WorldWideScience

Sample records for laser plasma investigation

  1. Experimental investigation of linear mode conversion in laser-produced plasmas

    International Nuclear Information System (INIS)

    Maaswinkel, A.G.M.

    1980-12-01

    In this work absorption mechanisms are investigated in hot dense plasmas produced by intense laser irradiation of planar targets. Central in this investigation stands the absorption by linear mode conversion; this process occurs in inhomogeneous plasmas if the electric field vector of the incident EM-wave has a component parallel to the density gradient; this causes electrostatic oscillations at the critical density (where ωsub(p)sub(e) = ω). In addition, absorption of the laser light by inverse bremsstrahlung is investigated. The absorption is determined by the reflection of the laser light from the plasma. To this aim optical diagnostics are used. The reflection into 4π sr is measured with an Ulbricht sphere, also the reflection in specular (geometric) direction is recorded. The absorption mechanisms have been isolated by variation of the polarization of the beam and the angle of incidence to the target. An essential part of the work has been the frequency up-conversion of the laser beam by nonlinear crystals; in this way the wavelength-dependence of the absorption in the plasma has been investigated at wavelengths 1.06 μm, 0.53 μm and 0.26 μm; the pulse duration in the experiments was 30 ps, the maximum irradiation on target was 10 14 W/cm 2 . (orig./HT)

  2. Investigation of relativistic laser-plasmas using nuclear diagnostics

    International Nuclear Information System (INIS)

    Guenther, Marc M.

    2011-01-01

    The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different (γ,xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the (γ,xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI-Helmholtzzentrum fuer

  3. Investigation of laser plasma instabilities using picosecond laser pulses

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Yin, L; Flippo, K A; Shimada, T; Johnson, R P; Rose, H A; Albright, B J; Hardin, R A

    2008-01-01

    A new short-pulse version of the single-hot-spot configuration has been implemented to enhance the performance of experiments to understand Stimulated Raman Scattering. The laser pulse length was reduced from ∼200 to ∼3 ps. The reduced pulse length improves the experiment by minimizing effects such as plasma hydrodynamic evolution and ponderomotive filamentation of the interaction beam. In addition, the shortened laser pulses allow full length 2D particle-in-cell simulations of the experiments. Using the improved single-hot-spot configuration, a series of experiments to investigate kλ D scaling of SRS has been performed. Details of the experimental setup and initial results will be presented

  4. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  5. Investigation of electron heating in laser-plasma interaction

    International Nuclear Information System (INIS)

    Parvazian, A.; Haji Sharifi, K.

    2013-01-01

    In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  6. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  7. Investigation of micro-plasma in physiological saline produced by a high-power YAG laser

    International Nuclear Information System (INIS)

    Lu Jian; Ni Xiaowu; He Anzhi

    1994-01-01

    Micro-plasma and shock waves in the physiological saline produced by a Q-switched pulse YAG laser with nearby optical breakdown threshold energy are investigated by using optical shadowing exploring method, and a series of optical shadow graphs of micro-plasma and shock waves versus the incident laser energy and the delay time are obtained. Influence of mechanical action of shock waves for the high-power pulse laser on the ophthalmic treatment is discussed

  8. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  9. Investigation of rf plasma light sources for dye laser excitation

    International Nuclear Information System (INIS)

    Kendall, J.S.; Jaminet, J.F.

    1975-06-01

    Analytical and experimental studies were performed to assess the applicability of radio frequency (rf) induction heated plasma light sources for potential excitation of continuous dye lasers. Experimental efforts were directed toward development of a continuous light source having spectral flux and emission characteristics approaching that required for pumping organic dye lasers. Analytical studies were performed to investigate (1) methods of pulsing the light source to obtain higher radiant intensity and (2) methods of integrating the source with a reflective cavity for pumping a dye cell. (TFD)

  10. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  11. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  12. Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser

    Science.gov (United States)

    Abel, W.; Wallter, B.

    1984-03-01

    The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.

  13. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  14. Plasmas and intense laser light

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    1984-01-01

    The present article begins with a description of the laser technology required to reach the high irradiances of interest and provides a brief outline of the more important diagnostic techniques used in investigating the plasmas. An introduction to plasma waves is given and the linear and nonlinear excitation of waves is discussed. The remainder of the article describes some of the experimental evidence supporting the interpretation of the plasma behaviour at high laser-light intensities in terms of the excitation of plasma waves and the subsequent heating of plasma by these waves. (author)

  15. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  16. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    Science.gov (United States)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  17. Nonlinear laser-plasma interactions

    Science.gov (United States)

    Kaw, P. K.

    2017-12-01

    Soon after lasers were invented, there was tremendous curiosity on the nonlinear phenomena which would result in their interaction with a fully ionized plasma. Apart from the basic interest, it was realized that it could be used for the achievement of nuclear fusion in the laboratory. This led us to a paper on the propagation of a laser beam into an inhomogeneous fusion plasma, where it was first demonstrated that light would go up to the critical layer (where the frequency matches the plasma frequency) and get reflected from there with a reflection coefficient of order unity. The reflection coefficient was determined by collisional effects. Since the wave was expected to slow down to near zero group speed at the reflection point, the dominant collision frequency determining the reflection coefficient was the collision frequency at the reflection point. It turned out that the absorption of light was rather small for fusion temperatures. This placed a premium on investigation of nonlinear phenomena which might contribute to the absorption and penetration of the light into high-density plasma. An early investigation showed that electron jitter with respect to ions would be responsible for the excitation of decay instabilities which convert light waves into electrostatic plasma waves and ion waves near the critical frequency. These electrostatic waves would then get absorbed into the plasma even in the collisionless case and lead to plasma heating which is nonlinear. Detailed estimates of this heating were made. Similar nonlinear processes which could lead to stimulated scattering of light in the underdense region (ω >ω _p) were investigated together with a number of other workers. All these nonlinear processes need a critical threshold power for excitation. Another important process which was discovered around the same time had to do with filamentation and trapping of light when certain thresholds were exceeded. All of this work has been extensively verified in

  18. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    International Nuclear Information System (INIS)

    Ikeda, Shunsuke; Sekine, Megumi; Romanelli, Mark; Cinquegrani, David; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-01-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface

  19. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  20. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  1. Investigation of relativistic laser-plasmas using nuclear diagnostics; Untersuchung relativistischer Laserplasmen mittels nukleardiagnostischer Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc M.

    2011-01-19

    The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different ({gamma},xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the ({gamma},xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI

  2. Laser optically pumped by laser-produced plasma

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II.

    1975-01-01

    Laser solids, liquids and gases are pumped by a new technique in which the output from an efficient molecular laser, such as a CO 2 laser, ionizes a medium, such as xenon, into a generally cylindrical plasma volume, in proximity to the pumped laser body. Breakdown yields a visible and ultraviolet-radiation-emitting plasma in that volume to pump the laser body. The spectral radiance of the plasma is significantly higher than that produced by a dc-discharge-heated plasma at nearly all wavelengths in the plasma spectrum. The risetime of radiation from the laser-produced plasma can also be significantly shorter than that of a dc heated plasma. A further advantage resides in the fact that in some applications the attenuating walls needed by flashlamps may be eliminated with the result that laser threshold is more readily reached. Traveling wave excitation may be provided by oblique incidence of the pumping laser beam through the ionizable medium to create sequential ionization of portions of that medium along the length of the pumped laser body. (auth)

  3. Investigation of the effect of laser parameters on the target, plume and plasma behavior during and after laser-solid interaction

    Science.gov (United States)

    Stancalie, A.; Ciobanu, S. S.; Sporea, D.

    2017-09-01

    A detailed theoretical and experimental analysis is performed for a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target. The plasma parameters were experimentally estimated from the line intensities ratio which reflects the relative population of neutral excited species in the plasma. In the case of LA experiments the highest temperature observed was 8210 ± 370 K. In case of LIBS measurements, a maximum temperature of 8123 K has been determined. The experimental results are in good agreement with a stationary, hydrodynamic model. We have theoretically investigated the plasma emission based on the generalized collisional-radiative model as implemented in the ADAS interconnected set of computer codes and data collections. The ionic population density distribution over the ground and excited states into the cooper plasma is graphically displayed as output from the code. The theoretical line intensity ratios are in good agreement with experimental values for the electron density and temperature range measured in our experiments.

  4. Laser-heating of hydrogen plasma

    International Nuclear Information System (INIS)

    Foeldes, I.B.; Ignacz, P.N.; Kocsis, G.

    1990-10-01

    The possibility of creating a fully ionized hydrogen plasma to investigate the capture of slow antiprotons is discussed. Laser heating of the initially discharge-created arc or Z-pinch plasma is proposed. Within the framework of a simple 1-dimensional model based on the energy balance equation alone it is shown that plasma equilibrium can be sustained for 10 μs. A simple pulsed CO 2 laser with this pulse duration and an energy of about 10-30 J is sufficient for heating. (author) 16 refs.; 3 figs

  5. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  6. Laser thermonuclear fusion with force confinement of hot plasma

    International Nuclear Information System (INIS)

    Korobkin, V.V.; Romanovsky, M.Y.

    1994-01-01

    The possibility of the utilization of laser radiation for plasma heating up to thermonuclear temperatures with its simultaneous confinement by ponderomotive force is investigated. The plasma is located inside a powerful laser beam with a tubelike section or inside a cavity of duct section, formed by several intersecting beams focused by cylindrical lenses. The impact of various physical processes upon plasma confinement is studied and the criteria of plasma confinement and maintaining of plasma temperature are derived. Plasma and laser beam stability is considered. Estimates of laser radiation energy necessary for thermonuclear fusion are presented

  7. Experimental investigation of the formation and propagation of plasma jets created by a power laser: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Loupias, B.

    2008-10-01

    Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet

  8. Edge plasma physical investigations of tokamak plasmas in CRIP

    International Nuclear Information System (INIS)

    Bakos, J.; Ignacz, P.; Koltai, L.; Paszti, F.; Petravich, G.; Szigeti, J.; Zoletnik, S.

    1988-01-01

    The results of the measurements performed in the field of thermonuclear high temperature plasma physics in CRIP (Hungary) are summarized. In the field of the edge plasma physics solid probes were used to test the external zone of plasma edges, and atom beams and balls were used to investigate both the external and internal zones. The plasma density distribution was measured by laser blow-off technics, using Na atoms, which are evaporated by laser pulses. The excitation of Na atom ball by tokamak plasma gives information on the status of the plasma edge. The toroidal asymmetry of particle transport in tokamak plasma was measured by erosion probes. The evaporated and transported impurities were collected on an other part of the plasma edge and were analyzed by SIMS and Rutherford backscattering. The interactions in plasma near the limiter were investigated by a special limiter with implemented probes. Recycling and charge exchange processes were measured. Disruption phenomena of tokamak plasma were analyzed and a special kind of disruptions, 'soft disruptions' and the related preliminary perturbations were discovered. (D.Gy.) 10 figs

  9. Laser surface wakefield in a plasma column

    International Nuclear Information System (INIS)

    Gorbunov, L.M.; Mora, P.; Ramazashvili, R.R.

    2003-01-01

    The structure of the wakefield in a plasma column, produced by a short intense laser pulse, propagating through a gas affected by tunneling ionization is investigated. It is shown that besides the usual plasma waves in the bulk part of the plasma column [see Andreev et al., Phys. Plasmas 9, 3999 (2002)], the laser pulse also generates electromagnetic surface waves propagating along the column boundary. The length of the surface wake wave substantially exceeds the length of the plasma wake wave and its electromagnetic field extends far outside the plasma column

  10. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  11. Investigations on laser induced nickel and titanium plasmas

    International Nuclear Information System (INIS)

    Rahman, M.K.U.; Latif, A.; Bhatti, K.A.; Rafique, M.S.; Yousaf, M.K.

    2011-01-01

    Experiments were performed to find out plasma parameters for Nickel and Titanium metals which were irradiated in air (1 atm) to produce plasma plume using Q switched Nd: YAG pulsed laser of 1.1 MW, 10 m J, 1064 nm and 9-14 ns. Langmuir probe was used as a diagnostic tool. The signals at different probe voltages were recorded on digital storage oscilloscope. The information carried by the signals was utilized to calculate electron density, electron temperature, Debye's length and number of particles in Debye's sphere. The study shows that the calculated values of these parameters for Nickel and Titanium are different except Debye's length. Plasma parameters strongly depend on probe potentials, material used and ambient conditions. (author)

  12. Railgun system using a laser-induced plasma armature

    International Nuclear Information System (INIS)

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-01-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. copyright 1996 American Institute of Physics

  13. Railgun system using a laser-induced plasma armature

    Science.gov (United States)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun.

  14. Plasma production and heating by a laser TEA-CO2

    International Nuclear Information System (INIS)

    Goes, L.C.S.; Sudano, J.P.; Rodrigues, N.A.S.

    1987-01-01

    Preliminary experiments of plasma production and heating by laser irradiation of gases and solid targets have been performed with a laser TEA-CO 2 (1 MW, 80 ns, monomode), developed and built at the IEAv/Laser Laboratory. The laser beam was focused in the interior of a vacuum chamber (100 1) with a base pressure of 10 1 torr, and recolimated by a system of confocal lenses. The breakdown theresholds for nitrogen gas was investigated by varying the laser power, the neutral gas density and the focal lenght of the lenses. Plasma breakdown observed in the range of pressures between 100-720 torr was in good agreement with calculations of cascade ionization theory and classical absorption by inverse-Bremsstrahlung. The laser absorption was inferred by measuring the power transmitted in the presence and absence of plasma. The light emitted by the plasma was detected by a fast photo-diode, indicating that the plasma expansion phase lasted for several microseconds. These investigations have been applied in the development of plasma shutters for laser pulse compression. (author) [pt

  15. Railgun system using a laser-induced plasma armature

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Oda, Y.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., 3-3-1, Minatomirai, Nishi-ku, Yokohama 220-84 (Japan)

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  16. Spectroscopic diagnostics of plasma during laser processing of aluminium

    International Nuclear Information System (INIS)

    Lober, R; Mazumder, J

    2007-01-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO 2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 A Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO 2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data

  17. Spectroscopic diagnostics of plasma during laser processing of aluminium

    Science.gov (United States)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  18. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  19. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  20. Analytical investigation on domain of decentered parameter for self-focusing of Hermite-cosh-Gaussian laser beam in collisional plasma

    Science.gov (United States)

    Valkunde, Amol T.; Patil, Sandip D.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Takale, Mansing V.; Fulari, Vijay J.

    2018-03-01

    In the present paper, an analytically investigated domain of decentered parameter and its effect on the self-focusing of Hermit-cosh-Gaussian (HChG) laser beams in a collisional plasma have been studied theoretically. The nonlinearity in the dielectric constant of plasma arising due to the nonuniform heating of carriers along the wavefront of the laser beam has been employed in the present investigation. The nonlinear differential equation of beam width parameter for various laser modes of HChG beam is obtained by following the standard Akhamanov's parabolic equation approach under Wentzel-Kramers-Brillouin and paraxial approximations. The analytical treatment has enabled us to define three distinct regions: self-focusing, self-trapping and defocusing, which are presented graphically.

  1. Plasma cutting or laser cutting. Plasma setsudan ka laser setsudan ka

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, A. (Tanaka Engineering Works Ltd., Saitama (Japan))

    1991-05-01

    Comparisons and discussions were made on the plasma cutting and laser cutting in sheet steel cutting, referring partly to gas cutting. Historically, the cutting has been developed from gas, plasma, and laser in that order, and currently these three methods are used mixedly. Generally, the plasma cutting is superior in cutting speed, but inferior in cut face quality, and it requires measures of dust collection. Due to high accuracy and quality in cut face, the laser cutting has been practically used for quite some time in the thin sheet industry, but medium to thick sheet cutting had a problem of unavailability of high output laser suitable for these ranges. However, the recent technologies have overcome the problem as a result of development at the authors {prime} company of a 2 kW class laser cutter capable of cutting 19 mm thick sheet. The cutter has been proven being particularly excellent in controllability. Choice of whether plasma or laser would depend upon which priority is to be taken, cost or accuracy. 15 figs., 3 tabs.

  2. Tomography of laser fusion plasmas

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1977-01-01

    Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 μm to 200 μm diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray microscope and the pinhole camera. Recently, a particular coded imaging technique, Zone Plate Coded Imaging (ZPCI), has been successfully used for x-ray and particle microscopy of laser fusion plasmas. ZPCI is highly attractive for investigating laser produced plasmas because it possesses a tomographic capability not shared by either the GIR or pinhole imaging techniques. This presentation provides a brief discussion of the tomographic potential of ZPCI. In addition, the first tomographic x-ray images (tomographic resolution approximately 74 μm) of a laser produced plasma are presented

  3. Effect of laser peening with glycerol as plasma confinement layer

    Science.gov (United States)

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  4. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  5. Interferometric studies of laser-created plasmas using compact soft x-ray lasers

    International Nuclear Information System (INIS)

    Dunn, J; Nilsen, J; Moon, S; Keenan, R; Jankowska, E; Maconi, M C; Hammarsten, E C; Filevich, J; Hunter, J R; Smith, R F; Shlyaptsev, V; Rocca, J J

    2003-01-01

    We summarize results of several successful dense plasma diagnostics experiments realized by combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important two-dimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense plasmas such as those investigated for inertial confinement fusion

  6. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  7. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Scharer, John

    2008-01-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation

  8. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  9. Experimental investigations of driven Alfven wave resonances in a tokamak plasma using carbon dioxide laser interferometry

    International Nuclear Information System (INIS)

    Evans, T.E.

    1984-09-01

    The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma

  10. Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuanbin; Pálffy, Adriana, E-mail: yuanbin.wu@mpi-hd.mpg.de, E-mail: Palffy@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2017-03-20

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction {sup 13}C({sup 4}He, n ){sup 16}O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.

  11. Transition between laser absorption dominated regimes in carbon-based plasma

    Directory of Open Access Journals (Sweden)

    K. Hajisharifi

    2017-09-01

    Full Text Available In this work, we investigate the energy absorption enhancement of a laser by adding a variety of light ion species to a primarily carbon-based plasma during the high-power laser interaction with the finite size targets. A developed Particle-In-Cell simulation code is used to study the reduction of laser reflectivity (stimulated backward scatterings in both Brillouin- and Raman-dominated regimes. The simulation is performed in various Carbon-light ion plasmas such as Carbon-Hydrogen, Carbon-Helium, Carbon-Deuterium, and Carbon-Tritium. The results show that, in the optimized condition, the inclusion of light Hydrogen ions into the Carbon-based plasma up to 50%-50% mixture enhances the laser absorption exceeding 20% in the Brillouin regime due to the suppression of laser reflectivity in contract to 4% in the Raman-dominated regime. Moreover, the absorption dominated regime switches from Raman to Brillouin regime by adding 50% of Hydrogen ions to a purely carbon target. The results of this investigation will be applicable to the laser-plasma experiments so long as the laser energy absorption in the Carbon plasma target, the most readily available material in laboratory, is concerned.

  12. The laser, measuring instrument for plasmas

    International Nuclear Information System (INIS)

    Anderegg, F.; Behn, R.; Paris, P.J.; Salito, S.A.; Siegrist, M.R.; Weisen, H.

