, leading to a number of new and interesting discoveries, e.g., ultrashort light pulse storage and efficient energy conversion. This paper reviews the latest research progress in storage, release and energy conversion for ultrashort laser pulses in periodical arrays of absorbing medium. Techniques to fabricate such devices are also presented.

  11. Laser-Pulse-Shape Control of Seeded QED Cascades

    CERN Document Server

    Tamburini, Matteo; Keitel, Christoph H

    2015-01-01

    The emergence of electron-positron cascades via ultrastrong electromagnetic fields constitutes a prominent manifestation of the complex interplay between strong-field QED processes and multiparticle dynamics. Here the onset and development of electron-positron cascades are investigated in the head-on collision of two realistic tightly focused ultraintense optical laser pulses in a tenuous gas. As a consequence of the large ponderomotive forces expelling all electrons of the gas from the focal volume, we demonstrate that the onset of QED cascades may be prevented even at intensities around $10^{26}\\;\\text{W/cm$^2$}$ by focusing the laser energy almost down to the diffraction limit. Alternatively, a well controlled development of a QED cascade may be facilitated at laser intensities below $10^{24}\\;\\text{W/cm$^2$}$ per beam by enlarged focal areas and a rapid rise of the pulse or at total powers near $20\\;\\text{PW}$ by employing suitable high-$Z$ gases.

  12. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    Science.gov (United States)

    2015-01-02

    SUBJECT TERMS Pulse synthesis, coherent combining, spectral combining, pulsed lasers, fast optical feedback, diode lasers 16. SECURITY...On classified documents, enter the title classification in parentheses. 5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the...accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top

  13. Two-pulse laser control of bond-selective fragmentation

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1996-01-01

    consider an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18. It is shown that asymmetric bond stretching can be created in simple (intense) laser fields. We predict that an alternating high selectivity between the channels O-16+(OO)-O-16-O-18 and (OO)-O-16-O-16+ O-18 can...... be obtained when such a non-stationary vibrating ozone molecule is photodissociated with short laser pulses (similar to 10-15 fs) with a time delay corresponding to half a vibrational period (similar to 17 fs). (C) 1996 American Institute of Physics....

  14. Programmable Control of the Pulse Repetition Rate in the Multiwave Strontium Vapor Laser System

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The aim of the present work was the development of laser systems for ablation of biological tissues with a programmable control over the lasing pulse repetition rate in a wide range. A two-stage laser system consisting of a master oscillator and a power amplifier based on strontium vapor laser has been developed. The operation of the laser system in a single-pulse mode operation, multipulse mode operation, and with a pulse repetition rate up to 20 kHz has been technically implemented. The possibility of a bone tissue ablation with no visible thermal damage is shown.

  15. Interferometer design and controls for pulse stacking in high power fiber lasers

    Science.gov (United States)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  16. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  17. Design of optimal laser pulses to control molecular rovibrational excitation in a heteronuclear diatomic molecule

    Indian Academy of Sciences (India)

    Sitansh Sharma; Gabriel G Balint-Kurti; Harjinder Singh

    2012-01-01

    Optimal control theory in combination with time-dependent quantum dynamics is employed to design laser pulses which can perform selective vibrational and rotational excitations in a heteronuclear diatomic system. We have applied the conjugate gradient method for the constrained optimization of a suitably designed functional incorporating the desired objectives and constraints. Laser pulses designed for several excitation processes of the molecule were able to achieve predefined dynamical goals with almost 100% yield.

  18. Nanofabrication with pulsed lasers.

    Science.gov (United States)

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  19. Coherent control with shaped femtosecond laser pulses applied to ultracold molecules

    CERN Document Server

    Salzmann, W; Wester, R; Weidemüller, M; Merli, A; Weber, S M; Sauer, F; Plewicki, M; Weise, F; Esparza, A M; Wöste, L; Lindinger, A; Salzmann, Wenzel; Poschinger, Ulrich; Wester, Roland; Weidemueller, Matthias; Merli, Andrea; Weber, Stefan M.; Sauer, Franziska; Plewicki, Mateusz; Weise, Fabian; Esparza, Aldo Mirabal; Woeste, Ludger; Lindinger, Albrecht

    2005-01-01

    We report on coherent control of excitation processes of translationally ultracold rubidium dimers in a magneto-optical trap by using shaped femtosecond laser pulses. Evolution strategies are applied in a feedback loop in order to optimize the photoexcitation of the Rb2 molecules, which subsequently undergo ionization or fragmentation. A superior performance of the resulting pulses compared to unshaped pulses of the same pulse energy is obtained by distributing the energy among specific spectral components. The demonstration of coherent control to ultracold ensembles opens a path to actively influence fundamental photo-induced processes in molecular quantum gases.

  20. Nanofabrication with Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    Kabashin AV

    2010-01-01

    Full Text Available Abstract An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3, is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  1. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial

    DEFF Research Database (Denmark)

    Nymann, Peter; Hedelund, Lene; Haedersdal, M

    2010-01-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias.......This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias....

  2. Controlled modification of biomolecules by ultrashort laser pulses in polar liquids

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2017-01-01

    Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable only...... to a small class of photosensitive biomolecules because of strong and ultrafast perturbations from biomolecule-solvent interactions. Here, we report excitation of harmonics of vibration modes of solvent molecules by femtosecond laser pulses to produce controlled chemical modifications of non......-photosensitive peptides and proteins in polar liquids under room conditions. The principal modifications included lysine formylation and methionine sulfoxidation both of which occur with nearly 100% yield under atmospheric conditions. That modification occurred only if the laser irradiance exceeded certain threshold...

  3. Controlling the fast electron divergence in a solid target with multiple laser pulses

    Science.gov (United States)

    Volpe, L.; Feugeas, J.-L.; Nicolai, Ph.; Santos, J. J.; Touati, M.; Breil, J.; Batani, D.; Tikhonchuk, V.

    2014-12-01

    Controlling the divergence of laser-driven fast electrons is compulsory to meet the ignition requirements in the fast ignition inertial fusion scheme. It was shown recently that using two consecutive laser pulses one can improve the electron-beam collimation. In this paper we propose an extension of this method by using a sequence of several laser pulses with a gradually increasing intensity. Profiling the laser-pulse intensity opens a possibility to transfer to the electron beam a larger energy while keeping its divergence under control. We present numerical simulations performed with a radiation hydrodynamic code coupled to a reduced kinetic module. Simulation with a sequence of three laser pulses shows that the proposed method allows one to improve the efficiency of the double pulse scheme at least by a factor of 2. This promises to provide an efficient energy transport in a dense matter by a collimated beam of fast electrons, which is relevant for many applications such as ion-beam sources and could present also an interest for fast ignition inertial fusion.

  4. Laser pulse trains for controlling excited state dynamics of adenine in water.

    Science.gov (United States)

    Petersen, Jens; Wohlgemuth, Matthias; Sellner, Bernhard; Bonačić-Koutecký, Vlasta; Lischka, Hans; Mitrić, Roland

    2012-04-14

    We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.

  5. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water

    Science.gov (United States)

    Menéndez-Manjón, Ana; Barcikowski, Stephan

    2011-02-01

    Most investigations on the laser generation and fragmentation of nanoparticles focus on Feret particle size, although the hydrodynamic size of nanoparticles is of great importance, for example in biotechnology for diffusion in living cells, or in engineering, for a tuned rheology of suspensions. In this sense, the formation and fragmentation of gold colloidal nanoparticles using femtosecond laser ablation at variable pulse repetition rates (100-5000 Hz) in deionized water were investigated through their plasmon resonance and hydrodynamic diameter, measured by Dynamic Light Scattering. The increment of the repetition rate does not influence the ablation efficiency, but produces a decrease of the hydrodynamic diameter and blue-shift of the plasmon resonance of the generated gold nanoparticles. Fragmentation, induced by inter-pulse irradiation of the colloids was measured online, showing to be more effective low repetition rates. The pulse repetition rate is shown to be an appropriate laser parameter for hydrodynamic size control of nanoparticles without further influence on the production efficiency.

  6. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-Bing; CHEN Jing; LIU Jie; LI Xiao-Feng; FU Pan-Ming

    2005-01-01

    @@ We investigate the carrier envelope phase (CEP) effects on high-order harmonic generation (HHG) in ultrashort pulses with the pulse duration 2.5fs when the laser intensity is high enough so that the initial state is ionized effectively during the laser pulse but remains about 20% population at the end of the laser pulse. We find that the ionization process of the initial state is very sensitive to the CEP during the laser pulse. The ionization process of the initial state determines the continuum state population and hence influences dramatically the weights of the classical trajectories that contribute to HHG. In such a case we can not predict the cutoff and the structure of the harmonic spectrum only by the number and the kinetic energy of the classical trajectories. The harmonic spectrum exhibits abundant characters for different CEP cases. As a result, we can control the cutoff frequency and the plateau structure of the harmonic spectrum with CEP by controlling the time behaviour of the ionization of the initial state.

  7. Adaptive control of lasers and their interactions with matter using femtosecond pulse shaping

    Science.gov (United States)

    Efimov, Anatoly

    Coherent control of chemical reactions, atomic and molecular systems, lattice dynamics, and electronic motion rely on femtosecond laser sources capable of producing programmable arbitrarily shaped waveforms. To enter the time scale of natural dynamic processes in many systems, femtosecond pulse shaping techniques must be extended to the ultrashort pulse domain (teach our laser to control its own phase by using spectral blueshifting in a rapidly created plasma as a feedback to the algorithm. Control of lattice vibrations has long been sought as a means of studying phonon-related processes in solids. In addition, generation and control of large-amplitude optical phonon modes may open a path to femtosecond time- resolved studies of structural phase transitions and production of ultrashort shaped X-ray pulses. We perform pump-probe phase-resolved measurements and control of optical A1g mode in sapphire through shaped-pulse impulsive stimulated Raman scattering (ISRS). We chose this material as a candidate for possible nonlinear oscillations regime for its wide band gap and superior optical properties allowing for high-energy excitation. To enter a nonlinear regime, however, complex asymmetric multiple-pulse excitation is required. Therefore, we make a detailed proposal of the experimental adaptive feedback implementation for optimization of phonon amplitude based on the coherent probe scattering and a novel phase mask calculation algorithm for the real-time asymmetric pulse train generation.

  8. Automatic quality control in the production of ceramic substrates by pulsed laser cutting

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper deals with the use of optical coordinate measuring machines (CMMs) in the quality control of ceramic substrates produced by a CO2 pulsed laser. A procedure of automatic measurements on a CMM equipped with a CCD camera was developed. In particular, the number and the distribution...

  9. Control of photoassociation reaction F+H→HF with ultrashort laser pulse

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoretically investigated by using the time-dependent quantum wave packet method. The population transfer process from the continuum state down to the bound vibrational states can be controlled by the driving laser. The effects of laser pulse parameters and the initial momentum of the two collision atoms on the vibrational population of the product HF are discussed in detail. Photodissociation accompanied with the photoassociation process is also described.

  10. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    Science.gov (United States)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2014-02-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  11. Novel hybrid method: pulse CO2 laser-TIG hybrid welding by coordinated control

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Lei Zhenglong; Li Liqun; Wu Lin; Xie Cheng

    2006-01-01

    In continuous wave CO2 laser-TIG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method-pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.

  12. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DEFF Research Database (Denmark)

    Thomas, Esben Folger; Henriksen, Niels Engholm

    2016-01-01

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within...... a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse...... envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished...

  13. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  14. Micro pulse laser radar

    Science.gov (United States)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  15. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  16. Plasma-Based Generation and Control of a Single Few-Cycle High-Energy Ultrahigh-Intensity Laser Pulse

    Science.gov (United States)

    Tamburini, M.; Di Piazza, A.; Liseykina, T. V.; Keitel, C. H.

    2014-07-01

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 1023 W/cm2 can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

  17. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE

    CERN Document Server

    Afeyan, Bedros

    2012-01-01

    An adaptive method of controlling parametric instabilities in laser produced plasmas is proposed. It involves fast temporal modulation of a laser pulse on the fastest instability's amplification time scale, adapting to changing and unknown plasma conditions. These pulses are comprised of on and off sequences having at least one or two orders of magnitude contrast between them. Such laser illumination profiles are called STUD pulses for Spike Trains of Uneven Duration and Delay. The STUD pulse program includes scrambling the speckle patterns spatially in between the laser spikes. The off times allow damping of driven waves. The scrambling of the hot spots allows tens of damping times to elapse before hot spot locations experience recurring high intensity spikes. Damping in the meantime will have healed the scars of past growth. Another unique feature of STUD pulses on crossing beams is that their temporal profiles can be interlaced or staggered, and their interactions thus controlled with an on-off switch and ...

  18. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE

    Science.gov (United States)

    Afeyan, Bedros; Hüller, Stefan

    2013-11-01

    An adaptive method of controlling parametric instabilities in laser produced plasmas is proposed. It involves fast temporal modulation of a laser pulse on the fastest instability's amplification time scale, adapting to changing and unknown plasma conditions. These pulses are comprised of on and off sequences having at least one or two orders of magnitude contrast between them. Such laser illumination profiles are called STUD pulses for Spike Trains of Uneven Duration and Delay. The STUD pulse program includes scrambling the speckle patterns spatially in between the laser spikes. The off times allow damping of driven waves. The scrambling of the hot spots allows tens of damping times to elapse before hot spot locations experience recurring high intensity spikes. Damping in the meantime will have healed the scars of past growth. Another unique feature of STUD pulses on crossing beams is that their temporal profiles can be interlaced or staggered, and their interactions thus controlled with an on-off switch and a dimmer.

  19. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  20. Precise ablation milling with ultrashort pulsed Nd:YAG lasers by optical and acoustical process control

    Science.gov (United States)

    Schulze, Volker; Weber, Patricia

    2010-02-01

    Laser ablation milling with ultra short pulsed Nd:YAG lasers enables micro structuring in nearly all kinds of solid materials like metals, ceramics and polymers. A precise machining result with high surface quality requires a defined ablation process. Problems arise through the scatter in the resulting ablation depth of the laser beam machining process where material is removed in layers. Since the ablated volume may change due to varying absorption properties in single layers and inhomogeneities in the material, the focal plane might deviate from the surface of the work piece when the next layer is machined. Thus the focal plane has to be adjusted after each layer. A newly developed optical and acoustical process control enables an in-process adjustment of the focal plane that leads to defined process conditions and thus to better ablation results. The optical process control is realized by assistance of a confocal white light sensor. It enables an automated work piece orientation before machining and an inline ablation depth monitoring. The optical device can be integrated for an online or offline process control. Both variants will be presented and discussed. A further approach for adjustment of the focal plane is the acoustical process control. Acoustic emissions are detected while laser beam machining. A signal analysis of the airborne sound spectrum emitted by the process enables conclusions about the focal position of the laser beam. Based on this correlation an acoustic focus positioning is built up. The focal plane can then be adjusted automatically before ablation.

  1. Controlling magnetism by ultrashort laser pulses: from fundamentals to nanoscale engineering

    Science.gov (United States)

    Bossini, D.; Rasing, Th.

    2016-06-01

    From the discovery of sub-picosecond demagnetization over a decade ago [1] to the recent demonstration of magnetization reversal by a single 40 femtosecond laser pulse [2], the manipulation of spins by ultra-short laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation and quantum computation [3]. It was realized that the femtosecond laser induced all-optical switching (AOS) as observed in ferrimagnets exploits the laser induced strongly non-equilibrium dynamics and the antiferromagnetic exchange interaction between their sublattices [4-6]. This opens the way to engineer new magnetic materials for AOS [7,8], though for real applications nanoscale control of inhomogeneities appears to be relevant [9]. Besides the intruiging technological implications of these observations, they broadened remarkably the frontiers of our fundamental knowledge of magnetic phenomena. The laser driven out-of-equilibrium states cannot be described in term of the well-established thermodynamical approach, which is based on the concepts of equilibrium and adiabatic transformations. Theoretical efforts, although in their infancy, have already demonstrated [5,6] that light-induced spin dynamics on the (sub)-picosecond time scale results in phenomena utterly forbidden in a thermodynamical framework. Another challenge is how to bring the optical manipulation of magnetic media to the required nanoscale. This is clearly a key element for the perspectives in terms of magnetic recording. In addition, it would allow to explore a novel regime of spin dynamics, since the investigation of magnets on the femtosecond time-scale and the nanometer length-scale simultaneously is unexplored. One experimental approach which may be successful makes use of wave-shaping techniques [10]. Recent results with engineered hybrid magnetic materials and nanofocusing via a plasmonic antenna showed the practical potential of AOS: the

  2. Two-Pulse Atomic Coherent Control (2PACC) Spectroscopy of Eley-Rideal Reactions. An Application of an Atom Laser

    CERN Document Server

    Jorgensen, S F; Jorgensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC employs the coherent properties of matter-waves from a two pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schrodinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters.

  3. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    A scheme for controlling the outcome of a photodissociation process is studied. It involves two lasers—one intense laser in the infrared region which is supposed to excite a particular bond in the electronic ground state, and a second short laser pulse in the ultraviolet region which, at the righ...

  4. Automatic quality control in the production of ceramic substrates by pulsed laser cutting

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper deals with the use of optical coordinate measuring machines (CMMs) in the quality control of ceramic substrates produced by a CO2 pulsed laser. A procedure of automatic measurements on a CMM equipped with a CCD camera was developed. In particular, the number and the distribution...... of cavities on the cut face of thin ceramic substrates were investigated and different strategies to assess the depth and the pitch of cavities were compared. Then, the measurement uncertainty for these two critical parameters was evaluated using the method described in ISO/TS 15530-3....

  5. Prepulse controlled electron acceleration from solids by a femtosecond laser pulse in the slightly relativistic regime

    Science.gov (United States)

    Ivanov, K. A.; Tsymbalov, I. N.; Shulyapov, S. A.; Krestovskikh, D. A.; Brantov, A. V.; Bychenkov, V. Yu.; Volkov, R. V.; Savel'ev, A. B.

    2017-06-01

    We present results from the experimental and numerical study of electron heating and acceleration under the action of a 50 fs high contrast laser pulse [intensities ˜(1-4) × 1018 W/cm2] with a controlled preplasma that was created by a 6 ns laser "prepulse" with intensity ˜1012 W/cm2. A substantial increase both in the gamma yield and "temperature" was obtained by the proper adjustment of the time delay between the two pulses (0-5 ns), while the gamma yield dropped to almost zero values if the nanosecond pulse came 10-20 ns in advance of the femtosecond one. Comprehensive optical diagnostics (shadowgraphy, interferometry, and angular resolved self-emission measurements) data allowed us to estimate the electron density profile. The latter profile was used for making numerical Particle-in-cell simulations which describe the gamma yield enhancement well. We also illustrate how the observed drop in the gamma yield within a certain range of delays was due to ionization defocusing of the femtosecond beam in an expanding long-scale (L/λ > 1) preplasma.

  6. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains.

    Science.gov (United States)

    Jiang, Lan; Shi, Xuesong; Li, Xin; Yuan, Yanping; Wang, Cong; Lu, Yongfeng

    2012-09-10

    This study reveals that the periods, ablation areas and orientations of periodic surface structures (ripples) in fused silica can be adjusted by using designed femtosecond (fs) laser pulse trains to control transient localized electron dynamics and corresponding material properties. By increasing the pulse delays from 0 to 100 fs, the ripple periods are changed from ~550 nm to ~255 nm and the orientation is rotated by 90°. The nearwavelength/subwavelength ripple periods are close to the fundamental/second-harmonic wavelengths in fused silica respectively. The subsequent subpulse of the train significantly impacts free electron distributions generated by the previous subpulse(s), which might influence the formation mechanism of ripples and the surface morphology.

  7. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  8. Demonstrating coherent control in 85Rb2 using ultrafast laser pulses: a theoretical outline of two experiments

    CERN Document Server

    Martay, Hugo E L; England, Duncan G; Friedman, Melissa E; Petrovic, Jovana; Walmsley, Ian A

    2009-01-01

    Calculations relating to two experiments that demonstrate coherent control of preformed rubidium-85 molecules in a magneto-optical trap using ultrafast laser pulses are presented. In the first experiment, it is shown that pre-associated molecules in an incoherent mixture of states can be made to oscillate coherently using a single ultrafast pulse. A novel mechanism that can transfer molecular population to more deeply bound vibrational levels is used in the second. Optimal parameters of the control pulse are presented for the application of the mechanism to molecules in a magneto-optical trap. The calculations make use of an experimental determination of the initial state of molecules photoassociated by the trapping lasers in the magneto-optical trap and use shaped pulses consistent with a standard ultrafast laser system.

  9. Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence

    Science.gov (United States)

    Tkaczyk, Eric Robert

    This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the

  10. Laser-induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation

    Science.gov (United States)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-09-01

    Laser-induced breakdown spectroscopy (LIBS) was successfully used in on-line control of selective removal of cobalt from tungsten carbide hardmetal by pulsed UV laser surface ablation. The dependence of LIBS on number of laser shots was investigated at different laser fluences. The optimal laser fluence of 2.5 J/cm 2 suited for selective removal of cobalt from surface layer of hardmetal was confirmed. The result sample was also subject to different post-examinations to evaluate the feasibility of the application of LIBS in this laser ablation process. It was demonstrated that, monitoring of the emission intensity of cobalt lines could be used as a control parameter for selective removal of cobalt from surface layer of hardmetal by pulsed UV laser. The on-line implementation of the spectroscopic technique LIBS to the surface-ablation process provided important information about the optimal-ablation parameters.

  11. Cooling molecular vibrations with shaped laser pulses: Optimal control theory exploiting the timescale separation between coherent excitation and spontaneous emission

    CERN Document Server

    Reich, Daniel M

    2013-01-01

    Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck-Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative deexcitation steps whose timescales are separated.

  12. Short pulse generation and mode control of broadband terahertz quantum cascade lasers

    CERN Document Server

    Bachmann, Dominic; Süess, Martin J; Beck, Mattias; Unterrainer, Karl; Darmo, Juraj; Faist, Jérôme; Scalari, Giacomo

    2016-01-01

    We report on a waveguide engineering technique that enables the generation of a bandwidth up to 1 THz and record ultra-short pulse length of 2.5 ps in injection seeded terahertz quantum cascade lasers. The reported technique is able to control and fully suppress higher order lateral modes in broadband terahertz quantum cascade lasers by introducing side-absorbers to metal-metal waveguides. The side-absorbers consist of a top metalization set-back with respect to the laser ridge and an additional lossy metal layer. In continuous wave operation the side-absorbers lead to octave spanning laser emission, ranging from 1.63 to 3.37 THz, exhibiting a 725 GHz wide at top within a 10 dB intensity range as well as frequency comb operation with a bandwidth of 442 GHz. Numerical and experimental studies have been performed to optimize the impact of the side-absorbers on the emission properties and to determine the required increase of waveguide losses. Furthermore, these studies have led to a better understanding of the ...

  13. Phase-only laser control in the weak-field limit: Two-pulse control of IBr photofragmentation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ashwani K., E-mail: ashwani@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246 (India); Henriksen, Niels E., E-mail: neh@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby (Denmark)

    2016-01-07

    We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible, starting from a single vibrational eigenstate, after the interaction with two laser pulses—at a fixed time delay—both operating in the weak-field limit. Thus, phase dependence in the interaction with the second fixed-energy phase-modulated pulse persists after the pulse is over. This is illustrated for the nonadiabatic process: I + Br{sup *}←IBr → I + Br, where the relative yield of excited Br{sup *} can be changed by pure phase modulation. Furthermore, a strong frequency dependence of the branching ratio is observed and related to the re-crossing dynamics of the avoided crossing in the above-mentioned process.

  14. Synchronization and coherent combining of two pulsed fiber lasers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We demonstrate a scalable architecture for coherent combining of pulsed fiber lasers.A new method for generating synchronous pulsed fiber lasers by direct phase modulation is proposed and investigated.It is shown that phase modulated mutually coupled laser array can be a steady synchronous pulsed fiber laser source.The synchronous pulsed fiber lasers are coherently combined with an invariable phase difference of π in adjacent lasers.Neither active phase control nor polarization control is taken in our experiment.

  15. Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses.

    Science.gov (United States)

    Liu, Cheng; Zhang, Jun; Chen, Shouyuan; Golovin, Gregory; Banerjee, Sudeep; Zhao, Baozhen; Powers, Nathan; Ghebregziabher, Isaac; Umstadter, Donald

    2014-01-01

    Fourier-transform-limited light pulses were obtained at the laser-plasma interaction point of a 100-TW peak-power laser in vacuum. The spectral-phase distortion induced by the dispersion mismatching between the stretcher, compressor, and dispersive materials was fully compensated for by means of an adaptive closed-loop. The coherent temporal contrast on the sub-picosecond time scale was two orders of magnitude higher than that without adaptive control. This novel phase control capability enabled the experimental study of the dependence of laser wakefield acceleration on the spectral phase of intense laser light.

  16. Evolution of laser pulse shape in a parabolic plasma channel

    Science.gov (United States)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  17. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    Science.gov (United States)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-05-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 µm spot diameter. It was revealed that a 45 µm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 µm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam.

  18. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji [Joining and Welding Research Institute (JWRI), Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2007-05-07

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 {mu}m spot diameter. It was revealed that a 45 {mu}m narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 {mu}m gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam.

  19. Absolute phase control of spectra effects in a two-level medium driven by two-color ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Xia Keyu [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Sciences (China); Niu Yueping [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Sciences (China); Li Chunfang [Department of Physics, Shanghai University, Shanghai 200436 (China); Gong Shangqing [CCAST (World Laboratory), PO Box 8730, Beijing 100080 (China) and State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)]. E-mail: sqgong@siom.ac.cn

    2007-01-22

    Using a {omega}-3{omega} combination scenario, we investigate the absolute phase control of the spectra effects for ultrashort laser pulses propagating in a two-level medium. It is found that the higher spectral components can be controlled by the absolute phases. In particular, different absolute phase combinations can lead to the buildup or split of the even harmonics.