    1988-06-01

    There are several different and in general complementary methods for the investigation of plasmas. All of them have different characteristics and properties covering a large spectrum of physical measuring techniques. Electromagnetic waves serving as 'thermometers' permit to detect the global behaviour of the plasma as well as that of the particles composing it. One of the advantages of these introspective methods is that it brings information on temporary and local conditions of the domain being interrogated. With the development of micro-wave sources and lasers after the war the principal tools of this type of plasma diagnostics are now available. In this paper the emphasis is on the lasers which are different according to the type of measurement. Their versatility in measuring plasma parameters is largely acknowledged. We illustrate the potential of measuring methods by lasers by means of the research work done at two experimental installations of CRPP. (author) 21 figs., 8 refs

  13. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  14. Investigation of the interaction of high intensity laser light with solids and hot plasma using X-ray spectroscopic technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1978-06-01

    This work investigates the properties of high power laser-produced plasmas by developing and applying x-ray spectroscopic methods which utilize spatial resolution. The shadow techniques which were developed in this work yield a high spatial resolution of 5-15μm together with an adequate X-ray spectral resolution for single shots of laser power flux of 2.10 13 W/cm -2 . The intensity distribution in the source is calculated from the partial shadow by numerical differentiation. The main advantage of the present method is the ability to obtain spatial information simultaneously for strong and weak spectral lines for a single shot of medium power laser. Plasma parameters were derived from H-like and He-like lines and their inner-shell satellites, which were obtained from Mg, Al and Si targets. Using shadow techniques, the sizes of the emitting regions of the various spectral lines were measured; the spatial variation of the ionization stage, the electron temperature and density were investigated. A constant electron temperature of (250+-50)eV and electron density scale-length of about 50μm were derived for an expanding plasma. An experimental investigation of the possible origin and the mechanisms responsible for the Ksub(α) radiation in laser-produced plasma was carried out. It is shown that the Ksub(α) radiation was generated by fast suprathermal electrons and originated inside the target behind the interaction zone of the shock and heat waves. Energy penetration depth and hot plasma expansion were tested by using multilayer targets, thin foils and achieving a two-dimensional spatially resolved X-ray Al spectrum. (B.G.)

  15. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    International Nuclear Information System (INIS)

    Faenov, A.; Dyakin, V.; Magunov, A.; Pikuz, T.; Skobelev, I.; Pikuz, S.; Pisarczyk, T.; Wolowski, J.; Zielinska, E.

    1996-01-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N e (z) and T e (z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.)

  16. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Dyakin, V. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Magunov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, T. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Skobelev, I. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Kasperczyk, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pisarczyk, T. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1996-08-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N{sub e}(z) and T{sub e}(z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.).

  17. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Bradley, K.S.

    1993-01-01

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory's assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made

  18. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  19. Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yuki, E-mail: iwasa-y@ile.osaka-u.ac.jp [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamanoi, Kohei; Iwano, Keisuke; Empizo, Melvin John F.; Arikawa, Yasunobu; Fujioka, Shinsuke; Sarukura, Nobuhiko; Shiraga, Hiroyuki; Takagi, Masaru; Norimatsu, Takayoshi; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Noborio, Kazuyuki; Hara, Masanori; Matsuyama, Masao [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2016-11-15

    Highlights: • Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation. • The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. • Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. • Hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. • UV laser and plasma irradiations can be utilized to fabricate tritium-doped polystyrene shell targets for future laser fusion experiments. - Abstract: We investigate the tritium-doping enhancement of polystyrene by ultraviolet (UV) laser and hydrogen plasma irradiation. Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma. The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. In addition, UV laser irradiation is more localized and concentrated at the spot of laser irradiation, while hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. Both UV laser and plasma irradiations can nevertheless be utilized to fabricate tritium-doped polystyrene targets for future laser fusion experiments. With a high doping rate and efficiency, a 1% tritium-doped polystyrene shell target having 7.6 × 10{sup 11} Bq g{sup −1} specific radioactivity can be obtained at a short period of time thereby decreasing tritium consumption and safety management costs.

  20. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2012-01-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: ► Aluminum plasma emission in helium is numerically and experimentally studied. ► Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. ► All strong lines of aluminum and helium are chosen for spectrum simulation. ► Line widths and peak intensities at later times become narrower and weaker. ► At specific optimum position, the maximum of signal peaks is acquired.

  1. Investigation of collisional excitation-transfer processes in a plasma by laser perturbation method

    International Nuclear Information System (INIS)

    Sakurai, Takeki

    1983-01-01

    The theoretical background and the experimental method of the laser perturbation method applied to the study of collisional excitation transfer process in plasma are explained. The atomic density at some specified level can be evaluated theoretically. By using the theoretical results and the experimentally obtained data, the total attenuation probability, the collisional transfer probability and natural emission probability were estimated. For the experiments, continuous wave laser (cw) and pulse laser are employed. It is possible by using pulse dye laser to observe the attenuation curve directly, and to bring in resonance to any atomic spectra. At the beginning, the experimental studies were made on He-Ne discharge. The pulse dye laser has been used for the excitation of alkali atoms. The first application of pulse laser to the study of plasma physics was the study on He. The cross section of disalignment has also been studied by the laser perturbation. The alignment of atoms, step and cascade transfer, the confinement of radiation and optogalvanic effect are discussed in this paper. (Kato, T.)

  2. Interferometric investigation of shock waves induced by a TEA-CO2 laser produced plasma in air in front of a solid target

    International Nuclear Information System (INIS)

    Apostol, D.; Apostol, I.; Cojocaru, E.; Draganescu, V.; Mihailescu, N.I.; Morjan, I.; Konov, I.V.

    1979-06-01

    The shock waves induced in the surrounding atmosphere by an air plasma were investigated by laser interferometry. The air breakdown plasma was produced by a TEA-CO 2 laser in front of a solid target. The results were compared to the predictions of theory of intense explosions in gases and a good agreement was inferred. It was also determined that the symmetry of the expansion of the initial shock wave is determined by the plasma source shape and, accordingly, depends on the laser power density incident on the target surface. However, for further stages all the shock waves expand spherically. (author)

  3. Laser-plasma interactions and applications

    CERN Document Server

    Neely, David; Bingham, Robert; Jaroszynski, Dino

    2013-01-01

    Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowl...

  4. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  5. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  6. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field.

  7. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    International Nuclear Information System (INIS)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field

  8. The application of laser plasma in ophthalmology

    International Nuclear Information System (INIS)

    He Yujiang; Luo Le; Sun Yabing

    2000-01-01

    The production and development of laser plasma are introduced, and the contribution of laser biomedicine and laser plasma technology to ophthalmology is analyzed. The latest three progresses (laser photocoagulation, photo-refractive keratotomy and laser iridectomy) of laser plasma applications in ophthalmology are presented

  9. Coherent nonlinear backscattering by laser-plasma interactions

    International Nuclear Information System (INIS)

    Anderson, D.; Wilhelmsson, H.

    1974-01-01

    A theoretical analysis is carried out for the problem of coherent nonlinear backscattering of laser radiation by a high density plasma. A number of effects of direct interest to the DT-pellet fusion research is investigated. A simple physical description is introduced, which relies on a nonlinear potential formulation of the scattering equations. The simplicity and the unified nature of the approach enables one to evaluate and compare the influence on the radiation reflectivity of different effects, such as e.g. inhomogeneities, blow-off velocities, temperature gradients, laser band width and relativistic oscillatory velocities. The understanding of the role played by the various phenomena has consequently improved and it is thought that this approach should be useful for the interpretation of laser-plasma data obtained by computer simulation or laboratory experiments. The results may also be utilized to estimate how and to what extent one may avoid undesired anomalous reflection when planning new laser-plasma devices. (Auth.)

  10. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh, E-mail: f_rezaei@sbu.ac.ir; Tavassoli, Seyed Hassan

    2012-12-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: Black-Right-Pointing-Pointer Aluminum plasma emission in helium is numerically and experimentally studied. Black-Right-Pointing-Pointer Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. Black-Right-Pointing-Pointer All strong lines of aluminum and helium are chosen for spectrum simulation. Black-Right-Pointing-Pointer Line widths and peak intensities at later times become narrower and weaker. Black-Right-Pointing-Pointer At specific optimum position, the maximum of signal peaks is acquired.

  11. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    Science.gov (United States)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  12. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Jun, E-mail: jtamura@post.j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Kumaki, Masafumi [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe{sup 21+}) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe{sup 19+}). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  13. Scaling of laser-plasma interactions with laser wavelength and plasma size

    International Nuclear Information System (INIS)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-01

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today

  14. Scaling of laser-plasma interactions with laser wavelength and plasma size

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-25

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today.

  15. Spectroscopic investigations of hard x-ray emission from 120 ps laser-produced plasmas at intensities near 1017 W cm-2

    International Nuclear Information System (INIS)

    Dunn, J.; Young, B.K.F.; Osterheld, A.L.; Foord, M.E.; Walling, R.S.; Stewart, R.E.; Faenov, A.Y.

    1995-11-01

    Spectroscopic investigations of the x-ray emission of plasmas heated by 120 ps, frequency doubled pulses from the JANUS Nd: glass laser are presented. High Z K-shell spectra emitted from slab targets heated to near 10 17 W cm -2 intensity are investigated. High resolution (γ/Δγ>5000) x-ray spectra of multicharged ions of H-like Ti, Co, Ni, Cu, and also H-like Sc in the spectral range 1.5--3.0 angstrom are obtained in single laser shots using a spherically bent Mica crystal spectrograph with a 186 mm radius of curvature. The spectra- have one dimensional spatial resolution of about 25μm and indicate that the size of the emission zone of the resonance, transitions is 2 keV and density∼10 22 cm -3 . These experiments demonstrate that with modest laser energy, plasmas heated by high-intensity 120 ps lasers provide a very bright source of hard ∼8 keV x-ray emission

  16. Magnetic confinement of laser produced LiH plasma in LITE

    International Nuclear Information System (INIS)

    Ard, W.B.; Stufflebeam, J.H.; Tomlinson, R.G.

    1976-01-01

    In the LITE experiment, a hot, dense plasma produced by laser heating of an approximately 100 μ dia LiH particle is used to fill a minimum-B baseball coil mirror magnetic containment field. The confined laser produced plasma subsequently serves as the target for an energetic neutral hydrogen beam in experiments to investigate the target plasma buildup approach for creating and sustaining an equilibrium, steady state mirror fusion plasma. In the experiments, the LiH particle is positioned in vacuum at the laser beam focus by a feedback particle suspension system and heated by two sided irradiation with the focused dual beam, 50 j, 7 nsec output of a Q-switched Nd-glass laser. The energy density of the laser produced plasma is initially much greater than that of the surrounding magnetic field and the plasma expands, converting its internal energy into expansion kinetic energy and displacement of the magnetic field. As the energy density falls below that of the magnetic field, the expansion is stopped and the plasma becomes trapped, making the transition to a low beta, mirror confined plasma. This report is concerned with the properties and behavior of the plasma in the confinement stage

  17. Preliminary investigation into the simulation of a laser-induced plasma by means of a floating object in a spark gap

    CSIR Research Space (South Africa)

    West, NJ

    2007-08-01

    Full Text Available In this research, an orthogonally laser-triggered spark gap is investigated. The laser beam is directed in the region of a 30mm spark gap at 90 degrees to the gap and focused on the axis. The influence of plasma position within the spark gap...

  18. Spectrochemical analysis using laser plasma excitation

    International Nuclear Information System (INIS)

    Radziemski, L.J.

    1989-01-01

    This paper reports on analyses of gases, liquids, particles, and surfaces in which laser plasma is used to vaporize and excite a material. The authors present a discussion of the interaction between laser radiation and a solid and some recent analytical results using laser plasma excitation on metals. The use of laser plasmas as an ablation source is also discussed

  19. Propagation Characteristics of High-Power Vortex Laguerre-Gaussian Laser Beams in Plasma

    Directory of Open Access Journals (Sweden)

    Zhili Lin

    2018-04-01

    Full Text Available The propagation characteristics of high-power laser beams in plasma is an important research topic and has many potential applications in fields such as laser machining, laser-driven accelerators and laser-driven inertial confined fusion. The dynamic evolution of high-power Laguerre-Gaussian (LG beams in plasma is numerically investigated by using the finite-difference time-domain (FDTD method based on the nonlinear Drude model, with both plasma frequency and collision frequency modulated by the light intensity of laser beam. The numerical algorithms and implementation techniques of FDTD method are presented for numerically simulating the nonlinear permittivity model of plasma and generating the LG beams with predefined parameters. The simulation results show that the plasma has different field modulation effects on the two exemplified LG beams with different cross-sectional patterns. The self-focusing and stochastic absorption phenomena of high-power laser beam in plasma are also demonstrated. This research also provides a new means for the field modulation of laser beams by plasma.

  20. Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water

    Science.gov (United States)

    Noack, Joachim; Vogel, Alfred

    1995-05-01

    The shock wave emission after dielectric breakdown in water was investigated to assess potential shock wave effects in plasma mediated tissue ablation and intraocular photodisruption. Of particular interest was the dependence of shock wave pressure as a function of distance from the plasma for different laser pulse energies. We have generated plasmas in water with a Nd:YAG laser system delivering pulses of 6 ns duration. The pulses, with energies between 0.4 and 36 mJ (approximately equals 180 times threshold), were focused into a cuvette containing distilled water. The shock wave was visualized with streak photography combined with a schlieren technique. An important advantage of this technique is that the shock position as a function of time can directly be obtained from a single streak and hence a single event. Other methods (e.g. flash photography or passage time measurements between fixed locations) in contrast rely on reproducible events. Using the shock wave speed obtained from the streak images, shock wave peak pressures were calculated providing detailed information on the propagation of the shock. The shock peak pressure as a function of distance r from the optical axis was found to decrease faster than 1/r2 in regions up to distances of 100-150 micrometers . For larger distances it was found to be roughly proportional to 1/r. The scaling law for maximum shock pressure p, at a given distance was found to be proportional to the square root of the laser pulse energy E for distances of 50-200 micrometers from the optical axis.

  1. Advanced diagnostics for laser plasma interaction studies and some recent experiments

    International Nuclear Information System (INIS)

    Chaurasia, S.; Munda, D.S.; Dhareshwar, L.J.

    2008-10-01

    The complete characterization of Laser plasma interaction studies related to inertial confinement fusion laser and Equation of state (EOS) studies needs many diagnostics to explain the several physical phenomena occurring simultaneously in the laser produced plasma. This involves many on ion emission are important to understand physical phenomena which are responsible for generation of laser plasma as well as its interaction with an intense laser. In this report we describe the development of various x-ray diagnostics which are used in determining temporal, spatial and spectral properties of x-rays radiated from laser produced plasma. Diagnostics which have been used in experiments for investigation of laser-produced plasma as a source of ions are also described. Techniques using an optical streak camera and VISAR which are being used in the Equation of States (EOS) studies of various materials, which are important for material science, astrophysics as well as ICF is described in details. (author)

  2. Laser-heated emissive plasma probe.

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  3. Laser-heated emissive plasma probe

    International Nuclear Information System (INIS)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-01-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge

  4. Laser-heated emissive plasma probe

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808nm wavelength and an output power up to 50W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  5. Propagation of Gaussian laser beam in cold plasma of Drude model

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Li Lei; Du Yanwei

    2011-01-01

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n 0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  6. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  7. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Thompson, Shane

    2012-01-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 μm radius spot size that produces laser intensities up to 3 - 6 TW/cm 2 , sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10 8 nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then scaled to

  8. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  9. effect of the plasma ion channel on self-focusing of a Gaussian laser pulse in underdense plasma

    Directory of Open Access Journals (Sweden)

    Sh Irani

    2013-09-01

    Full Text Available  We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. Then, an equation for the width of laser pulse with a relativistic mass correction term and the effect of ion channel were derived and the propagation of high-intensity laser pulse in an underdense plasma with weak relativistic approximation was investigated. It is shown that the ratio of ion channel radius to spot size could result in different forms of self focusing for the laser pulse in plasma.

  10. Interaction of a CO2 laser beam with a shock-tube plasma

    International Nuclear Information System (INIS)

    Box, S.J.C.; John, P.K.; Byszewski, W.W.

    1977-01-01

    The results of experimental investigations of the interaction of a CO 2 laser beam with plasma produced in an electromagnetic shock tube are presented. The interaction was investigated in two different configurations: with the laser beam perpendicular to the direction of propagation of the shock wave and with the laser beam parallel to the direction of the shock wave. The laser energy was 0.3 J in a 180-nsec pulse. The plasma density was in the range 10 17 --10 18 cm -3 and temperature was around 2 eV. Spectroscopic methods were used in the measurement of density and temperature. Direct observation of the path of the laser beam through the plasma was made by an image-convertor camera in conjunction with a narrow-band interference filter. The propagation of the laser through the plasma and energy absorption are discussed. The observed maximum increase in electron temperature due to the laser in the first configuration was 0.4 eV and the estimated temperature increase in the second configuration was about 2 eV

  11. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  12. Thermonuclear fusion plasma produced by lasers

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yokoyama, M.; Nakai, S.; Sasaki, T.; Yoshida, K.; Matoba, M.; Yamabe, C.; Tschudi, T.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.; Nishikawa, K.

    1975-01-01

    Recently, much attention has been focused on laser fusion schemes using high-density plasmas produced by implosion. Scientific-feasibility laser-fusion experiments are now in time. But the physics of interaction between laser and plasma, the high-compression technique and the development of high-power lasers are still important problems to be solved if laser fusion is to make some progress. In the field of laser-plasma coupling, experiments were carried out in which hydrogen and deuterium sticks were bombarded by laser beams; in these experiments, a glass-laser system, LETKKO-I, with an energy of 50 J in a nanosecond pulse, and a double-discharge TEA CO 2 laser system with an energy of 100 J in a 100-ns pulse were used. A decrease in reflectivity occurred at a laser intensity one order of magnitude higher than the parametric-instability threshold. Self-phase modulation of scattered light due to modulational instability was found. A Brillouin-backscattering isotope effect due to the hydrogen and deuterium plasma has also been observed in the red-side part of the SHG-light. Preliminary compression experiments have been carried out using a glass-laser system LETKKO-II, with an energy of 250-1000 J in a ns-pulse. A hologram has been used to study shock waves in the plasma due to the SHG-light converted from the main laser beam. Development of high-power lasers has been promoted, such as disc-glass lasers, E-beam CO 2 lasers and excimer lasers. (author)

  13. Study on Laser Induced Plasma Produced in Liquid

    International Nuclear Information System (INIS)

    Tsuda, N.; Yamada, J.

    2003-01-01

    When an intense laser light is focused in liquid, a hot plasma is produced at the focal spot. The breakdown threshold and the transmittance of sodium choroids solution are observed using excimer laser or YAG laser. The breakdown threshold decreases with increasing NaCl concentration. Threshold intensity of plasma produced by YAG laser is lower than excimer laser. The behavior of plasma development is observed by a streak camera. The plasma produced by a YAG laser develops only backward. However, the plasma produced by excimer laser develops not only backward but also forward same as the plasma development in high-pressure gases

  14. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  15. Investigation of plasma ablation and crater formation processes in the Prague Asterix Laser System laser facility

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.; Gus'kov, S.; Ullschmied, Jiří; Králiková, Božena; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.; Kálal, M.

    2004-01-01

    Roč. 34, č. 1 (2004), s. 31-42 ISSN 0078-5466 R&D Projects: GA MŠk LN00A100 Grant - others:HPRI-CT(XX) 1999-00053 Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Source of funding: R - rámcový projekt EK Keywords : laser-produced plasma * interferometric measurements * crater Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.308, year: 2004

  16. Line intensities for diagnosing laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Lee, R.W.; Whitten, B.L.; Kilkenny, J.D.

    1983-01-01

    We have measured relative line intensities of the K x-ray spectra of Si, Cl, and Ca from laser-produced plasmas to assess their usefulness as a plasma diagnostic. The different elements are added at low concentrations to CH disks which are irradiated at 5 x 10 14 W/cm 2 with a 0.53 μm laser pulse of 20 Joules at 1 nsec. The concentration of each element is kept low in order not to change the Z of the plasma, and therefore the plasma dynamics. The various spectra are measured with a time-resolved spectrograph to obtain line intensities as a function of time over the length of the laser pulse. These relative intensities of various He-like and H-like lines are compared with calculations from a steady-state level population code. The results give good consistency among the various line ratios. Agreement is not as good for analysis of the Li-like satellite lines. Modelling of the Li-like lines need further investigation. 10 references, 9 figures

  17. Laser plasma interactions in hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.L.

    1994-10-05

    Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light on the Nova laser. Considerable attention is being given to the scaling of this excellent coupling to the larger hohlraums for an ignition target. Various instability control mechanisms such as large plasma wave damping and laser beam incoherence are discussed, as well as scaling experiments to check the instability levels.

  18. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  19. Experimental investigation of thermal conduction and related phenomena in a laser heated plasma

    International Nuclear Information System (INIS)

    Gray, D.R.

    1979-02-01

    Thermal conduction in plasmas is of major importance especially in controlled nuclear fusion studies. Direct measurements are rare. When the temperature gradient in a plasma becomes large enough classical thermal conduction (Heat flux q = -kΔT) no longer applies and it is thought that q is limited to some fraction of the free streaming limit qsub(m). The main experiment is the heating of a z-pinch plasma by a fast rising, intense carbon dioxide laser pulse. Electron temperature and density in time and space are diagnosed by ruby laser scattering. The profiles obtained were consistent with a flux limited to approximately 3% of the free streaming limit. Ion acoustic turbulence is observed along the temperature gradient. It is shown that the observed turbulence level is consistent with the heat flux limitation. At electron densities > 10 17 cm -3 backscattered light is observed from the plasma whose growth rate implies that it is Brillouin scattered. (author)

  20. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  1. Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Gao Hua; Fan Zhenjun; Xing Jie

    2014-01-01

    The angular distribution and pressure force of droplets ejected from liquid water and glycerol ablated by nanosecond laser pulses are investigated under different viscosities in laser plasma propulsion. It is shown that with increasing viscosity, the distribution angles present a decrease tendency for two liquids, and the angular distribution of glycerol is smaller than that of water. A smaller distribution leads to a higher pressure force generation. The results indicate that ablation can be controlled by varying the viscosity of liquid propellant in laser plasma propulsion

  2. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  3. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  4. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  5. Raman laser amplification in preformed and ionizing plasmas

    International Nuclear Information System (INIS)

    Clark, D S; Fisch, N J

    2004-01-01

    The recently proposed backward Raman laser amplification scheme utilizes the stimulated Raman backscattering in plasma of a long pumping laser pulse to amplify a short, frequency downshifted seed pulse. The output intensity for this scheme is limited by the development of forward Raman scattering (FRS) or modulational instabilities of the highly amplified seed. Theoretically, focused output intensities as high as 1025 W/cm 2 and pulse lengths of less than 100 fs could be accessible by this technique for 1 (micro)m lasers--an improvement of 10 4 -10 5 in focused intensity over current techniques. Simulations with the particle-in-cell (PIC) code Zohar are presented which investigate the effects of FRS and modulational instabilities and of Langmuir wave breaking on the output intensity for Raman amplification. Using the intense seed pulse to photoionize the plasma simultaneous with its amplification (and hence avoid plasmas-based instabilities of the pump) is also investigated by PIC simulations. It is shown that both approaches can access focused intensities in the 1025 W/cm 2 range

  6. Laser-plasma interactions in magnetized environment

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  7. Modeling the astrophysical dynamical process with laser-plasmas

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jun; Zhang Jie

    2001-01-01

    The use of the state-of-the-art laser facility makes it possible to create conditions of the same or similar to those in the astrophysical processes. The introduction of the astrophysics-relevant ideas in laser-plasma experiments is propitious to the understanding of the astrophysical phenomena. However, the great difference between the laser-produced plasmas and the astrophysical processes makes it awkward to model the latter by laser-plasma experiments. The author addresses the physical backgrounds for modeling the astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. Thus, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laser-plasma data. Special attentions are paid on the possibilities of using home-made laser facilities to model astrophysical phenomena

  8. Interaction of Intense Lasers with Plasmas

    Science.gov (United States)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that astudied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field and to replacing the vacuum dispersion relation by the usual relativistic plasma dispersion relation. This renormalization procedure is then carried to higher order in epsilon=omega_sp{p} {2}a^2/[(1+a^2/2)^ {3/2}omega^2]. This yields the nonlinear modification of the index of refraction of a strong electromagnetic wave and the dispersion of a weak probe in the presence of the wave. In the second part of this thesis the stability of short laser pulses propagating through parabolic channels and the wake excitation of hollow plasma channels are studied. The stability of a channel guided short laser pulse propagation is analyzed for the first time. Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts the dielectric properties of the plasma channel. The channel perturbation then further distorts the laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is obtained analytically. The ponderomotive excitation

  9. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  10. New photoionization lasers pumped by laser-induced plasma radiation

    International Nuclear Information System (INIS)

    Hube, M.; Dieckmann, M.; Beigang, R.; Welling, H.; Wellegehausen, B.

    1988-01-01

    Innershell photoionization of atomic gases and vapors by soft x rays from a laser-produced plasma is a potential method for making lasers at short wavelengths. Normally, in such experiments only a single plasma spot or plasma line is created for the excitation. This gives high excitation rates but only a short excitation length. At high excitation rates detrimental influences, such as amplified spontaneous emission, optical saturation, or quenching processes, may decrease or even destroy a possible inversion. Therefore, it seems to be more favorable to use a number of separated plasma spots with smaller excitation rates and larger excitation lengths. As a test, a three-plasma spot device was constructed and used in the well-known Cd-photoionization laser at 442 nm. With a 600-mJ Nd:YAH laser (pulse length, 8 ns) for plasma production, output energies up to 300 μJ have been measured, which is more than a doubling of so far obtained data. On innershell excitation, levels may be populated that allow direct lasers as in the case of Cd or that are metastable and cannot be directly coupled to lower levels. In this case modifications in the excitation process are necessary. Such modifications may be an optical pump process in the atom prior to the innershell photoionization or an optical pump process (population transfer process) after the innershell ionization, leading to Raman or anti-Stokes Raman-type laser emissions. With these techniques and the developed multiplasma spot excitation device a variety of new laser emissions in K and Cs ions have been achieved which are indicated in the level schemes

  11. Application of escape probability to line transfer in laser-produced plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; London, R.A.; Zimmerman, G.B.; Haglestein, P.L.

    1989-01-01

    In this paper the authors apply the escape probability method to treat transfer of optically thick lines in laser-produced plasmas in plan-parallel geometry. They investigate the effect of self-absorption on the ionization balance and ion level populations. In addition, they calculate such effect on the laser gains in an exploding foil target heated by an optical laser. Due to the large ion streaming motion in laser-produced plasmas, absorption of an emitted photon occurs only over the length in which the Doppler shift is equal to the line width. They find that the escape probability calculated with the Doppler shift is larger compared to the escape probability for a static plasma. Therefore, the ion streaming motion contributes significantly to the line transfer process in laser-produced plasmas. As examples, they have applied escape probability to calculate transfer of optically thick lines in both ablating slab and exploding foil targets under irradiation of a high-power optical laser

  12. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  13. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2013-10-01

    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n Nike LPI experiment, a side-on grid imaging refractometer (GIR) was deployed for measuring the underdense plasma profiles. Plasmas were produced from flat CH targets illuminated by Nike KrF laser with total energies up to 1 kJ of 0.5 ~ 1 nsec FWHM pulses. The GIR resolved ne up to 3 ×1021 /cm3 in space taking 2D snapshot images of probe laser (λ = 263 nm, Δt = 10 ps) beamlets (50 μm spacing) refracted by the plasma at a selected time during the laser illumination. The individual beamlet transmittances were also measured for Te estimation. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera simultaneously detected light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay instabilities. The measured spatial profiles are compared with simulation results from the FAST3D radiation hydrocode and their effects on the LPI observations are investigated. Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  14. Study of multicharged ions in the laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaegle, P.; Carillon, A.; Jamelot, G.; Wehenkel, C.; Sureau, A.; Guennou, H.

    1980-01-01

    With respect to hot plasmas, laser induced plasmas have an especially high density, with a steep partial gradient and a fast temporal variation of temperature and density. The study of multicharged ion radiation, wich is necessary to perform diagnostics of plasma parameters, opens a new field for atomic physics investigations, including identification of peculiar lines, which are not observed in other conditions, large changes in line profiles due to radiative transfer and to both shift and broadening by Stark effect. Departure from population equilibrium takes place in these plasmas, going possibly so far as population inversion between ionic levels in an energy range covering EUV and soft X-rays. Experimental and theoretical study of these phenomena are in progress and needs to find solutions for complicated problems. Here, recent works performed with the laser of the GRECO 'Interaction Laser-Matiere' are briefly presented [fr

  15. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  16. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  17. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2016-02-01

    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1-7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree-Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4-4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4-5 resonance transitions UTAs dominate the 1-3 nm region of the Bi spectrum.

  18. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    International Nuclear Information System (INIS)

    Wu, Tao; Higashiguchi, Takeshi; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Li, Bowen; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; O’Sullivan, Gerry

    2016-01-01

    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1–7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree–Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4–4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4–5 resonance transitions UTAs dominate the 1–3 nm region of the Bi spectrum. (paper)

  19. High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas

    CERN Document Server

    Spatschek, Karl-Heinz

    2012-01-01

    Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.

  20. Construction of a nitrogen laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.

    1994-07-01

    The challenge faced in finding new sources of energy to bridge the gap between the availability and demand of energy is difficult to be overemphasized. Nuclear fusion seems to provide a potentially limitless source of energy which offers a bright prospect for solving this problem. Although an elaborate programme in fusion may be beyond the economic reach of most third world countries, some modest experiments are necessary to provide an indigenous expertise capable of enhancing international fusion studies. In order to initiate experimental research sufficient for plasma studies at an affordable cost to developing countries, this paper illustrates the construction of a simple, low cost, high power nitrogen laser and investigates some of its performance characteristics. Also, the laser is utilized as a source of illumination in the techniques of shadowgraphy. A series of shadowgrams depicting the temporal development of the plasma discharge is presented. The constructed laser is found to be cost-effective and useful in small-scale researches in laser-plasma diagnostics. (author). 6 refs, 5 figs

  1. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  2. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  3. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  4. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  5. Hollow laser plasma self-confined microjet generation

    Science.gov (United States)

    Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team

    2017-10-01

    Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.

  6. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  7. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  8. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  9. Staging of laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Steinke, S., E-mail: ssteinke@lbl.gov; Tilborg, J. van; Benedetti, C.; Geddes, C. G. R.; Gonsalves, A. J.; Nakamura, K.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daniels, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Swanson, K. K.; Shaw, B. H.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); University of California, Berkeley, California 94720 (United States)

    2016-05-15

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100 MeV energy gain.

  10. Interferometric investigation of an early stage of plasma expansion with the high-power laser system PALS

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, P.; Pisarczyk, T.; Králiková, Božena; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Kálal, M.

    2002-01-01

    Roč. 52, č. 3 (2002), s. 395-404 ISSN 0011-4626 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : laser plasma, PALS laser system, laser interferometry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.311, year: 2002

  11. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  12. Channeling and stability of laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1995-01-01

    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. copyright 1995 American Institute of Physics

  13. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  14. Generation conditions of CW Diode Laser Sustained Plasma

    Science.gov (United States)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  15. Study on the effects of ion motion on laser-induced plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.

    2012-01-01

    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10 21 W/cm 2 and plasma background density below 10 19 cm −3 . In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  16. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  17. Laser-induced breakdown spectroscopy of tantalum plasma

    International Nuclear Information System (INIS)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-01-01

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO 2 : N 2 : He), O 2 , N 2 , and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis

  18. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  19. Experimental studies of laser guiding and wake excitation in plasma channels

    International Nuclear Information System (INIS)

    Volfbeyn, P.; Lawrence Berkeley National Lab., CA

    1998-06-01

    This thesis presents results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme was proposed and experimentally tested in hydrogen and nitrogen. It made use of two laser pulses. The Ignitor, an ultrashort ( 17 W/cm 2 , 75fs laser pulse. The guiding properties and transmission and coupling efficiency were studied as a function of relative position of the channel and the injection pulse focus. Whereas entrance coupling efficiency into the channel was lower than expected, channel coupling to continuum losses were found to be in good agreement with analytical predictions. The authors speculate that increased coupling efficiency can be achieved through better mode matching into the channel. Analytic and numerical one dimensional (1-D), nonrelativistic theory of laser pulse propagation in underdense plasma was presented, in the context of laser wakefield acceleration. The relation between the laser pulse energy depletion, longitudinal laser pulse shape distortion, and changes in the group velocity and center wavelength was explored. 1-D theory was extended to treat the case of a laser exciting a wake in a hollow plasma channel, by making use of an energy conservation argument. Based on the results of this theory, a laser wakefield diagnostic was proposed where, by measuring the changes in phase or spectrum of the driving laser pulse, it is possible to infer the amplitude of the plasma wake

  20. Lasers as a tool for plasma diagnostics

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1981-01-01

    Lasers can be used as non-perturbative probes to measure many plasma parameters. Plasma refractivity is primarily a function of electron density, and interferometric measurements of phase changes with either pulsed or CW lasers can determine this parameter with spatial or temporal resolution over several orders of magnitude sensitivity by using laser wavelengths from the near uv to the far infrared. Laser scattering from free electrons yields the most fundamental electron temperature measurements in the plasma parameter range where individual scattering events are uncorrelated in phase and ion temperature or plasma wave and turbulence structure in the opposite limit. Laser scattering from bound electrons can be many orders of magnitude larger if the laser is matched to appropriate resonance frequencies and can be used in specialized circumstances for measuring low-ionized impurity or dominant species neutral concentrations and velocities

  1. Laser-induced gas plasma machining

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark; Matthews, Manyalibo J.

    2017-10-17

    Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.

  2. Physics of laser plasma

    International Nuclear Information System (INIS)

    Rubenchik, A.; Witkowski, S.

    1991-01-01

    This book provides a comprehensive review of laser fusion plasma physics and contains the most up-to-date information on high density plasma physics and radiation transport, useful for astrophysicists and high density physicists

  3. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  4. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  5. Experimental study of the behavior of two laser produced plasmas in air

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zefeng; Wei, Wenfu; Han, Jiaxun; Wu, Jian, E-mail: jxjawj@gmail.com; Li, Xingwen; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-07-15

    The interactions among two laser ablated Al plasmas and their shock wave fronts (SWFs) induced by double laser pulses in air were studied experimentally. The evolution processes, including the expansion and interaction of the two plasmas and their shocks, were investigated by laser shadowgraphs, schlieren images, and interferograms. Remarkably, the distribution of the compressed air and the laser plasmas during the colliding process was clearly obtained using the Mach-Zehnder interferometer. From the refractive index profiles, typical plasmas density and gas density behind the shock front were estimated as ∼5.2 × 10{sup 18 }cm{sup −3} and ∼2.4 × 10{sup 20 }cm{sup −3}. A stagnation layer formed by the collision of gas behind the shock front is observed. The SWFs propagated, collided, and reflected with a higher velocity than plasmas. The results indicated that the slower plasma collided at middle, leading to the formation of the soft stagnation.

  6. Summary Report of Working Group 6: Laser-Plasma Acceleration

    International Nuclear Information System (INIS)

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2006-01-01

    A summary is given of presentations and discussions in the Laser-Plasma Acceleration Working Group at the 2006 Advanced Accelerator Concepts Workshop. Presentation highlights include: widespread observation of quasi-monoenergetic electrons; good agreement between measured and simulated beam properties; the first demonstration of laser-plasma acceleration up to 1 GeV; single-shot visualization of laser wakefield structure; new methods for measuring <100 fs electron bunches; and new methods for 'machining' laser-plasma accelerator structures. Discussion of future direction includes: developing a roadmap for laser-plasma acceleration beyond 1 GeV; a debate over injection and guiding; benchmarking simulations with improved wake diagnostics; petawatt laser technology for future laser-plasma accelerators

  7. Trends in laser-plasma-instability experiments for laser fusion

    International Nuclear Information System (INIS)

    Drake, R.P.

    1991-01-01

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with ∼1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs

  8. Laser-plasma interaction with an adaptive optics wavefront-corrected laser beam

    International Nuclear Information System (INIS)

    Lewis, K.

    2008-12-01

    The propagation of an intense laser beam trough a preformed plasma is of particular interest in order to achieve laser inertial confinement fusion. Experiments carried out with a near-diffraction limited laser beam, producing a single hot spot interacting with the plasma, delivered new results, presented in this Ph.D. dissertation. In particular the first experimental observation of the filament instability confirms the numerous theoretical and numerical studies on the subject. Beam spreading and filament-ion thresholds are studied thanks to near-field and far-field images, with respect to laser intensity, time and space, and plasma transverse velocity. Same diagnostics have been applied to the stimulated Brillouin scattered light, enabling the first observation of the transverse Brillouin activity in the plasma. (author)

  9. Spectrum diagnoses of laser plasma in 'ablation mode' laser propulsion

    International Nuclear Information System (INIS)

    Zhang Ling; Tang Zhiping; Tong Huifeng; Su Maogen; Xue Simin

    2007-01-01

    The propellant materials (LY12 aluminium, No.45 steel, H62 brass, graphite, polyvinyl chloride, polyoxymethylene) in laser propulsion are ablated by a Nd: YAG laser (1.06 μm, 10 ns). The space-resolved and the power density-depended emission spectrums of aluminum and copper plasma are recorded and analyzed. Under the local thermo equilibrium assumption, the electronic temperature and density as well as the average intensity of ionization from the relative intensity of characteristic spectrum for aluminum are obtained. Their dependence on laser power-density and spatial variation are also investigated. The ablation imagines (the ejected plumes) of the six materials in vacuum are obtained and discussed by using a B shutter camera. (authors)

  10. Laser frequency modulation with electron plasma

    Science.gov (United States)

    Burgess, T. J.; Latorre, V. R.