  20. Pulsed-laser printing of silver nanoparticles ink: control of morphological properties.

    Science.gov (United States)

    Rapp, Ludovic; Ailuno, Julie; Alloncle, Anne Patricia; Delaporte, Philippe

    2011-10-24

    Fine electrically-conductive patterns of silver nanoparticles ink have been laser printed using the laser-induced forward transfer (LIFT) technique. LIFT is a technique that offers the possibility of printing patterns with high spatial resolution from a wide range of materials in solid or liquid state. Influence of drying the ink film, previous to its transfer, on the printed droplet morphology is discussed. The laser pulse energy and donor-receiver substrate separation were systematically varied and their effects on the transferred droplets were analyzed. The use of an intermediate titanium dynamic release layer was also investigated and demonstrated the possibility of a better control of both the size and shape of the printed patterns. Conditions have been determined for printing flat-top droplets with sharp edges. 21 µm width silver lines with 80 nm thickness have been printed with a smooth convex profile. Electrical resistivities of the transferred patterns are only 5 times higher than the bulk silver. © 2011 Optical Society of America

  1. Laser pulse shaping for optimal control of multiphoton dissociation in a diatomic molecule using genetic algorithm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sitansh, E-mail: sitansh@research.iiit.ac.in [Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 (India); Singh, Harjinder, E-mail: harjinder.singh@iiit.ac.in [Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 (India)

    2011-11-18

    Graphical abstract: Application of genetic algorithm optimization to control dissociation process in the ground electronic state of HF molecule is demonstrated. Highlights: Black-Right-Pointing-Pointer Genetic algorithm optimization for the design of laser pulses. Black-Right-Pointing-Pointer Control of dissociation process in the ground electronic state of HF molecule. Black-Right-Pointing-Pointer Two types of pulses, one with fixed frequency components and the other having non-deterministic components. Black-Right-Pointing-Pointer Optimized laser fields possess simple time and frequency structures. - Abstract: We have applied genetic algorithm optimization for the design of laser pulses to control dissociation process in the ground electronic state of HF molecule, within the mathematical framework of optimal control theory. In order to design the experimentally feasible laser fields, we coded the small set of selected field parameters in the GA parameter space. Two types of pulses, one with fixed frequency components and the other having non-deterministic components have been designed. Optimized laser field obtained using this approach, possesses simple time and frequency structures. We show that the fields having non-deterministic frequency components lead to greater dissociation probability compared to the ones having deterministic frequency components.

  2. Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Rik Groenen

    2015-07-01

    Full Text Available The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO3 thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO3 stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10−2 mbars and 10−1 mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial pressure, the growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.

  3. Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Groenen, Rik; Smit, Jasper; Orsel, Kasper; Vailionis, Arturas; Bastiaens, Bert; Huijben, Mark; Boller, Klaus; Rijnders, Guus; Koster, Gertjan, E-mail: g.koster@utwente.nl [Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands)

    2015-07-01

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO{sub 3} thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO{sub 3} stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10{sup −2} mbars and 10{sup −1} mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial) pressure, the growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.

  4. Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay: STUD Pulses

    CERN Document Server

    Afeyan, Bedros

    2013-01-01

    Adaptive methods of laser irradiation of plasmas are proposed consisting of deterministic, `on-off' amplitude modulations in time, and intermittently changing speckle-patterns. These laser pulses consist of a series of picosecond time-scale spikes in a spike train of uneven duration and delay (STUD pulses), in contrast to hydrodynamic-time-scale modulated, multi-nanosecond pulses for laser fusion. Properly designed STUD pulses minimize backscatter and tame any absorptive parametric instability for a given set of plasma conditions, by adjusting the modulation periods, duty cycles and spatial hot-spot-distribution scrambling-rates of the spikes. Traditional methods of beam conditioning are subsumed or surpassed by STUD pulses. In addition, STUD pulses allow an advance in the control of instabilities driven by spatially overlapped laser beams by allowing the spikes of crossing beams to be temporally staggered. When the intensity peaks of one fall within the nulls of its crossing beam, it allows an on-off switch ...

  5. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    Science.gov (United States)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  6. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    Science.gov (United States)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  7. Time domain measuring system of molecular fluorescence with real-time monitor and control of pulsed dye laser

    Science.gov (United States)

    Taira, Y.; Suzuki, T.; Kato, H.; Konishi, N.; Kasuya, T.

    1982-04-01

    A computer controlled system is presented for a high-precision, time-domain measurement of molecular fluorescence induced by a pulsed dye laser field. In this system three intelligent functions are assembled by the system controller: they are an automatic wavelength control of pulsed dye laser to 0.45 GHz resolution, a digital wavelength meter of 10-7 precision, and a high-speed waveform digitizer with 10 ps inherent resolution. Then the system achieves a unique capability such as to record real-time data of fluorescence decay in the nanosecond regime under an on-line monitor and control of the laser wavelength to milliangstrom precision. The basic constitution and practical performance of the system are described with particular emphasis on its high precision and multi-task capability.

  8. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    Science.gov (United States)

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-04

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  9. Coherent control of ultracold molecule dynamics in a magneto-optical trap using chirped femtosecond laser pulses

    CERN Document Server

    Brown, B L; Walmsley, I A; Brown, Benjamin L.; Dicks, Alexander J.; Walmsley, Ian A.

    2005-01-01

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of 85Rb-2 and 87Rb-2 lowest triplet state molecules in contrast to comparable non-chirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  10. Coherent control of ultracold molecule dynamics in a magneto-optical trap by use of chirped femtosecond laser pulses.

    Science.gov (United States)

    Brown, Benjamin L; Dicks, Alexander J; Walmsley, Ian A

    2006-05-05

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of (85)Rb and (87)Rb(2) a(3)sigma(+)(u) molecules in contrast to comparable nonchirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  11. Ultrashort-pulse laser calligraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weijia; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, SO17 1BJ (United Kingdom); Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2008-10-27

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  12. Ultrashort-pulse laser calligraphy

    Science.gov (United States)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  13. Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses.

    Science.gov (United States)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-07-04

    Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.

  14. Double pulse laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changbum [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)], E-mail: chbkim@postech.ac.kr; Kim, Jin-Cheol B. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Kukhee [National Fusion Reserch Center, Daejeon 305-333 (Korea, Republic of); Ko, In Soo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Suk, Hyyong [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2007-10-22

    Two-dimensional simulation studies are performed for modified laser wakefield acceleration. After one laser pulse, another identical laser pulse is sent to the plasma to amplify the wake wave resonantly. The simulation results show that the number of injected electrons is bigger than that of the single pulse case and the beam energy is higher as well. In addition, increase of the transverse amplitude is noticed in the wake wave after the second laser pulse. This shows that the transverse motion of the wake wave enhances the wave breaking for strong injection and acceleration of electron beams.

  15. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, A. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Dörr, K. [Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Ward, T. Z.; Eres, G. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Christen, H. M.; Biegalski, M. D. [ORNL, Center for Nanophase Materials Sciences, Bethel Valley Road, Oak Ridge, Tennessee 37831-6496 (United States)

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  16. Phase-only shaped laser pulses in optimal control theory: Application to indirect photofragmentation dynamics in the weak-field limit

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels E.

    2012-01-01

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency...

  17. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, S. Y., E-mail: skalmykov2@unl.edu; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lehe, R.; Lifschitz, A. F. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau F-91761 (France)

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  18. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  19. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    Science.gov (United States)

    Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben

    2015-11-01

    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1-xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1-xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1-xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1-xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1-xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C-320 °C) on MgO using PLD. This offers a broad scope of various applications.

  20. Molecular wakes for ultrashort laser pulses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The molecular wake-assisted interaction between two collinear femotosecond laser pulses is investigated in air,which leads to the generation of a controllable 1.8 mJ super-continuum pulse with an elongated self-guided channel due to the cross-phase modulation of the impulsively aligned diatomic molecules in air. For two parallel launched femtosecond laser pulses with a certain spatial separation,controllable attraction and repulsion of the pulses are observed due to the counter-balance among molecular wakes,Kerr and plasma effects,where the molecular wakes show a longer interaction distance than the others to control the propagation of the intense ultrashort laser pulses.

  1. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  2. High-power pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  3. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  4. Complete control of a matter qubit using a single picosecond laser pulse

    CERN Document Server

    Kodriano, Y; Poem, E; Benny, Y; Presman, R; Truong, T A; Petroff, P M; Gershoni, D

    2012-01-01

    We demonstrate for the first time that a matter physical two level system, a qubit, can be fully controlled using one ultrafast step. We show that the spin state of an optically excited electron, an exciton, confined in a quantum dot, can be rotated by any desired angle, about any desired axis, during such a step. For this we use a single, resonantly tuned, picosecond long, polarized optical pulse. The polarization of the pulse defines the rotation axis, while the pulse detuning from a non-degenerate absorption resonance, defines the magnitude of the rotation angle. We thereby achieve a high fidelity, universal gate operation, applicable to other spin systems, using only one short optical pulse. The operation duration equals the pulse temporal width, orders of magnitude shorter than the qubit evolution life and coherence times.

  5. White-light generation control with crossing beams of femtosecond laser pulses.

    Science.gov (United States)

    Kolomenskii, A A; Strohaber, J; Kaya, N; Kaya, G; Sokolov, A V; Schuessler, H A

    2016-01-11

    We investigated the variations in generated white-light when crossing two femtosecond laser beams in a Kerr medium. By changing the relative delay of two interacting intense femtosecond laser pulses, we show that white-light generation can be enhanced or suppressed. With a decrease of the relative delay an enhancement of the white-light output was observed, which at even smaller delays was reverted to a suppression of white-light generation. Under choosen conditions, the level of suppression resulted in a white-light output lower than the initial level corresponding to large delays, when the pulses do not overlap in time. The enhancement of the white-light generation takes place in the pulse that is lagging. We found that the effect of the interaction of the beams depends on their relative orientation of polarization and increases when the polarizations are changed from perpendicular to parallel. The observed effects are explained by noting that at intermediate delays, the perturbations introduced in the path of the lagging beam lead to a shortening of the length of filament formation and enhancement of the white-light generation, whereas at small delays the stronger interaction and mutual rescattering reduces the intensity in the central part of the beams, suppressing filamentation and white-light generation.

  6. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  7. Coherent control of optical four-wave mixing by two-color $\\omega$-$3\\omega$ ultrashort laser pulses

    CERN Document Server

    Serrat, C

    2004-01-01

    A theoretical investigation on the phase control of optical transient four-wave mixing interactions in two-level systems driven by two intense temporal coherent femtosecond laser pulses of central angular frequencies $\\omega$ and $3\\omega$ is reported. By solving the full Maxwell-Bloch equations beyond the slowly-varying envelope and rotating-wave approximations in the time domain, the parametric nonlinear coupling to the optical field at frequency $5\\omega$ is found to depend critically on the initial relative phase $\\phi$ of the two propagating pulses; the coupling is enhanced when the pulses interfere constructively in the center ($\\phi=0$), while it is nearly suppressed when they are out of phase ($\\phi=\\pi$).

  8. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  9. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  10. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: fabio.villa@lnf.infn.it [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  11. Long-pulsed dye laser versus long-pulsed dye laser-assisted photodynamic therapy for acne vulgaris: A randomized controlled trial

    DEFF Research Database (Denmark)

    Haedersdal, M.; Togsverd, K.; Wiegell, S.R.;

    2008-01-01

    Background: Long-pulsed dye laser (LPDL)-assisted photodynamic therapy has been suggested to be superior to laser alone for acne vulgaris but no evidence is available. Objective: To evaluate the efficacy and safety of LPDL alone versus LPDL in photodynamic therapy with methylaminolevulinic acid...... (MAL-LPDL) for acne vulgaris. Methods: Fifteen patients received a series of 3 full-face LPDL treatments and half-face prelaser MAL treatments; the latter being randomly assigned to the left or right side. Results: Inflammatory lesions were reduced more on MAL-LPDL-treated than on LPDL-treated sides...... to draw conclusions about the efficacy of the LPDL, only about the efficacy of MAL-LPDL compared with LPDL alone. Conclusions: MAL-LPDL is slightly superior to LPDL for the treatment of inflammatory acne Udgivelsesdato: 2008/3...

  12. Laser-pulse-shape control of photofragmentation in the weak-field limit

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Dey, Diptesh; Henriksen, Niels Engholm

    2014-01-01

    We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible even in the (one-photon) weak-field limit starting from a single vibrational eigenstate. Thus, phase dependence in the interaction with a fixed energy...

  13. Phase-only shaped laser pulses in optimal control theory: application to indirect photofragmentation dynamics in the weak-field limit.

    Science.gov (United States)

    Shu, Chuan-Cun; Henriksen, Niels E

    2012-01-28

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.

  14. The luminescent carbon nanoparticles with controllable oxygen-related functional groups prepared by pulsed laser ablation in water

    Science.gov (United States)

    Zhang, Jun; Gan, Zhixing; Hu, Guang; Tang, Yalu; Zhou, Lei; Jiang, Qingsong; Cui, Yu

    2016-10-01

    Fluorescent carbon nanoparticles (CNPs) are obtained via pulsed laser ablation (PLA) of a carbon target immersed in deionized water. By tuning the laser power for PLA, the density of oxygen-related functional groups at the surfaces is controllable. While the crystallinities, sizes, morphologies and defects are nearly retained, the prepared CNPs show blue fluorescence under UV exposure and the photoluminescence (PL) intensities of the C-dots are dependent on the oxygen contents. Accordingly, the PL is attributed to the transition of electronic states caused by oxygen-related functional groups. This work sheds new light on the PL mechanism of CNPs and proposes an efficient way to prepare CNPs with controllable oxygen-related functional groups.

  15. Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial.

    Science.gov (United States)

    Klein, A; Buschmann, M; Babilas, P; Landthaler, M; Bäumler, W

    2013-08-01

    Telangiectatic leg veins (TLV) represent a common cosmetic problem. Near infrared lasers have been widely used in treatment because of their deeper penetration into the dermis, but with varying degrees of success, particularly because of different vessel diameters. Indocyanine green (ICG)-augmented diode laser treatment (ICG+DL) may present an alternative treatment option. This trial evaluates the efficacy of ICG+DL in the treatment of TLV and compares the safety and efficacy of therapy with the standard treatment, the long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser. In a prospective randomized controlled clinical trial, 29 study participants with TLV were treated with a Nd:YAG laser (λem = 1064 nm, 160-240 J cm(-2) , 65-ms pulse duration, 5-mm spot size) and ICG+DL (λem = 810 nm, 60-110 J cm(-2) , 48-87-ms pulse duration, 6-mm spot size; total ICG dose 4 mg kg(-1) ) in a side-by-side comparison in one single treatment setting that included histological examination in four participants. Two blinded investigators and the participants assessed clearance rate, cosmetic appearance and adverse events up to 3 months after treatment. According to both the investigators' and participants' assessment, clearance rates were significantly better after ICG+DL therapy than after Nd:YAG laser treatment (P treatment, participants rated ICG+DL therapy to be more painful (6·1 ± 2·0) than Nd:YAG laser (5·4 ± 2·0). ICG+DL therapy represents a new and promising treatment modality for TLV, with high clearance rates and a very good cosmetic outcome after one single treatment session. © 2013 British Association of Dermatologists.

  16. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  17. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Behrens, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Coffee, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Decker, F. -J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Emma, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Field, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helml, W. [Technische Univ. Munchen, Garching (Germany); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krejcik, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krzywinski, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lutman, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  18. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    Science.gov (United States)

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-06-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage.

  19. Growth control of oxygen stoichiometry in homoepitaxial SrTiO3 films by pulsed laser epitaxy in high vacuum.

    Science.gov (United States)

    Lee, Ho Nyung; Ambrose Seo, Sung S; Choi, Woo Seok; Rouleau, Christopher M

    2016-01-29

    In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well.

  20. Design of nanosecond pulse laser micromachining system based on PMAC

    Science.gov (United States)

    Liu, Mingyan; Fu, Xing; Xu, Linyan; Lin, Qian; Gu, Shuang

    2012-10-01

    Pulse laser micromachining technology, as a branch of laser processing technology, has been widely used in MEMS device processing, aviation, instruments fabrication, circuit board design etc.. In this paper, a novel nanosecond pulse laser micromachining system is presented, which consists of nanosecond pulse LASER, optical path mechanical structure, transmission system, motion control system. Nanosecond pulse UV laser, with 355 nm wavelength and 40ns pulse width, is chosen as the light source. Optical path mechanical structure is designed to get ideal result of laser focusing. Motion control system, combining PMAC card with the PC software, can control the 3-D motion platform and complete microstructure processing. By CCD monitoring system, researchers can get real-time detection on the effect of laser beam focusing and processing process.

  1. Controlled-Stress Large-Area Pulsed Laser Deposition of Yttria Stabilized Zirconia

    Science.gov (United States)

    2006-05-31

    a wide range of wavelengths from UV to IR. IR Carbon dioxide lasers, near–IR Nd:YAG lasers, HeNe red lasers, argon -ion green lasers, and UV excimer ...lines from argon , krypton, mercury, and xenon lamps . These lamps emitted light at multiple known wavelengths. The spectra from each lamp were

  2. Dynamics of laser-induced electroconvection pulses.

    Science.gov (United States)

    Giebink, N C; Johnson, E R; Saucedo, S R; Miles, E W; Vardanyan, K K; Spiegel, D R; Allen, C C

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/degrees C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10-20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left (right) side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches approximately 0.3. We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  3. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    Science.gov (United States)

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  4. Laser-Plasma Instability Control Using TPulse fixed vs Imax fixed Spike Trains of Uneven Duration and Delay: The Path to Green ICF Using STUD Pulses

    Science.gov (United States)

    Afeyan, Bedros; Hüller, Stefan; Meezan, Nathan; Hammer, Jim; Heebner, John

    2016-10-01

    We have studied the behavior of laser-plasma instabilities (LPI) as a function of seed noise (varied over seven orders of magnitude) and Rosenbluth gain exponent at the average intensity (varied over a decade) for structured laser beams with and without STUD pulse mitigation. We will show that for each section of the NIF ICF pulse, there are preferred configurations of STUD pulses, whether they be fixed duration of fixed peak intensity, so that maximum use is made of STUD pulse flexibility for LPI control. The duty cycle, hot spot scrambling rate, and cutting a hot spot into pieces (by switching the lasers on and off on the ps time scale), are the three main tools. We explore a variety of phase transitions in reflectivity behavior and in the amplification profile of plasma perturbations. We compare cases where amplification bursts are reinforced coherently or are healed, lead to brush fires or are tamed. The STUD pulse program is best suited for Green light implementation since Green offers higher bandwidth, more energy, and higher damage thresholds. We plan to test these ideas on the Jupiter Laser Facility at LLNL at the pair of 200J lasers level next. Work supported by a Grant from the DOE NNSA-FES Joint Program on HEDP and by LLNL.

  5. One laser pulse generates two photoacoustic signals

    OpenAIRE

    Gao, Fei; Feng, Xiaohua; Bai, Linyi; Zhang, Ruochong; Liu, Siyu; Ding, Ran; Kishor, Rahul; Zhao, Yanli; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying...

  6. Piezoelectric-transducer-based optoelectronic frequency synchronizer for control of pulse delay in a femtosecond passively mode-locked Ti:sapphire laser.

    Science.gov (United States)

    Un, Gong-Ru; Chang, Yung-Cheng; Liu, Tze-An; Pan, Ci-Ling

    2003-05-20

    We propose a piezoelectric transducer-(PZT-) based optoelectronic frequency synchronizer to control simultaneously change in the repetition rate, the relative pulse delay, and the phase noise of a passively mode-locked femtosecond Ti:sapphire laser with an intracavity saturable Bragg reflector absorber with respect to an electronic frequency reference. An optoelectronic phase-locked-loop-based PZT feedback controller with a proportional, integral, and differential (PID) circuit and a tunable voltage regulator is designed to achieve frequency synchronization, phase-noise suppression, and delay-time tuning. When the controlling voltage is tuned from -2.6 to 2.6 V, the maximum pulse-delay range, tuning slope, and tuning resolution of the laser pulse-train are 11.3 ns, 2.3 ps/mV, and 1.2 ps, respectively. Setting the gain constant of the PID circuit at 10 or larger causes the delay-time tuning function to be linearly proportional to the controlling voltage. In the delay-time tuning mode the uncorrelated single-side-band phase-noise density of the frequency-synchronized laser is approximately -120 dBc/Hz at an offset frequency of 5 kHz, which is only 7 dBc/Hz higher than that of the electrical frequency reference. The proposed system also supports linear,continuous switching,and programmable control of the delay time of Ti:sapphire laser pulses when they are frequency synchronized to external reference clocks.

  7. Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses.

    Science.gov (United States)

    Ma, Guangjin; Yu, Wei; Yu, M Y; Luan, Shixia; Wu, Dong

    2016-05-01

    The effect of a transient magnetic field on right-hand circularly polarized (RHCP) laser light propagation in overcritical-density plasma is investigated. When the electron gyrofrequency is larger than the wave frequency, RHCP light can propagate along the external magnetic field in an overcritical density plasma without resonance or cutoff. However, when the magnetic field falls to below the cyclotron resonance point, the propagating laser pulse will be truncated and the local plasma electrons resonantly heated. Particle-in-cell simulation shows that when applied to a thin slab, the process can produce intense two-cycle light pulses as well as long-lasting self-magnetic fields.

  8. Selective laser melting of copper using ultrashort laser pulses

    Science.gov (United States)

    Kaden, Lisa; Matthäus, Gabor; Ullsperger, Tobias; Engelhardt, Hannes; Rettenmayr, Markus; Tünnermann, Andreas; Nolte, Stefan

    2017-09-01

    Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 {μ }m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.

  9. Progress in time transfer by laser pulses

    Science.gov (United States)

    Li, Xin; Yang, Fu-Min

    2004-03-01

    Time transfer by laser pulses is based on the propagation of light pulses between satellite and ground clocks or between remote clocks on earth. It will realize the synchronization of these clocks with high accuracy and stability. Several experiments of the time transfer by laser pulses had been successfully carried out in some countries. These experiments validate the feasibility of the synchronization of clocks by laser pulses. The paper describes the results of these experiments. The time comparison by laser pulses between atomic clocks on aircraft and ground ones in the United States, and the LASSO and T2L2 projects in France are introduced in detail.

  10. Ultrashort Laser Pulses in Biology and Medicine

    CERN Document Server

    Braun, Markus; Zinth, Wolfgang

    2008-01-01

    Sources of ultrashort laser pulses are nowadays commercially available and have entered many areas of research and development. This book gives an overview of biological and medical applications of these laser pulses. The briefness of these laser pulses permits the tracing of the fastest processes in photo-active bio-systems, which is one focus of the book. The other focus is applications that rely on the high peak intensity of ultrashort laser pulses. Examples covered span non-linear imaging techniques, optical tomography, and laser surgery.

  11. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    Science.gov (United States)

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  12. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, G.; Blank, D.H.A.

    2004-01-01

    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets t

  13. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  14. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  15. Formation of the active medium in high-power repetitively pulsed gas lasers pumped by an electron-beam-controlled discharge

    Science.gov (United States)

    Bulaev, V. D.; Lysenko, S. L.

    2015-07-01

    A high-power repetitively pulsed e-beam-controlled discharge CO2 laser is simulated numerically; the simulation results are compared with experimental data. Optimal sizes and design of electrodes and configuration of the external magnetic field are found, which allow one to introduce no less than 90% electric pump energy into a specified volume of the active medium, including the active volume of a laser with an aperture of 110 × 110 cm. The results obtained can also be used to design other types of highpower gas lasers.

  16. Subthreshold pair production in short laser pulses

    OpenAIRE

    Nousch, T.; Seipt, D.; Kampfer, B.; Titov, A. I.

    2012-01-01

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is develo...

  17. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  18. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  19. Controlled modification of biomolecules by ultrashort laser pulses in polar liquids

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2017-01-01

    -photosensitive peptides and proteins in polar liquids under room conditions. The principal modifications included lysine formylation and methionine sulfoxidation both of which occur with nearly 100% yield under atmospheric conditions. That modification occurred only if the laser irradiance exceeded certain threshold...

  20. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  1. Enhanced metallic properties of SrRuO3 thin films via kinetically controlled pulsed laser epitaxy

    Science.gov (United States)

    Thompson, J.; Nichols, J.; Lee, S.; Ryee, S.; Gruenewald, J. H.; Connell, J. G.; Souri, M.; Johnson, J. M.; Hwang, J.; Han, M. J.; Lee, H. N.; Kim, D.-W.; Seo, S. S. A.

    2016-10-01

    Metal electrodes are a universal element of all electronic devices. Conducting SrRuO3 (SRO) epitaxial thin films have been extensively used as electrodes in complex-oxide heterostructures due to good lattice mismatches with perovskite substrates. However, when compared to SRO single crystals, SRO thin films have shown reduced conductivity and Curie temperatures (TC), which can lead to higher Joule heating and energy loss in the devices. Here, we report that high-quality SRO thin films can be synthesized by controlling the plume dynamics and growth rate of pulsed laser epitaxy (PLE) with real-time optical spectroscopic monitoring. The SRO thin films grown under the kinetically controlled conditions, down to ca. 16 nm in thickness, exhibit both enhanced conductivity and TC as compared to bulk values, due to their improved stoichiometry and a strain-mediated increase of the bandwidth of Ru 4d electrons. This result provides a direction for enhancing the physical properties of PLE-grown thin films and paves a way to improved device applications.

  2. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  3. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  4. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  5. Combinatorial Matrix Assisted Pulsed Laser Evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Sima, F., E-mail: felix.sima@inflpr.ro [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Axente, E.; Iordache, I.; Luculescu, C. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Gallet, O. [ERRMECE, Cergy-Pontoise University, Cergy-Pontoise (France); Anselme, K. [IS2M, CNRS UMR7361, Haute-Alsace University, Mulhouse (France); Mihailescu, I.N. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania)

    2014-07-01

    Defined protein quantities were embedded in situ in a biodegradable polymer coating during simultaneous laser vaporization of two targets. Fibronectin (FN) and poly-DL-lactide (PDLLA) were transferred and immobilized concomitantly by Combinatorial Matrix Assisted Pulsed Laser Evaporation onto solid substrates. The film surface with gradient of composition was characterized by optical, scanning electron microscopy and profilometry. Micrometric FN packages were visualized in the polymeric matrix by confocal microscopy. The composition of FN was investigated by FTIR and μFTIR analyses in a polymeric matrix with different thickness.

  6. Initial state-specific photodissociation dynamics of pyrrole via 1 π σ ∗/ S 0 conical intersection initiated with optimally controlled UV-laser pulses

    Science.gov (United States)

    Nandipati, K. R.; Kanakati, Arun Kumar; Singh, H.; Lan, Z.; Mahapatra, S.

    2017-09-01

    Optimal initiation of quantum dynamics of N-H photodissociation of pyrrole on the S 0-1 π σ ∗(1 A 2) coupled electronic states by UV-laser pulses in an effort to guide the subsequent dynamics to dissociation limits is studied theoretically. Specifically, the task of designing optimal laser pulses that act on initial vibrational states of the system for an effective UV-photodissociation is considered by employing optimal control theory. The associated control mechanism(s) for the initial state dependent photodissociation dynamics of pyrrole in the presence of control pulses is examined and discussed in detail. The initial conditions determine implicitly the variation in the dissociation probabilities for the two channels, upon interaction with the field. The optimal pulse corresponds to the objective fixed as maximization of overall reactive flux subject to constraints of reasonable fluence and quantum dynamics. The simple optimal pulses obtained by the use of genetic algorithm based optimization are worth an experimental implementation given the experimental relevance of π σ ∗-photochemistry in recent times.