    1972-01-01

    When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.

  11. Interaction of a laser-produced copper plasma jet with ambient plastic plasma

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2011-01-01

    Roč. 53, č. 9 (2011), 095003-095003 ISSN 0741-3335 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : laser produced-plasma jets * PALS laser * laser ablation * copper plasma * plastic plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.425, year: 2011 http://iopscience.iop.org/0741-3335/53/9/095003/pdf/0741-3335_53_9_095003.pdf

  12. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  13. Betatron radiation from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schnell, Michael

    2014-01-01

    The presented thesis investigates the processes which lead to the generation of highenergetic X-ray radiation, also known as ''betatron radiation'', by means of a relativistic laser-plasma interaction. The generated betatron radiation has been extensively characterized by measuring its radiated intensity, energy distribution, far-field beam profile, and source size. It was shown for the first time that betatron radiation can be used as a non-invasive diagnostic tool to retrieve very subtle information on the electron acceleration dynamics within the plasma wave. Furthermore, a compact polarimeter setup has been developed in a unique experiment in which the polarization state of the laser-plasma generated betatron radiation was measured in single-shot mode. This lead to a detailed study of the orientation of the electron trajectory within the plasma interaction. By controlling the injection of the electrons into the plasma wave it was demonstrated that one can tune the polarization state of the emitted X-rays. This result is very promising for further applications, particularly for feeding the electrons into an additional conventional accelerator or a permanent magnet based undulator for the production of intense X-ray beams. During this work, the experimental setup for accelerating electrons and generating high-energy X-ray beams was consistently improved: to enhance both its reliability and stability. Subsequently, the betatron radiation was used as a reliable diagnostic tool of the electron dynamics within the plasma. Parallel to the experimental work, 3-Dimensional Particle-In-Cell (3D-PlC) simulations were performed together with colleagues from the University of Duesseldorf. The simulations included the electron acceleration and the X-ray generation processes together with the recoil force acting on an accelerating electron caused by the emitted radiation during which one can also ascertain its polarization state. The simulations proved to be in good agreement

  14. A plasma microlens for ultrashort high power lasers

    Science.gov (United States)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  15. A plasma microlens for ultrashort high power lasers

    International Nuclear Information System (INIS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-01-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  16. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  17. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  18. Laser propagation and compton scattering in parabolic plasma channel

    CERN Document Server

    Dongguo, L; Yokoya, K; Hirose, T

    2003-01-01

    A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)

  19. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  20. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  1. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    International Nuclear Information System (INIS)

    Nathan Joe Saetveit

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 (micro)g L -1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 (micro)L injection in a physiological saline matrix

  2. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas

    International Nuclear Information System (INIS)

    Drska, L.; Limpouch, J.; Liska, R.

    1993-01-01

    The interaction of femtosecond laser pulses with fully ionized solid-state density plasmas in the regime of the normal skin effect was investigated by means of numerical simulation. For short wavelength lasers and 120 fs FWHM laser pulses the regime of normal skin effect is shown to hold for peak intensities up to 10 17 W/cm 2 . Basic characteristics of the interaction are revealed and certain departures of the electron distribution function, of the plasma dielectric constant and of laser absorption from simplistic models are pointed out. (author) 1 tab., 4 figs., 14 refs

  3. Influence of irradiation conditions on plasma evolution in laser-surface interaction

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.

    1993-09-01

    The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.

  4. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  5. Development of laser plasma x-ray microscope for living hydrated biological specimens

    International Nuclear Information System (INIS)

    Kado, Masataka; Daido, Hiroyuki

    2005-01-01

    Investigating the structure and the function of life object performing advanced life activity becomes important. In order to investigate the life object, it is necessary to observe living specimens with high spatial resolution and high temporal resolution. Since laser plasma x-ray source has high brightness and short pulse duration, x-ray microscope with the laser plasma x-ray source makes possible to observe living specimens. Such as chromosomes, macrophages, bacterium, and so on have been observed by contact x-ray microscopy. The x-ray images obtained by indirect measurements such as the contact x-ray microscopy have difficulty to avoid artificial effect such as irregular due to developing process. Development of an x-ray microscope with laser plasma x-ray source is necessary to avoid such defects. (author)

  6. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    Science.gov (United States)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  7. Laser-aided plasma diagnostics

    NARCIS (Netherlands)

    Donne, A. J. H.; Barth, C. J.

    2008-01-01

    This paper will focus on two types of laser-aided diagnostics: Thomson scattering and laser-induced fluorescence. Thomson scattering is a very powerful diagnostic, which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can

  8. Spectroscopic and corpuscular analysis of laser-produced carbon plasma

    International Nuclear Information System (INIS)

    Czarnecka, A.; Kubkowska, M.; Kowalska-Strzeciwilk, E.; Parys, P.; Sadowski, M.J.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Ladygina, M.

    2013-01-01

    The paper describes spectroscopic and corpuscular measurements of laser-produced carbon plasma, which was created at surfaces of three targets made of CFC of the Snecma-N11 type with different crystallographic orientations. In order to irradiate the investigated samples the use was made of a Nd:YAG laser. Experiments were performed in a vacuum chamber under the initial pressure equal to 5.10-5 mbar. A Mechelle 900 optical spectrometer equipped with a CCD detector was used to record spectra emitted from the produced carbon-plasma. The recorded optical spectra showed distinct carbon lines ranging from CI to CIV. Basing on the Stark broadening of the CII 426.7 nm line it was possible to estimate the electron density of plasma from each investigated sample. Corpuscular measurements of the emitted ions were carried out by means of an electrostatic ion-energy analyzer and ion collector.

  9. Experimental study of laser-plasma interaction physics with short laser wavelength

    International Nuclear Information System (INIS)

    Labaune, C.; Amiranoff, F.; Fabre, E.; Matthieussent, G.; Rousseaux, C.; Baton, S.

    1989-01-01

    Many non-linear processes can affect laser-plasma coupling in fusion experiments. The interaction processes of interest involve three or more waves, including the incident electromagnetic wave and various selections of electromagnetic, electrostatic and accoustic waves. Whenever plasma waves are involved (stimulated Raman scattering, two-plasmon decay instability, parametric decay instability and others), energetic electrons are created through the various damping processes of these waves: these energetic electrons in turn deleteriously affect the compression phase in laser fusion experiments through pre-heating of the fuel core. Some parametric processes lead primarily to loss of incident laser energy (stimulated Brillouin scattering) while others, such as filamentation, lead to strongly enhanced local laser intensities through the focusing of part (or all) of the laser beam into filaments of very small dimensions with a concomitant expulsion of the plasma out of these regions. So filamentation destroys the uniformity of energy deposition in the plasma and prevents high compression efficiency of the target. These interaction effects are typically of parametric nature, with their thresholds and growth rates depending critically on plasma scale lengths. Since these scale lengths increase with available laser energy and since millimeter sized plasmas are expected from reactor targets which will be used in direct drive implosion experiments, a good understanding of these processes and their saturation mechanisms becomes imperative. We report here the results on absolute energy measurements and time-resolved spectra of SRS and SBS obtained in various types of plasmas where the major changes were the inhomogeneity scale lengths. (author) 7 refs., 7 figs

  10. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  11. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  12. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  13. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  14. Principles of laser-plasma accelerators

    International Nuclear Information System (INIS)

    Malka, V.; Mora, P.

    2009-01-01

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain in which extremely high electric and magnetic fields are generated. Thanks to these tremendous fields, that only plasma can support and sustain, new and compact approaches for producing energetic particle beams have been recently achieved (for example the bubble regime and the colliding laser pulses scheme). The incredible progress of these laser-plasma accelerators has allowed physicists to produce high quality beams of energetic radiation and particles. These beams have interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine (radiotherapy, proton therapy, imaging), radiation biology (short-time-scale), chemistry (radiolysis), physics and material science (radiography, electron and photon diffraction), security (material inspection), and of course accelerator science. Stimulated by the advent of compact and powerful lasers, with moderate costs and high repetition rate, this research field has witnessed considerable growth in the past few years, and the promises of laser-plasma accelerators are in tremendous progress. The recent years in particular have seen spectacular progress in the acceleration of electrons and of ions, both in terms of energy and in terms of quality of the beams. (authors)

  15. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-01-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called hollow atoms must be taken into account for adequate description of plasma radiation

  16. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  17. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  18. Bright ultrashort x-rays from intense subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Umstadter, D.

    1995-01-01

    Short-pulse, high-intensity lasers interacting with solid targets make possible the study of a new class of laser-plasma interactions. They are unique because during the ultrashort laser pulse relatively little expansion occurs, and the density scale length remains much less than the laser wavelength. This makes possible the direct deposition of a significant amount of the laser energy at close to solid density. Steep plasma temperature and density gradients subsequently cause rapid cooling, resulting in highly non-equilibrium conditions and the concurrent emission of extremely bright ultrashort x-ray pulses. In this study, the latter are investigated experimentally with temporally and spectrally resolved soft x-ray diagnostics. The emitted x-ray spectra from solid targets with various atomic numbers are characterized for a laser pulse width τ l ∼ 400 fs. These ultrashort x rays may be used as (1) a diagnostic of solid-density plasma conditions, (2) a tool for the study of radiation hydrodynamics in a parameter regime that is otherwise inaccessible, and (3) a source for time-resolved diffraction, spectroscopy, or microscopy studies of transient chemical, biological or physical phenomena

  19. On the improvement of signal repeatability in laser-induced air plasmas

    Science.gov (United States)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  20. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    International Nuclear Information System (INIS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  1. The use of laser beams for plasma diagnostics

    International Nuclear Information System (INIS)

    Gex, J.P.; Jolas, A.; Launspach, J.; Schirmann, D.

    1975-01-01

    The optical properties of lasers allow them to be a promising source for plasma diagnosis. The Q-switched lasers provide the opportunity to make observations in a very short time interval down to a few picoseconds. The laser space and time coherence properties allow interferometric measurements of plasma electron densities. Thus in the experiments of laser-matter interactions, the radiation obtained by frequency conversion of the Nd: glass laser emission is used for density measurements (up to 10 20 cm -3 ) in small scale plasmas (approximately equal to 1mm). Owing to the monochromaticity and high intensity of the Q-switched laser radiation, density fluctuations and microscopic instabilities of the plasma can be studied by Thompson scattering measurements. Finally, some statistically isotropic media become birefringent under the action of the strong electrical field of the laser beam radiation. This effect can be used for laser pulse duration measurements in a range not exceeding a few picoseconds [fr

  2. Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin

    2018-06-01

    We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.

  3. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect

  4. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  5. Amplification of magnetic modes in laser-created plasmas

    International Nuclear Information System (INIS)

    Matte, J.P.; Bendib, A.; Luciani, J.F.

    1987-01-01

    The amplification of magnetic (Weibel) modes in laser-plasma interaction is investigated by use of unperturbed distribution functions given by Fokker-Planck simulations and a dispersion relation valid for all collisionality regimes. In the five cases studied, a strongly growing mode is found in the underdense plasma, where v-bar/sub x/ 2 2 , and the usual slowly growing one in the overdense plasma. The first mode grows convectively outwards by more than 10 4 . The convection velocities are found to be very different from Nernst values

  6. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  7. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  8. Self-compression of intense short laser pulses in relativistic magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Olumi, M.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Post code 15916-34311 Tehran (Iran, Islamic Republic of)

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  9. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    International Nuclear Information System (INIS)

    Patil, S. D.; Takale, M. V.

    2013-01-01

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works

  10. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-01-01

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity ( 14 Wcm -2 ) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  11. Laser--plasma interaction in a theta-pinch geometry

    International Nuclear Information System (INIS)

    Armstrong, W.T.

    1978-06-01

    Prompt stimulated Brillouin scatter (SBS) is studied in an experiment wherein a high power, pulsed CO 2 laser irradiates an independently produced, theta-pinch plasma. SBS does not significantly affect laser heating of the plasma. Measurements of density profiles and temperature histories permitted examination of laser refraction, local heating and net absorption. Refractive containment of the CO 2 laser beam by an on-axis density minimum was observed at early times during the laser pulse. However, refractive containment was lost at late times due to the diffusive loss of the density minimum. Classical modeling of the expected heating required ''bleached'' absorption to account for the observed heating. A plasma absorptivity of approximately 46% was inferred from calorimetry measurements at 250 mtorr fill pressure. These results confirm that classical heating and refraction dominated the laser-plasma interaction

  12. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    Science.gov (United States)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  14. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    OpenAIRE

    Lemos, N.; Cardoso, L.; Geada, J.; Figueira, G.; Albert, F.; Dias, J. M.

    2018-01-01

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a wav...

  15. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  16. Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2015-11-01

    The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.

  17. A numerical analysis of high power laser propagation in magnetized plasmas

    International Nuclear Information System (INIS)

    Druce, R.L.; Kristiansen, M.; Hagler, M.O.

    1977-01-01

    The laser-plasma interaction is studied mathematically by partial differential equations describing plasma momentum, energy transfer and the wave equations for the laser beam. A computer code is developed to solve the equations. The code is used to study two problems of interest : a preliminary parameter study of bleaching wave behaviour and a comparison with experimental results obtained in previous laboratory investigations. Comparison of prediction by calculation with experiment is found to be good. (A.K.)

  18. Prospective application of laser plasma propulsion in rocket technology

    International Nuclear Information System (INIS)

    Lu Xin; Zhang Jie; Li Yingjun

    2002-01-01

    Interest in laser plasma propulsion is growing intensively. The interaction of high intensity short laser pulses with materials can produce plasma expansion with a velocity of hundreds of km/s. The specific impulse of ablative laser propulsion can be many tens of times greater than that of chemical rockets. The development and potential application of laser plasma propulsion are discussed

  19. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.

    2016-01-01

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  20. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)

    2016-05-15

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  1. Controlling Laser Plasma Instabilities Using Temporal Bandwidths Under Shock Ignition Relevant Conditions

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2017-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.

  2. CO laser interferometer for REB-plasma experiments

    International Nuclear Information System (INIS)

    Burmasov, V.S.; Kruglyakov, E.P.

    1996-01-01

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF 2 prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at λ 5.34 μm coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser (λ = 3.39 μm) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs

  3. CO laser interferometer for REB-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Burmasov, V S; Kruglyakov, E P [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-12-31

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF{sub 2} prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at {lambda} 5.34 {mu}m coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser ({lambda} = 3.39 {mu}m) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs.

  4. On metal fracture induced by laser radiation and impact pinched plasma

    International Nuclear Information System (INIS)

    Sultanov, M.A.; Olejnikov, V.P.

    1980-01-01

    Dependences of erosion of metals (Mo, W, Fe, Ta, Cr, Cd and etc.) on thermal physical properties and the place of laser radiation focusing are investigated. The radiation output energy has reached 10G, the impulse durability - 10 -3 sec. It is shown that the lense focus shift causes the change in the form and dimensions of a crater fracture. It is noted that there are shock waves in the laser plasma structure of fracture products, which are indicative of supersonic velocities of outflow of plasma microjets. A greater fracture degree of refractory metals (W, Mo, Ta) under the investigated conditions is noted. The erosion parameters of a great number of the metals under investigation are given

  5. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  6. Behaviour of a planar Langmuir probe in a laser ablation plasma

    International Nuclear Information System (INIS)

    Doggett, B.; Budtz-Joergensen, C.; Lunney, J.G.; Sheerin, P.; Turner, M.M.

    2005-01-01

    We have investigated some aspects of the behaviour of planar Langmuir probes in the supersonic plasma flow produced by laser ablation of solid materials in vacuum. The ablation was done using a 26 ns, 248 nm excimer laser, irradiating a silver target at 1 J cm -2 . We have compared the behaviour of the probe when it is orientated perpendicular and parallel to the plasma flow. In particular, we have shown that it is possible to adapt an analytical model, developed for plasma immersion ion implantation, to quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The electron temperature was also measured

  7. Collisional absorption of two laser beams in plasma

    International Nuclear Information System (INIS)

    Mohan, M.; Acharya, R.

    1977-04-01

    The collisional absorption of two laser beams is considered by solving the kinetic equation for the plasma electron. Results show that the simultaneous effect of two laser beams on the heating rate is greater as compared with the individual contribution of each laser beam when the two laser beams have a difference of frequencies equal to the plasma frequency

  8. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  9. Laser-plasma based electron acceleration studies planned at CAT, Indore

    International Nuclear Information System (INIS)

    Naik, P.A.; Gupta, P.D.

    2005-01-01

    The Laser Plasma Division at the Centre for Advanced Technology is engaged in a variety of R and D activities on laser-plasma interaction with special emphasis on laser-matter interaction at ultra-high intensities. An important aspect of our future work is studies in laser-plasma based acceleration using an elaborate infrastructural set-up of ultra-fast laser and plasma diagnostic systems and recently acquired 10 TW, 50 fs Ti: Sapphire laser system. This paper presents outline of the planned studies in this field. (author)

  10. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    -emission peak and the main plasma from the target. The flow velocity, density and electron temperature of the plasma were determined. The expansion of the plasma was found to be adiabatic, yielding gamma =5/3. The spatial distribution of the plasma was observed to be strongly anisotropic.......The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  11. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  12. Oxidation of laser-induced plasma species in different background conditions

    Science.gov (United States)

    Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    The evolution of Lu and LuO species in a laser ablation plasma from different targets has been investigated by simultaneously performing mass spectrometry and plasma imaging. Ablation was achieved with a 248 nm KrF laser from a Lu, a Lu2O5 and a LuMnO3 target under different background gas conditions. Mass spectrometry measurements show very similar intensities and ratios for the respective species for all three targets under the same ablation conditions. This indicates only a small influence of the target on the final Lu and LuO contents in the plasma, with the major influence coming from collisions with the background gas. Furthermore, spatially, timely and spectrally resolved plasma imaging was utilized to clearly identify the shockwave at the plasma front as the main region for Lu oxidation. A strong decrease of Lu intensities together with a directly correlated increase of LuO was observed toward the outer regions of the plasma.

  13. X-ray spectroscopic diagnostics of plasma produced by femtosecond laser pulses at interaction with cluster target

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    By means of X-ray spectroscopy one determined parameters of plasma produced at interaction of supershort laser pulses with cluster targets. One investigated into the effect of both initial properties of a cluster target and properties of a laser pulse on plasma characteristics. To diagnose plasma one applied a model of production of emitting spectra covering a whole number of free parameters. The conducted experimental investigations show that the investigated model of cluster heating by supershort pulses is the actual physical model, while the applied fitting parameters have a meaning of average values of plasma parameters [ru

  14. Polarization spectroscopy on laser-produced plasmas and Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong E. [POSTECH, Kyungbuk (Korea); Baronova, Elena O. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2002-08-01

    PPS experiments on laser-produced plasmas are reviewed. Polarization is interpreted in terms of the anisotropic velocity distribution of electrons due to non-local transport. The polarization of an x-ray laser, and recent results regarding the recombining plasma are also presented. X-ray polarization spectroscopy experiments on heliumlike ion lines from a vacuum spark and from a plasma focus are presented: in both cases, the resonance line of the heliumlike ions shows polarization in the direction perpendicular to the discharge axis. Two possible interpretations are suggested. (author)

  15. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  16. Radiation sources based on laser-plasma interactions

    NARCIS (Netherlands)

    Jaroszynski, D.A.; Bingham, R.; Brunetti, E.; Ersfeld, B.; Gallacher, J.G.; Geer, van der S.B.; Issac, R.; Jamison, S.P.; Jones, D.; Loos, de M.J.; Lyachev, A.; Pavlov, V.M.; Reitsma, A.J.W.; Saveliev, Y.M.; Vieux, G.; Wiggins, S.M.