  7. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  8. Subthreshold pair production in short laser pulses

    CERN Document Server

    Nousch, T; Kampfer, B; Titov, A I

    2012-01-01

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  9. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  10. Pulse number controlled laser annealing for GeSn on insulator structure with high substitutional Sn concentration

    Science.gov (United States)

    Moto, Kenta; Matsumura, Ryo; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2016-06-01

    Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (˜2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge1-xSnx (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (˜5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibrium growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ˜12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.

  11. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  12. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DEFF Research Database (Denmark)

    Thomas, Esben Folger; Henriksen, Niels Engholm

    2016-01-01

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within...

  13. Picosecond Pulse Laser Microstructuring of silicon

    Institute of Scientific and Technical Information of China (English)

    赵明; 尹钢; 朱京涛; 赵利

    2003-01-01

    We report the experimental results of picosecond pulse laser microstructuring (pulse duration 35ps, wavelength 1.06μm, repetition rate 10Hz) of silicon using the direct focusing technique. Arrays of sharp conical spikes located below the initial surface have been formed by cumulative picosecond pulsed laser irradiation of silicon in SF6. Irradiation of silicon surface in air, N2, or vacuum creates ripple-like patterns, but does not create the sharp conical spikes.

  14. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  15. Pulsed pumping of semiconductor disk lasers.

    Science.gov (United States)

    Hempler, Nils; Hopkins, John-Mark; Kemp, Alan J; Schulz, Nico; Rattunde, Marcel; Wagner, Joachim; Dawson, Martin D; Burns, David

    2007-03-19

    Efficient operation of semiconductor disk lasers is demonstrated using uncooled and inexpensive 905nm high-power pulsed semiconductor pump lasers. Laser emission, with a peak power of 1.7W, is obtained from a 2.3mum semiconductor disk laser. This is seven times the power achieved under continuous pumping. Analysis of the time-dependent spectral characteristics of the laser demonstrate that significant device heating occurs over the 100-200ns duration of the pumping pulse - finite element modelling of the thermal processes is undertaken in support of these data. Spectral narrowing to below 0.8nm is obtained by using an intra-cavity birefringent filter.

  16. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  17. High-power picosecond laser pulse recirculation.

    Science.gov (United States)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  18. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Science.gov (United States)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  19. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Shalloo, R.J., E-mail: robert.shalloo@physics.ox.ac.uk; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S.M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  20. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control

    Science.gov (United States)

    Zhao, Weiwei; Li, Xiaowei; Xia, Bo; Yan, Xueliang; Han, Weina; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    Microholes drilling has attracted extensive research efforts for its broad applications in photonics, microfluidics, optical fibers and many other fields. A femtosecond (fs) laser is a promising tool for high-precision materials processing with reduced recast/microcracks and minimized heat affected zones. But there remain many challenges in hole drilling using conventional fs laser with Gaussian beams, such as low aspect ratio and taper effects. We report small-diameter and high-aspect-ratio microholes with taper free drilling in PMMA (polymethyl methacrylate) using single-pulse fs laser Bessel beams. Axicon is used to transform Gaussian beams into Bessel beams, which then irradiate in the sample by a telescope consisting of plano-convex lens and microscope objective. Using this technique, we enhance the aspect ratio of microholes by 55 times as compared with Gaussian beams. We attribute this high aspect ratio and high quality microholes formation to the unique spatial intensity distribution and propagation stability of Bessel beams, which can effectively adjust the transient localized electron density distribution leading to a long and uniform localized-interacted zone. By using the optimized pulse energy and focal depth position, the microholes diameter ranges between 1.4-2.1 μm and the aspect ratio can exceed 460. This efficient technique is of great potentials for fabrication of microphotonics devices and microfluidics.

  1. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  2. Laser sclerostomy by pulsed-dye laser and goniolens

    Energy Technology Data Exchange (ETDEWEB)

    Latina, M.A.; Dobrogowski, M.; March, W.F.; Birngruber, R. (Massachusetts General Hospital, Boston (USA))

    1990-12-01

    We describe an ab-interno laser sclerostomy procedure using the method termed dye-enhanced ablation with a slit-lamp delivery system and special goniolens such that only the laser light beam penetrates the anterior chamber. The procedure uses a microsecond-pulsed-dye laser emitting at 666 nm and iontophoresis of methylene blue dye (absorption of 668 nm) into the sclera at the limbus to enhance the absorption of the laser light. We compared the number of pulses needed to perforate excised human sclera at pulse durations of 1.5, 20, and 300 microseconds. Pulse durations of 1.5 and 20 microseconds required 20 pulses or fewer to perforate excised human sclera with pulse energies of 75 to 100 mJ. The ab-interno laser sclerostomy procedure was performed in 54 eyes of Dutch-belted rabbits with pulse durations of 1.5 or 20 microseconds and a 100- or 200-microns incident spot diameter delivered using a CGF goniolens. Full-thickness fistulas were successfully created at both pulse durations in approximately 80% of eyes treated. A range of three to 25 pulses was required to perforate sclera with slightly fewer pulses and lower pulse energies at 1.5 microseconds compared with 20 microseconds. There were no significant complications from the procedure. This technique could permit filtration surgery to be performed on an outpatient basis.

  3. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  4. Controlling of Slope of Carrier-Envelope Phase of Few-Cycle Laser Pulses on Propagation Distance near the Focus

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-Heng; JIANG Hong-Bing; GONG Qi-Huang

    2007-01-01

    The effect of focusing geometry on slope of carrier-envelope (CE) phase φCE versus propagation distance from the focus in few-cycle laser pulses is investigated. The slope could be adjusted by changing the distance L between the waist of the incident beam and the lens. At the focus,(δ)φCE/(δ)(z/zR) = 0 when L = 0, and (δ)φCE/(δ)(z/zR) = -2 when L = ∞. The longer the distance L, the steeper the curve of the CE phase at the focus.

  5. Pulsed laser deposition of nanostructured Ag films

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Tony [School of Physics, Trinity College, Dublin 2 (Ireland); Doggett, Brendan [School of Physics, Trinity College, Dublin 2 (Ireland); Lunney, James G. [School of Physics, Trinity College, Dublin 2 (Ireland)]. E-mail: jlunney@tcd.ie

    2006-04-30

    Ultra-thin (0.5-5 nm) films of Ag have been prepared by pulsed laser deposition in vacuum using a 26 ns KrF excimer laser at 1 J cm{sup -2}. The deposition was controlled using a Langmuir ion probe and a quartz crystal thickness monitor. Transmission electron microscopy showed that the films are not continuous, but are structured on nanometer size scales. Optical absorption spectra showed the expected surface plasmon resonance feature, which shifted to longer wavelength and increased in strength as the equivalent film thickness was increased. It is shown that Maxwell Garnett effective medium theory can be used to calculate the main features of optical absorption spectra.

  6. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  7. Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-03-15

    Taking advantage of a new technique, we have monitored the relative variations of time duration and mode size as a function of the pulse energy for 30-ps-long Nd:YAG laser pulses. In particular, by carrying out a statistical analysis, we have observed that the pulse time duration is an increasing function of the pulse energy, according to the theoretical modeling of passively mode-locked lasers. The measurements can be easily extended to the femtosecond regime.

  8. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    Energy Technology Data Exchange (ETDEWEB)

    Schultze, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Goulielmakis, E [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Uiberacker, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Hofstetter, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Kim, J [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, D [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Krausz, F [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Kleineberg, U [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany)

    2007-07-15

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 10{sup 6} photons/pulse at {approx}100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum-silicon (Mo/Si) mirror.

  9. Isolated sub-10 attosecond pulse generation by a 6-fs driving pulse and a 5-fs subharmonic controlling pulse

    Directory of Open Access Journals (Sweden)

    Yunhui Wang

    2012-06-01

    Full Text Available We theoretically study high-order harmonic generation by quantum path control in a special two-color laser field, which is synthesized by a 6 fs/800 nm fundamental pulse and a weaker 5 fs/1600 nm subharmonic controlling pulse. Single quantum path is selected without optimizing any carrier phase, which not only broadens the harmonic bandwidth to 400 eV, but also enhances the harmonic conversion efficiency in comparison with the short-plus-long scheme, which is based on 5 fs/800 nm driving pulse and 6 fs/1600 nm control pulse. An isolated 8-attosecond pulse is produced with currently available ultrafast laser sources.

  10. Femtosecond laser control of chemical reactions

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-08-31

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  11. Evolution Strategies for Laser Pulse Compression

    NARCIS (Netherlands)

    Monmarché, Nicolas; Fanciulli, Riccardo; Willmes, Lars; Talbi, El-Ghazali; Savolainen, Janne; Collet, Pierre; Schoenauer, Marc; van der Walle, P.; Lutton, Evelyne; Back, Thomas; Herek, Jennifer Lynn

    2008-01-01

    This study describes first steps taken to bring evolutionary optimization technology from computer simulations to real world experimentation in physics laboratories. The approach taken considers a well understood Laser Pulse Compression problem accessible both to simulation and laboratory experiment

  12. Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition

    OpenAIRE

    Sanz, Mikel; Oujja, M.; Rebollar, Esther; Marco, J.F.; Figuera, Juan de la; Monti, Matteo; Bollero, A.; Camarero, J.; Pedrosa, Francisco J.; García-Hernández, M; Castillejo, Marta

    2013-01-01

    Pulsed laser deposition (PLD) is a versatile technique for the fabrication of nanostructures due to the possibilities it offers to control size and shape of nanostructured deposits by varying the laser parameters. Magnetite nanostructures are currently promising materials to be used in computing, electronic devices and spintronic applications. For all these uses the fabrication of uniform nanostructured pure magnetite thin films is highly advantageous. In PLD of magnetite, the laser irradiati...

  13. Pulsed lasers in dentistry: sense or nonsense?

    Science.gov (United States)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  14. Single quantum path control by a fundamental chirped pulse combined with a subharmonic control pulse

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tianshu, E-mail: tschu008@163.com [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer HHG spectra and attosecond pulse generation from a model He atom. Black-Right-Pointing-Pointer Two-color laser field of a chirped fundamental pulse and a subharmonics control pulse. Black-Right-Pointing-Pointer Single quantum path selection by {beta} = 4.55 chirp pulse and the zero-phase 2000 nm control pulse. Black-Right-Pointing-Pointer Formation of 337 eV supercontinuum region and generation of 39 as pulse. -- Abstract: In this paper, we study the issue of single quantum path control and its role in attosecond pulse generation. By carrying out the time-dependent Schroedinger equation analysis for the harmonic emission from a single He atom irradiated by the two-color laser field, consisting of a short 800 fundamental chirped pulse and a subharmonic 800-2400 nm control pulse, we find that the most favorable condition for attosecond generation is at the fundamental chirp parameter {beta} = 4.55 together with the zero-phase 2000 nm control pulse, in which the single quantum path (short quantum path) is selected to contribute to the harmonic spectrum exhibiting an ultrabroad supercontinuum of a 337 eV bandwidth. Finally, an isolated attosecond pulse as short as 39 as is thus generated directly.

  15. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    decade, large-area PLD grown YBa2Cu3O7-δ thin films became a reality for applications in microwave filters for satellite and mobile communication. The material systems that could be covered under the PLD gamut extended to almost all oxides, nitrides and even organics. A second textbook exclusively dedicated to PLD was edited by Rob Eason in 2007 [4], reviewing many possible modifications and extensions of the method. To celebrate 25 years of pulsed laser deposition, Venkatesan organized a symposium on 'Recent Advances in the Pulsed Laser Deposition of Thin Films and Nanostructures' in 2013 [5]. Besides dielectric, ferroelectric and magnetic oxides, the wide-bandgap group II-VI semiconductor ZnO is among the most intensively researched compounds during the last decade. Therefore, this material has become the subject of two introductory reviews in this issue by Opel et al and Tsukazaki et al , to show the state-of-the-art work carried out on ZnO thin films to 2013. The detailed insights into growth parameter control and their impact on the ZnO film performance make both reviews highly instructional not only for specialists, but also for beginners in PLD. The perspective of PLD towards industrial applications largely depends, first, on the ability of the excimer laser suppliers to further increase the laser power and, second, on the deposition schemes to distribute the ablated material homogeneously on technologically relevant substrate areas (8-inch diameter). These developments are explained here by the leading companies dealing with high-power excimer lasers and large-area PLD equipment, such as Coherent Laser Systems GmbH, PVD Products, Inc., and SolMateS B.V. It is also important to note the efforts made by Blank and Rijnders for atomic layer control of PLD by in situ high-pressure reflection high-energy electron diffraction (RHEED), which is now adopted by many groups worldwide. The potential of multi-beam PLD for advanced optical waveguides and of advanced design

  16. Pulse power for lasers; Proceedings of the Meeting, Los Angeles, CA, Jan. 13, 14, 1987

    Science.gov (United States)

    Burkes, Tommy R.

    Papers are presented on high energy lasers which use advanced thyratron switches; pulsed power for repetitively pulsed high power discharge lasers; Nova pulse power design and operation; the power oscillator circuit modeling and redesign of the particle beam fusion accelerator II switch trigger laser; and a compact, efficient, solid-state flashlamp modulator. Topics discussed include the effects of laser discharge impedance on circuit designs; pulsed power for high power electron-beam pumped lasers; a pulse forming network of low inductance and large energy storage density; an integrated high efficiency switched mode laser power supply; and a parallel thyratron pulser with magnetic sharpening for large NgBr lasers. Consideration is given to the gating of thyristors; high repetition rate pseudospark switches for laser applications; the use of the molecular photoelectron-detachment and photodissociation process to switch electron conduction current; electron beam and optical control of bulk semiconductor switches; and scaling pulse generators for lasers.

  17. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  18. Drop Shaping by Laser-Pulse Impact

    NARCIS (Netherlands)

    Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.E.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H.

    2015-01-01

    We show how the deposition of laser energy induces propulsion and strong deformation of an absorbing liquid body. Combining high speed with stroboscopic imaging, we observe that a millimeter-sized dyed water drop hit by a millijoule nanosecond laser pulse propels forward at several meters per second

  19. Controlling the rotation of asymmetric top molecules by the combination of a long and a short laser pulse

    DEFF Research Database (Denmark)

    Viftrup, Simon S.; Kumarappan, Vinod; Holmegaard, Lotte

    2009-01-01

    solution of the time-dependent    Schrodinger equation, are in good agreement with the experimental    findings and serve to unravel the underlying physical mechanism of the    observations. The experiments and theory explore the influence of the    laser parameters on the rotational control, in particular...

  20. Coupling coefficient for TEA CO2 laser propulsion with variable pulse repetition rate

    Institute of Scientific and Technical Information of China (English)

    Yijun Zheng; Rongqing Tan; Donglei Wang; Guang Zheng; Changjun Ke; Kuohai Zhang; Chongyi Wan; Jin Wu

    2006-01-01

    @@ Because pulse repetition rate affected directly the momentum coupling coefficient of transversely excited atmospheric (TEA) CO2 laser propulsion, a double pulse trigger, controlling high voltage switch of laser excitation circuit, was designed. The pulse interval ranged between 5 and 100 ms. The momentum coupling coefficient for air-breathing mode laser propulsion was studied experimentally. It was found that the momentum coupling coefficient decreased with the pulse repetition rate increasing.

  1. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Uccello, A., E-mail: andrea.uccello@mail.polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Maffini, A., E-mail: alessandro.maffini@mail.polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Dellasega, D., E-mail: david.dellasega@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy); Passoni, M., E-mail: matteo.passoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy)

    2013-10-15

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results.

  2. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Science.gov (United States)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  3. Spectrotemporal shaping of seeded free-electron laser pulses.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-09-11

    We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  4. Development of all solid-state, high average power ultra-short pulse laser for X-ray generation. High average power CPA system and wavefront control of ultra short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Sayaka; Akaoka, Katsuaki; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Maruyama, Yoichiro; Matoba, Toru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We developed a prototype CPA laser system which is pumped by a all solid-state Nd:YAG laser. In a preliminary experiment, the output energy of 52mJ before compression was obtained when the pumping energy was 250mJ. To compensate the wavefront distortion, an adaptive optics has been developed. By using this wavefront control system, the laser beam with the distortion of 0.15{lambda} was obtained. (author)

  5. Ultra-short pulse laser proton acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zeil, Karl; Kraft, Stephan; Bussmann, Michael; Cowan, Thomas; Kluge, Thomas; Metzkes, Josefine; Richter, Tom; Schramm, Ulrich [Forschungszentrum Dresden-Rossendorf, Dresden (Germany)

    2010-07-01

    We present a systematic investigation of ultra-short pulse laser acceleration of protons yielding unprecedented maximum proton energies of 17 MeV using the Ti:Sapphire lased high power laser of 100 TW Draco at the Research Centre Dresden-Rossendorf. For plain few micron thick foil targets a linear scaling of the maximum proton energy with laser power is observed and attributed to the short acceleration period close to the target rear surface. Although excellent laser pulse contrast was available slight deformations of the target rear were found to lead to a predictable shift of the direction of the energetic proton emission away from target normal towards the laser direction. The change of the emission characteristics are compared to analytical modelling and 2D PIC simulations.

  6. Comparison of 532 nm Potassium Titanyl Phosphate Laser and 595 nm Pulsed Dye Laser in the Treatment of Erythematous Surgical Scars: A Randomized, Controlled, Open-Label Study.

    Science.gov (United States)

    Keaney, Terrence C; Tanzi, Elizabeth; Alster, Tina

    2016-01-01

    The pulsed dye laser (PDL) has long been used for treatment of erythematous and hypertrophic scars. Its effectiveness has been attributed in large part to its vascular-specificity. The vascular-specific potassium titanyl phosphate (KTP) laser has also been reported to be clinically effective for scars, but has not been compared to the PDL. To compare the safety and clinical efficacy of a 532-nm KTP laser versus a 595-nm PDL in improving the appearance of erythematous surgical scars. Twenty patients with matched bilateral erythematous surgical scars or a single linear erythematous scar measuring longer than 5 cm were enrolled in the study. Single scars were divided into equal halves with each half randomized to receive 3 successive treatments at 6-week intervals with either a 532-nm KTP laser (Excel V; Brisbane, CA) or a 595-nm PDL (Cynergy; Cynosure Inc., Chelmsford, MA) at equivalent laser parameters. Bilateral matched scars were similarly randomized to receive three 532-nm KTP or 595-nm PDL treatments. Clinical efficacy was evaluated 12 weeks after the third (final) laser treatment by independent, blinded photographic scar assessments. Secondary evaluations included final investigator and subject treatment/satisfaction assessments, Vancouver scar scale (VSS) scores, subject scar symptoms, intraoperative pain scores, and incidence of side effects. Clinical improvement of erythematous surgical scars was observed with both 532-nm KTP and 595-nm PDL systems. No statistically significant differences between the 2 treatment arms were noted in the independent, blinded photographic scar assessments, investigator and subject treatment/satisfaction assessments, subject scar symptoms, and intraoperative pain scores. The KTP arm produced statistically significant improvement for the vascularity component of the VSS only. Side effects were limited to mild treatment discomfort and minimal transient post-treatment erythema and purpura. No vesiculation, infection, scarring or

  7. Synchronization and Coherent Combining of Two Pulsed Fiber Ring Lasers Based on Direct Phase Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lin; ZHOU Pu; MA Hao-Tong; CHEN Zi-Lun; LI Xiao; XU Xiao-Jun; LIU Ze-Jin

    2009-01-01

    We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55 μJ pulse energy and 10μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.

  8. Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator

    Science.gov (United States)

    Takada, A.; Sato, K.; Saruwatari, M.; Yamamoto, M.

    1994-05-01

    Actively modelocked pulses are generated from a 1.59 micron MQW laser integrated with an MQW electroabsorption modulator driven at the monolithic cavity frequency. The pulse width is controlled from 39 ps to 0.55 ps by changing the inverse bias voltage applied to the electroabsorption modulator and by linear pulse compression using a fiber.

  9. Drop shaping by laser-pulse impact

    CERN Document Server

    Klein, Alexander L; Visser, Claas Willem; Lhuissier, Henri; Sun, Chao; Snoeijer, Jacco H; Villermaux, Emmanuel; Lohse, Detlef; Gelderblom, Hanneke

    2015-01-01

    We study the hydrodynamic response of a falling drop hit by a laser pulse. Combining high-speed with stroboscopic imaging we report that a millimeter-sized dyed water drop hit by a milli-Joule nanosecond laser-pulse deforms and propels forward at several meters per second, until it eventually fragments. We show that the drop motion results from the recoil momentum imparted at the drop surface by water vaporization. We measure the propulsion speed and the time-deformation law of the drop, complemented by boundary integral simulations. We explain the drop propulsion and shaping in terms of the laser pulse energy and drop surface tension. These findings are crucial for the generation of extreme ultraviolet (EUV) light in lithography machines.

  10. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  11. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  12. Multiple quantum wells for passive ultra short laser pulse generation

    CERN Document Server

    Quintero-Torres, R; Rodriguez-Rodriguez, E; Stintz, Andreas; Diels, Jean-Claude

    2007-01-01

    Solid state lasers are demanding independent control in the gain media and cavity loss to achieve ultra short laser pulses using passive mode-locking. Recently, laser mode-locking is achieved with a MBE structure with multiple quantum wells, designed to achieve two functions; Bragg mirror and changes in absorption to control the cavity dynamics. The use of an AlGaAs/AlAs Bragg mirror with a 15 nm GaAs saturable absorber used in a Cr:LiSAF tuneable laser proved to be effective to produce femtosecond pulses. The use of saturable absorbers thus far is a trial and error procedure that is changing due to the correlation with more predictive procedures.

  13. Thrust Measurement of Laser Detonation Thruster with a Pulsed Glass Laser

    Science.gov (United States)

    Wang, Bin; Han, Taro; Michigami, Keisuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-11-01

    Experimental studies were carried out for measuring the laser propulsion thrust with using of a Q-switched Nd:Glass laser. In the tests, a laser beam with 33 ns FWHM pulse width was focused to generate breakdown in the cone-shaped nozzle of aluminum thrusters which were fixed at the end of a ballistic pendulum. The pulse energy used was 1.0 J and the focusing number is 6.27, which gave the highest energy conversion efficiency from laser energy to that of induced blast wave as found in previous research. The momentum coupling coefficient Cm dependency on nozzle apex angles, 30°, 45° and 60°, were investigated with carefully controlling of the laser ignition positions. Results show that, solid-state laser could be a candidate to suffice laser propulsion missions in term of Cm it can achieve.

  14. A power ramped pulsed mode laser piercing technique for improved CO 2 laser profile cutting

    Science.gov (United States)

    Tirumala Rao, B.; Ittoop, M. O.; Kukreja, L. M.

    2009-11-01

    Laser piercing is one of the inevitable requirements of laser profile cutting process and it has a direct bearing on the quality of the laser cut profiles. We have developed a novel power ramped pulsed mode (PRPM) laser piercing technique to produce much finer pierced holes and to achieve a better control on the process parameters compared to the existing methodology based on normal pulsed mode (NPM). Experiments were carried out with both PRPM and NPM laser piercing on 1.5-mm-thick mild steel using an in-house developed high-power transverse flow continuous wave (CW)-CO 2 laser. Significant improvements in the spatter, circularity of the pierced hole and reproducibility were achieved through the PRPM technique. We studied, in detail, the dynamics of processes involved in PRPM laser piercing and compared that with those of the NPM piercing.

  15. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  16. Ceramic dentures manufactured with ultrashort laser pulses

    Science.gov (United States)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  17. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  18. Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial.

    Science.gov (United States)

    Leal-Junior, Ernesto Cesar Pinto; Johnson, Douglas Scott; Saltmarche, Anita; Demchak, Timothy

    2014-11-01

    Phototherapy with low-level laser therapy (LLLT) and light-emitting diode therapy (LEDT) has arisen as an interesting alternative to drugs in treatments of musculoskeletal disorders. However, there is a lack of studies investigating the effects of combined use of different wavelengths from different light sources like lasers and light-emitting diodes (LEDs) in skeletal muscle disorders. With this perspective in mind, this study aimed to investigate the effects of phototherapy with combination of different light sources on nonspecific knee pain. It was performed a randomized, placebo-controlled, double-blinded clinical trial. Eighty-six patients rated 30 or greater on the pain visual analogue scale (VAS) were recruited and included in study. Patients of LLLT group received 12 treatments with active phototherapy (with 905 nm super-pulsed laser and 875 and 640 nm LEDs, Manufactured by Multi Radiance Medical, Solon, OH, USA) and conventional treatment (physical therapy or chiropractic care), and patients of placebo group were treated at same way but with placebo phototherapy device. Pain assessments (VAS) were performed at baseline, 4th, 7th, and 10th treatments, after the completion of treatments and at 1-month follow-up visit. Quality of life assessments (SF-36®) were performed at baseline, after the completion of treatments and at 1-month follow-up visit. Our results demonstrate that phototherapy significantly decreased pain (p physical component summary at posttreatments and follow-up assessments compared to placebo. We conclude that combination of super-pulsed laser, red and infrared LEDs is effective to decrease pain and improve quality of life in patients with knee pain.

  19. Route to the minimum pulse duration in normal-dispersion fiber lasers

    Science.gov (United States)

    Chong, Andy; Renninger, William H.; Wise, Frank W.

    2011-01-01

    The factors that control the pulse duration in all-normal-dispersion lasers are identified. To minimize the pulse duration, the cavity dispersion should be as small as possible. For fixed dispersion, increasing pulse energy leads to shorter, but more-structured, pulses. Experiments performed with ordinary single-mode fiber at 1 μm wavelength agree reasonably with numerical simulations, and produce clean ~80-fs pulses. The simulations indicate that 30-fs pulses can be reached at higher energies. PMID:19015693

  20. Control of the magnetic properties of LaMnO3 epitaxial thin films grown by Pulsed Laser Deposition

    Science.gov (United States)

    Martinez, Benjamin; Roqueta, Jaume; Pomar, Alberto; Balcells, Lluis; Frontera, Carlos; Konstantinovic, Zorica; Sandiumenge, Felip; Santiso, Jose; Advanced materials characterization Team; Thin films growth Team

    2015-03-01

    LaMnO3 (LMO), the parent compound of colossal magnetoresistance based manganites has gained renewed attention as a building block in heterostructures with unexpected properties. In its bulk phase, stoichiometric LMO is an A-type antiferromagnetic (AFM) insulator (TN = 140K) with orthorhombic structure that easily accommodate an oxygen excess by generating cationic (La or Mn) vacancies. As a result, a fraction of Mn 3+ changes to Mn 4+ leading to a double-exchange mediated ferromagnetic (FM) behavior. In thin films the AFM phase has been elusive up to now and thin films with FM ordering are usually reported. In this work, we have systematically studied the growth process of LaMnO3 thin films by pulsed laser deposition on SrTiO3 (001) substrates under different oxygen partial pressures (PO2) . A close correlation between the structure (explored by XRD) and the magnetic properties (SQUID measurements) of the films with PO2 has been identified. At high PO2 FM behavior is observed. In contrast, at very low PO2, the results obtained for unit cell volume (close to stoichiometric bulk values) and magnetic moment (0.2 μB/Mn) strongly indicate antiferromagnetic ordering. We acknowledge financial support from the Spanish MINECO (MAT2012-33207).