    2006-01-01

    Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged

  17. High-energy 4ω probe laser for laser-plasma experiments at Nova

    International Nuclear Information System (INIS)

    Glenzer, S.H.; Weiland, T.L.; Bower, J.; MacKinnon, A.J.; MacGowan, B.J.

    1999-01-01

    For the characterization of inertial confinement fusion plasmas, we implemented a high-energy 4ω probe laser at the Nova laser facility. A total energy of >50 J at 4ω, a focal spot size of order 100 μm, and a pointing accuracy of 100 μm was demonstrated for target shots. This laser provides intensities of up to 3x10 14 Wcm -2 and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4ω probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n e >2x10 21 cm -3 which represents the highest density plasma so far being diagnosed with Thomson scattering. copyright 1999 American Institute of Physics

  18. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin, E-mail: zmwang@mail.hust.edu.cn; Zeng, Xiaoyan

    2015-01-30

    Highlights: • Spectroscopic properties of fiber laser induced Al plasma plume are measured. • The plume is usually a metal vapor dominated weakly ionized plasma. • The plume is a strongly ionized plasma after laser power is higher than 5 kW. • Plasma shielding effect must be considered after laser power reaches 5 kW. • Plasma shielding effect is dominated by inverse bremsstrahlung absorption. - Abstract: To understand the laser–matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  19. Absorption of turbulent laser plasma radiation

    International Nuclear Information System (INIS)

    Silin, V.P.

    1979-02-01

    Some theoretical results relating to the interaction of high-power laser radiation with a plasma are presented including the development of a theory of parametric instabilities in an inhomogeneous laser plasma which shows that the size of the spatial region in which the turbulent state develops is comparable with the characteristic dimension of a several-fold fluctuation in the plasma density close to its critical value. The conditions are identified under which parametric turbulence gives an anomalous effective collision frequency substantially greater than the normal electron-ion collision frequency. Even during the build-up of strong parametric turbulence, conditions are found for the development of anomalous dissipation which results in heating of the bulk of the electrons. Under opposite conditions, the dynamic behaviour due to the influence of the ponderomotive forces associated with the p component of the radiation field shows that under slow plasma flow conditions, a considerable proportion of the laser energy absorbed by the plasma is transferred to the fast electrons. Suppression of the Cherenkov mechanism for generation of the fast electron component is observed on transition to fast plasma flow conditions. (author)

  20. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  1. Absorption of CO2 laser light by a dense, high temperature plasma

    International Nuclear Information System (INIS)

    Peacock, N.J.; Forrest, M.J.; Morgan, P.D.; Offenberger, A.A.

    1977-01-01

    The interaction between a pulsed, CO 2 laser beam and the plasma produced in a plasma focus device is investigated theoretically and experimentally. The CO 2 laser radiation, directed orthogonal to the pinch axis and along the density gradient only weakly perturbs the focus since the radiation density of 30 J cm -3 (allowing for the Airy enhancement factor near the critical layer), is still less than the plasma thermal energy >=1 kJ cm -3 . On the contrary, the CO 2 laser beam is grossly affected by the plasma and absorption during the compressed pinch phase when the plasma frequency is much more complete than can be predicted by classical resistivity. Density fluctuations at the Langmuir frequency are measured directly for forward scattering from a probe, ruby laser beam. Since the wave numbers correspond to approximately 0.1 the Langmuir waves should appear as electron 'lines' in the scattered spectrum shifted by 427 A from the ruby laser wavelength. At low CO 2 laser pump intensity the electron wave intensity is close to the thermal level. As the pump is increased beyond a threshold of approximately 3x10 9 W/cm -2 (in vacuo) enhanced scattering is observed, reaching a factor of 30 above thermal. A WKB treatment of the electron-ion decay instability which takes into account the linear growth of waves at equal electron and ion temperatures and their convection in an inhomogeneous plasma is reasonably consistent with the observations

  2. Soft X-Ray amplification in laser plasmas

    International Nuclear Information System (INIS)

    Louis-Jacquet, M.

    1988-01-01

    The principles, experiments and theoretical models of soft x-ray, amplification, produced in laser plasmas, are studied. In the discussion of the principles, the laser plasma medium, the definition of the gain, the population inversions, saturation and superradiance are described. The results concerning recombination and collisional excitation experiments, as well as experimental devices are shown. A complete physical simulation to design and interpret x-ray laser experiments is given. Applications of x-ray lasers in grating production techniques, in contact microscopy and holography are considered

  3. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    Science.gov (United States)

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  4. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  5. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  6. Enhanced laser beam coupling to a plasma

    International Nuclear Information System (INIS)

    Steiger, A.D.; Woods, C.H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma. 10 claims, 2 figures

  7. Diagnostics of laser-produced plasmas

    Directory of Open Access Journals (Sweden)

    Batani Dimitri

    2016-12-01

    Full Text Available We present the general challenges of plasma diagnostics for laser-produced plasmas and give a few more detailed examples: spherically bent crystals for X-ray imaging, velocity interferometers (VISAR for shock studies, and proton radiography.

  8. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  9. Infrared laser scattering system for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, K; Hiraki, N; Kawasaki, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1975-05-01

    The possibility of observing the collective scattering of infrared laser light from plasmas is discussed in terms of the laser power requirement, the necessary optical system and the detector performance, and is shown to be feasible with the present day techniques to get the ion temperature by means of a CO/sub 2/ laser on theta pinch plasmas. Based on this estimate, the construction of the TEA CO/sub 2/ laser and the preparations of the optical components have been started and some preliminary results of these are described.

  10. Infrared laser scattering system for plasma diagnostics

    International Nuclear Information System (INIS)

    Muraoka, Katsunori; Hiraki, Naoji; Kawasaki, Shoji

    1975-01-01

    The possibility of observing the collective scattering of infrared laser light from plasmas is discussed in terms of the laser power requirement, the necessary optical system and the detector performance, and is shown to be feasible with the present day techniques to get the ion temperature by means of a CO 2 laser on theta pinch plasmas. Based on this estimate, the construction of the TEA CO 2 laser and the preparations of the optical components have been started and some preliminary results of these are described. (auth.)

  11. Influence of the focal point position on the properties of a laser-produced plasma

    International Nuclear Information System (INIS)

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Miklaszewski, R.; Parys, P.; Rosinski, M.; Wolowski, J.; Stenz, CH.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-01-01

    This paper deals with investigations of the influence of the focusing lens focal point position on the properties of a plasma produced by a defocused laser beam. The experiment was carried out at the Prague Asterix Laser System iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, T. Mocek, M. Pfeifer, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)] by using the third harmonic of laser radiation (λ=0.438 μm), laser energy of 70 J, pulse duration of 250 ps (full width at half-maximum), and beam spot radii of 250 and 400 μm. Cu and Ta were chosen as target materials. The experimental data were obtained by means of a three-frame interferometric system, ion collectors, and crater replica techniques. The reported results allow formulating an important hypothesis that the laser-produced plasma modifies strongly the laser intensity distribution. It is shown how such a modification depends on the relative position and distance of the focal point to the target surface. Of particular importance is whether the focal point is located inside or in front of the target. The irradiation geometry is crucial for the possibility of generating plasma jets by laser radiation. Well-formed jet-like plasma structures can be created if an initially homogeneous laser intensity distribution is transformed in the plasma to an annular one

  12. A numerical analysis of high power laser propagation in magnetized plasmas

    International Nuclear Information System (INIS)

    Druce, R.L.; Kristiansen, M.; Hagler, M.O.

    1977-01-01

    A computer code developed to predict laser-plasma interaction in cylindrical magnetized plasmas is described. Two problems of interest have been studied viz., the bleaching wave behaviour and a comparison with experimental results obtained in earlier investigations. The agreement with experiment is found to be fairly good. (A.K.)

  13. Peculiarities of plasma homeostasis in the patients with rectal cancer according to laser correlation spectroscopy findings

    International Nuclear Information System (INIS)

    Byilenko, O.A.; Bazhora, Yu.Yi.; Sokolov, V.M.; Andronov, D.Yu.

    1997-01-01

    Laser correlation spectroscopy was used to investigate plasma homeostasis in 82 patients with rectal cancer. The spectra of the blood plasma from 21 donors of the transfusion station were used as the control. The blood plasma homeostasis changes reheated with laser correlation spectrometry in the patients with rectal cancer allow to use them for diagnosis of this pathology

  14. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  15. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    International Nuclear Information System (INIS)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.; Kato, Y.; Murai, K.; Weber, F.; Barbee, T.W.; DaSilva, L.B.

    1999-01-01

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of μm in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10 20 - 10 22 cm -3 with the XRL-GIR and for 10 19 - 10 20 cm -3 from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribed to supersonic propagation of the channel front. copyright 1999 American Institute of Physics

  16. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  17. Laser-plasma interaction physics in the context of fusion

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Depierreux, S.; Tikhonchuk, V.T.; Baldis, H.A.; Pesme, D.; Myatt, J.; Huller, S.; Laval, G.; Tikhonchuk, V.T.

    2000-01-01

    Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurrence of the Langmuir decay instability. This secondary instability may play an important role in the saturation of stimulated Raman scattering. Another mechanism for inducing the growth of the scattering instabilities is the so-called 'plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities. (authors)

  18. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  19. Laser produced plasma density measurement by Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Vaziri, A.; Kohanzadeh, Y.; Mosavi, R.K.

    1976-06-01

    This report describes an optical interferometric method of measuring the refractive index of the laser-produced plasma, giving estimates of its electron density. The plasma is produced by the interaction of a high power pulsed CO 2 laser beam with a solid target in the vacuum. The time varying plasma has a transient electron density. This transient electron density gives rise to a changing plasma refractive index. A Mach-Zehnder ruby laser interferometer is used to measure this refractive index change

  20. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    Science.gov (United States)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  1. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  2. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by

  3. Chronological study of beryllium plasma produced by a laser beam; Etude chronologique du plasma de beryllium cree par le faisceau d'un laser

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Ph; Tonon, G; Durand, Y; Buges, J C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    We have carried out several investigations (ultrafast cinematography, visible and ultra-violet spectroscopy, interferometry, charged particle detection) on beryllium plasma produced by a ruby laser having a maximum power of 9 x 10{sup 10} watt/cm{sup 2} at the focal point of an objective with a 6,7 cm focal length. The common characteristic of all these investigations is a time resolution which is sufficient to follow changes in the plasma during the entire duration of the laser pulse. The plasma visible from - 60 ns (time zero corresponds to the top of the laser pulse) undergoes an uniform acceleration from - 30 to + 5 nanoseconds; at this moment its velocity reaches a value of 10{sup 7} cm/sec. Be{sup +}, Be{sup 2+} and Be{sup 3+} ions (corresponding to an ionisation potential of 153 eV) are emitted by the plasma as soon as it is formed and have a maximum kinetic energy of 1500 eV. The spectroscopic study of the plasma has shown the appearance of recombination lines of ionized beryllium and of lines of excited beryllium at + 70 nanoseconds and + 120 nanoseconds respectively. These lines are still visible after + 470 and + 720 nanoseconds. Interferometric measurements carried out on this plasma have shown that its electronic density is not uniform and decreases rapidly at increasing distance from the target. For example at 0.3 mm from the surface of the target the density becomes equal to 2.3 x 10{sup 18} e/cm{sup 3} and 5.5 x 10{sup 17} e/cm{sup 3} at + 20 and + 40 nanoseconds respectively. (authors) [French] Nous avons effectue plusieurs diagnostics (cinematographie ultra-rapide, spectroscopie dans le visible et dans l'ultraviolet, interferometrie, detection de particules chargees) sur le plasma de beryllium engendre par un laser a rubis delivrent au foyer d'un objectif de distance focale 6,7 cm un eclairement maximum de 9. 10{sup 10} W/cm{sup 2}. La caracteristique commune a tous ces diagnostics est une resolution temporelle suffisante qui nous permet de suivre

  4. Temporal follow-up of plasma parameter in an nuclear grade aluminum laser induced plasma at different laser energies by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Karki, Vijay; Singh, Manjeet; Sarkar, Arnab

    2015-07-01

    We report spectroscopic studies of laser induced plasma (LIP) produced by ns – 532 nm - Nd:YAG laser light pulses for different laser energies (35, 45 and 60 mJ) on an nuclear grade aluminum sample in air at atmospheric pressure. The temporal history of the plasma is obtained by recording the emission features at predetermined delays and at a fixed gate width (2.5 ì s). The temporal profiles of excitation temperature (T e ), ionization temperature (T ion ) and electron number density (N e ) were determined from Boltzmann plot, Saha-Boltzmann equation and Stark broadening method, respectively. T e , T ion and N e , shows a power law decay pattern with increasing acquisition time delay. T e has a positive correlation with laser energy, but the T ion and N e differ negligibly from one laser energy to another. Again the rate of decay of T e increases with increasing laser energy but that of T ion is much slower and independent of laser energy. The follow up of the local thermodynamic equilibrium (LTE) conditions were evaluated using both McWhirter criterion and T e /T ion ratio for different delays and different energies to determine the temporal range in which LTE is satisfied. Both the methods concluded very similar results except for very high energy and small delay conditions, where T e /T ion ratio deviates from unity indicating non-LTE condition. The relative transition probabilities of Al transition (3sp4s: 4 P 2/5 →3sp 2 : 4P 3/2,5/2 ) and (4s: 2 S 1/2 → 3p: 2 P 1/2,3/2 ) were estimated and are in excellent agreement with the Kurucz database. These investigations provide an insight to optimize various parameters during LIBS analysis of aluminum based matrices. (author)

  5. Confinement of laser plasma by solenoidal field for laser ion source

    International Nuclear Information System (INIS)

    Okamura, M.; Kanesue, T.; Kondo, K.; Dabrowski, R.

    2010-01-01

    A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduction of ion density at the extraction point. Although a current enhancement by a solenoid field was observed, plasma behavior after a solenoid magnet was unclear because plasma behavior can be different from usual ion beam dynamics. We measured a transverse ion distribution along the beam axis to understand plasma motion in the presence of a solenoid field.

  6. Propagation of laser-generated plasma jet in an ambient medium

    International Nuclear Information System (INIS)

    Loupias, B; Falize, E; Vinci, T; Bouquet, S; Gregory, C D; Koenig, M; Ravasio, A; Pikuz, S; Waugh, J; Woolsey, N C; Nazarov, W; Michaut, C; Kuramitsu, Y; Seiichi, D; Sakawa, Y; Takabe, H; Schiavi, A; Atzeni, S

    2009-01-01

    In this work we present experimental research related to laboratory astrophysics using an intense laser. The goal of these experiments is to investigate some of the complex features of young stellar objects and astrophysical outflows, in particular the plasma jet interaction with the interstellar medium. The relevance of these experiments to astrophysics is measured through similarity criteria (scaling laws). These ensure the similarity between the astrophysical object and the laboratory provided that the dimensionless numbers are equivalent. Consequently, measurements of the plasma parameters are crucial to link laboratory research to astrophysics as they are needed for the determination of these dimensionless numbers. In this context, we designed experiments to generate plasma jets using an intense laser, and to study the evolution in vacuum and in an ambient medium.

  7. Diagnostics of ytterbium/aluminium laser plasmas

    International Nuclear Information System (INIS)

    Bailey, J.; Lee, R.W.; Landen, O.L.; Kilkenny, J.D.; Lewis, C.L.; Busquet, M.

    1986-11-01

    Microdot spectroscopy was used to study the x-ray emission from laser-produced plasmas consisting of 10% ytterbium, 90% aluminium. Spectra were recorded with a space-resolving flat crystal (PET) mini-spectrometer in the 4.0-8.0 A range. The Janus research laser at LLNL irradiated the targets with green (0.53 μm) light in a 1 nsec pulse. The power density was varied between 4x10 13 and 3x10 14 W/cm 2 . The plasma electron density and temperature were determined from the aluminium XI, XII and XIII line emission. By examining correlations between changes in the plasma conditions with changes in the ytterbium spectra, we will determine the potential for using ytterbium line emission as a plasma diagnostic

  8. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  9. Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

    International Nuclear Information System (INIS)

    Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T

    2014-01-01

    Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)

  10. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  11. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  12. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  13. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    Science.gov (United States)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  14. Dynamics of intense laser channel formation in an underdense plasma

    International Nuclear Information System (INIS)

    Davis, J.; Petrov, G.M.; Velikovich, A.L.

    2005-01-01

    Efficient guiding and propagation of multi-keV x-rays in plasmas can be achieved by dynamically modifying the media through plasma channel formation. The dynamics of plasma channel formation is studied in preformed underdense plasma irradiated by a high intensity laser. This is done by a two-dimensional model coupling laser propagation to a relativistic particle-in-cell model. For laser intensity of 10 20 W/cm 2 and a laser beam width of 5 μm the channel formation proceeds on a time scale of 60-70 fs in uniform plasma with density 10 18 cm -3 . The channel closes shortly after the rear of the laser pulse has passed due to Coulomb attraction from the ion core. Electron cavitation occurs only if the laser intensity is above a certain threshold intensity and the laser pulse duration exceeds 100 fs. X-ray generation and propagation is feasible for ultrarelativistic laser pulses with small beam width, less than ∼20 μm, and duration of more than 100 fs

  15. Plasma wave amplitude measurement created by guided laser wakefield

    International Nuclear Information System (INIS)

    Wojda, Franck

    2010-01-01

    The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)

  16. Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques

    International Nuclear Information System (INIS)

    Welzel, S; Rousseau, A; Davies, P B; Roepcke, J

    2007-01-01

    Within the last decade mid infrared absorption spectroscopy between 3 and 20 μm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present article is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals, and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid infrared

  17. Qualitative analysis of plasma created by shock laser

    International Nuclear Information System (INIS)

    Grevey, D.; Maiffredy, L.; Vannes, A.B.; Gobin, P.F.

    1987-01-01

    The origin of effects observed of the surface of metals treated by lasers was studied. High speed cinematography (20,000 frames/sec) was used to follow the evolution of plasma shape from start to finish. An Nd glass laser and FeNi targets were used. The irradiated surface was examined using optical and scanning electron-microscopes. The phenomenology of plasma formation, and plasma expansion are summarized. Liquid spattering and concentric waves on the target surface are revealed. Results suggest that the main agent of the effects in laser-target interactions is the plasma, which creates compression waves inside the target. These waves quickly become a shock wave which can modify the microstructure of the target [fr

  18. Measurement of Debye length in laser-produced plasma.

    Science.gov (United States)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  19. Evaluation of pressure in a plasma produced by laser ablation of steel

    Science.gov (United States)

    Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric

    2018-05-01

    We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.