  1. Selective growth of epitaxial Sr2IrO4 by controlling plume dimensions in pulsed laser deposition

    Science.gov (United States)

    Seo, S. S. A.; Nichols, J.; Hwang, J.; Terzic, J.; Gruenewald, J. H.; Souri, M.; Thompson, J.; Connell, J. G.; Cao, G.

    2016-11-01

    We report that epitaxial Sr2IrO4 thin-films can be selectively grown using pulsed laser deposition (PLD). Due to the competition between the Ruddlesden-Popper phases of strontium iridates (Srn+1IrnO3n+1), conventional PLD methods often result in mixed phases of Sr2IrO4 (n = 1), Sr3Ir2O7 (n = 2), and SrIrO3 (n = ∞). We have discovered that reduced PLD plume dimensions and slow deposition rates are the key for stabilizing pure Sr2IrO4 phase thin-films, identified by real-time in-situ monitoring of their optical spectra. The slow film deposition results in a thermodynamically stable TiO2SrO IrO2SrO SrO configuration at an interface rather than TiO2SrO SrO IrO2SrO between a TiO2-terminated SrTiO3 substrate and a Sr2IrO4 thin film, which is consistent with other layered oxides grown by molecular beam epitaxy. Our approach provides an effective method for using PLD to achieve pure phase thin-films of layered materials that are susceptible to several energetically competing phases.

  2. Ionization of Atoms by Intense Laser Pulses

    CERN Document Server

    Froehlich, Juerg; Schlein, Benjamin

    2010-01-01

    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let $A$ denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where $|A| \\to \\infty$, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of $-A$ and of arbitrarily small opening angle. Asymptotics of various physical quantities in $|A|^{-1}$ is studied carefully. Our results are in qualitative agreement with experimental data reported in \\cite{1,2}.

  3. Quantum quenching of radiation losses in short laser pulses

    CERN Document Server

    Harvey, Chris; Ilderton, Anton; Marklund, Mattias

    2016-01-01

    Accelerated charges radiate, and therefore must lose energy. The impact of this energy loss on particle motion, called radiation reaction, becomes significant in intense-laser matter interactions, where it can reduce collision energies, hinder particle acceleration schemes, and is seemingly unavoidable. Here we show that this common belief breaks down in short laser pulses, and that energy losses and radiation reaction can be controlled and effectively switched off by appropriate tuning of the pulse length. This "quenching" of emission is impossible in classical physics, but becomes possible in QED due to the discrete nature of quantum emissions.

  4. Flexible pulses from carbon nanotubes mode-locked fiber laser

    Science.gov (United States)

    Yang, Ling-Zhen; Yang, Yi; Wang, Juan-Fen

    2016-12-01

    We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ˜ 20 nm and from ˜ 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance. Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3).

  5. Pulsed laser deposition of tantalum pentoxide film

    Science.gov (United States)

    Zhang, J.-Y.; Boyd, I. W.

    We report thin tantalum pentoxide (Ta2O5) films grown on quartz and silicon substrates by the pulsed laser deposition (PLD) technique employing a Nd:YAG laser (wavelength λ=532 nm) in various O2 gas environments. The effect of oxygen pressure, substrate temperature, and annealing under UV irradiation using a 172-nm excimer lamp on the properties of the grown films has been studied. The optical properties determined by UV spectrophotometry were also found to be a sensitive function of oxygen pressure in the chamber. At an O2 pressure of 0.2 mbar and deposition temperatures between 400 and 500 °C, the refractive index of the films was around 2.18 which is very close to the bulk Ta2O5 value of 2.2, and an optical transmittance around 90% in the visible region of the spectrum was obtained. X-ray diffraction measurements showed that the as-deposited films were amorphous at temperatures below 500 °C and possessed an orthorhombic (β-Ta2O5) crystal structure at temperatures above 600 °C. The most significant result of the present study was that oxygen pressure could be used to control the composition and modulate optical band gap of the films. It was also found that UV annealing can significantly improve the optical and electrical properties of the films deposited at low oxygen pressures (<0.1 mbar).

  6. Epitaxial thin films grown by pulsed laser deposition

    NARCIS (Netherlands)

    Blank, D.H.A.

    2005-01-01

    In this paper, we present the pulsed laser deposition (PLD) technique to control the growth of metal oxide materials at atomic level using high-pressure reflective high-energy electron diffraction and ellipsometry. These developments have helped to make PLD a grown-up technique to fabricate complex

  7. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    Science.gov (United States)

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated.

  8. Modulated Pulsed Laser Sources for Imaging Lidars

    Science.gov (United States)

    2007-10-01

    manufactured by QPC. This C-mount device has a monolithic semiconductor amplifier allowing the package to output up to 1.5 Watts at 1064 nm with linewidths ɘ.1...pulsed driver based on the avalanche transistor circuit being used for gain switching, a 1064 nm DFB laser manufactured by QPC and a DBR -style laser...available now that may provide the needed power. An example of such a laser is the QPC C-mount monolithic oscillator/amplifier which can output 1.5

  9. Electron photodetachment by short laser pulse

    NARCIS (Netherlands)

    Golovinski, P. A.; Drobyshev, A. A.

    2012-01-01

    Expressions are derived for calculations of the total probabilities and electron spectra for the photodetachment of electrons from negative ions with filled valence s shells by ultrashort laser pulses. Particular calculations have been performed for two negative ions (H- and Li-) and titanium-sapphi

  10. Electron photodetachment by short laser pulse

    NARCIS (Netherlands)

    Golovinski, P. A.; Drobyshev, A. A.

    2012-01-01

    Expressions are derived for calculations of the total probabilities and electron spectra for the photodetachment of electrons from negative ions with filled valence s shells by ultrashort laser pulses. Particular calculations have been performed for two negative ions (H- and Li-) and titanium-sapphi

  11. Ultrashort Pulse (USP) Laser-Matter Interactions

    Science.gov (United States)

    2013-03-05

    unlimited 2D electron wavepacket quantum simulation Source: Luis Plaja, U Salamanca 31 Direct Frequency Comb Spectroscopy in the Extreme...intensity short pulse laser interacting with structured targets yields an enhancement in the number and energy of hot electron. • Monte Carlo

  12. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  13. Multi pulse control of entanglement

    CERN Document Server

    Uchiyama, C; Uchiyama, Chikako; Aihara, Masaki

    2004-01-01

    We study the effectiveness of multi pulse control to suppress the degradation of entanglement. Based on a linearly interacting spin-boson model, we show that the multi pulse application recovers the decay of concurrence when an entangled pair of spins interacts with a reservoir that has the non-Markovian nature. We present the effectiveness of multi pulse control for both the common bath case and the individual bath case.

  14. Controlling Chemical Reactions by Short, Intense Mid-Infrared Laser Pulses: Comparison of Linear and Circularly Polarized Light in Simulations of ClCHO(+) Fragmentation.

    Science.gov (United States)

    Shi, Xuetao; Thapa, Bishnu; Li, Wen; Schlegel, H Bernhard

    2016-02-25

    Enhanced mode selective fragmentation of oriented ClCHO(+) → Cl + HCO(+), H + ClCO(+), HCl(+) + CO with linear polarized intense mid-IR pulses was demonstrated in our previous computational study ( J. Phys. Chem. Lett. 2012 , 3 , 2541 ). Simulations of angle-dependent strong field ionization of ClCHO indicate the ionization rate in the molecular plane is nearly twice as large as perpendicular to the plane, suggesting a degree of planar alignment can be obtained experimentally for ClCHO(+), starting from neutral molecules. Classical trajectory calculations with a 4 cycle 7 μm laser pulse (peak intensity of 1.26 × 10(14) W/cm(2)) show that circularly polarized light with the electric field in the plane of the molecule deposits more energy and yields larger branching ratios for higher energy fragmentation channels than linearly polarized light with the same maximum field strength. These results suggest circularly polarized mid-IR pulses can not only achieve control on reactions but also provide an experimentally accessible implementation.

  15. Spatially modulated laser pulses for printing electronics.

    Science.gov (United States)

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  16. High power parallel ultrashort pulse laser processing

    Science.gov (United States)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  17. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  18. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  19. Theoretical analysis of pulse modulation of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Baoxi; Zhan Yushu; Guo Siji

    1987-05-01

    Rate equations of Gaussian shape pulse modulated semiconductor lasers are solved by Runge--Kutta method, and the results are analyzed. The formulae for calculating the delay time, pulse width of laser pulse and maximum bit-rate of Gaussian shape pulse modulation are derived. The experimental results of modulation pattern effects are given.

  20. Self-controlled Study of Onychomycosis Treated with Long-pulsed Nd:YAG 1064-nm Laser Combined with Itraconazole

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Conclusions: For patients with mild or moderate onychomycosis, we recommended a pure medication treatment or combination treatment with medication and laser. For those patients with severe onychomycosis, we recommended a combination of medication and laser therapy.

  1. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  2. Characterization of polymer thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Palla-Papavlu, A.; Dinca, V.; Ion, V.; Moldovan, A.; Mitu, B.; Luculescu, C.; Dinescu, M.

    2011-04-01

    The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate). The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. It was found that for laser fluences up to 1.5 J/cm 2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm 2 the polyepichlorohydrin films present deviations from the bulk polymer. Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm 2). The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material. The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.

  3. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  4. A Study of Pulse by Pulse Microscale Patch Transfer Using Picosecond Laser

    Directory of Open Access Journals (Sweden)

    Yung KL

    2016-09-01

    Full Text Available The shape restoring capability of Ti/Ni has potential to overcome the shrinkage of polymer in mould cavity, which has potential of solving the demoulding problems and helps dimension accuracy in micro/nano injection molding. However, the deposition of Ti/Ni film precisely and securely on specific location of the micro mould cavity present difficulties with conventional deposition methods. In this paper, the use of photonic impact forward transfer method to deposit Ti/Ni film patches on specific locations of a substrate is demonstrate using a picosecond laser. Pulse by pulse deposition control parameters affecting position accuracy and spot size were studied in this paper. It was found that although laser power, and distance between donor films and the substrate all influence the spot sizes of pulse by pulse deposited patches, adjusting spot size by changing laser power is better than changing distance due to separated particles being found around the deposited film patches. Results of this study proved the feasibility of depositing Ti/Ni film patches on specific location using pico-second laser with high position accuracy. The potential of using photonic impact forward transfer as a complementing method to laser powder 3D printing of difficult to process material to produce better surface quality microproducts such as micro moulds for micro-injection molding is tremendous.

  5. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  6. High speed sampling circuit design for pulse laser ranging

    Science.gov (United States)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  7. Laser absorption via QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ($\\sim$ 10 PW) where the laser absorption is negligible, to extreme intensities (> 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

  8. Proton beams with controlled divergence and concentrated energy in TNSA regime by USUI laser pulse interaction with a tailored hole-target

    CERN Document Server

    Wang, Huan; He, X T

    2015-01-01

    An improved acceleration scheme to produce protons with controlled divergence and concentrated energy density is studied using ultrashort ultraintense (USUI) laser pulse interaction with a tailored hole-target in target normal sheath acceleration (TNSA) regime. Two-dimension-in-space and three-dimension-in-velocity (2D3V) particle-in-cell (PIC) simulations show that the tailored hole-target helps to reshape the sheath electric field and generate a transverse quasistatic electric field of $TV/m$ along the inner wall of the hole. The transverse electric field suppresses the transverse expansion of the proton beam effectively, as it tends to force the produced protons to focus inwards to the central axis, resulting in controlled divergence and concentrated energy density compared with that of a single plain target. The dependence of proton beam divergence and energy feature on depth of the hole is investigated in detail. A rough estimation of the hole depth ranges depending on $a_{0}$ of the incident laser is al...

  9. Interaction of femtosecond laser pulses with metal photocathode

    Institute of Scientific and Technical Information of China (English)

    Liu Yun-Quan; Zhang Jie; Liang Wen-Xi

    2005-01-01

    The features of interaction of femtosecond laser pulses with photocathode are studied theoretically in this paper.The surface temperature of the metal cathode film while femtosecond laser pulses irradiation is studied with twotemperature model. With a simple photoelectric model we obtain the optimum metal film thickness for the backilluminated photocathode. The generated ultrashort photocurrent pulses are strongly dependent on the temperature of the electron gas and the lattice during the femtosecond laser pulse irradiation on the photocathode.

  10. Plasma generated during underwater pulsed laser processing

    Science.gov (United States)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  11. Laser Pulse Heating of Spherical Metal Particles

    Science.gov (United States)

    Tribelsky, Michael I.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Luk'Yanchuk, Boris S.; Khokhlov, Alexei R.

    2011-10-01

    We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  12. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    CERN Document Server

    Hansson, Martin; Ekerfelt, Henrik; Persson, Anna; Lundh, Olle

    2016-01-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second p...

  13. Theoretical Studies of the Output Pulse with Variation of the Pumping Pulse for RF Excited CO2 Pulsed Waveguide Laser

    Institute of Scientific and Technical Information of China (English)

    A Rauf; ZHOU Wei; XIN Jian-guo

    2006-01-01

    The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.

  14. Matrix-Assisted Pulsed Laser Evaporation of polythiophene films

    Energy Technology Data Exchange (ETDEWEB)

    Bloisi, F. [CNR-INFM Coherentia, Napoli, Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy)], E-mail: bloisi@na.infn.it; Cassinese, A.; Papa, R.; Vicari, L. [CNR-INFM Coherentia, Napoli, Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy); Califano, V. [Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy)

    2008-02-15

    Organic poly-conjugated systems have recently attracted great interest as semi-conducting materials and, among poly-conjugated systems, substituted polythiophenes have given relevant results in PVs applications. The high conductivity required is affected by both the polymer conjugation length and the chain packing. Thus, highly region-regular polymers must be used and deposited as thin films with some technique which favours orientation and crystallization of the polymer chains. A deposition technique often used for its flexibility and high control over film characteristics is Pulsed Laser Deposition (PLD). In PLD, largely applied for inorganic thin film deposition, the material is ablated from a solid target by a focused pulsed laser beam and is deposited on the substrate placed at a small distance. Although some addition polymers have been successfully deposited the deposition seems to proceed via a 'depolymerization-monomer ablation-repolymerization' mechanism, this is clearly not possible in general for organic molecules and condensation polymers. On the contrary MAPLE (Matrix-Assisted Pulsed Laser Evaporation) is a recently developed PLD based thin film deposition technique, particularly well suited for organic/polymer thin film deposition. Up to now MAPLE depositions have been carried out mainly by means of modified PLD systems, using excimer lasers operating in UV, but use of less energetic radiations can minimize the photochemical decomposition of the polymer molecules. We have used a deposition system explicitly designed for MAPLE technique connected to a Q-switched Ng:YAG pulsed laser which can be operated at different wavelength ranging from IR to UV in order to evaluate the effect of the choice of laser radiation on the deposition of POOPT thin films. From DRIFT-IR spectroscopy, all deposited films showed structural order; it was determined that the better wavelength for POOPT deposition is 532 nm. With this value of the laser wavelength the

  15. Precision resection of intestine using ultrashort laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Gora, Wojciech S.; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2016-03-01

    Endoscopic resection of early colorectal neoplasms typically employs electrocautery tools, which lack precision and run the risk of full thickness thermal injury to the bowel wall with subsequent perforation. We present a means of endoluminal colonic ablation using picosecond laser pulses as a potential alternative to mitigate these limitations. High intensity ultrashort laser pulses enable nonlinear absorption processes, plasma generation, and as a consequence a predominantly non-thermal ablation regimen. Robust process parameters for the laser resection are demonstrated using fresh ex vivo pig intestine samples. Square cavities with comparable thickness to early colorectal neoplasms are removed for a wavelength of 1030 nm and 515 nm using a picosecond laser system. The corresponding histology sections exhibit in both cases only minimal collateral damage to the surrounding tissue. The ablation depth can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers for the resection of intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional electrocautery.

  16. Luminescence color control and quantum-efficiency enhancement of colloidal Si nanocrystals by pulsed laser irradiation in liquid.

    Science.gov (United States)

    Yuan, Ze; Nakamura, Toshihiro; Adachi, Sadao; Matsuishi, Kiyoto

    2017-01-19

    We demonstrate the emission color change of white-emitting chlorine-terminated silicon nanocrystals (Cl:Si-ncs) to blue-emitting carbon-terminated silicon nanocrystals (C:Si-ncs), together with the enhancement of the luminescence quantum efficiency from 7% to 13%, by post-laser ablation in 1-octene. Such changes of the PL properties are caused by the size reduction of Si-nc and efficient surface passivation by hydrocarbons, resulting from a high reactivity of 1-octene in the laser-ablation and subsequent nanoparticle-formation processes. Furthermore, the second post-laser irradiation of the C:Si-ncs in trichloroethylene reversibly results in the formation of the Cl:Si-ncs. The preparation yield of C:Si-ncs via the post-laser ablation of Cl:Si-ncs is higher than that of C:Si-ncs directly prepared only by the laser ablation of PSi in 1-octene. This high preparation yield is due to the high laser-ablation efficiency in trichloroethylene compared with 1-octene, which is attributed to the low heat loss of the solvent in the laser-ablation process.

  17. Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses.

    Science.gov (United States)

    Ganeev, R A; Chakravarty, U; Naik, P A; Srivastava, H; Mukherjee, C; Tiwari, M K; Nandedkar, R V; Gupta, P D

    2007-03-10

    A study of silver, chromium, stainless-steel, and indium thin films prepared by subnanosecond laser deposition in vacuum is reported. We compare the laser ablation in vacuum at the weak- and tight-focusing conditions of a Ti:sapphire laser beam and analyze the nanoparticles synthesized in the latter case using absorption spectroscopy, x-ray fluorescence, atomic force microscopy, and scanning electron microscopy. Our results show that the nanoparticle formation can be accomplished using long laser pulses under tight-focusing conditions.

  18. Picosecond pulse measurements using the active laser medium

    Science.gov (United States)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  19. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  20. Pulsed laser deposition of rare earth compounds

    CERN Document Server

    Stone, L A

    2001-01-01

    Magnetostrictive thin films have been deposited using various techniques such as sputtering and evaporation but the use of laser deposition has been limited. This research presents the results from pulsed laser deposition (PLD) of TbFe sub 2 , DyFe sub 2 and Terfenol-D thin films using an infra red Transversely Excited Atmospheric (TEA) CO sub 2 laser at lambda approx 10.6 mu m and an ultra violet Argon-Fluoride (ArF) excimer laser at lambda approx 193 nm. Results have showed that the TEA CO sub 2 laser under the range of conditions studied is not suitable for the production of magnetostrictive films. The problems experienced are a mixture of mostly fracture debris at low fluences (F approx 20 Jcm sup - sup 2) and melt droplets at high fluences (F approx 60 Jcm sup - sup 2). In all cases the destruction of the target is a major problem, with the Terfenol-D targets being the worst affected. Thin films produced were all iron rich. The use of an excimer laser has proved more successful in providing stoichiometri...

  1. Pulsed Nd-YAG laser in endodontics

    Science.gov (United States)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  2. Numerical simulation of copper ablation by ultrashort laser pulses

    CERN Document Server

    Ding, PengJi; Li, YuHong

    2011-01-01

    Using a modified self-consistent one-dimensional hydrodynamic lagrangian fluid code, laser ablation of solid copper by ultrashort laser pulses in vacuum was simulated to study fundamental mechanisms and to provide a guide for drilling periodic microholes or microgratings on the metal surface. The simulated laser ablation threshold is a approximate constancy in femtosecond regime and increases as the square root of pulse duration in picosecond regime. The ablation depth as a function of pulse duration shows four different regimes and a minimum for a pulse duration of ~ 12ps for various laser fluences. The influence of laser-induced plasma shielding on ablation depth is also studied.

  3. Twin-Pulse Soliton Operation of a Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    W.; S.; Man; H.; Y.; Tam

    2003-01-01

    We report on the experimental observation of a novel type of twin-pulse soliton in a passively mode-locked fiber ring laser. Twin-pulse soliton interaction in the laser cavity are also experimentally investigated and compared with those of the single pulse soliton.

  4. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  5. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range....... The spectral width of the tapered laser is significantly narrowed compared to the freely running laser....

  6. Drop deformation by laser-pulse impact

    CERN Document Server

    Gelderblom, Hanneke; Klein, Alexander L; Bouwhuis, Wilco; Lohse, Detlef; Villermaux, Emmanuel; Snoeijer, Jacco H

    2015-01-01

    A free-falling absorbing liquid drop hit by a nanosecond laser-pulse experiences a strong recoil-pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the timescale of the pressure pulse, when the drop is still spherical. This yields the kinetic-energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the timescale where surface tension is important the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy-partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependance on the pulse shape: for a given propulsion, a tightly focused pulse results in a...

  7. Factors controlling the microstructure of Ce0.9Gd0.1O2-δ films in pulsed laser deposition process

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Döbeli, M.;

    Films of Ce0.9Gd0.1O2-δ(CGO10) are prepared at a range of conditions by pulsed laser deposition (PLD) on a single crystal Si (100) and MgO (100), and on a polycrystalline Pt/MgO (100) substrate. The relationship between the film microstructure, crystallography, chemical composition and PLD...

  8. Generation of Phase-Locked Pulses from a Seeded Free-Electron Laser.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca

    2016-01-15

    In a coherent control experiment, light pulses are used to guide the real-time evolution of a quantum system. This requires the coherence and the control of the pulses' electric-field carrier waves. In this work, we use frequency-domain interferometry to demonstrate the mutual coherence of time-delayed pulses generated by an extreme ultraviolet seeded free-electron laser. Furthermore, we use the driving seed laser to lock and precisely control the relative phase between the two free-electron laser pulses. This new capability opens the way to a multitude of coherent control experiments, which will take advantage of the high intensity, short wavelength, and short duration of the pulses generated by seeded free-electron lasers.

  9. Materials processing with a tightly focused femtosecond laser vortex pulse.

    Science.gov (United States)

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

  10. Theory of Self-pulsing in Photonic Crystal Fano Lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly......-dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes...

  11. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  12. The Electron Trajectory in a Relativistic Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    He Feng; Yu Wei; Lu Peixiang; Xu Han; Shen Baifei; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron,the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude,spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.

  13. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  14. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  15. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  16. Optical feedback signal for ultrashort laser pulse ablation of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Mammini, B.M.; Da Silva, L.B.

    1997-07-01

    An optical feedback system for controlled precise tissue ablation is discussed. Our setup includes an ultrashort pulse laser (USPL), and a diagnostic system using analysis of either tissue fluorescence or plasma emission luminescence. Current research is focused on discriminating hard and soft tissues such as bone and spinal cord during surgery using either technique. Our experimental observations exhibit considerable spectroscopic contrast between hard and soft tissue, and both techniques offer promise for a practical diagnostic system.

  17. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Energy Technology Data Exchange (ETDEWEB)

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation); Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar' kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  18. Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite.

    Science.gov (United States)

    Rajesh, P; Muraleedharan, C V; Komath, Manoj; Varma, Harikrishna

    2011-07-01

    Biomedical implant devices made out of titanium and its alloys are benefited by a modified surface or a bioactive coating to enhance bone bonding ability and to function effectively in vivo for the intended period of time. In this respect hydroxyapatite coating developed through pulsed laser deposition is a promising approach. Since the success of the bioactive ceramic coated implant depends mainly on the substrate-coating strength; an attempt has been made to produce micro patterned surface structure on titanium substrate for adherent hydroxyapatite coating. A pulsed Nd-YAG laser beam (355 nm) with 10 Hz repetition rate was used for surface treatment of titanium as well as hydroxyapatite deposition. The unfocussed laser beam was used to modify the substrate surface with 500-18,000 laser pulses while keeping the polished substrate in water. Hydroxyapatite deposition was done in a vacuum deposition chamber at 400 °C with the focused laser beam under 1 × 10⁻³ mbar oxygen pressure. Deposits were analyzed to understand the physico-chemical, morphological and mechanical characteristics. The obtained substrate and coating surface morphology indicates that laser treatment method can provide controlled micro-topography. Scratch test analysis and microindentation hardness values of coating on laser treated substrate indicate higher mechanical adhesion with respect to coatings on untreated substrates.

  19. Propagation of λ3 Laser Pulses in Underdense Plasma

    Science.gov (United States)

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fujii, Takashi

    2008-06-01

    We study the interaction of λ3 laser pulses with underdense plasma by means of real geometry particle-in-cell simulation. Underdense plasma irradiated by even low energy λ3 laser pulses can be an efficient source of multi-MeV electrons, ˜50 nC/J. The electron acceleration driven by low energy λ3 and λ2 laser pulses is monitored by means of fully relativistic 3D particle-in- cell simulation. Strong transverse wave-breaking in the vicinity of the laser focus is found to give rise to an immense electron charge injected to the acceleration phase of laser wake field. While the acceleration by λ2 pulses runs in usual way, strong blowout regime is found for λ3 pulses. Details of laser pulse self-guiding are discussed.

  20. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  1. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure i

  2. Optodynamic analysis of pulsed-laser processing with a Nd:YAG laser

    OpenAIRE

    Strgar, Simon; Možina, Janez

    2015-01-01

    Laser drilling and laser marking of metals with a pulsed Nd:YAG laser are discussed. Some characteristics of pulsed-laser processing and the possibilities of process optodynamic analysis are presented for the laser-drilling of aluminium. The optodynamic analysis is based on observation of generated shock waves, which propagate in the material as well as in the surrounding air during laser processing. For the detection of laser-induced shock waves in the air and for measurements of their chara...

  3. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  4. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    Science.gov (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  5. Features of femtosecond laser pulses interaction with laser nanoceramics

    Science.gov (United States)

    Pestryakov, E. V.; Petrov, V. V.; Trunov, V. I.; Kirpichnikov, A. V.; Merzliakov, M. A.; Laptev, A. V.

    2007-06-01

    In this work we have performed the experimental researches of features for the generation of supercontinuum in laser materials with identical chemical composition: Yb:YAG crystal and Yb:YAG laser nanoceramics. Dependence of width of supercontinuum spectrum in 515-1100 nm spectral range on femtosecond radiation intensity was investigated. At laser intensity ~1.2•10 14 W/cm2 the short-wave wing of a spectrum for nanoceramics has greater intensity and more flat shape in comparison with crystal. Experiments were made at lens focusing of the Ti:Sapphire femtosecond laser system radiation with energy up to 0.5 mJ in explored sample that was inside of integrating optical sphere. Also we investigated the interaction of femtosecond laser pulses and the generation of supercontinuum in Nd:Y IIO 3 nanoceramics. The maximum value of laser intensity in experiments was restricted by optical breakdown on target output surface, i.e. was below threshold of ablation of sample substance.

  6. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available surgery • Better accuracy in laser-based scientific measurements Pulse Energy Control handptright Cobus Jacobs et al. head2righthead2rightPump/Gain • Duration & intensity of pump determine energy stored in laser medium barb2rightbarb2right Problem...

  7. Long-term effect of pulsed high-intensity laser therapy in the treatment of post-mastectomy pain syndrome: a double blind, placebo-control, randomized study.

    Science.gov (United States)

    Ebid, Anwar Abdelgayed; El-Sodany, Ahmed Mohamed

    2015-08-01

    We assess the long-term effect of pulsed high-intensity laser therapy (HILT) in the treatment of the post-mastectomy pain syndrome (PMPS). A total of 61 women participated in this study (30 in the laser group and 31 in the placebo laser group), with a mean age of 53.56 ± 1.11 years. Patients who were randomly assigned to the laser group received HILT three times per week for 4 weeks, plus a routine physical therapy program (RPTP). The placebo laser group received placebo HILT plus RPTP. The outcomes measured were pain level by visual analog scale (VAS), shoulder range of motion (ROM), and quality of life (QOL). Statistical analysis was performed by ANOVA with repeated measures to compare the differences between baseline and post-treatment measurements and after 12 weeks of follow-up for both groups. The level of statistical significance was set at P placebo group. VAS results showed a significant decrease post-treatment in the laser group relative to the placebo group, and QOL results showed a significant improvement in the laser group compared with the placebo group and still improved after 12 weeks of follow-up. HILT combined with an RPTP appears to be more effective in patients with PMPS than a placebo laser procedure with RPTP.

  8. Development of a 1 J short pulse tunable TEA CO2 laser with high energy stability

    Science.gov (United States)

    Kumar, Manoj; Reghu, T.; Biswas, A. K.; Bhargav, Pankaj; Pakhare, J. S.; Kumar, Shailesh; Verma, Abrat; Mandloi, Vagesh; Kukreja, L. M.

    2014-12-01

    The design, development and operational characteristics of a 1 J, repetitively pulsed, line tunable TEA CO2 laser producing nearly tail free short pulses (~170 ns) suitable for laser isotope separation is discussed. Tail free short laser pulses were generated by employing a nitrogen lean gaseous active medium. Use of an indigenously developed stable pulsed power supply, uniform and intense UV spark pre-ionization and optimum gas purging with catalytic regeneration to control the deleterious oxygen accumulation helps generate laser pulses with high energy stability. Integration of a sensitive arc detection system allows long term arc-free operation of the laser and protects it from catastrophic failure. Laser pulses in more than 90 lines in 10.6 μm and 9.6 μm bands of CO2 laser spectrum with energy about 1 J in as many as 50 lines could be generated with a typical efficiency of about 4%. A typical pulse to pulse energy stability of ±1.4% was obtained during one hour of continuous operation of the TEA CO2 laser at 75 Hz.

  9. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Science.gov (United States)

    Velikanov, S. D.; Zaretskiy, N. A.; Zotov, E. A.; Kozlovsky, V. I.; Korostelin, Yu V.; Krokhin, O. N.; Maneshkin, A. A.; Podmar'kov, Yu P.; Savinova, S. A.; Skasyrsky, Ya K.; Frolov, M. P.; Chuvatkin, R. S.; Yutkin, I. M.

    2015-01-01

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe2+:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe2+:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz.

  10. Femtosecond laser ablation of Au film around single pulse threshold

    Institute of Scientific and Technical Information of China (English)

    Xiaochang Ni; Ching-Yue Wang; Yinzhong Wu; Li Yang; Wei Jia; Lu Chai

    2006-01-01

    @@ Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the relation between the squared diameter D2 of the ablated craters and the laser fluence φo. From the plot of the accumulated laser fluence Nφth(N) and the number of laser pulses N, incubation coefficient of Au film is obtained to be 0.765. Some experimental data obtained around the single pulse threshold are in good agreement with the theoretical calculation.

  11. Improved pulse laser ranging algorithm based on high speed sampling

    Science.gov (United States)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  12. Laser Pulsing in Linear Compton Scattering

    CERN Document Server

    Krafft, Geoffrey; Deitrick, Kirsten; Terzic, Balsa; Kelmar, R; Hodges, Todd; Melnitchouk, W; Delayen, Jean

    2016-01-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse...

  13. Pulse power for lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 19, 20, 1989

    Science.gov (United States)

    Burkes, Tom R.; McDuff, Glen

    Various papers on pulse power for lasers are presented. Individual topics addressed include: preionization techniques for discharge lasers, X-ray preionization technology for high-pressure gas-discharge lasers, weight and volume scaling of pulse power for laser systems, method for rapidly terminating the current pulses applied to recombination lasers, high dV/dt spiker pulse generation using magnetic pulse sharpening techniques, multigap thyratrons for future laser applications, high-power thyratron-type switch for laser applications, model for the optically triggered pseudospark thyratron using local field and beam-bulk methods, capacitors for repetitively pulsed laser, fast pulse transformers in laser pulse power circuits, pulsed power topologies for laser applications, pulse power for the CHIRP XeCl laser, line type pulser for gas laser pumping, engineering aspects of long-pulse CO2 lasers using plasma discharge electrodes, high-pressure pulsed radial glow discharge CO2 laser.

  14. Controlling Chaotic Lasers

    Science.gov (United States)

    Gills, Zelda; Roy, Rajarshi

    1995-01-01

    Irregular fluctuations in intensity have long plagued the operation of a wide variety of solid-state lasers. We are exploring the possibility of exploiting rather than avoiding a laser's chaotic output. As an important step in that direction, we have applied a novel control technique to stabilize a solid state laser. By making small periodic changes in only one input parameter of the laser, we are able to stabilize complex periodic waveforms and steady state behavior in the laser output. We demonstrate the application of this approach in a diode pumped Nd:/YAG laser system.

  15. Long pulse chemical laser. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R. [and others] [Boeing Aerospace Co., Seattle, WA (United States)

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  16. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    Science.gov (United States)

    Yao, X. K.

    2015-07-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research.

  17. Microprocessor-Controlled Laser Balancing System

    Science.gov (United States)

    Demuth, R. S.

    1985-01-01

    Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.

  18. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  19. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  20. Generation of Intense THz Pulsed Lasers Pumped Strongly by CO2 Pulsed Lasers

    Institute of Scientific and Technical Information of China (English)

    QI Chun-Chao; CHENG Zu-Hai

    2009-01-01

    A theoretical method dealing with two intense laser fields interacting with a three-level molecular system is proposed.A discussion is presented on the properties of the solutions for time-independent and time-dependent absorption coefficients and gain coemcient on resonance for strong laser fields,based on analytic evaluation of the rate equations for a homogeneously broadened,three-level molecular system.The pump intensity range can be estimated according to the analytic expression of pump saturation intensity.The effects of pulse width,gas pressure and path length on the energy absorbed from pump light are studied theoretically.The results can be applied to the analysis of pulsed,optically pumped terahertz lasers.

  1. Factors controlling the microstructure of Ce0.9Gd0.1O2-δ films in pulsed laser deposition process

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Döbeli, M.;

    2010-01-01

    Films of Ce0.9Gd0.1O2-delta (CGO10) are prepared at a range of conditions by pulsed laser deposition (PLD) on a single crystal Si (100) and MgO (100), and on a polycrystalline Pt/MgO (100) substrate. The relationship between the film microstructure, crystallography, chemical composition and PLD...... processing parameters is studied. It is found that the laser fluence has no significant impact on the film density, whereas the substrate temperature and the oxygen pressure are of essential importance for the film microstructure development. The reduction of deposition temperature, down to 250 oC, together...

  2. Subpicosecond pulse generation from an all solid-state laser

    Science.gov (United States)

    Keen, S. J.; Ferguson, A. I.

    1989-11-01

    An all-solid-state (holosteric) laser source which produces subpicosecond pulses at 1.4 microns is described. The system consists of a diode laser pumped Nd:YAG laser which is frequency-modulated (FM) mode-locked and Q-switched at 1.32 microns. In continuous wave operation the laser produces pulses of 19 ps while simultaneous Q-switching and mode-locking result in 30 ps pulses being contained in a Q-switched envelope of energy 2.1 microJ. The output of the laser, when passed through a 1 km single-mode optical fiber, produces a spectrally broad Raman signal with its peak at 1.4 microns and the overall conversion efficiency at 12 percent. The pulse duration at 1.4 microns has been measured to be 280 fs. This is the first time that subpicosecond light pulses have been generated by an all-solid-state laser system.

  3. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  4. Nanosecond pulsed laser texturing of optical diffusers

    Science.gov (United States)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  5. Microstructuring of silicon with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Waldemar; Richters, Jan P.; Voss, Tobias; Gutowski, Juergen [Institute of Solid State Physics, Semiconductor Optics Group, University of Bremen (Germany)

    2011-07-01

    Silicon structured with ultrashort laser pulses which is called ''black silicon'' due to its dark appearance has been a field of intense studies in recent years. It exhibits a nearly uniform absorptivity beyond 90% in the whole visible to near-infrared spectral region. Therefore, it is a promising material for applications in solar cells and photo diodes. In this talk a brief introduction of microstructuring of silicon with ultrashort laser pulses will be given. Structuring is carried out in a sulfurhexafluoride (SF{sub 6}) atmosphere, which simultaneously allows doping of the silicon with sulfur far above the solubility limit. The structuring leads to a specific quasiperiodic surface morphology at which incident light is reflected multiple times. Thus light absorption in the silicon is considerably enhanced. The extremely high doping with sulfur results in the formation of a distinct defect band which is the origin of high absorptance in the near infrared. Furthermore, sulfur acts as a donor in silicon. Hence, microstructuring of p-doped silicon in SF{sub 6} atmosphere leads to the formation of a p-n{sup +} junction. This is an important step towards the fabrication of efficient solar cells and photo diodes with increased infrared sensitivity on base of easy-to-produce black silicon.

  6. Generation of Low Jitter Laser Diode Pulse With External Pulse Injection

    Institute of Scientific and Technical Information of China (English)

    Wang Yuncai; Olaf Reimann; Dieter Huhse; Dieter Bimberg

    2003-01-01

    One gain-switched laser diode(LD) was used as external injection seeding source, to reduce the timing jitter of another gain-switched LD, This technique can generate low jitter, frequency-free and wavelength tunable laser pulse.

  7. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    Science.gov (United States)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  8. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  9. Analysis on the characteristics of pulsed laser proximity fuze's echo

    Science.gov (United States)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  10. Pulsed laser ablation of solids basics, theory and applications

    CERN Document Server

    Stafe, Mihai; Puscas, Niculae N

    2014-01-01

    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  11. Pulse Evolution Characteristics in Self-Similar Mode-locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    TU Cheng-Hou; LI Zhen; LEI Ting; LI Yong-Nan; GUO Wen-Gang; WEI Dai; ZHU Hui; ZHANG Shuang-Gen; LU Fu-Yun

    2007-01-01

    A self-similar mode locked fibre laser is studied based on a numerical model. By introducing a dimensionless factor k to characterize the pulse shape, the self-similar pulse evolution, formation and the temporal and spectral shape changes due to the elements in the cavity are investigated throughout the iaser cavity. The results show that in the self-similar mode locked fibre laser, self-similar pulse is first formed in the single-mode fibre, which is then amplified in the gain fibre. Gain bandwidth has a small influence on pulse shape, so high energy self-similar pulse can be obtained after amplification. Because net cavity dispersion directly influences the pulse width as well as peak power after compression by a pair of gratings, which can determine the pulse self-similar evolution, it is very important to control the net cavity dispersion to a certain range to obtain self-similar pulses.

  12. Non-invasive treatment to grade 1 essential hypertension by percutaneous laser and electric pulse to acupoint with music: A randomized controlled trial.

    Science.gov (United States)

    Zhan, Hong-Rui; Hong, Zhong-Si; Chen, Yi-Shen; Hong, Hai-Yu; Weng, Ze-Bin; Yang, Zhang-Bin; Shi, Jing-Li; Chen, Zhong-Ben

    2016-09-01

    To study a non-drug therapy for hypertension disease by combining percutaneous laser and electric pulse stimulation to acupoint with music, and to test the efficiency of the combining treatment to grade 1 essential hypertension. A total of 174 patients with grade 1 essential hypertension were randomly assigned to 3 groups with a random number table after Chinese medicine (CM) syndrome differentiation: the photoelectric and musical treatment group (Group 1, with a self-developed multi-mode audio frequency pulse photoelectric therapeutic apparatus), acupuncture group (Group 2), and oral placebo group (Group 3), 58 cases per group. The curative effect of each group was evaluated by the changes of blood pressure and CM syndrome integral before and after treatment. Compared with Group 3, there were significant decrease of blood pressure and CM syndrome integral in Group 1 and Group 2 (P0.05). The multi-mode audio frequency pulse photoelectric therapeutic apparatus, combining music, laser and electric pulse stimulation, is clinically useful for grade 1 essential hypertension. This "three in one" therapy method is non-invasive, easy and simple to handle. It is expected to be popularized as a new alternative treatment.

  13. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    economical, because the micromachining rates are much higher than in the case of the ultra-short pulsed lasers. Hence, studying the mechanisms of micromachining by nanosecond pulsed laser of semiconductor silicon, transparent dielectric glass and quartz is undertaken for this research work. Laser drilling of an array of miniaturized micro holes is termed as laser micro via. A study of the effect of laser wavelengths, frequency, and energy of the pulses on the depth and diameter of craters and micro via are carried out using high resolution optical microscopy and a nano via 3D profiler. Analytical equations correlating depth and volume of the crater in terms of the optical absorption coefficient and ratio of peak applied to the threshold fluence for ablation of the silicon are derived. The depth of crater is scaled in terms of optical penetration depth times the ratio of crater diameter to the beam diameter. The shorter UV wavelengths are found to be more suitable for ablation of Si and SiO2 than longer IR wavelengths from the study of the absorption coefficient of Si varying with wavelength. Hence, the UV lasers (266 nm or 355 nm) are used for micromachining of Si and SiO2 involving cutting, cleaning, drilling and dicing, micro-milling and texturing of submicron size vertically oriented silicon wires for photovoltaic applications. The high density vertical wires are useful to grab a greater density of solar energy to generate more environmentally-friendly green power. The laser drilling of micro via can be typically of two types: (1) percussion drilling using a stationary laser beam with single or multiple pulses of the laser or (2) trepanned drilling of micro via by the circular motion of laser. Numerical simulation of dynamic drilling of laser micro via of silicon is performed, using control volume (FV) Fluent code in a Cartesian co-ordinate system. Total enthalpy formulation is used to simulate the phase change taking place during the laser ablation process from melting

  14. Short pulse generation in a passively mode-locked photonic crystal semiconductor laser

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties......We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties...

  15. Short-pulse high intensity laser thin foil interaction

    Science.gov (United States)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  16. Narrow band tuning with small long pulse excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sze, R.C.; Kurnit, N.; Watkins, D.; Bigio, I.

    1985-12-01

    We discuss frequency narrowing and tuning with simple dispersion elements with small long-pulse excimer lasers. The improved performance over short-pulse lasers is discussed and attributed to the increased number of round trips. A physical model of the dynamics of line narrowing is presented.

  17. First evidence of end-cap control in the synthesis of long-chain polyynes by intense ultrashort laser pulse irradiation

    CERN Document Server

    Ramadhan, Ali; Wakabayashi, Tomonari; Shiromaru, Haruo; Fujino, Tatsuya; Kodama, Takeshi; Duley, Walter; Sanderson, Joseph

    2016-01-01

    Hydrogen- and methyl-capped polyynes were synthesized by irradiating pure liquid toluene with 35 femtosecond, 300 {\\mu}J laser pulses having a central wavelength of 800 nm, generated by a regeneratively amplified Ti:sapphire tabletop laser at a repetition rate of 1 kHz. Raman spectroscopy was used to confirm the presence of polyynes in the irradiated samples while high-performance liquid chromatography was used to separate hydrogen-capped polyynes up to C18H2 and methyl-capped polyynes up to HC14CH3. These represent the first such methyl-capped polyynes and the longest hydrogen capped chains synthesized to date by the ultrafast laser based method. Furthermore our results show that choice of the starting solvent molecule directly influences the end caps of the polyynes which can be produced.

  18. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  19. Clutter discrimination algorithm simulation in pulse laser radar imaging

    Science.gov (United States)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  20. Spectral compression of single-photon-level laser pulse

    Science.gov (United States)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  1. Pair production in short laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, T. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Seipt, D., E-mail: d.seipt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, A.I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2012-08-29

    The e{sup +}e{sup -} pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold {radical}(s)=2m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  2. Pair production in short laser pulses near threshold

    Science.gov (United States)

    Nousch, T.; Seipt, D.; Kämpfer, B.; Titov, A. I.

    2012-08-01

    The e+e- pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold √{ s} = 2 m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  3. Multielectron dissociative ionization of methane and formaldehyde molecules with optimally tailored intense femtosecond laser pulses

    Science.gov (United States)

    Irani, E.; Anvari, A.; Sadighi-Bonabi, R.; Monfared, M.

    2017-10-01

    The multielectron dissociative ionization of CH4 and CH2O molecules has been investigated using optimum convolution of different dual tailored short laser pulses. Based on three dimensional molecular dynamics simulations and TDDFT approach, the dissociation probability is enhanced by designing the dual chirped-chirped laser pulses and chirped-ordinary laser pulses for formaldehyde molecule. However, it is interesting to notice that the sensitivity of enhanced dissociation probability into different tailored laser pulses is not significant for methane molecule. In this presented modifications, time variation of bond length, velocity, time dependent electron localization function and evolution of the efficient occupation states are presented to analyze the time evolution of molecular dynamics. This work is proved to be a potential way to reduce the controlling costs with a currently available pulse shaping technology.

  4. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence

    Science.gov (United States)

    Patil, Ranjit A.; Wei, Mao-Kuo; Yeh, P.-H.; Liang, Jyun-Bo; Gao, Wan-Ting; Lin, Jin-Han; Liou, Yung; Ma, Yuan-Ron

    2016-02-01

    We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes (LEDs) and laser diodes (LDs).We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes

  5. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Science.gov (United States)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  6. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2010-08-01

    A pulse Nd: YAG laser with pulse duration 5–10 ns, beam radius at focal point 0·2–0·4 mm, wavelengths 1064 nm, 532 nm and 238 nm with linearly polarized radiation and Gaussian beam profile, was impacted on a thin foil of titanium metal for generating plasma plume. Numerically, the above parameters were linked with average kinetic energy of the electrons and ions in the laser-induced plasma. In the present model, electrons having higher velocities are assumed to escape from plasma, that forms a negatively charged sheath around the plasma. It is seen from present computations that the forward directed nature of the laser evaporation process results from the anisotropic expansion velocities associated with different species. These velocities are mainly controlled by the initial dimension of the expanding plasma. An attempt was undertaken to estimate the length of the plume at different ambient gas pressures using an adiabatic expansion model. The rate of the plasma expansion for various Ar+ ion energies was derived from numerical calculations. A numerical definition of this plasma includes events like collisional/radiative, excitation/de-excitation and ionization/recombination processes involving multiples of energy levels with several ionization stages. Finally, based on a kinetic model, the plasma expansion rate across the laser beam axis was investigated.

  7. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    Science.gov (United States)

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  8. Single-grating laser pulse stretcher and compressor.

    Science.gov (United States)

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  9. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    Science.gov (United States)

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  10. Nanosecond pulsed laser welding of high carbon steels

    Science.gov (United States)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  11. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  12. High energy protons generation by two sequential laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  13. Pulse front control with adaptive optics

    Science.gov (United States)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  14. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  15. Metal cathode patterning for OLED by nanosecond pulsed laser ablation

    Institute of Scientific and Technical Information of China (English)

    LIU Chen; ZHU Guang-xi; LIU De-ming

    2006-01-01

    In this paper,nanosecond pulsed laser is introduced to selectively ablate away indium tin oxide film and metal film without destroying the underlying layers for fabricating organic light-emitting diodes. By varying density of energy, pulse number and width of the laser, the influence on morphology of the laser trenches of indium tin oxide and metal films are investigated. It is presented that uniform ablation trench can be obtained with 16 laser pulses at 0.15 J/cm2 for aluminum film and 10 laser pulses at 0.65 J/cm2 for indium tin oxide film. It is found that the characteristics of the organic light-emitting diodes prepared with laser ablation are almost the same as those of that prepared with conventional patterning method.

  16. Ultra-short pulsed laser engineered metal-glass nanocomposites

    CERN Document Server

    Stalmashonak, Andrei; Abdolvand, Amin

    2013-01-01

    Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local opti...

  17. Computer Modeling of Pulsed Chemical Lasers.

    Science.gov (United States)

    1983-12-31

    laser pulse was by photolysis of molecular fluorine using flashlamps. The initiation reaction pro- ceeded as: F2 + hvP = 2F (1.4) with Vp being an... MEN a~ji -U-O--- C C, ca. 04 ( i’ c4 CL viM m0 LA 04 016 166 Elm1 E FI ozF LA- 10 --- - -6’~ 167 =VE 0.ik 0ww 1 68 -wl MAIN t...# r Al w YVfaia we. a...0m NoJ IS-90I IRA -. OEM 179 180 MIN im, IUAINNE Ililm MINE 17i mmm mums NOW1911mmoImm, man .AKE-# 0 ON1 INA 0 Suffillan Ellmmm MEN IFIRM 0 W-mv- um I

  18. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  19. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  20. Ultrashort-pulse lasers based on the Sagnac interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bezrodnyi, V.I.; Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.; Iatskiv, D.IA.

    1988-01-01

    Results of experimental studies carried out on passively mode-locked and synchronously pumped ultrashort-pulse lasers with cavities based on the Sagnac interferometer are reported. It is shown that the use of the interferometer makes it possible to substantially improve the principal parameters of the ultrashort-pulse laser, such as repeatability, stability, spatial-angular characteristics, and the frequency tuning range. In particular, results are presented for YAG:Nd(3+) and dye lasers with Sagnac interferometers. 10 references.

  1. A method of laser micro-polishing for metallic surface using UV nano-second pulse and CW lasers

    CERN Document Server

    Jang, Pong-Ryol; Ji, Kum-Hyok; Kim, Nam-Chol

    2014-01-01

    During laser micro-polishing, the constant control of laser energy density is a key technology to improve the surface roughness. In this paper, a method which controls the energy density of UV(ultraviolet) pulse laser in real time with the control of CW(continuous wave) laser spot size in laser micro-polishing for metallic surface was presented. The experimental and analytical considerations of several influence factors such as laser spot size, fusion zone and focal offset were investigated. In addition, using a laser micro-polishing system manufactured with this method, the laser micro-polishing experiments on the two different surface shapes of stainless steel 316L were conducted. For the inclined or curved surface, the surface roughness improvements of up to 56.4% and 57.3% were respectively obtained, and the analysis of the results were discussed.

  2. Genetic algorithm optimization of laser pulses for molecular quantum state excitation.

    Science.gov (United States)

    Sharma, Sitansh; Singh, Harjinder; Balint-Kurti, Gabriel G

    2010-02-14

    Conventionally optimal control theory has been used in the theoretical design of laser pulses through the direct variation in the electric field of the laser pulse as a function of time. This often leads to designed laser pulses which contain a broad and seemingly arbitrary frequency structure that varies in time in a manner which may be difficult to realize experimentally. In contrast, the experimental design of laser pulses has used a genetic algorithm (GA) approach, varying only those laser parameters actually available to the experimentalist. We investigate in this paper the possibility of using GA optimization methods in the theoretical design of laser pulses to bring about quantum state transitions in molecules. This allows us to select only a small limited number of parameters to vary and to choose these parameters so that they correspond to those available to the experimentalist. In the paper we apply our methods to the vibrational-rotational excitation of the HF molecule. We choose a small limited number of frequencies and vary only the associated electric field amplitudes and pulse envelopes. We show that laser pulses designed in this way can lead to very high transition probabilities.

  3. Investigation of ultrashort-pulsed laser on dental hard tissue

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2007-02-01

    Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.

  4. Dielectric breakdown induced by picosecond laser pulses

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  5. Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper.

    Science.gov (United States)

    Torres-Company, Víctor; Mínguez-Vega, Gladys; Lancis, Jesús; Friberg, Ari T

    2007-06-15

    We demonstrate the possibility of creating user-defined partially coherent light pulses by means of a slight modification of the direct space-to-time pulse shaper. Specifically, we generate a mutual coherence function that corresponds to the independent-elementary-pulse representation model. The theoretical limits in the parameter of global coherence and the efficiency of the system are studied. Our result opens the door to a new way of quantum control in laser-assisted chemical reactions, namely, control by partial coherence.

  6. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence.

    Science.gov (United States)

    Patil, Ranjit A; Wei, Mao-Kuo; Yeh, P-H; Liang, Jyun-Bo; Gao, Wan-Ting; Lin, Jin-Han; Liou, Yung; Ma, Yuan-Ron

    2016-02-14

    We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes (LEDs) and laser diodes (LDs).

  7. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    Science.gov (United States)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  8. The mechanism for SEU simulation by pulsed laser

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianguo; HAN Jianwei

    2004-01-01

    To simulate single event effect (SEE) by pulsed laser is a new approach in ground-based simulation of SEE in recent years. In this paper the way in which picosecond pulsed laser interacts with semiconductor and the mechanism of SEE inducement are analyzed. Additionally, associated calculations are made in the case of Nd:YAG and Ti:Sapphire lasers generally used in experiments and silicon device, with comparisons made between the two lasers. In the meantime, the fundamental principle for determining laser parameters and their typical ranges of values are provided according to the results.

  9. Laser pulsing in linear Compton scattering

    Science.gov (United States)

    Krafft, G. A.; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J. R.

    2016-12-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions "in collision." The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. Many of the results allow easy scaling estimates to be made of the expected spectrum.

  10. The influence of laser pulse on the photoabsorption spectra of Li atom in strong external field

    Institute of Scientific and Technical Information of China (English)

    WANG; Dehua; LIN; Shenglu

    2006-01-01

    Using the time-dependent perturbation theory and the calculation formula of the single- and double-pulse absorption spectra of the atom in strong external fields, we calculate the single- and double-pulse absorption spectra of Li atom in strong magnetic field for different pulse widths. The results show that a pulse of some width can reduce the contribution of the short period closed orbits and eliminate the contribution of the long period orbits. Compared with the single-pulse absorption spectra, we found that for some phase differences, the double-pulse laser absorption spectra are strengthened; while for others, they are reduced. Therefore, we can use the pulse laser to control the oscillation of the absorption spectra and obtain the optimization object.

  11. Ablation of steel using picosecond laser pulses in burst mode

    Science.gov (United States)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  12. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation.