  20. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  1. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect

    International Nuclear Information System (INIS)

    Symes, D. R.; Wegner, U.; Ahlswede, H.-C.; Streeter, M. J. V.; Gallegos, P. L.; Divall, E. J.; Rajeev, P. P.; Neely, D.; Smith, R. A.

    2010-01-01

    Optical imaging is a versatile diagnostic for investigations of plasmas generated under intense laser irradiation. Electro-optic gating techniques operating on the >100 ps timescale are commonly used to reduce the amount of light detected from self-emission of hot plasma or improve the temporal resolution of the detector. The use of an optical Kerr gate enables a superior dynamic range and temporal resolution compared to electronically gated devices. The application of this method for enhanced imaging of laser produced plasmas with gate time ∼100 fs is demonstrated, and the possibility to produce a sub-10 fs, high dynamic range 'all optical' streak camera is discussed.

  2. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  3. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  4. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    International Nuclear Information System (INIS)

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-01

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  5. Study of charged fusion products in laser produced plasmas

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1981-07-01

    Charged reaction products play a central role in inertial confinement fusion. The investigation of the various processes these particles undergo in laser produced plasmas, their influence on the dynamics of the fusion and their utilization as a diagnostic tool are the main subjects of this thesis. (author)

  6. Hose-Modulation Instability of Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1994-01-01

    A laser pulse propagating in a uniform plasma or a preformed plasma density channel is found to undergo a combination of hose and modulation instabilities, provided the pulse centroid has an initial tilt. Coupled equations for the laser centroid and envelope are derived and solved for a finite-length laser pulse. Significant coupling between the centroid and the envelope, harmonic generation in the envelope, and strong modification of the wake field can occur. Methods to reduce the growth rate of the laser hose instability are demonstrated

  7. Effect of laser spot size on energy balance in laser induced plasmas

    International Nuclear Information System (INIS)

    Pant, H.C.; Sharma, S.; Bhawalkar, D.D.

    1980-01-01

    The effect of the laser spot size on laser light absorption in laser induced plasmas from solid targets was studied. It was found that at a constant laser intensity on the target, reduction in the laser spot size enhances the net laser energy absorption. It was also observed that the laser light reflection from the target becomes more diffused when the focal spot size is reduced

  8. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    Persson, K Osvay, C-G Wahlström, D C Carroll, P McKenna, A Flacco and V Malka Proton acceleration by moderately relativistic laser pulses interacting with solid density targets Erik Lefebvre, Laurent Gremillet, Anna Lévy, Rachel Nuter, Patrizio Antici, Michaël Carrié, Tiberio Ceccotti, Mathieu Drouin, Julien Fuchs, Victor Malka and David Neely Holographic visualization of laser wakefields P Dong, S A Reed, S A Yi, S Kalmykov, Z Y Li, G Shvets, N H Matlis, C McGuffey, S S Bulanov, V Chvykov, G Kalintchenko, K Krushelnick, A Maksimchuk, T Matsuoka, A G R Thomas, V Yanovsky and M C Downer The scaling of proton energies in ultrashort pulse laser plasma acceleration K Zeil, S D Kraft, S Bock, M Bussmann, T E Cowan, T Kluge, J Metzkes, T Richter, R Sauerbrey and U Schramm Plasma cavitation in ultraintense laser interactions with underdense helium plasmas P M Nilson, S P D Mangles, L Willingale, M C Kaluza, A G R Thomas, M Tatarakis, R J Clarke, K L Lancaster, S Karsch, J Schreiber, Z Najmudin, A E Dangor and K Krushelnick Radiation pressure acceleration of ultrathin foils Andrea Macchi, Silvia Veghini, Tatyana V Liseykina and Francesco Pegoraro Target normal sheath acceleration: theory, comparison with experiments and future perspectives Matteo Passoni, Luca Bertagna and Alessandro Zani Generation of a highly collimated, mono-energetic electron beam from laser-driven plasma-based acceleration Sanyasi Rao Bobbili, Anand Moorti, Prasad Anant Naik and Parshotam Dass Gupta Controlled electron acceleration in the bubble regime by optimizing plasma density Meng Wen, Baifei Shen, Xiaomei Zhang, Fengchao Wang, Zhangying Jin, Liangliang Ji, Wenpeng Wang, Jiancai Xu and Kazuhisa Nakajima A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime I Kostyukov, E Nerush, A Pukhov and V Seredov Investigation of the role of plasma channels as waveguides for laser-wakefield accelerators T P A Ibbotson, N Bourgeois, T P Rowlands-Rees, L S Caballero, S I

  9. Liquid steel analysis by laser-induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Gruber, J.

    2002-11-01

    When a nanosecond pulsed laser is focused onto a sample and the intensity exceeds a certain threshold, material is vaporized and a plasma is formed above the sample surface. The laser-light becomes increasingly absorbed by inverse bremsstrahlung and by photo-excitation and photo-ionization of atoms and molecules. The positive feedback, by which the number of energetic electrons for ionization is increased in an avalanche-like manner under the influence of laser-light, is the so-called optical breakdown. Radiating excited atoms and ions within the expanding plasma plume produce a characteristic optical emission spectrum. A spectroscopic analysis of this optical emission of the laser-induced plasma permits a qualitative and quantitative chemical analysis of the investigated sample. This technique is therefore often called laser-induced plasma spectroscopy (LIPS) or laser-induced breakdown spectroscopy (LIBS). LIPS is a fast non-contact technique, by which solid, liquid or gaseous samples can be analyzed with respect to their chemical composition. Hence, it is an appropriate tool for the rapid in-situ analysis of not easily accessible surfaces for process control in industrial environments. In this work, LIPS was studied as a technique to determine the chemical composition of solid and liquid steel. A LIPS set-up was designed and built for the remote and continuous in-situ analysis of the steel melt. Calibration curves were prepared for the LIPS analysis of Cr, Mn, Ni and Cu in solid steel using reference samples with known composition. In laboratory experiments an induction furnace was used to melt steel samples in crucibles, which were placed at a working distance of 1.5 m away from the LIPS apparatus. The response of the LIPS system was monitored on-line during the addition of pure elements to the liquid steel bath within certain concentration ranges (Cr: 0.11 - 13.8 wt%, Cu: 0.044 - 0.54 wt%, Mn: 1.38 - 2.5 wt%, Ni: 0.049 - 5.92 wt%). The analysis of an element

  10. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO 2 TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed

  11. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  12. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Directory of Open Access Journals (Sweden)

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  13. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  14. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning

    International Nuclear Information System (INIS)

    Mihailescu, A.

    2016-01-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond ( fs ) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  15. Precedent Research on Compact Laser-plasma based Gantry for Cancer Therapy

    International Nuclear Information System (INIS)

    Hee, Park Seong; Jeong, Young Uk; Lee, Ki Tae; Kim, Kyung Nam; Cha, Young Ho

    2012-03-01

    This is the precedent R and D to develop the technology of next generation compact particle cancer treatment system based on laser-plasma interaction and to deduce a big project. The subject of this project are the survey of application technology of laser-plasma based particle beam and the design of compact laser-plasma based gantry. The survey of characteristic of particle beam for cancer therapy and present status can be adapted to develop new system. The comparison between particle beams from the existing system and new one based on laser-plasma acceleration will be important to new design and design optimization. The project includes design of multi-dimensional laser transfer beamline, minimization of laser-plasma acceleration chamber, design of effective energy separation/selection system, and radiation safety and local shielding

  16. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  17. Study of laser plasma interactions in the relativistic regime

    International Nuclear Information System (INIS)

    Umstadter, D.

    1997-01-01

    We discuss the first experimental demonstration of electron acceleration by a laser wakefield over instances greater than a Rayleigh range (or the distance a laser normally propagates in vacuum). A self-modulated laser wakefield plasma wave is shown to have a field gradient that exceeds that of an RF linac by four orders of magnitude (E => 200 GV/m) and accelerates electrons with over 1-nC of charge per bunch in a beam with space-charge-limited emittance (1 mm-mrad). Above a laser power threshold, a plasma channel, created by the intense ultrashort laser pulse (I approx. 4 x1018 W/CM2, gamma = 1 micron, r = 400 fs), was found to increase the laser propagation distance, decrease the electron beam divergence, and increase the electron energy. The plasma wave, directly measured with coherent Thomson scattering is shown to damp-due to beam loading-in a duration of 1.5 ps or approx. 100 plasma periods. These results may have important implications for the proposed fast ignitor concept

  18. [Study of enhancement effect of laser-induced crater on plasma radiation].

    Science.gov (United States)

    Chen, Jin-Zhong; Zhang, Xiao-Ping; Guo, Qing-Lin; Su, Hong-Xin; Li, Guang

    2009-02-01

    Single pulses exported from high-energy neodymium glass laser were used to act on the same position of soil sample surface repeatedly, and the plasma emission spectra generated from sequential laser pulse action were collected by spectral recording system. The experimental results show that the laser-induced soil plasma radiation was enhanced continuously under the confinement effect of the crater walls, and the line intensities and signal-to-background ratios both had different improvements along with increasing the number of acting pulses. The photographs of the plasma image and crater appearance were taken to study the plasma shape, laser-induced crater appearance, and the mass of the ablated sample. The internal mechanism behind that laser-induced crater enhanced plasma radiation was researched. Under the sequential laser pulse action, the forming plasma as a result enlarges gradually first, leading to distortion at the trail of plasma plume, and then, its volume diminishes slowly. And also, the color of the plasma changes from buff to white gradually, which implies that the temperature increases constantly. The laser-induced crater had a regular shape, that is, the diameter increased from its bottom to top gradually, thus forming a taper. The mass of the laser-ablated substance descends along with increasing the amount of action pulse. Atomization degree of vaporized substance was improved in virtue of the crater confinement effect, Fresnel absorption produced from the crater walls reflection, and the inverse bremsstrahlung, and the plasma radiation intensity was enhanced as a result.

  19. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  20. 7. Lasers and plasmas forum - ILP 2015 Forum. Book of abstracts

    International Nuclear Information System (INIS)

    Mora, P.; Le Marec, A.; Ferri, S.; Corde, S.; Ceccotti, T.; Dozieres, M.; Pariente, G.; Azamoum, Y.; Cheriaux, G.; Baccou, C.; Romagnani, L.; Ravasio, A.; Masson-Laborde, P.E.; Laffite, S.; Neuville, C.; Casner, A.; Debayle, A.; Lobet, M.; Cosse, P.; Falize, E.; Taieb, R.; Rozmus, W.; Colaitis, A.; Boutoux, G.; Llor Aisa, E.; Ducret, J.E.; Le Pennec, M.; Barbrel, B.; Rouan, D.; Smets, R.; Seisson, G.; Boyer, S.; Massacrier, G.; Harmand, M.; Jacquemot, S.; Adam, J.C.; Boutoux, G.; Busquet, M.; Bychenkov, V. Yu.; Castan, A.; Chatagnier, A.; Chiaramello, M.; Debayle, A.; Deschaud, Basil; Do, A.; Fedeli, L.; Ferri, J.; Gangolf, T.; Gilles, D.; Vallet, A.; D'Humieres, E.; Khiar, B.; Grassi, A.; Hadj-Bachir, M.; Lee, P.; Lobet, M.; Loiseau, P.; Maitrallain, A.; Masson-Laborde, P.E.; Mollica, F.; Moreau, J.G.; Nicolas, Loic; Pain, J.-C.; Penninckx, D.; Riconda, C.; Ruyer, C.; Soleilhac, A.; Van Box Som, L.

    2015-06-01

    List of oral presentation abstracts: Effect of XUV lasers partial coherence on the characterization of their spectral properties; Study of ionization potential lowering and other statistical properties of coupled plasmas using numerical simulation and classical molecular dynamics; Plasma acceleration by particle beam; Electron acceleration by surface wave resonant excitation in relativistic regime; Optimization of a laser-generated X Ka source (Ti:Sa 10 TW - 100 Hz); Apollon 10 PW: description and status; The future of the research federation and of power laser facilities; Inertial confinement fusion and operation of 'rugby'-shape hohlraums; Chronometry and efficiency of direct attack implosion at OMEGA facility; Laser-plasma interaction physics in beam crossing configuration; NIF Discovery Science experiments for the study of the strongly nonlinear regime of the ablative Rayleigh-Taylor instability; X opacity measurements in mid-Z dense plasmas with a new target design of indirect heating; Photoionization dynamics: Transition and scattering delays; Ion acceleration induced by laser-produced electrostatic shocks; Electron Transport and Related Non-equilibrium Distribution Functions in Hot Large Scale ICF Plasmas; Rate optimization of neutron-less fusion reactions initiated by laser-accelerated protons; Nonlinear laser-plasma interactions modeling at hydrodynamic scales: application to beam crossing energy exchange; Evolution of a Sedov-Taylor blast-wave: radiative, nonlocal heat transport and field effects; Measuring ultra-intense laser beams in space time; A few applications of the radiative and quantum electrodynamics effects in future extreme-intensity laser-matter experiments; X-rays imaging diagnostics for PETAL; Laboratory Astrophysics with High Power Lasers; Femto-second electron dynamics in the Warm dense Matter; The extra-solar planets; Study of HEDP magnetic reconnection; Opacity of solar-type stars inside: what (un)certainties?; Validation of solar

  1. Overview and future prospects of laser plasma propulsion technology

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Lu Xin; Zhang Jie

    2003-01-01

    Due to its high cost, low efficiency, complex operation and unsatisfactory recycling, traditional rocket propulsion by chemical fuels has hindered the exploration of outer space to further limits. With the rapid development of laser and space technology, the new technology of laser propulsion exhibits unique advantages and prospects. The mechanism and current development of laser plasma propulsion are reviewed, with mention of the technical problems and focus issues of laser plasma in micro-flight propulsion

  2. Self-focusing, self modulation and stability properties of laser beam propagating in plasma: A variational approach

    International Nuclear Information System (INIS)

    Kaur, Ravinder; Gill, Tarsem Singh; Mahajan, Ranju

    2010-01-01

    Laboratory as well as Particle in cell (PIC) simulation experiments reveal the strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. A Lagrangian for the problem is set up and assuming a trial Gaussian profile, we solve the reduced Lagrangian problem for beam width and curvature. Besides self-focusing and self-modulation of laser beam, we observe that stability properties of such plasma system are studied about equilibrium values using this variational approach. We obtained an eigen value equation, which is cubic in nature and investigated the criterion for stability using Hurwitz conditions for laser beam plasma system.

  3. Dependence of Parameters of Laser-Produced Au Plasmas on the Incident Laser Energy of Sub-Nanosecond and Picosecond Laser Pulses

    International Nuclear Information System (INIS)

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Vankov, A.B.; Wolowski, J.; Krasa, J.; Laska, L.; Rohlena, K.

    2001-01-01

    The parameters of Au plasma as functions of laser energy for ps pulses are presented and compared with the ones for sub-ns pulses at nearly the same densities of laser energy. The experiments were performed at the IPPLM with the use of CPA (chirped pulse amplification) Nd:glass laser system. Thick Au foil targets were irradiated by normally incident focused laser beams with maximum intensities of 8x10 16 and 2x10 14 W/cm 2 for ps and sub-ns laser pulses, respectively. The characteristics of ion streams were investigated with the use of ion diagnostics methods based on the time-of flight technique. In these experiments the laser energies were changed in the range from 90 to 700 mJ and the measurements were performed at a given focus position FP = 0 and along the target normal for both the laser pulses. The charge carried by the ions, the maximum ion velocities of fast and thermal ion groups, the maximum ion current density as well as the area of photopeak in dependence on the incident laser energy for sub-ns and ps pulses were investigated and discussed. (author)

  4. Evolution of plasma double layers in laser-ablation plumes

    International Nuclear Information System (INIS)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.; Ziskind, M.; Focsa, C.

    2005-01-01

    The double layers (DLs) are one of the most complex problems of the plasma physics. These layers are apparently important not only in laboratory plasmas and laser-ablation plasma plumes but also in natural phenomena, e.g. the aurora and fire balls.This work studies the dynamics of the double layers in a laser ablation plume from different targets irradiated by a Nd: YAG 10 ns pulsed laser. The plasma formation was studied by means of both Langmuir probe and mass spectrometry methods using an experimental set-up developed for the study of environmental or technological interest samples. The ionic current distribution in plasma plume formation was recorded in different experimental conditions. We have found that it depends on the laser energy, the pressure of the buffer gas and the probe position. The periodical oscillations recorded in different experimental conditions prove that these plasma formations (DLs) are local physical systems able to accumulate and release energy. Acting as storing and releasing energy elements, the DLs can sustain periodical or non-periodical variations of the current or of the other global parameters of the plasma. (author)

  5. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  6. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    International Nuclear Information System (INIS)

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-01-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data

  7. The application of high-speed photography and spectrography for investigations of erosive pulsed plasma streams

    International Nuclear Information System (INIS)

    Kiselevskiy, L.I.; Minko, L.Ja.

    The extensive information of pulsed plasma dynamic processes related to formation and interaction of plasma streams with a surrounding medium and obstacles is obtained with the help of high-speed photo and spectrography. The wave structure of pulsed supersonic under-expanded erosive plasma jets is studied. Some physical processes which are due to interactions of laser radiation with the laser-produced erosive plasma and of this plasma with a surrounding medium are investigated. The wide possibilities of frame photography of spectra quantitative spectroscopic investigations of fast-proceeding plasma processes are shown on the basis of joint use of high-speed photographic apparatus (type SFR) and standard spectrographs. The radial distribution of charged-particle concentrations at separate moments of time is obtained from the broadening of spectral lines at the brightness of the continuous spectrum of an erosive plasma jet from a pulsed accelerator

  8. Self-focusing of laser beam crossing a laser plasma

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.; Ignacz, P.N.; Soerlei, Zs.

    1983-03-01

    A crossed-beam experiment was performed to clarify the mechanism of self-focusing in a laser produced spark. The plasma was created by one beam and self-focusing was observed in the weak probe beam which crossed the plasma. Experimental results show that the cause of self-focusing is the nonuniform heating mechanism. (author)

  9. Opacity and atomic analysis of double pulse laser ablated Li plasma

    Science.gov (United States)

    Sivakumaran, V.; Joshi, H. C.; Kumar, Ajai

    2014-09-01

    Opacity effects for neutral and ionic emission lines of lithium have been investigated by Atomic Data Analysis Structure (ADAS). Line ratios and opacity corrected photon emissivity coefficients are calculated over a wide range of electron temperatures and densities. The experimentally measured temporal evolution of the line profiles of the over dense Li plasma formed in the double pulse laser ablation experiment have been explained using the ADAS analysis and the plasma parameters of the plasma plume under consideration have been estimated. These results could be projected as a diagnostic tool to estimate plasma parameters of an over dense lithium plasma.

  10. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    CERN Document Server

    Ciocarlan, C.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; 10.1063/1.4822333

    2013-01-01

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive selffocusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.01018 cm3, the peak normalized...

  11. Laser-plasma interactions for fast ignition

    Science.gov (United States)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-05-01

    In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.

  12. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  13. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2012-10-01

    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  14. Micro- and Nanoprocessing of Polymers Using a Laser Plasma Extreme Ultraviolet Source

    International Nuclear Information System (INIS)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Rakowski, R.; Szczurek, A.; Szczurek, M.

    2010-01-01

    Laser plasma with temperature of the order of tens eV can be an efficient source of extreme ultraviolet (EUV). The radiation can be focused using different kind of optics, giving sufficient fluence for some applications. In this work we present results of investigations concerning applications of a laser plasma EUV source based on a double stream gas puff target. The source was equipped with two different grazing incidence collectors. One of them was a multifoil collector, the second one was an axisymmetrical ellipsoidal collector. The multifoil mirror was used mainly in experiments concerning micromachining of organic polymers by direct photo-etching. The experiments were performed for different polymers that were irradiated through a fine metal grid as a contact mask. The smallest element of a pattern structure obtained in this way was 5 μm, while the structure height was 50 μm giving an aspect ratio about 10. The laser-plasma EUV source equipped with the axisymmetrical ellipsoidal collector was used for surface modification of organic polymers and inorganic solids. The surface morphology after irradiation was investigated. Different forms of micro- and nanostructures were obtained depending on material and irradiation conditions. (author)

  15. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  16. Spectra of neutrons and fusion charged products produced in a dense laser plasma

    International Nuclear Information System (INIS)

    Burtsev, V.A.; Dyatlov, V.D.; Krzhizhanovskij, R.E.; Levkovskij, A.A.

    1977-01-01

    The possibility of laser-produced plasma diagnostics has been investigated by measuring spectra of neutrons and alpha particles produced in the T(d,n) 4 He reaction. Using the Monte Carlo method the spectra have been calculated for nine states of the deuterium-tritium plasma with the temperature of 1;5 and 10 keV and the density of 0.2; 1 and 10 g/cm 3 respectively. The initial radius of the target was assumed to be 0.01 cm at the density of 0.2 g/cm 3 . It is shown that the neutron and alpha spectra can serve as plasma diagnostics parameters in laser fusion

  17. The x-ray laser as a tool for imaging plasmas

    International Nuclear Information System (INIS)

    Libby, S.B.; Da Silva, L.B.; Barbee, T.W. Jr.

    1995-07-01

    The x-ray laser is now being used at LLNL as a tool for measuring the behaviors of hot dense plasmas. In particular, we have used the 155 Angstrom yttrium laser to study transient plasmas by both radiography and moire deflectrometry. These techniques have been used to probe long scale length plasmas at electron densities exceeding 10 22 cm -3 . Recent advances in multilayer technology have made it possible to directly image ion densities in directly driven thin foils to an accuracy of 1--2 μm. In addition, we have constructed an x-ray laser Mach-Zehnder interferometer using multilayer beam-splitters. This interferometer yields direct 2D projections of electron densities in plasmas with micron spatial resolution. In addition, this interferometer can be used to measure spectral line shapes to high accuracy. Among the subject plasmas under study are laser irradiated planar targets, gold hohlraums, and x-ray lasers themselves

  18. Dynamics of plasma ions motion in ultra-intense laser-excited plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Jing

    2013-01-01

    The effects of heavy ions and protons motion in an ultra-intense laser-driven plasma wake are compared by rebuilding a plasma wake model. It is shown that with the same laser and plasma background electron density n 0 , the heavy ions' motion suppresses wake-field resonant excitation less than the protons' motion in their own plasma wake. Though heavy ions obtain more kinetic energy from the plasma wake, its energy density is less than that of the protons due to the ion density being far less than the proton density. As a result, the total energy of heavy ions obtained from the wake-field is far less than that of protons. The dependence of the kinetic energy and the energy density of protons and heavy ions on n 0 is discussed. (paper)

  19. Laser-induced plasmas as an analytical source for quantitative analysis of gaseous and aerosol systems: Fundamentals of plasma-particle interactions

    Science.gov (United States)

    Diwakar, Prasoon K.

    2009-11-01

    Laser-induced Breakdown Spectroscopy (LIBS) is a relatively new analytical diagnostic technique which has gained serious attention in recent past due to its simplicity, robustness, and portability and multi-element analysis capabilities. LIBS has been used successfully for analysis of elements in different media including solids, liquids and gases. Since 1963, when the first breakdown study was reported, to 1983, when the first LIBS experiments were reported, the technique has come a long way, but the majority of fundamental understanding of the processes that occur has taken place in last few years, which has propelled LIBS in the direction of being a well established analytical technique. This study, which mostly focuses on LIBS involving aerosols, has been able to unravel some of the mysteries and provide knowledge that will be valuable to LIBS community as a whole. LIBS processes can be broken down to three basic steps, namely, plasma formation, analyte introduction, and plasma-analyte interactions. In this study, these three steps have been investigated in laser-induced plasma, focusing mainly on the plasma-particle interactions. Understanding plasma-particle interactions and the fundamental processes involved is important in advancing laser-induced breakdown spectroscopy as a reliable and accurate analytical technique. Critical understanding of plasma-particle interactions includes study of the plasma evolution, analyte atomization, and the particle dissociation and diffusion. In this dissertation, temporal and spatial studies have been done to understand the fundamentals of the LIBS processes including the breakdown of gases by the laser pulse, plasma inception mechanisms, plasma evolution, analyte introduction and plasma-particle interactions and their influence on LIBS signal. Spectral measurements were performed in a laser-induced plasma and the results reveal localized perturbations in the plasma properties in the vicinity of the analyte species, for

  20. Mid-infrared lasers for energy frontier plasma accelerators

    Directory of Open Access Journals (Sweden)

    I. V. Pogorelsky

    2016-09-01

    Full Text Available Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO_{2} lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO_{2} laser technology.

  1. Laser and Plasma Technology Division annual report 1993

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1994-01-01

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm 2 . Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs

  2. Laser and Plasma Technology Division annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1994-12-31

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm{sup 2}. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs.

  3. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas

    International Nuclear Information System (INIS)

    Esarey, E.; Sprangle, P.; Krall, J.; Ting, A.

    1997-01-01

    The propagation of intense laser pulses in gases and plasmas is relevant to a wide range of applications, including laser-driven accelerators, laser-plasma channeling, harmonic generation, supercontinuum generation, X-ray lasers, and laser-fusion schemes. Here, several features of intense, short-pulse (≤1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self-consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized

  4. En Route: next-generation laser-plasma-based electron accelerators; En Route: Elektronenbeschleuniger der naechsten Generation auf Laser-Plasma-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, Bernhard

    2008-05-15

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to {approx}50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the {approx}80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10{sup 19}W=cm{sup 2} into gas jets. The experimental observations could be explained via 'bubble acceleration', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table

  5. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  6. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  7. Characterization of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.

    2011-10-01

    Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.

  8. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    International Nuclear Information System (INIS)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-01-01

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed

  9. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  10. Collimation of laser-produced plasmas using axial magnetic field

    Czech Academy of Sciences Publication Activity Database

    Roy, Amitava; Harilal, S.S.; Hassan, S.M.; Endo, Akira; Mocek, Tomáš; Hassanein, A.

    2015-01-01

    Roč. 33, č. 2 (2015), s. 175-182 ISSN 0263-0346 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-produced plasma * optical emission spectroscopy * plasma-B field interaction * plasma temperature and density * tin plasma Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.649, year: 2015

  11. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  12. Next Generation Driver for Attosecond and Laser-plasma Physics.

    Science.gov (United States)

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  13. Increase in the temperature of a laser plasma formed by two-frequency UV - IR irradiation of metal targets

    International Nuclear Information System (INIS)

    Antipov, A A; Grasyuk, Arkadii Z; Efimovskii, S V; Kurbasov, Sergei V; Losev, Leonid L; Soskov, V I

    1998-01-01

    An experimental investigation was made of a laser plasma formed by successive irradiation of a metal target with 30-ps UV and IR laser pulses. The UV prepulse, of 266 nm wavelength, was of relatively low intensity (∼ 10 12 W cm -2 ), whereas the intensity of an IR pulse, of 10.6 μm wavelength, was considerably higher (∼3 x 10 14 W cm -2 ) and it was delayed by 0 - 6 ns (the optimal delay was 2 ns). Such two-frequency UV - IR irradiation produced a laser plasma with an electron temperature 5 times higher than that of a plasma created by singe-frequency IR pulses of the same (∼3 x 10 14 W cm -2 ) intensity. (interaction of laser radiation with matter. laser plasma)

  14. Radiative processes in a laser-fusion plasma

    International Nuclear Information System (INIS)

    Campbell, P.M.; Kubis, J.J.; Mitrovich, D.

    1976-01-01

    Plasmas compressed and heated by an intense laser pulse offer promise for the ignition of propagating thermonuclear burn and, ultimately, for use in fusion reactors. It is evident theoretically that the emission and absorption of x-rays by the plasma has a significant effect on the dynamics of the laser compression process. In order to achieve densities high enough for efficient thermonuclear burn, the fusion pellet must be compressed along a low adiabat. This will not be possible if the compressed region of the pellet is significantly preheated by x-rays originating in the hot outer regions. A satisfactory model of compression hydrodynamics must, therefore, include a comprehensive treatment of radiation transport based on a non-LTE model of the plasma. The model must be valid for Fermi-Dirac statistics, since high compression along a low adiabat will, in general, produce degenerate electron distributions. This report is concerned with the plasma model and the corresponding radiation emission and absorption coefficients, including nonthermal processes which occur in the laser deposition region

  15. Mechanism of laser and rf plasma in vibrational nonequilibrium CO-N2 gas mixture

    International Nuclear Information System (INIS)

    Lou Guofeng; Adamovich, Igor V.

    2009-01-01

    This paper investigates the mechanism of plasma created by focused CO laser and rf electric field. The plasma is created in a CO/N 2 environment, at a total pressure of 600 torr. Ionization of the gases occurs by an associative ionization mechanism, in collisions of two highly vibrationally excited molecules. These highly vibrationally excited states are populated by resonance absorption of the CO radiation followed by anharmonic vibration-vibration (V-V) pumping. Moreover N 2 also becomes vibrationally excited due to collisions with vibrationally excited CO. The coupled rf reduced electric field E/N is sufficiently low to prevent electron impact ionization that may create plasma individually, so when a subbreakdown rf field is applied to the plasma, collisions between the free electrons heated by the field and the diatomic species create additional vibrational excitation both in the region occupied by the CO laser beam and outside of the laser beam region. The numerical results show plasma created in both regions (in and out of the CO laser beam region) with the associative ionization mechanism. This suggests a method for creating a stable nonequilibrium plasma. The calculation result is verified by comparison the synthetic spectrum to a measured one.

  16. Ion Beam Analysis applied to laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Macková, Anna; Havránek, Vladimír; Malinský, Petr; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 11, APR (2016), C04011 ISSN 1748-0221. [Conference on Plasma Physics by Laser and Applications (PPLA). Frascati, 05.10.2015-07.10.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S; GA MŠk LM2015073 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : accelerator applications * lasers * plasma diagnostics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 1.220, year: 2016

  17. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    Science.gov (United States)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  18. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  19. Preliminary investigation of an atmospheric microplasma using Raman and Thomson laser scattering

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2014-10-01

    A triple grating spectrometer system has been coupled with an ultraviolet laser at 266 nm for the purpose of investigating Rayleigh, Raman, and Thomson scattering within atmospheric plasma sources. Such laser interactions present a non-invasive diagnostic to investigate small scale atmospheric plasma sources, which have recently garnered interest for applications in remote optical sensing, materials processing, and environmental decontamination. In this work, the laser scatter and temperature relationship were calibrated with a heated nitrogen cell held at atmospheric pressure while subsequent scattering measurements were made in atmospheric discharges composed of nitrogen and air. An adjustable electrode configuration and dc circuit were assembled to produce a microdischarge operating in normal glow mode, thus providing a non-thermal plasma in which the translational, rotational, vibrational and electron temperatures are not in equilibrium. Preliminary results include measurements of these temperatures, which were calculated by fitting simulated scattering spectra to the experimental data obtained using the triple grating spectrometer. Measured temperatures were also compared with those obtained using standard optical emission spectroscopy methods. Special thanks to the NRC Research Associateship Program.

  20. Infrared laser scattering system for the plasma diagnostics: CO/sub 2/ laser characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Kawasaki, S; Muraoka, K

    1975-08-01

    A detailed study was conducted of the operating characteristics of a double discharge infrared TEA carbon dioxide laser used for scattering measurements of plasmas. The discharge condition, the laser output energy and power, the beam profile and divergence, the emission spectral line width, the time lag and jitter of the output from the discharge trigger, have been established. It is concluded that the carbon dioxide oscillator can deliver the allowable beam divergence and spectral line width for the measurement of ion temperature in light scattering studies of theta pinch plasmas. The results presented might be applicable to laser fusion experiments using carbon dioxide lasers.

  1. Anisotropic instability in a laser heated plasma

    International Nuclear Information System (INIS)

    Sangam, A.; Morreeuw, J.-P.; Tikhonchuk, V. T.

    2007-01-01

    The theory of the Weibel instability induced by the inverse Bremsstrahlung absorption of a laser light in an underdense plasma is revisited. It is shown that previous analyses have strongly overestimated the effect by neglecting the stabilizing term related to the interaction of the generated quasistatic magnetic field with the laser-heated electrons. The revised model leads to a reduction of the growth rate by more than a factor of 10, to strong reduction of the domain of unstable modes and to inversion of the direction of the unstable wave vectors in the long wavelength limit. The consequences of this instability on the laser plasma interaction are also discussed

  2. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  3. Dynamics of a multiple-pulse-driven x-ray laser plasma

    International Nuclear Information System (INIS)

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.; Cauble, R.; Celliers, P.; Dalhed, H.E. Jr.; Koch, J.A.; Nilsen, J.

    1996-01-01

    In this paper we describe experimental and computational studies of multiple-pulse-driven laser plasma, which is the gain medium for a neon-like yttrium x-ray laser. Near-field emission profiles have been measured both with and without reinjection of the x-ray laser photons to couple with the amplifying medium created by later pulses using an external multilayer mirror. From the temporal and spatial evolution of the near-field emission profiles we can examine the pulse-to-pulse variation of the x-ray laser plasma due to changes in the hydrodynamics, laser deposition, and the injecting of x-ray laser photons back into an amplifying x-ray laser plasma. Using a combination of radiation hydrodynamics, atomic kinetics, and ray propagation codes, reasonable agreement has been obtained between simulations and the experimental results. copyright 1996 American Institute of Physics

  4. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    Science.gov (United States)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  5. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  6. The physics of megajoule, large-scale, and ultrafast short-scale laser plasmas

    International Nuclear Information System (INIS)

    Campbell, E.M.

    1992-01-01

    Recent advances in laser science and technology have opened new possibilities for the study of high energy density plasma physics. The advances include techniques to control the laser spatial and temporal coherence, and the development of laser architectures and optical materials that have led to the demonstration of compact, short pulse (τ≤10 -12 sec) high brightness lasers, capable of irradiating plasmas with intensities ≥10 18 W/cm 2 . Experiments with reduced laser coherence have shown a substantial decrease in laser-driven parametric instabilities and have extended the parameter range where inverse bremsstrahlung absorption is the dominant coupling process. Beam smoothing with short wavelength lasers should result in inverse bremsstrahlung dominated coupling in the irradiance parameter regimes of the millimeter scale-length plasmas envisioned for the megajoule class lasers for ignition and gain in inertial fusion. In addition new regimes of laser--plasma coupling will become experimentally accessible when plasmas are irradiated with I≥10 18 W/cm 2 . Relativistic effects, extreme profile modification, and electrons heated to energies exceeding 1 MeV are several of the phenomena that are expected. Numerous applications in basic and applied plasma physics will result from these new capabilities

  7. Laser-induced incandescence applied to dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This paper reports on the laser heating of nanoparticles (diameters ≤1 μm) confined in a reactive plasma by short (150 ps) and intense (~63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the

  8. Laser-Hole Boring into Overdense Plasmas Measured with Soft X-Ray Laser Probing

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kodama, R [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Tanaka, K A [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Hashimoto, H [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kato, Y [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Mima, K [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Weber, F A [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Barbee, Jr, T W [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Da Silva, L B [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 {mu}m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10{sup 17} W /cm{sup 2} . Cross sections of the channel were obtained which show a 30 {mu}m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front. (c) 2000 The American Physical Society.

  9. Laser-Hole Boring into Overdense Plasmas Measured with Soft X-Ray Laser Probing

    International Nuclear Information System (INIS)

    Takahashi, K.; Kodama, R.; Tanaka, K. A.; Hashimoto, H.; Kato, Y.; Mima, K.; Weber, F. A.; Barbee, T. W. Jr.; Da Silva, L. B.

    2000-01-01

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 μm laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10 17 W /cm 2 . Cross sections of the channel were obtained which show a 30 μm diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front. (c) 2000 The American Physical Society

  10. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  11. Plasma satellites of X-ray lines of ions in a picosecond laser plasma

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V. P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A. Jr.

    2004-01-01

    We present the results of our measurements of the spectra for multicharged ions in a plasma produced by moderately intense (about 10 17 W cm -2 ) picosecond laser pulses. They suggest the existence of intense plasma oscillations with a frequency appreciably lower than the frequency of the laser radiation. The observed spectrum for the plasma satellites of the Lyman Ly α doublet of the hydrogenic F IX ion in a dense plasma was modeled theoretically. The resulting doublet profile was shown to have a complex structure that depends nontrivially both on the plasma density and on the frequency and amplitude of the plasma oscillations. The positions of the satellites and their separations allowed them to be associated with intense electrostatic oscillations with an amplitude of (4-6) x 10 8 V cm -1 and a frequency near (0.7-1) x 10 15 s -1 . Assuming the oscillation frequency to be determined by the strength of the magnetic field B generated in the plasma, we obtained an estimate of B that is in reasonable agreement with other measurements and estimates of this quantity. Our theoretical analysis allowed explanation of the emission spectra observed when flat fluoroplastic targets were heated by intense picosecond laser pulses

  12. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Merten, Jonathan A., E-mail: jmerten@astate.edu; Smith, Benjamin W., E-mail: bwsmith@chem.ufl.edu; Omenetto, Nicoló, E-mail: omenetto@chem.ufl.edu

    2013-05-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas.

  13. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    International Nuclear Information System (INIS)

    Merten, Jonathan A.; Smith, Benjamin W.; Omenetto, Nicoló

    2013-01-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas

  14. Characterization of X-ray emission from laser generated plasma

    Science.gov (United States)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  15. Characterization of X-ray emission from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Cannavò Antonino

    2018-01-01

    Full Text Available X-ray emission from laser generated plasma was studied at low (1010 W/cm2 and high (1018 W/cm2 intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  16. Hot and dense plasma probing by soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Krůs, Miroslav; Kozlová, Michaela; Nejdl, Jaroslav; Rus, B.

    2018-01-01

    Roč. 13, č. 1 (2018), č. článku C01004. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics/18./. Prague, 24.09.2017-28.09.2017] R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * spectroscopy and imaging * Plasma diagnostics - probes * Plasma generation (laser-produced, RF, x ray-produced) Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01004

  17. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  18. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  19. Angular distribution of laser ablation plasma

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.