    Science.gov (United States)

    Mathiyazhakan, Malathi; Yang, Yuanxiang; Liu, Yibo; Zhu, Caigang; Liu, Quan; Ohl, Claus-Dieter; Tam, Kam Chiu; Gao, Yu; Xu, Chenjie

    2015-02-01

    Drug-carriers, capable of releasing the drug at the target sites upon external stimuli, are attractive for theranostic applications. In recent years, photo-responsive nanoparticles (NPs) have received considerable attention because of their potentials in providing spatial, temporal, and dosage control over the drug release. However, most of the relevant technologies are still in the process of development and are unprocurable by the clinics. Here, we demonstrated facile fabrication of these photo-responsive NPs by loading hydrophilic gold NPs within thermo-responsive liposomes. Calcein was used as a model drug to evaluate the encapsulation efficiency and the release kinetic profile upon heat/light stimulation. Furthermore, we characterized their size, morphology, phase transition temperature and stability. Finally, we demonstrated that this photo-triggered release might be due to the membrane disruption caused by microbubble cavitation.

  13. Bismuth thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  14. Explosive Nucleosynthesis Study Using Laser Driven γ-ray Pulses

    Directory of Open Access Journals (Sweden)

    Takehito Hayakawa

    2017-03-01

    Full Text Available We propose nuclear experiments using γ-ray pulses provided from high field plasma generated by high peak power laser. These γ-ray pulses have the excellent features of extremely short pulse, high intensity, and continuous energy distribution. These features are suitable for the study of explosive nucleosyntheses in novae and supernovae, such as the γ process and ν process. We discuss how to generate suitable γ-ray pulses and the nuclear astrophysics involved.

  15. A laser spectrometer and wavemeter for pulsed lasers

    Science.gov (United States)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  16. Linear Electro Optic Effect for High Repetition Rate Carrier Envelope Phase Control of Ultra Short Laser Pulses

    Directory of Open Access Journals (Sweden)

    Michel Comte

    2013-02-01

    Full Text Available This paper is devoted to analyzing the principle and applications of the linear electro-optic (EO effect for the control of the carrier-envelope-phase (CEP. We introduce and detail here an original method, which relies on the use of an EO dispersive prism pair in a compressor-like configuration. We show that, by choosing an adequate geometry, it is possible to shift the CEP without changing the group delay (isochronous carrier-envelope-phase shifter or change the induced group delay without varying the CEP. According to our calculations, when applying an electric field around 400 V/cm to the rubidium titanyle phosphate (RTP prisms in a double pass configuration (2 × 40 mm total length, one obtains a CEP shift of π rad at 800 nm without inducing a group delay. In contrast, this CEP shift is obtained for an electric field around 1.4 kV/cm in a RTP rectangular slab of the same total length and, in this case, the group delay is of the order of a few fs.

  17. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  18. Pair production in short intense laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, Tobias; Seipt, Daniel; Kaempfer, Burkhart [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, Alexander I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2013-07-01

    We study finite-size effects in the process of e{sup +}e{sup -} pair production via the non-linear Breit-Wheeler process in ultra short laser pulses. Based on the Nikishov-Ritus method we use laser dressed electron and positron wave functions to derive the differential and total pair production cross section, focusing on the effects of a finite pulse duration. For short laser pulses with very few oscillations of the electromagnetic field we find an increase of the pair production rate below the perturbative weak-field threshold. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  19. Recent progress in picosecond pulse generation from semiconductor lasers

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  20. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    Science.gov (United States)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing

  1. Laser induced breakdown spectroscopy with picosecond pulse train

    Science.gov (United States)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  2. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  3. Synchronous pulse generation in a multicavity fiber laser system

    Science.gov (United States)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  4. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    Science.gov (United States)

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  5. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.

    Science.gov (United States)

    Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto

    2005-05-02

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  6. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers

    Science.gov (United States)

    Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto

    2005-05-01

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  7. Production of color centers in PMMA by ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Elgul Samad, Ricardo, E-mail: resamad@gmail.co [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade universitaria 05508-000, Sao Paulo, SP (Brazil); Coronato Courrol, Lilia [Departamento de Ciencias Exatas e da Terra, UNIFESP, Diadema, SP (Brazil); Benevolo Lugao, Ademar; Zanardi Freitas, Anderson de; Dias Vieira, Nilson [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade universitaria 05508-000, Sao Paulo, SP (Brazil)

    2010-03-15

    We report here the creation of color centers in commercial, transparent PMMA samples by ultrashort pulses from a Ti:Sapphire laser emitting at 800 nm, with spatial control. Although the 800 nm photon energy is not sufficient to ionize the polymer, the centers are created following a multiphotonic absorption that causes the ionization. We propose that the free electrons quivering motion on the pulse electric field displaces atoms from its equilibrium positions, creating free radicals and double bonds that coalesce into color centers. The absorption and emission spectra of the centers were measured, but a dose-like curve could not be built due to the presence of damages created along with the centers that scatter the excitation and emission lights due to the commercial sample's poor optical quality.

  8. The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses.

    Science.gov (United States)

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw

    2013-05-20

    In this article we compare the results of micromachining of fused silica and silicon with tightly focused scalar (viz., circularly and linearly polarized) and vector (viz., azimuthally and radially polarized) femtosecond laser pulses. We show that drilling with radially polarized pulses produces holes with smoother and better-delineated walls compared with the other polarizations used, whereas linearly polarized pulses can machine 20-nm wide single grooves in fused silica when the electric field of the pulse is aligned perpendicular to the cutting direction. The observed polarization-controlled micromachining is due to the formation of sub-diffraction-limited nanostructures that are optically produced in the multi-pulse irradiation regime.

  9. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  10. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation unde

  11. Non-Contact Cardiac Activity Monitoring using Pulsed Laser Vibrometer

    Directory of Open Access Journals (Sweden)

    Chen Chia WANG

    2014-01-01

    Full Text Available We demonstrate experimentally the detection of detailed human cardiac mechanical activity in a remote, non-contacting, and non-ionizing manner using a pulsed laser vibrometer. The highly sensitive pulsed laser vibrometer allows the detection of the temporally-phased mechanical events occurring in individual cardiac cycles even from the surface of clothing-covered extremities of the subjects. Fine structures of the detected cardiac traces are identified with their meanings assigned and corroborated using accelerometer and electrocardiogram measurements obtained concurrently with the pulsed laser vibrometer studies.

  12. Propagation of Complex Laser Pulses in Optically Dense Media

    Science.gov (United States)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  13. Synchronization of video recording and laser pulses including background light suppression

    Science.gov (United States)

    Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)

    2004-01-01

    An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.

  14. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  15. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...... and discuss the efficacy and human safety implications of home-use devices....

  16. Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization

    Institute of Scientific and Technical Information of China (English)

    Luo Mu-Hua; Zhang Qiu-Ju

    2011-01-01

    The influence of time-dependent polarization on attosecond pulse generation from an overdense plasma surface driven by laser pulse is discussed analytically and numerically.The results show that the frequency of controlling pulse controls the number and interval of the generated attosecond pulse,that the generation moment of the attosecond pulse is dominated by the phase difference between the controlling and driving pulses,and that the amplitude of the controlling pulse affects the intensity of the attosecond pulse.Using the method of time-dependent polarization,a "single" ultra-strong attosecond pulse with duration τ≈8.6 as and intensity I≈3.08×1020 W·cm-2 can be generated.

  17. Entanglement creation in cold molecular gases using strong laser pulses

    CERN Document Server

    Herrera, Felipe; Whaley, K Birgitta

    2013-01-01

    While many-particle entanglement can be found in natural solids and strongly interacting atomic and molecular gases, generating highly entangled states between weakly interacting particles in a controlled and scalable way presents a significant challenge. We describe here a one-step method to generate entanglement in a dilute gas of cold polar molecules. For molecules in optical traps separated by a few micrometers, we show that maximally entangled states can be created using the strong off-resonant pulses that are routinely used in molecular alignment experiments. We show that the resulting alignment-mediated entanglement can be detected by measuring laser-induced fluorescence with single-site resolution and that signatures of this molecular entanglement also appear in the microwave absorption spectra of the molecular ensemble. We analyze the robustness of these entangled molecular states with respect to intensity fluctuations of the trapping laser and discuss possible applications of the system for quantum ...

  18. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    Science.gov (United States)

    2014-01-30

    laser pulse initiated HV discharge with a time delay of tens nanoseconds – evidently it is developing due to an avalanche -like growth of electron...AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...and guiding electric discharge , KrF laser, femtosecond pulse , nanosecond pulse , filamentation, plasma channel, lightning control, laser control of

  19. Generation of elliptically polarized nitrogen-ion laser fields using two-color femtosecond laser pulses

    CERN Document Server

    Li, Ziting; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2015-01-01

    We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.

  20. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    Science.gov (United States)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  1. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    Science.gov (United States)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  2. Threshold Determination and Analysis of Laser Pulse Range Finder

    Institute of Scientific and Technical Information of China (English)

    殷聪; 韩绍坤; 刘巽亮; 张化朋; 赵跃进

    2003-01-01

    Under different conditions, the highest detection probability should be acquired while receiving laser echo during laser pulse range finding. The threshold voltage of the signal detection can be set corresponding to different conditions by using resistor network. As a feedback loop, automatic noise threshold circuit could change the threshold voltage following the noise level. The threshold can track the noise closely, rapidly and accurately by adopting this combination. Therefore, the receiving capability of laser echo receiving system will be maximized, and it can detect weaker laser pulse from noise.

  3. LONGITUDINAL DISCH. CO2 LASER WITH PULSED PRE-IONIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu Yanning; Wan Chongyi

    2002-01-01

    A novel pre-ionization scheme of helical transverse-pulsed pre-ionization in a longitudinal discharge CO2 laser is presented. The laser tube is made of glass with inner diameter of 7.5mm and discharge length of 50cm. The laser performance characteristics as functions of parameters, such as pressure, charging capacitance and applied voltage, are investigated. Compared with the same laser structure without pre-ionization, the maximum pulse energy improves by 23%, the optimum electro-optical efficiency increases by 31%, and the specific output energy reaches 26 J/(L·atm).

  4. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    Science.gov (United States)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  5. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay.

    Science.gov (United States)

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng

    2014-06-30

    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  6. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    Science.gov (United States)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  7. Modulation of ionization on laser frequency in ultra-short pulse intense laser-gas-target

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing

    2006-01-01

    Based on the dispersion relation of intense laser pulse propagating in gradually ionized plasma, this paper discusses the frequency modulation induced by ionization of an ultra-short intense laser pulse interacting with a gas target.The relationship between the frequency modulation and the ionization rate, the plasmas frequency variation, and the polarization of atoms (ions) is analysed. The numerical results indicate that, at high frequency, the polarization of atoms (ions) plays a more important role than plasma frequency variation in modulating the laser frequency, and the laser frequency variation is different at different positions of the laser pulse.

  8. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser

    Science.gov (United States)

    Hanon, M. M.; Akman, E.; Genc Oztoprak, B.; Gunes, M.; Taha, Z. A.; Hajim, K. I.; Kacar, E.; Gundogdu, O.; Demir, A.

    2012-06-01

    Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.

  9. Ultrashort-pulse laser irradiation of metal films: the effect of a double-peak laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Rosandi, Yudi [Universitaet Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, Kaiserslautern (Germany); Universitas Padjadjaran, Department of Physics, Sumedang (Indonesia); Urbassek, Herbert M. [Universitaet Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, Kaiserslautern (Germany)

    2010-11-15

    Using molecular-dynamics simulation coupled to a homogeneous model for the electron gas, we study the response of an Al thin film on short-pulse laser irradiation. Laser pulses are considered to have a double-peak structure consisting of two Gaussian pulses; the time delay between the two pulses is varied. The temporal dependence of the energy transfer from the electronic system to the lattice is considered in detail. The effect on the temperature and pressure inside the material, as well as on melting, void nucleation and spallation (ablation) are studied. (orig.)

  10. Hollow-fiber compression of visible, 200 fs laser pulses to 40 fs pulse duration.

    Science.gov (United States)

    Procino, I; Velotta, R; Altucci, C; Amoruso, S; Bruzzese, R; Wang, X; Tosa, V; Sansone, G; Vozzi, C; Nisoli, M

    2007-07-01

    We demonstrate the use of a very simple, compact, and versatile method, based on the hollow-fiber compression technique, to shorten the temporal length of visible laser pulses of 100-300 fs to pulse durations shorter than approximately 50 fs. In particular, 200 fs, frequency-doubled, Nd:glass laser pulses (527 nm) were spectrally broadened to final bandwidths as large as 25 nm by nonlinear propagation through an Ar-filled hollow fiber. A compact, dispersive, prism-pair compressor was then used to produce as short as 40 fs, 150 microJ pulses. A very satisfactory agreement between numerical simulations and measurements is found.

  11. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  12. Ultrafast thermal dynamics of nano-ripples formation via laser double pulses excitation

    Science.gov (United States)

    Du, Guangqing; Wu, Yanmin; Uddin, Noor; Yang, Qing; Chen, Feng; Lu, Yu; Bian, Hao; Hou, Xun

    2016-09-01

    The ultrafast thermal dynamics of nano-ripples formation on gold film via ultrafast laser double pulses excitation is theoretically investigated by numerical simulations. The non-equilibrium thermal modulations with respect to the electron and phonon energy transfers within gold film is proposed for predicting the nano-ripples formation. It is revealed that the nano-ripples contrast on gold film surface can be well controlled via tuning the pulse energy ratio, pulse separation and pulse exchange of ultrafast laser double-pulse. It is attributed to the tunable energy transfer routes between the electron thermal diffusion and the electron-phonon coupling via tuning double pulses parameters. The study provides theoretical basis for producing high-contrast ripples for a wide range application in the fields such as high-absorptive solar cells, surface friction devices and super-hydrophobic surface.

  13. Fundamental studies of pulsed laser ablation

    CERN Document Server

    Claeyssens, F

    2001-01-01

    dopant) have resulted in a coherent view of the resulting plume, which exhibits a multi-component structure correlated with different regimes of ablation, which are attributed to ejection from ZnO and ablation from a Zn melt. OES measurements show that the emitting Zn component within the plume accelerates during expansion in vacuum - an observation attributable to the presence of hot, fast electrons in the plume. The same acceleration behaviour is observed in the case of Al atomic emissions resulting from ablation of an Al target in vacuum. Deposition conditions, substrate temperature and background gas pressure were all varied in a quest for optimally aligned, high quality ZnO thin films. Initial ab initio calculations were performed also, to aid in understanding the stability of these c-axis aligned films. The pulsed ultraviolet (lambda = 193, 248 nm) laser ablation of graphite, polycrystalline diamond and ZnO targets has been investigated. Characteristics of the resulting plumes of ablated material have b...

  14. Pulsed laser deposition of ferroelectric thin films

    Science.gov (United States)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  15. Miniature, Rugged, Pulsed Laser Source for LIDAR Application Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Princeton Optronics proposes to develop a high energy pulsed laser source based on a novel approach. The approach consists of a technique to combine a large number...

  16. Power Enhancement Cavity for Burst-Mode Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [ORNL

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  17. 20 W High Efficiency 1550 nm Pulsed Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power short pulsed lasers have been considered to be an enabling technology to build high power transmitters for future deep space high rate space...

  18. Pulse laser assisted optical tweezers for biomedical applications.

    Science.gov (United States)

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate.

  19. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine

    2005-01-01

    Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  20. Ramsey-comb spectroscopy with intense ultrashort laser pulses

    CERN Document Server

    Morgenweg, Jonas; Eikema, Kjeld S E

    2014-01-01

    Optical frequency combs based on mode-locked lasers have revolutionised the field of metrology and precision spectroscopy by providing precisely calibrated optical frequencies and coherent pulse trains. Amplification of the pulsed output from these lasers is very desirable, as nonlinear processes can then be employed to cover a much wider range of transitions and wavelengths for ultra-high precision, direct frequency comb spectroscopy. Therefore full repetition rate laser amplifiers and enhancement resonators have been employed to produce up to microjoule-level pulse energies. Here we show that the full frequency comb accuracy and resolution can be obtained by using only two frequency comb pulses amplified to the millijoule pulse energy level, orders of magnitude more energetic than what has previously been possible. The novel properties of this approach, such as cancellation of optical light-shift effects, is demonstrated on weak two-photon transitions in atomic rubidium and caesium, thereby improving the fr...

  1. Chirped pulse inverse free-electron laser vacuum accelerator

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  2. Prompt pre-thermal laser ion sheath acceleration with ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeil, Karl; Bussmann, Michael; Cowan, Thomas; Kluge, Thomas; Kraft, Stephan; Metzkes, Josefine; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2013-07-01

    Recent laser-ion acceleration experiments performed at the 150 TW Draco laser in Dresden, Germany, have demonstrated the importance of a precise understanding of the electron dynamics in solids on an ultra-short time scale. For example, with ultra-short laser pulses a description based purely on the evolution of a thermal electron ensemble, as in standard TNSA models, is not sufficient anymore. Rather, non-thermal effects during the ultra-short intra-pulse phase of laser-electron interaction in solids become important for the acceleration of ions when the laser pulse duration is in the order of only a few tens of femtoseconds. While the established maximum ion energy scaling in the TNSA regime goes with the square root of the laser intensity, for such ultra short pulse durations the maximum ion energy is found to scale linear with laser intensity, motivating the interest in such laser systems. Investigating the influence of laser pulse contrast, laser polarization and laser incidence angle on the proton maximum energy and angular distribution, we present recent advances in the description of the laser interaction with solids, focusing on the implications of intra-pulse non-thermal phenomena on the ion acceleration.

  3. Hybrid mode-locked ultrashort-pulse erbium-doped fiber laser

    Science.gov (United States)

    Lazarev, Vladimir A.; Sazonkin, Stanislav S.; Pniov, Alexey B.; Tsapenko, Konstantin P.; Krylov, Alexander A.; Obraztsova, Elena D.

    2014-03-01

    One of the implementations of fs-laser with CNT-film for mode-locking is considered. Scheme of single-pulse, self-starting, stable mode-locked laser generation by appropriate polarization controllers adjustment is suggested. The mechanism of cavity length stabilization for a femtosecond fiber laser based on the pump source modulation is considered. Bandwidth of the feedback frequency stabilization system based on pump source modulation method is defined.

  4. Benefits of cryogenic cooling on the operation of a pulsed CO2 laser

    Indian Academy of Sciences (India)

    Utpal Nundy

    2014-01-01

    The paper presents results of a theoretical model of a pulsed electron beam controlled CO2 laser (EBCL) to investigate the effect of cooling on the laser gas mixture. It is shown that cryogenic cooling can significantly improve the performance of the laser. The efficiency of an EBCL improved from 20% to 25.3% by cooling it to 200 K. The improvement is mainly due to the decrease of thermal population of the CO2 (0 1 0) vibration level.

  5. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM

    Directory of Open Access Journals (Sweden)

    Reshak Ali

    2008-07-01

    Full Text Available Abstract Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF. Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images.

  6. Effect of pulse duty cycle on Inconel 718 laser welds

    Science.gov (United States)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  7. Thermal Processes Using Attosecond Laser Pulses When Time Matters

    CERN Document Server

    Kozłowski, Mirosław

    2006-01-01

    This book contains a study of the thermal processes initiated by attosecond laser pulses. Considering the existence of the experimental evidence for the trains of the attosecond laser pulses, we developed the theoretical framework for attophysics, i.e. physics of phenomena with time duration in the attosecond domain. This time domain is concerned with phenomena whose duration is much shorter than the relaxation time for atomic, molecular and nanoparticles scales.

  8. Laser pulse modulation instabilities in partially stripped plasma

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing; Jiang Yi-Jian

    2005-01-01

    The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma,the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.

  9. Liquid explosions induced by X-ray laser pulses

    Science.gov (United States)

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-10-01

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  10. Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Mikel, E-mail: mikel.sanz@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, 28006 Madrid (Spain); Oujja, Mohamed; Rebollar, Esther; Marco, José F.; Figuera, Juan de la; Monti, Matteo [Instituto de Química Física Rocasolano, CSIC, 28006 Madrid (Spain); Bollero, Alberto [IMDEA Nanoscience, Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universidad Autónoma de Madrid, 28049 Madrid (Spain); Camarero, Julio [IMDEA Nanoscience, Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universidad Autónoma de Madrid, 28049 Madrid (Spain); Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera, Campus Universidad Autónoma de Madrid, 28049 Madrid (Spain); Pedrosa, Francisco J. [IMDEA Nanoscience, Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universidad Autónoma de Madrid, 28049 Madrid (Spain); García-Hernández, Mar [Instituto de Ciencias Materiales de Madrid, CSIC, 28049 Madrid (Spain); Castillejo, Marta [Instituto de Química Física Rocasolano, CSIC, 28006 Madrid (Spain)

    2013-10-01

    Pulsed laser deposition (PLD) is a versatile technique for the fabrication of nanostructures due to the possibilities it offers to control size and shape of nanostructured deposits by varying the laser parameters. Magnetite nanostructures are currently promising materials to be used in computing, electronic devices and spintronic applications. For all these uses the fabrication of uniform nanostructured pure magnetite thin films is highly advantageous. In PLD of magnetite, the laser irradiation wavelength and substrate temperature crucially affect the composition, crystallinity, surface structure and the magnetic properties of the grown samples. This work shows that the use of nanosecond IR laser at 1064 nm enhances the quality of the resulting magnetite thin films, compared to the extensively used UV wavelengths. Deposition at 1064 nm, upon heating the substrate at 750 K, produces thin films constituted by stoichiometric magnetite nanoparticles with sharp edges and sizes ranging from 80 to 150 nm, with a Verwey transition at 119 K and a coercivity of 232 Oe at room temperature, close to those of pure bulk magnetite. Thus, IR-PLD of self-prepared hematite sintered targets constitutes a low-cost procedure of fabrication of pure magnetite nanostructured thin films.

  11. Computational design of short pulse laser driven iron opacity experiments

    Science.gov (United States)

    Martin, M. E.; London, R. A.; Goluoglu, S.; Whitley, H. D.

    2017-02-01

    The resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emission requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.

  12. Optimization of the output power of a pulsed gas laser by using magnetic pulse compression

    Science.gov (United States)

    Louhibi, D.; Ghobrini, Mourad; Bourai, K.

    1999-12-01

    In pulsed gas lasers, the excitation of the active medium is produced through the discharge of a storage capacitor. Performances of these lasers were essentially linked to the type of switch used and also to its mode of operation. Thyratrons are the most common switches. Nevertheless, their technological limitations do not allow a high repetition rate, necessary for optimization of the output power of this type of laser. These limitations can be surpassed by combining the thyratron to a one stage of a magnetic pulse compression circuit. The mpc driver can improve the laser excitation pulse rise time and increase the repetition rate, increasing the laser output power of pulsed gas laser such as; nitrogen, excimer and copper vapor lasers. We have proposed in this paper a new configuration of magnetic pulse compression, the magnetic switch is place in our case in the charge circuit, and while in the typical utilization of magnetic pulse compression, it is placed in the discharge circuit. In this paper, we are more particularly interested in the design and the modeling of a saturate inductance that represents the magnetic switch in the proposed configuration of a thyratron - mpc circuit combination.

  13. Pulsed Laser Centre (CLPU). The Salamanca peta watt laser; Centro de Laseres Pulsados (CLPU). El laser de Petavatio de Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. R.

    2016-08-01

    With pulses lasting 30 photo seconds, the CLPU VEGA laser is capable of generating a peak power level of one peta watt, this making it one of the worlds most powerful lasers. When focussed it can reach extreme intensities. The way in which a pulse of this nature interacts with an atom or what its applications might be are among the questions answered by this article. (Author)

  14. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    Science.gov (United States)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  15. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Renat R. Letfullin

    2008-01-01

    Full Text Available The interaction between nanoparticles and ultrashort laser pulses holds great interest in laser nanomedicine, introducing such possibilities as selective cell targeting to create highly localized cell damage. Two models are studied to describe the laser pulse interaction with nanoparticles in the femtosecond, picosecond, and nanosecond regimes. The first is a two-temperature model using two coupled diffusion equations: one describing the heat conduction of electrons, and the other that of the lattice. The second model is a one-temperature model utilizing a heat diffusion equation for the phonon subsystem and applying a uniform heating approximation throughout the particle volume. A comparison of the two modeling strategies shows that the two-temperature model gives a good approximation for the femtosecond mode, but fails to accurately describe the laser heating for longer pulses. On the contrary, the simpler one-temperature model provides an adequate description of the laser heating of nanoparticles in the femtosecond, picosecond, and nanosecond modes.

  16. Dephasing time of a positron accelerated by a laser pulse

    Institute of Scientific and Technical Information of China (English)

    杜春光; 李师群

    2002-01-01

    The dephasing time of a positron in the total field associated with a laser pulse in a plasma is studied numerically.It is shown that the dynamics of the positron is quite different from that of an electron due to the electrostatic potential in the body of the pulse. The dephasing time of the positron increases with the pulse length and decreases with the pulse intensity nonlinearly. In the long pulse case (L> λp) the dephasing time is proportional to the pulse length. These results provide a scientific basis for experiments to observe the positron acceleration scheme, and may be important to the physics of laser-particle interactions in multi-component plasmas.

  17. Theory and simulations of self-pulsing in photonic crystal Fano lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    A detailed theoretical and numerical investigation of the dynamics of photonic crystal Fano lasers is presented. It is shown how the dynamical model supports self-pulsing, as was recently observed experimentally, and an in-depth analysis of the physics of the self-pulsing mechanism is given....... Furthermore, it is demonstrated how different dynamical regimes exist, and these are mapped out numerically, showing how self-pulsing or continuous-wave output may be controlled through the strength of the pump and the detuning of the nanocavity. Finally, laser phase transitions through dynamical...

  18. Delay time dependence of thermal effect of combined pulse laser machining

    Science.gov (United States)

    Yuan, Boshi; Jin, Guangyong; Ma, Yao; Zhang, Wei

    2016-10-01

    The research focused on the effect of delay time in combined pulse laser machining on the material temperature field. Aiming at the parameter optimization of pulse laser machining aluminum alloy, the combined pulse laser model based on heat conduction equation was introduced. And the finite element analysis software, COMSOL Multiphysics, was also utilized in the research. Without considering the phase transition process of aluminum alloy, the results of the numerical simulation was shown in this paper. By the simulation study of aluminum alloy's irradiation with combined pulse, the effect of the change in delay time of combined pulse on the temperature field of the aluminum alloy and simultaneously the quantized results under the specific laser spot conditions were obtained. Based on the results, several conclusions could be reached, the delay time could affect the rule of temperature changing with time. The reasonable delay time controlling would help improving the efficiency. In addition, when the condition of the laser pulse energy density is constant, the optimal delay time depends on pulse sequence.

  19. Imposed layer by layer growth by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Rijnders, Guus J.H.M.; Blank, Dave H.A.; Rogalla, Horst

    1999-01-01

    Pulsed laser deposition has become an important technique to fabricate novel materials. Although there is the general impression that, due to the pulsed deposition, the growth mechanism differs partially from continuous physical and chemical deposition techniques, it has hardly been used. Here, we w

  20. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Workum, M.; Theelen, M.; Zeman, M.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed las

  1. Modification of Cu surface with picosecond laser pulses

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Rao, J. C.; Skolski, J. Z. P.; Romer, G. R. B. E.; in't Veld, A. J. Huis; de Hosson, Jeff

    2014-01-01

    High purity, mirror-polished polycrystalline Cu surface was treated with single picosecond laser pulses at fluence levels close to the single-pulse modification threshold. The induced surface topography and sub-surface changes were examined with scanning and transmission electron microscopy, respect

  2. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Romer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.J.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed las

  3. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    Science.gov (United States)

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  4. Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses.

    Science.gov (United States)

    Klini, A; Loukakos, P A; Gray, D; Manousaki, A; Fotakis, C

    2008-07-21

    Temporally shaped, femtosecond laser pulses have been used for controlling the size and the morphology of micron-sized metallic structures obtained by using the Laser Induced Forward Transfer (LIFT) technique. We report the effect of pulse shaping on the size and morphology of the deposited structures of Au, Zn, Cr on a function of the pulse separation time ??t (from 0 to 10 ps) of double pulses of variable intensities generated by using a liquid crystal spatial light modulator (SLM). The observed differences in size and morphology are correlated with the outcome of pump-probe experiments for the study of electron-phonon scattering dynamics and subsequent energy transfer processes to the bulk in the different metals employed. We propose that in metals with weak electron-lattice coupling, the electron ballistic motion and the resulting fast electron scattering at the film surface, as well as the internal electron thermalization process are crucial to the morphology and size of the transferred material. Therefore, temporal shaping within the corresponding time scales of these processes may be used for tailoring the features of the metallic structures obtained by LIFT.

  5. Synchronization of Sub-Picosecond Electron and Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  6. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  7. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R.; Walling, R.; Price, D.; Guethlein, G.; Stewart, R.; Libby, S.; Graziani, F.; Levatin, J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  8. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O-H str...

  9. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...

  10. Relaxation oscillations in long-pulsed random lasers

    NARCIS (Netherlands)

    Molen, van der Karen L.; Mosk, Allard P.; Lagendijk, Ad

    2009-01-01

    We have measured the evolution of the intensity emitted by a random laser during a pump pulse that is comparable in duration to the spontaneous emission decay time. The time traces of our random laser, consisting of titanium dioxide particles and sulforhodamine B dye, show clear relaxation oscillati

  11. Adaptive optics for ultra short pulsed lasers in UHV environment

    Science.gov (United States)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  12. Femtosecond laser pulse train interaction with dielectric materials

    CERN Document Server

    Caulier, O Dematteo; Chimier, B; Skupin, S; Bourgeade, A; Léger, C Javaux; Kling, R; Hönninger, C; Lopez, J; Tikhonchuk, V; Duchateau, G

    2015-01-01

    We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.

  13. Photodissociation of Cycloketones by Ultraintense Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Photodissociation of cyclopentanone (C5H8O) and cyclohexanone (C6H10O) was studied with 800nm, 50fs laser pulse at intensities of 5.0-13.0×1013 W/cm2. A time of flight mass spectrometer was employed to detect the ion signals. Parent ions dominated at lower laser intensities. Fragmentation of the parent ions increases with increasing laser intensity and molecular size. The fragmentation mechanism was discussed.

  14. Short pulse generation by laser slicing at NSLSII

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  15. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  16. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J. [Atomic Physics Division, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Fang, Y.; Haakanson, U. [Division of Solid State Physics/Nanometer Structure Consortium at Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-146, 100190 Beijing (China)

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  17. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  18. Development of pulse laser processing for mounting fiber Bragg grating

    Science.gov (United States)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  19. Determining Optimum Propellants, Pulse Lengths, and Laser Intensity for Ablative Laser Propulsion Using the Pals Laser

    Science.gov (United States)

    Boody, Frederick P.

    2004-10-01

    Ablative Laser Propulsion (ALP) can potentially reduce the cost of launching payloads into near earth orbit by a factor of 100. Preliminary experiments have demonstrated high efficiency, coupling coefficient, and specific impulse that would be suitable for applications. These experiments, however, were performed at wavelengths not usable in the atmosphere and at pulse energies and spot sizes much smaller than will be required for application. The parameters of the Prague Asterix Laser System (PALS) high-energy iodine laser, other than wavelength: pulse energy, pulse length, and beam diameter, are equal to those required for application. While its wavelength is a little shorter than required, it is closer than any other laser available and, due to PALS' 2ω and 3ω capability, the wavelength dependence can be studied and the results extrapolated to application values. In fact, PALS is probably the only laser in the world with parameters suitable for definitive ALP studies. PALS also has a suitable infrastructure for measuring plasma parameters already and only an instrument for measuring momentum transfer, such as a ballistic pendulum, would have to be added.

  20. A unified model in the pulsed laser ablation process

    Institute of Scientific and Technical Information of China (English)

    HU De-zhi

    2008-01-01

    In this unified model, we introduce the electron-phonon coupling time (t) and laser pulse width (t). For long pulses, it can substitute for the traditional thermal conduction model; while for ultrashort pulses, it can substitute for the standard two-temperature model. As an example of the gold target, we get the dependence of the electron and ion temperature evolvement on the time and position by solving the thermal conduction equation using the finite-difference time-domain (FDTD) method.It is in good agreement with experimental data. We obtain the critical temperature of the onset of ablation using the Saha equation and then obtain the theoretical value of the laser ablation threshold when the laser pulse width ranges from nanosecond to femtosecond timescale, which consists well with the experimental data.

  1. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  2. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  3. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation

    Science.gov (United States)

    Pankratov, Michail M.

    1990-06-01

    Retinal lesions produced with a pulsed laser beam of 1-20 kHz frequency and 10-100% duty cycle were compared with lesions produced with a continuous wave (cw) laser of the same peak power and total energy. Photocoagulation was applied to the retina of three black pigmented rabbits using krypton red laser (647.1 nm) equipped with an acousto-optical modulator to convert cw laser emission to a pulsating beam. An optical fiber fed the laser beam into an optical system delivering a collimated beam of predetermined divergence; the animal's eye focused this beam to a 50-pm spot on the retina. Peak power was kept constant at 0.2 W, and energy was kept constant at 20 mJ. After 7 months the animals were sacrificed and retinal tissue examined by light microscopy. The central section of each lesion was identified and photographed. For lesions with the same energy per pulse and the same pulse duration, the most influential factor, in the frequency range of 1-20 kHz, appeared to be the duty cycle: the smaller the duty cycle, the smaller the lesion, and vice versa. In other words, the shorter the time interval between consecutive pulses, the larger were the pulsed laser lesions.

  4. Ablation of silicon with bursts of femtosecond laser pulses

    Science.gov (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  5. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    -nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...... performed and is currently in progress in collaboration with a major Danish company, who currently is applying laser welding in several production lines. Furthermore some case stories from development work on laser welding for industri-al production will be described. One case story describes a current...

  6. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Samek, Ota [ISAS-Institute for Analytical Sciences, Bunsen-Kirchhoff Str.11, 44139 Dortmund (Germany)]. E-mail: samek@ansci.de; Kurowski, Andre [ISAS-Institute for Analytical Sciences, Bunsen-Kirchhoff Str.11, 44139 Dortmund (Germany); Kittel, Silke [ISAS-Institute for Analytical Sciences, Bunsen-Kirchhoff Str.11, 44139 Dortmund (Germany); Kukhlevsky, Sergei [Institute of Physics, University of Pecs, Ifjusag u. 6, Pecs 7624 (Hungary); Hergenroeder, Roland [ISAS-Institute for Analytical Sciences, Bunsen-Kirchhoff Str.11, 44139 Dortmund (Germany)

    2005-08-31

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested.

  7. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  8. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  9. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  10. Beamlet pulse-generation and wavefront-control system

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Salmon, J.T.; Wilcox, R.W.

    1996-06-01

    The Beamlet pulse-generation system (or {open_quotes}front end{close_quotes}) refers to the laser hardware that generates the spatially and temporally shaped pulse that is injected into the main laser cavity. All large ICF lasers have pulse-generation systems that typically consist of a narrow-band oscillator, elector-optic modulators for temporal and bandwidth shaping, and one or more preamplifiers. Temporal shaping is used to provide the desired laser output pulse shape and also to compensate for gain saturation effects in the large-aperture amplifiers. Bandwidth is applied to fulfill specific target irradiation requirements and to avoid stimulated Brillouin scattering (SBS) in large-aperture laser components. Usually the sharp edge of the beam`s spatial intensity profile is apodized before injection in the main amplifier beam line. This prevents large-amplitude ripples on the intensity profile. Here the authors briefly review the front-end design and discuss improvements to the oscillator and modulator systems. Their main focus, however, is to describe Beamlet`s novel beam-shaping and wavefront-control systems that have recently been fully activated and tested.

  11. Property improvement of pulsed laser deposited boron carbide films by pulse shortening

    Energy Technology Data Exchange (ETDEWEB)

    Csako, T. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Budai, J. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Szoerenyi, T. [Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary)]. E-mail: t.szorenyi@physx.u-szeged.hu

    2006-04-30

    Growth characteristics and surface morphology of boron carbide films fabricated by ablating a B{sub 4}C target in high vacuum with a traditional KrF excimer laser and a high brightness hybrid dye/excimer laser system emitting at the same wavelength while delivering 700 fs pulses are compared. The ultrashort pulse processing is highly effective. Energy densities between 0.25 and 2 J cm{sup -2} result in apparent growth rates ranging from 0.017 to 0.085 nm/pulse. Ablation with nanosecond pulses of one order of magnitude higher energy densities yields smaller growth rates, the figures increase from 0.002 to 0.016 nm/pulse within the 2-14.3 J cm{sup -2} fluence window. 2D thickness maps derived from variable angle spectroscopic ellipsometry reveal that, when ablating with sub-ps pulses, the spot size rather than the energy density determines both the deposition rate and the angular distribution of film material. Pulse shortening leads to significant improvement in surface morphology, as well. While droplets with number densities ranging from 1 x 10{sup 4} to 7 x 10{sup 4} mm{sup -2} deteriorate the surface of the films deposited by the KrF excimer laser, sub-ps pulses produce practically droplet-free films. The absence of droplets has also a beneficial effect on the stoichiometry and homogeneity of the films fabricated by ultrashort pulses.

  12. Vacuum heating of solid target irradiated by femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    DONG; Quanli(董全力); ZHANG; Jie(张杰)

    2003-01-01

    The interaction of femtosecond laser pulses with solid targets was studied through experiments and particle-in-cell (PIC) simulations. It is proved that the vacuum heating and the inverse bremsstralung process are the main mechanisms of the laser pulse absorption under such conditions. The distribution of hot electrons and that of X-ray are found to have double-temperature structure, which is confirmed by PIC simulations. While the lower temperature is attributed to the resonant absorption, the higher one, however, is caused by the laser-induced electric field in the target normal direction. The time-integrated spectra ofthe reflected laser pulse shows that the mechanism of electron acceleration is determined by the plasma density profile.

  13. Medical applications of ultra-short pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  14. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    Science.gov (United States)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  15. Synthesis of selenium nanoparticles by pulsed laser ablation

    Science.gov (United States)

    Quintana, M.; Haro-Poniatowski, E.; Morales, J.; Batina, N.

    2002-07-01

    The synthesis of selenium nanoparticles by pulsed laser ablation using a YAG laser at 532 nm is reported. The nanoparticles were deposited on three different substrates: metallic gold films, silicon wafers and glass, and subsequently visualized and characterized by atomic force microscopy (AFM). It was found that the size, shape and population of the selenium nanoparticles are strongly dependent on the experimental conditions during the ablation process; in particular on the energy density, number of laser pulses and the nature of the substrate. Atomic force microscopy imaging allows recognition, quantitative and qualitative characterization of individual selenium nanoparticles and their aggregates as well. In most of the experiments just a few laser pulses (up to five), were sufficient to produce a noticeable amount of nanoparticles on the substrate surface.

  16. Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    YUN Chen-Xia; TENG Hao; ZHANG Wei; WANG Li-Feng; ZHAN Min-Jie; HE Xin-Kui; WANG Bing-Bing; WEI Zhi-Yi

    2011-01-01

    We present the observation of the additional spectral components between the odd order harmonics in the harmonic spectrum generated from argon gas driven by sub-5-fs laser pulses.The theoretical analysis shows that the asymmetric laser field in both spatial and temporal domains leads to this complicated spectrum structure of high order harmonics.

  17. A Novel Femtosecond Laser System for Attosecond Pulse Generation

    Directory of Open Access Journals (Sweden)

    Jianqiang Zhu

    2012-01-01

    Full Text Available We report a novel ultrabroadband high-energy femtosecond laser to be built in our laboratory. A 7-femtosecond pulse is firstly stretched by an eight-pass offner stretcher with a chirp rate 15 ps/nm, and then energy-amplified by a two-stage optical parametric chirped pulse amplification (OPCPA. The first stage as preamplification with three pieces of BBO crystals provides the majority of the energy gain. At the second stage, a YCOB crystal with the aperture of ~50 mm is used instead of the KDP crystal as the gain medium to ensure the shortest pulse. After the completion, the laser will deliver about 8 J with pulse duration of about 10 femtoseconds, which should be beneficial to the attosecond pulse generation and other ultrafast experiments.

  18. Suppressing the weakly bound states in the photoassociation dynamics by using a frequency cut-off laser pulse

    Institute of Scientific and Technical Information of China (English)

    Lin Feng; Zhang Wei; Zhao Ze-Yu; Cong Shu-Lin

    2012-01-01

    The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr(o)dinger equation using the mapped Fourier grid method.The frequency components of the laser pulse close to the atomic resonance are partly cut off.Compared with the typical Gauss-type pulses,the cut-off pulse is helpful to suppress efficiently the weakly bound states and prepare the associated molecules in the lower vibrational states.Especially,the dependence of photoassociation probability on the cut-off position of the laser pulse is explored.

  19. 18 W pulse-bursts 532 nm picosecond laser system with four equal amplitude and spacing pulses at 1 kHz

    Science.gov (United States)

    Long, Ming Liang; Chen, Meng; Li, Gang

    2017-05-01

    An average power of 18 W pulse-burst 532 nm picosecond laser was obtained with four pulses in a burst at 1 kHz. A mode-locked laser and beam splitter mirrors were used to obtain seed pulse-bursts, that one single pulse was divided into four pulses and each pulse in bursts can be controlled. The pulses were broadened from 23.5 to 135 ps by single-pass volume Bragg gratings. After Nd:YAG regenerative amplifier and single-pass two Nd:YAG modules amplifier, 31.2 W in 1064 nm was got. The four pulses had equal amplitude and pulse spacing of 800 ps. Then, 18 W in 532 nm was obtained with nonlinear optical materials of LiB3O5 frequency doubling, the beam quality of the M2 factor was 1.24, and the pulse width was 50 ps. It is a very nice way to obtain high-power pulse-burst picosecond laser with equal pulse spacing and amplitude.

  20. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    , which make them promising alternatives to the commercially successful solar cell material copper indium gallium diselenide (CIGS). Complementing our group's work on pulsed laser deposition of CZTS, we collaborated with IMEM-CNR in Parma, Italy, to deposit CZTS by pulsed electron deposition for the first...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...

  1. Spectro-temporal shaping of seeded free-electron laser pulses

    CERN Document Server

    Gauthier, David; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-01-01

    We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  2. Pulsed Single Frequency MOPA Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Latest advances in semiconductor optoelectronics makes it possible to develop compact light weight robust sources of coherent optical pulses, demanded for numerous...

  3. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  4. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  5. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Bruno Yue [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Mao, Xianglei [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hou, Huaming [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ocean University of China, Qingdao (China); Zorba, Vassilia; Russo, Richard E. [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cheung, Nai-Ho, E-mail: nhcheung@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2015-08-01

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm{sup −2} orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism.

  6. A Preliminary In Vitro Study on the Efficacy of High-Power Photodynamic Therapy (HLLT): Comparison between Pulsed Diode Lasers and Superpulsed Diode Lasers and Impact of Hydrogen Peroxide with Controlled Stabilization

    Science.gov (United States)

    Baldoni, Marco; Ghisalberti, Carlo Angelo; Paiusco, Alessio

    2016-01-01

    Aim. In periodontology lasers have been suggested for the photodynamic therapy (PDT): such therapy can be defined as the inactivation of cells, microorganisms, or molecules induced by light and not by heat. The aim of this study was to evaluate results of PDT using a 980 nm diode laser (Wiser Doctor Smile, Lambda SPA, Italy) combined with hydrogen peroxide, comparing a pulsed diode laser (LI) activity to a high-frequency superpulsed diode laser (LII). Materials and Methods. Primary fibroblasts and keratinocytes cell lines, isolated from human dermis, were irradiated every 48 h for 10 days using LI and LII combined with SiOxyL+™ Solution (hydrogen peroxide (HP) stabilized with a glycerol phosphate complex). Two days after the last irradiation, the treated cultures were analyzed by flow cytofluorometry (FACS) and western blotting to quantify keratin 5 and keratin 8 with monoclonal antibodies reactive to cytokeratin 5 and cytokeratin 8. Antimicrobial activity was also evaluated. Results. Both experimental models show the superiority of LII against LI. In parallel, stabilized HP provided better results in the regeneration test in respect to common HP, while the biocidal activity remains comparable. Conclusion. The use of high-frequency lasers combined with stabilized hydrogen peroxide can provide optimal results for a substantial decrease of bacterial count combined with a maximal biostimulation induction of soft tissues and osteogenesis. PMID:27631000

  7. A Preliminary In Vitro Study on the Efficacy of High-Power Photodynamic Therapy (HLLT): Comparison between Pulsed Diode Lasers and Superpulsed Diode Lasers and Impact of Hydrogen Peroxide with Controlled Stabilization.

    Science.gov (United States)

    Caccianiga, Gianluigi; Baldoni, Marco; Ghisalberti, Carlo Angelo; Paiusco, Alessio

    2016-01-01

    Aim. In periodontology lasers have been suggested for the photodynamic therapy (PDT): such therapy can be defined as the inactivation of cells, microorganisms, or molecules induced by light and not by heat. The aim of this study was to evaluate results of PDT using a 980 nm diode laser (Wiser Doctor Smile, Lambda SPA, Italy) combined with hydrogen peroxide, comparing a pulsed diode laser (LI) activity to a high-frequency superpulsed diode laser (LII). Materials and Methods. Primary fibroblasts and keratinocytes cell lines, isolated from human dermis, were irradiated every 48 h for 10 days using LI and LII combined with SiOxyL(+) ™ Solution (hydrogen peroxide (HP) stabilized with a glycerol phosphate complex). Two days after the last irradiation, the treated cultures were analyzed by flow cytofluorometry (FACS) and western blotting to quantify keratin 5 and keratin 8 with monoclonal antibodies reactive to cytokeratin 5 and cytokeratin 8. Antimicrobial activity was also evaluated. Results. Both experimental models show the superiority of LII against LI. In parallel, stabilized HP provided better results in the regeneration test in respect to common HP, while the biocidal activity remains comparable. Conclusion. The use of high-frequency lasers combined with stabilized hydrogen peroxide can provide optimal results for a substantial decrease of bacterial count combined with a maximal biostimulation induction of soft tissues and osteogenesis.

  8. Stretching of Picosecond Laser Pulses with Uniform Reflecting Volume Bragg Gratings

    Science.gov (United States)

    Mokhov, Sergiy

    It is shown that a uniform reflecting volume Bragg grating (VBG) can be used as a compact monolithic stretcher of high-power picosecond laser pulses in cases when chirped Bragg gratings with an appropriate chirp rate are difficult to fabricate. A chirp-free reflected stretched pulse is generated of almost rectangular shape when incident short pulse propagates along a grating and experiences local Bragg diffraction. The increase in duration of the reflected pulse is approximately equal to twice the propagation times along the grating. We derived the analytic expression for diffraction efficiency, which incorporates incident pulse duration, grating thickness, and amplitude of refractive index modulation, enabling an optimum selection of the grating for pulse stretching. The typical expected theoretical value of diffraction efficiency is about 10% after taking into account the spectral narrowing of the reflected emission. We believe that the relatively low energy efficiency of the proposed method is more than offset by a number of advantages, which are chirp-free spectrum of a stretched pulse, compactness, robustness, preservation of setup alignment and beam quality, and tolerance to high power. Obtained pulses of several tens of picoseconds can be amplified by standard methods which are not requiring special measures to avoid undesirable non-linear effects. We propose a simple and reliable method to control the temporal parameters of the high-power picosecond pulses using the same laser source and the VGB of variable thickness that can significantly simplify the experiments requiring different pulse durations.

  9. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    Indian Academy of Sciences (India)

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  10. LASER ABLATION OF MONOCRYSTALLINE SILICON UNDER PULSED-FREQUENCY FIBER LASER

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2015-05-01

    Full Text Available Subject of research. The paper deals with research of the surface ablation for single-crystal silicon wafers and properties of materials obtained in response to silicon ablation while scanning beam radiation of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm in view of variation of radiation power and scanning modes. Method. Wafers of commercial p-type conductivity silicon doped with boron (111, n-type conductivity silicon doped with phosphorus (100 have been under research with a layer of intrinsical silicon oxide having the thickness equal to several 10 s of nanometers and SiO2 layer thickness from 120 to 300 nm grown by thermal oxidation method. The learning system comprises pulse fiber ytterbium laser with a wavelenght λ = 1062 nm. The laser rated-power output is equal to 20 W, pulse length is 100 ns. Pulses frequency is in the range from 20 kHz to 100 kHz. Rated energy in the pulse is equal to 1.0 mJ. Scanning has been carried out by means of two axial scanning device driven by VM2500+ and controlled by personal computer with «SinMarkТМ» software package. Scanning velocity is in the range from 10 mm/s to 4000 mm/s, the covering varies from 100 lines per mm to 3000 lines per mm. Control of samples has been carried out by means of Axio Imager A1m optical microscope Carl Zeiss production with a high definition digital video camera. All experiments have been carried out in the mode of focused laser beam with a radiation spot diameter at the substrate equal to 50 μm. The change of temperature and its distribution along the surface have been evaluated by FLIR IR imager of SC7000 series. Main results. It is shown that ablation occurs without silicon melting and with plasma torch origination. The particles of ejected silicon take part in formation of silicon ions plasma and atmosphere gases supporting the plasmo-chemical growth of SiO2. The range of beam scanning modes is determined where the growth of SiO2 layer is observed

  11. Nanosecond pulsed laser generation of holographic structures on metals

    Science.gov (United States)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  12. Wavelength dependence of soft tissue ablation by using pulsed lasers

    Institute of Scientific and Technical Information of China (English)

    Xianzeng Zhang; Shusen Xie; Qing Ye; Zhenlin Zhan

    2007-01-01

    Pulsed laser ablation of soft biological tissue was studied at 10.6-, 2.94-, and 2.08-μm wavelengths. The ablation effects were assessed by means of optical microscope, the ablation crater depths were measured with reading microscope. It was shown that Er:YAG laser produced the highest quality ablation with clear,sharp cuts following closely the patial contour of the incident beam and the lowest fluence threshold. The pulsed CO2 laser presented the moderate quality ablation with the highest ablation efficiency. The craters drilled with Ho:YAG laser were generally larger than the incident laser beam spot, irregular in shape, and clearly dependent on the local morphology of biotissue. The blation characteristics, including fluence threshold and ablation efficiency, varied substantially with wavelength. It is not evident that water is the only dominant chromophore in tissue.

  13. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    Science.gov (United States)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  14. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  15. Study of laser die release by Q-switched Nd:YAG laser pulses

    NARCIS (Netherlands)

    Karlitskaya, N.; de Lange, D.F.; Meijer, J.; Sanders, Rene; Phipps, Claude R.

    2004-01-01

    A new laser-assisted process called "Laser Die Transfer" is developed for high speed assembling of miniature electronic components. Silicon dies, fabricated on an optically transparent carrier are released using a laser pulse. This process has the potential to offer major advantages compared to

  16. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  17. NOTE: Modelling multiple laser pulses for port wine stain treatment

    Science.gov (United States)

    Verkruysse, Wim; van Gemert, Martin J. C.; Smithies, Derek J.; Nelson, J. Stuart

    2000-12-01

    Many port wine stains (PWS) are still resistant to pulsed dye laser treatment. However, anecdotal information suggests that multiple-pulse laser irradiation improves patient outcome. Our aims in this note are to explain the underlying mechanism and estimate the possible thermal effects of multiple pulses in vascular structures typical of PWS. Based on linear response theory, the linear combination of two thermal contributions is responsible for the total increase in temperature in laser irradiated blood vessels: direct light absorption by blood and direct bilateral thermal heat conduction from adjacent blood vessels. The latter contribution to the increase in temperature in the targeted vessel can be significant, particularly if some adjacent vessels are in close proximity, such as in cases of optical shielding of the targeted vessel, or if the vessels are relatively distant but many in number. We present evidence that multiple-pulse laser irradiation targets blood vessels that are optically shielded by other vessels. Therefore, it may be a means of enhancing PWS therapy for lesions that fail to respond to single-pulse dye laser treatment.

  18. Selective bond breakage within the HOD molecule using optimized femtosecond ultraviolet laser pulses

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2008-01-01

    With the HOD molecule initially in its vibrational ground state, we theoretically analyze the laser-induced control of the OD/OH branching ratio D+OH H+OD in the first absorption band. In the weak-field limit, any form of UV-pulse shaping control leads to a branching ratio larger than similar to 2...

  19. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    Science.gov (United States)

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  20. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina

    2010-06-23

    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  1. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Oraevsky, A.A. [Lawrence Livermore National Lab., CA (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Electrical Engineering; DaSilva, L.B.; Feit, M.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  2. Irradiation of the amorphous carbon films by picosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcinauskas, L., E-mail: liutauras.marcinauskas@ktu.lt [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Grigonis, A. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Račiukaitis, G.; Gedvilas, M. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius (Lithuania); Vinciūnaitė, V. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2015-10-30

    The effect of a picosecond laser irradiation on structure modification of diamond-like carbon (DLC) and graphite-like carbon (GLC) films was analyzed in this work. The DLC films were irradiated by Nd:YVO{sub 4} laser operating at the 532 nm wavelength with the picosecond (10 ps) pulse duration at the fluence in the range of (0.08–0.76) J/cm{sup 2}. The GLC films were irradiated only at the fluence of 0.76 J/cm{sup 2}. The different pulse number (1, 10, and 100) was used for irradiation the films. The micro-Raman spectroscopy measurements indicated that the laser irradiation led to rearrangement of the sp{sup 3} C–C bonds to the sp{sup 2} C=C bonds in the DLC films. The formation of silicon carbide (SiC) was found in the irradiated spot after 10 and 100 pulses. Modifications in the structure of the DLC film took place even in the areas with low intensity of the Gaussian beam wings (heat affected areas). The increase in the oxygen concentration up to ten times was detected in the heat affected areas after 100 pulses. Opposite to that, the laser irradiation decreased the oxygen concentration and smoothened the surface microrelief of the GLC films. The bonding type remained unchanged in the GLC films even after irradiation with 100 pulses per spot. - Highlights: • The picosecond laser irradiation led to the rearrangement of sp{sup 3} C-C to the sp{sup 2} C = C bonds in the diamond-like carbon film. • The ps-laser irradiation of the DLC films stipulates appearance of the aromatic carbon structures. • The bonding type of the graphite-like carbon films remained unchanged even after ps laser irradiation with 100 pulses.

  3. On the applicability of arbitrarily shaped nanosecond laser pulses for high-quality, high-efficiency micromachining

    Science.gov (United States)

    Eiselen, Sasia; Riedel, Sebastian; Schmidt, Michael

    2014-05-01

    Progressive developments in temporal shaping of short laser pulses offer entirely new approaches at influence and investigate laser-matter-interactions. Commonly used parameters for describing the behavior of short or ultrashort pulses or pulse trains are fluence and intensity. However, fluence does not imply any information about the temporal behavior of energy input during specific pulse duration τ while using the pulse intensity as describing parameter is more meaningful. Nevertheless it still is an averaging over pulse duration and no change in intensity can be determined if the temporal pulse shape changes within a certain combination of pulse duration and pulse energy. Using a flexible programmable MOPA fiber laser experimental studies on the impact of temporal energy distribution within one single laser pulse in micro machining applications were therefore carried out. With this laser source a direct modulation of the temporal pulse shape in the nanosecond regime can easily be controlled. Experiments were carried out with moved as well as with un-moved beam resulting in areas and dimples respectively drilling holes. The presented results clearly show that any averaging over pulse duration results in missing information about time-dependent interactions but can at the same time lead to significant differences in ablation results. Thus, resulting surface roughness Sa can be decreased up to 25 % when changing the pulse shape at constant parameters of fluence and pulse peak power at a pulse duration of 30 ns. It can be observed that the combination of an intensity peak and a lower edge within one pulse can lead to increasing ablation efficiency as well as higher ablation quality compared to the commonly used Gaussian-like temporal pulse shape.

  4. Diode-Pumped Nanosecond Pulsed Laser with Pulse-Transmission-Mode Q-Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; HUO Yu-Jing; HE Shu-Fang; FENG Li-Chun

    2001-01-01

    Q-switched pulses at 1.064μm with a peak power of 5.02kW and a pulse width of2.8ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate. These values were achieved by combining the techniques of aconsto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching. The temporal characteristics of the pulses were analysed numerically. The experimental results are shown to be in good agreement with theoretical predictions.

  5. Free space optical communication based on pulsed lasers

    Science.gov (United States)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  6. Interaction of pulsed CO2 laser radiation with optical materials

    Science.gov (United States)

    Schmitt, Ruediger; Hugenschmidt, Manfred; Geiss, L.; Stechele, E.

    1995-03-01

    Pulsed high power CO2-laser irradiation can cause damage to optical materials. Some results obtained at ISL with a repetitively pulsed CO2-laser with pulse energies up to 24 J are presented in this paper. In production facilities with CO2-lasers, optics transmitting in the visible spectral range like glass or PMMA are used as protection windows against scattered light. These materials have small skin depths for electromagnetic waves at 10,6 micrometers , typically in the order of some micrometers , so the interaction takes place in thin surface layers. Under high power laser radiation the transparency of the optics is lowered. On the other hand infrared transmitting optics like KCl or ZnSe show a low intrinsic absorption for CO2-laser radiation. Theoretical estimations matching with the experimental observations showed, however, that strong heating occurs, if a thin layer of inhomogeneities, typically some micrometers thick, is included in the surrounding material with slightly higher absorption than the surrounding lowless material. Under these assumptions the thermally induced stress inside the materials can explain the experimentally observed mechanical damage. Besides these thermal damage effects mechanical momenta are transferred by pulsed laser radiation to the optics. Experimental results as obtained by a ballistic pendulum are reported.

  7. Laser Thomson scattering in a pulsed atmospheric arc discharge

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  8. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  9. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.

    Science.gov (United States)

    Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G

    2009-06-01

    Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

  10. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Teghil, R; De Bonis, A; Galasso, A [Dipartimento di Chimica, Universita della Basilicata, Via N. Sauro 85, 85100 Potenza (Italy); Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P [CNR-IMIP, Unita di Potenza, Via S. Loja, 85050 Tito Scalo (Italy)], E-mail: roberto.teghil@unibas.it

    2008-10-15

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  11. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    Science.gov (United States)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  12. Short Pulse UV-Visible Waveguide Laser.

    Science.gov (United States)

    1980-07-01

    millimeters of the capillary tube ends. 7 A perimetric study of the laser operation was conducted in which the gas pressure, gas mixture, applied voltage, gas...removal rate through an increase in the V-T vibrational relaxation rate. When the dye laser was adjusted to the red side of the blue transition

  13. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  14. Energy deposition from focused terawatt laser pulses in air

    CERN Document Server

    Point, Guillaume; Mysyrowicz, André; Houard, Aurélien

    2015-01-01

    Laser filamentation is responsible for the deposition of a significant part of the laser pulse energy in the propagation medium. We found that using terawatt laser pulses and relatively tight focusing conditions in air, resulting in a bundle of co-propagating multifilaments, more than 50 % of the pulses energy is transferred to the medium, eventually degrading into heat. This results in a strong hydrodynamic reaction of air with the generation of shock waves and associated underdense channels for each short-scale filament. In the focal zone, where filaments are close to each other, these discrete channels eventually merge to form a single cylindrical low-density tube over a $\\sim 1~ \\mu\\mathrm{s}$ timescale. We measured the maximum lineic deposited energy to be more than 1 J/m.

  15. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-02-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm‑2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  16. Laser short pulse heating of metal nano-wires

    Science.gov (United States)

    Yilbas, B. S.; Al-Dweik, A. Y.

    2012-11-01

    Non-equilibrium energy transfer takes place in a solid substrate during a short-pulse laser irradiation and temperature field can be obtained analytically in the irradiated region. In the present study, laser short-pulse heating of metal nano-wire is considered and the analytical solution for two-dimensional axisymmetric nano-wire is presented. Since the absorption of the incident beam takes place in the skin of the irradiated surface, a volumetric heat source resembling the absorption process is incorporated in the analysis. Three different nano-wire materials are introduced in the analysis for the comparison reason. These include silver, chromium, and copper. It is found that temperature decay is gradual on the surface vicinity and temporal variation of the surface temperature follows almost the laser pulse intensity profile at the irradiated center.

  17. Quenching nitrogen-vacancy center photoluminescence with infrared pulsed laser

    CERN Document Server

    Lai, N D; Zheng, D; Jacques, V; Chang, H -C; Roch, J -F; Treussart, F

    2013-01-01

    Diamond nanocrystals containing Nitrogen-Vacancy (NV) color centers have been used in recent years as fluorescent probes for near-field and cellular imaging. In this work we report that an infrared (IR) pulsed excitation beam can quench the photoluminescence of NV color center in a diamond nanocrystal (size < 50 nm) with an extinction ratio as high as ~90%. We attribute this effect to the heating of the nanocrystal consecutive to multi-photon absorption by the diamond matrix. This quenching is reversible: the photoluminescence intensity goes back to its original value when the IR laser beam is turned off, with a typical response time of hundred picoseconds, allowing for a fast control of NV color center photoluminescence. We used this effect to achieve sub-diffraction limited imaging of fluorescent diamond nanocrystals on a coverglass. For that, as in Ground State Depletion super-resolution technique, we combined the green excitation laser beam with the control IR depleting one after shaping its intensity ...

  18. Laser pulse-shape dependence of Compton scattering

    CERN Document Server

    Titov, Alexander I; Shibata, Takuya; Hosaka, Atsushi; Takabe, Hideaki

    2014-01-01

    Compton scattering of short and ultra short (sub-cycle) laser pulses off mildly relativistic electrons is considered within a QED framework. The temporal shape of the pulse is essential for the differential cross section as a function of the energy of the scattered photon at fixed observation angle. The partly integrated cross section is sensitive to the non-linear dynamics resulting in a large enhancement of the cross section for short and, in particular, for ultra-short flat-top pulse envelopes which can reach several orders of magnitude, as compared with the case of a long pulse. Such effects can be studied experimentally and must be taken into account in Monte-Carlo/transport simulations of %$e^+e^-$ pair production in the interaction of electrons and photons in a strong laser field.

  19. Long-pulse-width narrow-bandwidth solid state laser

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  20. The effect of laser pulse tailored welding of Inconel 718

    Science.gov (United States)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  1. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  2. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  3. Cooling of rubidium atoms in pulsed diffuse laser light

    Institute of Scientific and Technical Information of China (English)

    Cheng Hua-Dong; Wang Xu-Cheng; Xiao Ling; Zhang Wen-Zhuo; Liu Liang; Wang Yu-Zhu

    2011-01-01

    This paper reports an experiment on laser cooling of 87Rb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.

  4. Pulsed laser ablation and deposition of niobium carbide

    Science.gov (United States)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  5. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  6. VUV SOURCE FROM PULSED-LASER GENERATED PLASMA

    OpenAIRE

    Laporte, P.; Damany, N.; Damany, H.

    1987-01-01

    We describe a pulsed vacuum ultraviolet (VUV) source consisting of a plasma created by focusing a NdYAG laser beam into rare gases under moderate pressure, and we report on spectral and time properties of that source. Main features are : continuum emission in a large spectral range, with only few lines superimposed, good time characteristics of the pulses, stability, cleanliness, and relatively high repetition rate (20 Hz).

  7. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    Science.gov (United States)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  8. Modifying molecular scattering from rough solid surfaces using ultrashort laser pulses

    CERN Document Server

    Khodorkovsky, Yuri; Averbukh, Ilya Sh

    2012-01-01

    We consider solid surface scattering of molecules that were subject to strong non-resonant ultrashort laser pulses just before hitting the surface. The pulses modify the rotational states of the molecules, causing their field free alignment, or a rotation with a preferred sense. We show that field-free laser-induced molecular alignment leads to correlations between the scattering angle and the sense of rotation of the scattered molecules. Moreover, by controlling the sense of laser induced unidirectional molecular rotation, one may affect the scattering angle of the molecules. This provides a new means for separation of mixtures of molecules (such as isotopes and nuclear-spin isomers) by laser controlled surface scattering.

  9. Pulsed UV laser technologies for ophthalmic surgery

    Science.gov (United States)

    Razhev, A. M.; Chernykh, V. V.; Bagayev, S. N.; Churkin, D. S.; Kargapol’tsev, E. S.; Iskakov, I. A.; Ermakova, O. V.

    2017-01-01

    The paper provides an overview of the results of multiyear joint researches of team of collaborators of Institute of Laser Physics SB RAS together with NF IRTC “Eye Microsurgery” for the period from 1988 to the present, in which were first proposed and experimentally realized laser medical technologies for correction of refractive errors of known today as LASIK, the treatment of ophthalmic herpes and open-angle glaucoma. It is proposed to carry out operations for the correction of refractive errors the use of UV excimer KrCl laser with a wavelength of 222 nm. The same laser emission is the most suitable for the treatment of ophthalmic herpes, because it has a high clinical effect, combined with many years of absence of recrudescence. A minimally invasive technique of glaucoma operations using excimer XeCl laser (λ=308 nm) is developed. Its wavelength allows perform all stages of glaucoma operations, while the laser head itself has high stability and lifetime, will significantly reduce operating costs, compared with other types of lasers.

  10. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite

    Science.gov (United States)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  11. Plasma and cavitation dynamics during pulsed laser microsurgery in vivo

    CERN Document Server

    Hutson, M Shane

    2007-01-01

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo) - specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo - especially at 355 nm - due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  12. Pulse laser machining and particulate separation from high impact polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Saira; Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at

    2014-01-01

    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1–2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  13. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    Science.gov (United States)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  14. Pulse operation of semiconductor laser with nonlinear optical feedback

    Science.gov (United States)

    Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.

    2004-09-01

    A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.

  15. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  16. Absorption of a laser light pulse in a dense plasma.

    Science.gov (United States)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  17. Detection of early dental caries with short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Nahoko; Goto, Shigeru [Osada Research Inst., Ltd., Tokyo (Japan); Tanaka, Hiroshi; Ohzu, Akira; Arisawa, Takashi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)

    2002-07-01

    Differences in the optical properties of polarization and photoluminescence between caries lesion and noncaries (sound) enamel have been investigated by focusing a pulsed Nd:YAG laser of 532 nm on the surface of teeth. Significant difference in the polarization property of the scattered light from the surface can be observed with some carious samples. For photoluminescence spectral lines which appear at around 650 nm, the intensity of caries lesion has been approximately two times higher than that of sound one. A discussion is presented in which early are potentially detectable by the pulsed laser. (author)

  18. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinxing, E-mail: xinxing.sun@iom-leipzig.de; Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318, Leipzig (Germany)

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  19. Curing of Epoxy Resin Induced by Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    LI Yubin; ZHANG Zuoguang

    2005-01-01

    The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initiators . Absorption spectroscopy, infrared spectroscopy (IR), stereomicroscopy and scanning electron microscopy (SEM) were applied to analyze the structure of epoxy resin systems after irradiation with a femtosecond laser beam. The experimental results show that the epoxy resin systems containing diaryliodonium salts can be cured by irradiation of Jemtosecond laser pulse, while the systems containing benzoin can not be cured. It is found that diaryliodonium salts decompose under the irradiation of femtosecond laser pulse through multi ( two ) -photon absorption, initiating the ring-opening polymerization of epoxy resin. And the appearance of cured area has a sheet structure consisting of many tiny lamellar structures.

  20. Droplet deformation and fragmentation by ultra-short laser pulses

    CERN Document Server

    Krivokorytov, M S; Sidelnikov, Yu V; Krivtsun, V M; Medvedev, V V; Kompanets, V O; Lash, A A; Koshelev, K N

    2016-01-01

    We report on the experimental studies of the deformation and fragmentation of liquid metal droplets by picosecond and subpicosecond laser pulses. The experiments were performed with laser irradiance varying in 10E13-10E15 W/cm^2 range. The observed evolution of the droplet shape upon the impact dramatically differs from the previously reported for nanosecond laser pulses. Instead of flattening the droplet undergoes rapid asymmetric expansion and transforms into a complex shape which can be interpreted as two conjunct spheroid shells and finally fragments. We explain the described hydrodynamic response to the ultra-short impact as a result of the propagation of the laser-induced convergent shockwave through the volume of droplet.

  1. Electron heating enhancement by frequency-chirped laser pulses

    Science.gov (United States)

    Yazdani, E.; Sadighi-Bonabi, R.; Afarideh, H.; Riazi, Z.; Hora, H.

    2014-09-01

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a0 = 5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about ne ≈ 6nc, where nc is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  2. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  3. Cooling of relativistic electron beams in chirped laser pulses

    CERN Document Server

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  4. Demonstration of a self-pulsing photonic crystal Fano laser

    CERN Document Server

    Yu, Yi; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-01-01

    Semiconductor lasers in use today rely on mirrors based on the reflection at a cleaved facet or Bragg reflection from a periodic stack of layers. Here, we demonstrate an ultra-small laser with a mirror based on the Fano resonance between a continuum of waveguide modes and the discrete resonance of a nanocavity. The Fano resonance leads to unique laser characteristics. Since the Fano mirror is very narrow-band compared to conventional lasers, the laser is single-mode and in particular, it can be modulated via the mirror. We show, experimentally and theoretically, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that was previously only observed in macroscopic lasers. Such a source is of interest for a number of applications within integrated photonics.

  5. Pulsed laser-induced formation of silica nanogrids

    National Research Council Canada - National Science Library

    Ihlemann, Jürgen; Weichenhain-Schriever, Ruth

    2014-01-01

    ... ) coating through the transparent substrate. A polydimethylsiloxane (PDMS) superstrate (cover layer) coated on top of the SiO x film prior to laser exposure serves as confinement for controlled laser-induced structure formation...

  6. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shadwick, Bradley A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Kalmykov, S. Y. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy

    2016-12-08

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  7. Second harmonic generation in a centrosymmetric gas medium with spatiotemporally focused intense femtosecond laser pulses

    CERN Document Server

    Li, Guihua; Xie, Hongqiang; Zeng, Bin; Yao, Jinping; Chu, Wei; Zhang, Haisu; Jing, Chenrui; He, Fei; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    We demonstrate unexpectedly strong second harmonic generation (SHG) in Argon gas by use of spatiotemporally focused (SF) femtosecond laser pulses. The resulting SHG by the SF scheme at a 75 cm distance shows a significantly enhanced efficiency than that achieved with conventional focusing scheme, which offers a new promising possibility for standoff applications. Our theoretical calculations reasonably reproduce the experimental observations, which indicate that the observed SHG mainly originates from the gradient of nonuniform plasma dynamically controlled by the SF laser field.

  8. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    Science.gov (United States)

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  9. Electron rescattering at metal nanotips induced by ultrashort laser pulses

    Science.gov (United States)

    Wachter, G.; Lemell, C.; Burgdörfer, J.

    2014-04-01

    We theoretically investigate the interaction of moderate intensity near-infrared few cycle laser pulses with nano-scale metal tips. Local field enhancement in a nanometric region around the tip apex triggers coherent electron emission on the nanometer length and femtosecond time scale. The quantum dynamics at the surface are simulated with time-dependent density functional theory (TDDFT) and interpreted based on the simple man's model. We investigate the dependence of the emitted electron spectra on the laser wavelength.

  10. Pulsed-laser therapy (GA-As) in combined treatment of post-traumatic swellings and some dermatological disorders

    Science.gov (United States)

    Antipa, Ciprian; Dona, Dumitru; Podoleanu, Adrian Gh.

    1994-02-01

    The effect of a pulsed gallium arsenide infrared laser radiation was studied on 64 patients with post traumatic swellings, allergic vasculitis and varicose crural ulcers, therapy resistant. The soft laser therapy was conducted in combination with classical therapy and was compared with a non irradiated control group of 52 patients treated only by classical therapy. Laser irradiation was directed to the skin damage by laser scanning. Segmental and dermatomic areas of the skin lesions were irradiated by laserpuncture. Therapeutic protocol included an average of nine sessions. The statistical analysis shows a significant difference of the efficiency between Ga-As pulsed laser treated group and the control group, especially in the case of post-traumatic swellings and less in the case of allergic vasculitis. The effects reported by this study are relevant for clinical application of infrared pulsed low lasers in dermatology.

  11. Pulsed Laser Processing of Paper Materials

    Science.gov (United States)

    Schechtel, Florian; Reg, Yvonne; Zimmermann, Maik; Stocker, Thomas; Knorr, Fabian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    At present the trends in paper and packaging industries are the personalization of products and the use of novel high-tech materials. Laser processes as non-contact and flexible techniques seem to be the obvious choice to address those developments. In this paper we present a basic understanding of the occurring mechanisms of laser based engraving of different paper and paperboard materials, using a picosecond laser source at 1064 nm. The influences on the beam-paper-interaction of grammage, the composition of the paper matrix, as well as the paper inherent cellulose fibers were investigated. Here the ablation threshold of commercially available paper was determined and a matrix ablation effect under the 1064 nm radiation observed. These results were characterized and qualified mainly by means of laser scanning microscope (LSM) micrographs in combination with color-space analytics.

  12. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Science.gov (United States)

    Antonova, K.; Duta, L.; Szekeres, A.; Stan, G. E.; Mihailescu, I. N.; Anastasescu, M.; Stroescu, H.; Gartner, M.

    2017-02-01

    Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A1LO mode frequency was analysed and connected to the orientation of the particles' optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers' properties is discussed on this basis.

  13. Filamentation of ultrashort laser pulses of different wavelengths in argon

    Indian Academy of Sciences (India)

    XIEXING QI; WENBIN LIN

    2017-02-01

    We investigate the filaments formed by the ultrashort laser pulses with different wavelengths of 400 nm, 586 nm and 800 nm propagating in argon. Numerical results show that, when the input power or the ratio of the input power to the critical power is given, the pulse with 400 nm wavelength has the largest on-axis intensity, as well as the narrowest filament and the most stable beam radius. These results indicate that the pulse with shorter wavelength is more suitable for the long-range propagation in argon.

  14. A spectrograph for studying pulsed infrared laser spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, G.B.; Filippov, V.N.; Komissarova, I.I.; Ostrobskii, U.I.; Ostrovskaya, G.V.; Paritskii, L.G.; Shevova, E.N.

    1982-01-01

    A spectrograph used to record the pulsed infrared spectra in a wavelength range which exceeds the sensitivity limits of standard photographic materials is described. The spectrograph is built using a standard scheme with mirror optics (f = 60 centimeters) and a diffraction grating 50 lines per millimeter. The recording process involves exposing the photomaterial to a pulsed emission source which is synchronized with a reference infrared emission source created using a purple relief photomaterial. The recording sensitivity is 10exp-2 joules per square centimeter. An interlaced pulsed CO2 laser emission spectrum is derived using the spectrograph.

  15. Ionization-injected electron acceleration with sub-terawatt laser pulses

    Science.gov (United States)

    Feder, Linus; Goers, Andy; Hine, George; Miao, Bo; Salehi, Fatholah; Woodbury, Daniel; Milchberg, Howard

    2016-10-01

    The vast majority of laser wakefield acceleration (LWFA) experiments use drive lasers with peak powers >10 TW and repetition rates from 10 Hz to less than once an hour. However, it was recently demonstrated that by using a thin, high density gas target, LWFA can be driven by laser pulses well below a TW and with high repetition rates. We present experiments and particle-in-cell (PIC) simulations of the effect of doping the high density gas jet with higher Z molecules (here nitrogen). Our earlier experiments with low-Z gas relied on self-injection of electrons into the accelerating wake through wave-breaking. In ionization injection, the relativistically self-focused laser pulse ionizes the inner shell of the dopant inside the plasma wake. High energy electrons are then trapped by the wakefield in the earliest potential buckets, which overlap with the laser pulse. PIC simulations show acceleration of these electrons by LWFA and directly by the laser pulse, with the direct contribution significantly increasing the electron energy beyond the LWFA contribution alone. Additionally, ionization injection can be controlled to prevent dephasing of the electron beam, resulting in a narrower energy spectrum and lower spatial divergence. This research is supported by the Department of Energy and the National Science Foundation.

  16. A spectroscopic approach to monitor the cut processing in pulsed laser osteotomy.

    Science.gov (United States)

    Henn, Konrad; Gubaidullin, Gail G; Bongartz, Jens; Wahrburg, Jürgen; Roth, Hubert; Kunkel, Martin

    2013-01-01

    During laser osteotomy surgery, plasma arises at the place of ablation. It was the aim of this study to explore whether a spectroscopic analysis of this plasma would allow identification of the type of tissue that was affected by the laser. In an experimental setup (Rofin SCx10, CO(2) Slab Laser, wavelength 10.6 μm, pulse duration 80 μs, pulse repetition rate 200 Hz, max. output in cw-mode 100 W), the plasma spectra evoked by a pulsed laser, cutting 1-day postmortem pig and cow bones, were recorded. Spectra were compared to the reference spectrum of bone via correlation analysis. Our measurements show a clear differentiation between the plasma spectra when cutting either a bone or a soft tissue. The spectral changes could be detected from one to the next spectrum within 200 ms. Continuous surveillance of plasma spectra allows us to differentiate whether bone or soft tissue is hit by the last laser pulse. With this information, it may be possible to stop the laser when cutting undesired soft tissue and to design an automatic control of the ablation process.

  17. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  18. Nanosecond pulsed laser induced generation of open macro porosity on sintered ZnO pellet surface

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Samanta, Soumen [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Sinha, Sucharita [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    2015-01-15

    Highlights: • Zinc oxide (ZnO) targets have been surface treated using a frequency doubled nanosecond pulsed Nd:YAG laser at laser fluence levels ranging between 2 and 9 J/cm{sup 2}. • Our observations establish that laser irradiation provides an effective technique for generation of surface macro porosity in case of ZnO pellets. • Extent of surface porosity and the mean pore size could be controlled by appropriately varying the incident laser fluence. • Such laser treated ZnO surfaces with enhanced surface porosity and large size pores (mean pore area ∼2–5 μm{sup 2}) can serve as potential candidate for humidity sensors with high sensitivity and fast response time, particularly in high humidity range. - Abstract: Surface porosity and pore size distribution of sensing material greatly influence performance parameters such as sensitivity, reproducibility and response time of sensors. Various approaches have been employed to generate surface porosity having varying pore size distribution. This paper presents our results on pulsed laser irradiation based surface microstructuring of sintered zinc oxide (ZnO) pellets leading to generation of enhanced surface porosity. ZnO targets have been surface treated using a frequency doubled nanosecond pulsed Nd:YAG laser at laser fluence levels ranging between 2 and 9 J/cm{sup 2}. Our observations establish that laser irradiation provides an effective technique for generation of surface macro porosity in case of ZnO pellets. Also, extent of surface porosity and the mean pore size could be controlled by appropriately varying the incident laser fluence. Such laser treated ZnO surfaces with enhanced surface porosity and large size pores can serve as potential candidate for humidity sensors with high sensitivity and fast response time, particularly in high humidity range.

  19. Modeling of ultrafast laser pulse propagation

    Science.gov (United States)

    Kolesik, Miroslav; Brown, Jeffrey; Bahl, Anand

    2016-05-01

    Computer simulations of ultrafast optical pulses face multiple challenges. This requires one to construct a propagation model to reduce the Maxwell system so that it can be efficiently simulated at the temporal and spatial scales relevant to experiments. The second problem concerns the light-matter interactions, demanding novel approaches for gaseous and condensed media alike. As the nonlinear optics pushes into new regimes, the need to honor the first principles is ever greater, and requires striking a balance between computational complexity and physical fidelity of the model. With the emphasis on the dynamics in intense optical pulses, this paper discusses some recent developments and promising directions in the field of ultrashort pulse modeling.

  20. Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm

    CERN Document Server

    Woodward, R I

    2016-01-01

    Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states that can be accessed through control of cavity parameters. Determination of target regimes is a multi-parameter global optimisation problem. Here, we report the implementation of a genetic algorithm to intelligently locate optimum parameters for stable single-pulse mode-locking in a Figure-8 fibre laser, and fully automate the system turn-on procedure. Stable ultrashort pulses are repeatably achieved by employing a compound fitness function that monitors both temporal and spectral output properties of the laser. Our method of encoding photonics expertise into an algorithm and applying machine-learning principles paves the way to self-optimising `smart' optical technologies.