    2010-01-01

    An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag 1+ which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about ±10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.

  20. Self-phase modulation of laser light in laser produced plasma

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.

    1975-02-01

    A spectrum broadening due to the self-phase modulation of a laser light was observed in the laser produced deuterium and hydrogen plasma. Qualitative treatments of the density modulation due to the self-focusing process and the modulational instability were discussed. The theoretical estimation of spectrum broadening fairly accorded with the experimental results. (auth.)

  1. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  2. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  3. Stimulated Brillouin backscattering and magnetic field generation in laser-produced plasmas

    International Nuclear Information System (INIS)

    Bawa'aneh, M.S.

    1999-01-01

    This thesis is concerned with aspects of laser-plasma interactions related to fusion reactions; in particular thermoelectric magnetic field generation around a hole dug in plasma by intense laser beams, and stimulated Brillouin back scattering (SBBS) from plasmas containing hot spots. A hole, of the size of the laser focal spot, is dug in the plasma when illuminated by intense laser if the laser pressure exceeds the plasma thermal pressure. This hole is found to have steep, radial density gradients. My first concern arose from the prediction that magnetic fields might be generated around the hole-plasma interface in places where the steep density gradients overlap with the non-aligned temperature gradients. When a high-power laser beam is focused on a solid pellet, plasma is formed at the surface. In order to create conditions for thermonuclear reactions in the interior of the pellet, an effective deposition of the laser energy to thermal energy of the pellet via laser-plasma coupling is necessary. When light irradiates a plasma collective processes occur, which can either enhance or reduce the light absorption. For a better understanding of the fusion problem a knowledge of the nature of these collective processes and of the fraction of light reflected from the plasma modes is required. Local hot spots seen experimentally lead to higher gain levels of scattered light. These local temperature inhomogeneities could lead to non-equilibrium distributions, which result in a free energy leading to some interesting phenomena in plasma. In the second part of the thesis stimulated Brillouin back scattering from an ion acoustic mode in a hot spot is studied. Temperature inhomogeneities lead to an ion acoustic instability, and to higher levels of SBBS gain, which leads to lower thresholds for the same electron to ion temperature ratios. This could be the answer for the observed high levels of scattering from hot spots. (author)

  4. Investigation on the spatial evolution of the emission spectra in laser-induced Ni plasmas

    International Nuclear Information System (INIS)

    Du Chuanmei; Xu Ying; Zhang Mingxu

    2012-01-01

    In this paper, the spatial resolved emission spectrum of Ni atom in laser induced Ni plasma is measured in the wavelength region from 350 nm to 600 nm. The spatial evolution of the relative intensities and the Stark broadening of the 385.83 nm emission spectrum lines are also obtained. It is shown that Stark broadening and intensity of the spectrum lines increases firstly to its maximum and then de- creases along the direction of laser beam when the distance from the target surface is in the range from 0 to 2.5 mm. The maximum value of Stark broadening and relative intensity of the spectrum lines appear at 1.5 mm from the target surface. (authors)

  5. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C

    2009-01-01

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.

  6. Diagnostics of Particles emitted from a Laser generated Plasma: Experimental Data and Simulations

    Science.gov (United States)

    Costa, Giuseppe; Torrisi, Lorenzo

    2018-01-01

    The charge particle emission form laser-generated plasma was studied experimentally and theoretically using the COMSOL simulation code. The particle acceleration was investigated using two lasers at two different regimes. A Nd:YAG laser, with 3 ns pulse duration and 1010 W/cm2 intensity, when focused on solid target produces a non-equilibrium plasma with average temperature of about 30-50 eV. An Iodine laser with 300 ps pulse duration and 1016 W/cm2 intensity produces plasmas with average temperatures of the order of tens keV. In both cases charge separation occurs and ions and electrons are accelerated at energies of the order of 200 eV and 1 MeV per charge state in the two cases, respectively. The simulation program permits to plot the charge particle trajectories from plasma source in vacuum indicating how they can be deflected by magnetic and electrical fields. The simulation code can be employed to realize suitable permanent magnets and solenoids to deflect ions toward a secondary target or detectors, to focalize ions and electrons, to realize electron traps able to provide significant ion acceleration and to realize efficient spectrometers. In particular it was applied to the study two Thomson parabola spectrometers able to detect ions at low and at high laser intensities. The comparisons between measurements and simulation is presented and discussed.

  7. Measurement of the energy loss of heavy ions in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch-Maas, Renate

    2009-11-25

    diameter of only 500 {mu}m. Additionally, thin foils of 0.5 {mu}m thickness could be used, compared to 1.5 {mu}m used before. These foils are very quickly turned into a fully ionized plasma by the laser pulse, so the resulting plasma is more homogeneous than with thicker foils. With the previous detectors, thicker foils had to be used due to the lower detector resolution. The newly acquired energy loss data exhibits some unusual characteristics. At the beginning of the interaction of laser and plasma, the energy loss first decreases, then increases again, up to an energy loss 30% higher than the energy loss in the cold matter, then continues to decrease slowly. Several changes were made to study possible explanations for this behavior, including a change in the geometry of the setup to investigate whether fields could be responsible for the decrease. (orig.)

  8. Measurement of the energy loss of heavy ions in laser-produced plasmas

    International Nuclear Information System (INIS)

    Knobloch-Maas, Renate

    2009-01-01

    500 μm. Additionally, thin foils of 0.5 μm thickness could be used, compared to 1.5 μm used before. These foils are very quickly turned into a fully ionized plasma by the laser pulse, so the resulting plasma is more homogeneous than with thicker foils. With the previous detectors, thicker foils had to be used due to the lower detector resolution. The newly acquired energy loss data exhibits some unusual characteristics. At the beginning of the interaction of laser and plasma, the energy loss first decreases, then increases again, up to an energy loss 30% higher than the energy loss in the cold matter, then continues to decrease slowly. Several changes were made to study possible explanations for this behavior, including a change in the geometry of the setup to investigate whether fields could be responsible for the decrease. (orig.)

  9. Investigations of mechanism of laser radiation absorption at PALS

    Czech Academy of Sciences Publication Activity Database

    Kalinowska, Z.; Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2012-01-01

    Roč. 57, č. 2 (2012), s. 227-230 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA)2011. Warsaw, 12.09.2011-16.09.2011] R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : collisional absorption * crater volume * electron density distribution * interferometry * iodine laser * resonance absorption * Laser radiation * inverse bremsstrahlung * laser interferometry * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012 http://www.nukleonika.pl/www/back/full/vol57_2012/v57n2p227f.pdf

  10. Studies of intense-laser plasma instabilities

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Krása, Josef; Badziak, J.; Jungwirth, Karel; Krouský, Eduard; Margarone, Daniele; Parys, P.

    2013-01-01

    Roč. 272, May (2013), 94-98 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser plasma instabilities * self-generated magnetic field * longitudinal structure of the expanding plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  11. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    b; 52.25.-b; 52.70.-m. 1. Introduction. Pulsed laser ablation of a solid sample generates a dense plasma emission in the shape of ... The multichannel analyser plate of the ICCD was gated for as less as 4 ns using ... to explain the atomic collision processes [4]. .... Within duration of laser pulse, there occurs laser-solid interac-.

  12. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  13. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas

    International Nuclear Information System (INIS)

    Cao Shi-Quan; Su Mao-Gen; Sun Dui-Xiong; Min Qi; Dong Chen-Zhong

    2016-01-01

    Extreme ultraviolet emission from laser-produced Al plasma is experimentally and theoretically investigated. Spatial-evolution emission spectra are measured by using the spatio-temporally resolved laser produced plasma technique. Based on the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeed in reproducing the spectra at different detection positions, which are in good agreement with experiments. The decay curves about the electron temperature and electron density, as well as the fractions of individual Al ions and average ionization stage with increasing the detection distance are obtained by comparison with the experimental measurements. These parameters are critical points for deeply understanding the expanding and cooling of laser produced plasmas in vacuum. (paper)

  14. Laser and Plasma Technology Division, Annual Reports 1996 and 1997

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1999-04-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre during the two year period 1996- 1997. This division is engaged in the research and development of high power beams mainly laser, plasma and electron beams. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of Department of Atomic Energy. This involves development and technology readiness study of laser, plasma and electron beam devices. In addition, studies are also carried out on related physical phenomenon with a view to gain better understanding of the devices. This report has been compiled from individual reports of various groups/sections working in the division. A list of publications by the several members of the division is also included. (author)

  15. Infrared laser scattering system for the plasma diagnostics

    International Nuclear Information System (INIS)

    Hiraki, Naoji; Kawasaki, Shoji; Muraoka, Katsunori

    1975-01-01

    As the results of the parametric studies of the double discharge TEA CO 2 laser, the required properties on the laser system for the scattering diagnostics of plasmas are shown to be realized with our CO 2 laser. The direction of the future improvements of the laser performance is also discussed. (auth.)

  16. Optical characteristics of a gallium laser plasma

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Shimon, L.L.; Dashchenko, A.I.; Shevera, I.V.; Chuchman, M.P.

    2001-01-01

    Results are presented from studies of the emission from an erosion gallium laser plasma at a moderate intensity (W = (1-5) x 10 8 W/cm 2 ) of a 1.06-μm laser radiation. It is shown that, under these conditions, the lower excited states of gallium atoms are populated most efficiently. Among the ions, only the most intense GaII lines are observed in the emission spectrum. The populations of GaI and GaII excited states are not related to direct electron excitation, but are determined by the recombination of gallium ions with slow electrons. The recombination times of GaIII and GaII ions in the core of the plasma jet are determined from the waveforms of emission in the GaII and GaI spectral lines and are equal to 10 and 140 ns, respectively. The results obtained are of interest for spectroscopic diagnostics of an erosion plasma produced from gallium-containing layered crystals during the laser deposition of thin films

  17. MED101: a laser-plasma simulation code. User guide

    International Nuclear Information System (INIS)

    Rodgers, P.A.; Rose, S.J.; Rogoyski, A.M.

    1989-12-01

    Complete details for running the 1-D laser-plasma simulation code MED101 are given including: an explanation of the input parameters, instructions for running on the Rutherford Appleton Laboratory IBM, Atlas Centre Cray X-MP and DEC VAX, and information on three new graphics packages. The code, based on the existing MEDUSA code, is capable of simulating a wide range of laser-produced plasma experiments including the calculation of X-ray laser gain. (author)

  18. Laser and Plasma Technology Division : annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during 1991 is presented. The R and D activities are reported under the headings (1) Laser Activities, (2) Thermal Plasma Activities, (3) Electron Beam Activities and (4) Divisional Workshop Activities. List of publications is given at the end of each activity heading

  19. Theoretical studies of some nonlinear laser-plasma interactions

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1975-01-01

    The nonlinear coupling of intense, monochromatic, electromagnetic radiation with plasma is considered in a number of special cases. The first part of the thesis serves as an introduction to three-wave interactions. A general formulation of the stimulated scattering of transverse waves by longitudinal modes in a warm, unmagnetized, uniform plasma is constructed. A general dispersion relation is derived that describes Raman and Brillouin scattering, modulational instability, and induced Thomson scattering. Raman scattering (the scattering of a photon into another photon and an electron plasma wave) is investigated as a possible plasma heating scheme. Analytic theory complemented by computer simulation is presented describing the nonlinear mode coupling of laser light with small and large amplitude, resonantly excited electron plasma waves. The simulated scattering of a coherent electromagnetic wave by low frequency density perturbations in homogeneous plasma is discussed. A composite picture of the linear dispersion relations for filamentation and Brillouin scattering is constructed. The absolute instability of Brillouin weak and strong coupling by analytic and numerical means is described

  20. Laser-produced aluminum plasma expansion inside a plastic plasma envelope

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Renner, Oldřich; Gus´kov, S.Y.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří

    2012-01-01

    Roč. 19, č. 9 (2012), s. 1-8 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528; GA ČR GAP205/10/0814 Grant - others:7FP LASERLAB-EUROPE(XE) 228334 Program:FP7 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-mater interaction * plasma jets production * x-ray spectroscopy * particle plasma diagnosis * ion charge density * plasma temperature Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.376, year: 2012

  1. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes

    International Nuclear Information System (INIS)

    Xu Guojian; Kutsuna, Muneharu; Liu Zhongjie; Zhang Hong

    2006-01-01

    The clad layers of Ni-based alloy were deposited on the SUS316L stainless plates by CO 2 laser and plasma cladding processes. The smooth clad bead was obtained by CO 2 laser cladding process. The phases of clad layer were investigated by an optical microscope, scanning electron microscopy (SEM), X-ray diffractometer (XRD), electron probe microanalysis (EPMA) and energy-dispersive spectrometer (EDS). The microstructures of clad layers belonged to a hypereutectic structure. Primary phases consist of boride CrB and carbide Cr 7 C 3 . The eutectic structure consists of Ni + CrB or Ni + Cr 7 C 3 . Compared with the plasma cladding, the fine microstructures, low dilutions, high Vickers hardness and excellent wear resistance were obtained by CO 2 laser cladding. All that show the laser cladding process has a higher efficiency and good cladding quality

  2. High-speed interferometry of expanding and collapsing laser produced plasma

    International Nuclear Information System (INIS)

    Basov, N.G.; Boiko, V.A.; Gribkov, V.A.; Zakharov, S.M.; Krokhin, O.N.; Nikulin, V.Ya.; Sklizkov, G.V.

    An installation with a good time and space resolution for the interferometric investigation of dense non-stationary plasma is described. The installation consists of a Mach-Zender interferometer, an electro-optical image converter camera and a ruby laser with an impulse of variable duration of 1nsec to 150nsec

  3. Observation of plasma motion in a coaxial plasma opening switch with a chordal laser interferometer

    International Nuclear Information System (INIS)

    Teramoto, Y.; Urakami, H.; Akiyama, H.; Kohno, S.; Katsuki, S.

    2002-01-01

    Electron densities in a coaxial plasma opening switch were measured at many lines-of-slight. In the present experiment, electron density was measured by a He-Ne laser interferometer with chordal lines-of sight. In order to observe the motion of the POS plasma, the electron density contours during the conduction, opening and post-opening phases were drawn by combining the results of interferometer experiments. The radial and axial motion of POS plasma was investigated from the density contours. As conduction time progressed, the POS plasma moved toward downstream. At 800 ns, which corresponds to the time of opening in the current waveform, low-density region less than 10 15 cm -2 is seen at 10 mm from the cathode. After the opening was completed, the low-density gap disappeared and the shape of the corn-shape-like plasma was distorted. (author)

  4. Spectroscopic analysis of coal plasma emission produced by laser ablation

    OpenAIRE

    Vera-Londoño, Liliana Patricia; Pérez-Taborda, Jaime Andrés; Riascos-Landázuri, Henry

    2016-01-01

    An analysis of plasma produced by laser ablation using 1,064 nm of laser radiation from a Q-switched Nd:YAG on coal mineral samples under air ambient, was performed. The emission of molecular band systems such as C2 Swan System , the First Negative System N2 (Band head at 501.53 nm) and different emission lines were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0.62 eV). The density and ...

  5. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  6. Laser-plasma accelerator-based single-cycle attosecond undulator source

    Science.gov (United States)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  7. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  8. Optimization of laser parameters to obtain high-energy, high-quality electron beams through laser-plasma acceleration

    International Nuclear Information System (INIS)

    Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Upadhyay, Ajay K.; Jha, Pallavi

    2010-01-01

    The propagation of an intense (a 0 =3), short-pulse (L∼λ p ) laser through a homogeneous plasma has been investigated. Using two-dimensional simulations for a 0 =3, the pulse-length and spot-size at three different plasma densities were optimized in order to get a better quality beam in laser wakefield accelerator. The study reveals that with increasing pulse-length the acceleration increases, but after a certain pulse-length (L>0.23λ p ) the emittance blows-up unacceptably. For spot-sizes less than that given by k p0 r s =2√(a 0 ), trapping is poor or nonexistent, and the optimal spot-size is larger. The deviation of the optimal spot-size from this formula increases as the density decreases. The efficacy of these two-dimensional simulations has been validated by running three-dimensional simulations at the highest density. It has been shown that good quality GeV-class beams can be obtained at plasma densities of ∼10 18 cm -3 . The quality of the beam can be substantially improved by selecting only the high-energy peak; in this fashion an energy-spread of better than 1% and a current in tens of kA can be achieved, which are important for applications such as free-electron lasers.

  9. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    International Nuclear Information System (INIS)

    Sahai, Aakash A.

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a 0 >1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary

  10. Laser beam trapping and propagation in cylindrical plasma columns

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1976-01-01

    An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant

  11. Modeling of plasma plume induced during laser welding

    International Nuclear Information System (INIS)

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2005-01-01

    During laser welding, the interaction of intense laser radiation with a work-piece leads to the formation of a long, thin, cylindrical cavity in a metal, called a keyhole. Generation of a keyhole enables the laser beam to penetrate into the work-piece and is essential for deep welding. The keyhole contains ionized metal vapour and is surrounded by molten material called the weld pool. The metal vapour, which flows from the keyhole mixes with the shielding gas flowing from the opposite direction and forms a plasma plume over the keyhole mouth. The plasma plume has considerable influence on the processing conditions. Plasma strongly absorbs laser radiation and significantly changes energy transfer from the laser beam to a material. In this paper the results of theoretical modelling of plasma plume induced during welding with CO 2 laser are presented. The set of equations consists of equation of conservation of mass, energy, momentum and the diffusion equation: ∂ρ/∂t + ∇·(ρ ρ ν =0; ∂(ρE)/∂t + ∇·( ρ ν (ρE + p)) = ∇ (k eff ∇T - Σ j h j ρ J j + (τ eff · ρ ν )) + Σ i κ i I i - R; ∂/∂t(ρ ρ ν ) + ∇· (ρ ρ ν ρ ν ) = - ∇p + ∇(τ) + ρ ρ g + ρ F, where τ is viscous tensor τ = μ[(∇ ρ ν + ∇ ρT ν )-2/3∇· ρ ν I]; ∂/∂t(ρY i ) + ∇·(ρ ρ ν Y i ) = ∇·ρD i,m ∇T i ; where μ ν denotes velocity vector, E - energy, ρ mass density; k - thermal conductivity, T- temperature, κ - absorption coefficient, I i local laser intensity, R - radiation loss function, p - pressure, h j enthalpy, J j - diffusion flux of j component, ν g - gravity, μ F - external force, μ - dynamic viscosity, I - unit tensor, Y i - mass fraction of iron vapor in the gas mixture, D i,m - mass diffusion coefficient. The terms k eff and τ eff contain the turbulent component of the thermal conductivity and the viscosity, respectively. All the material functions are functions of the temperature and mass fraction only. The equations

  12. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  13. Proceedings of the 13th international symposium on laser-aided plasma diagnostics

    International Nuclear Information System (INIS)

    Kawahata, Kazuo

    2007-09-01

    The 9th international symposium on LASER-AIDED PLASMA DIAGNOSTICS was held from 18th November to 21st September, 2007 at Takayama, Japan. This symposium was organized by the National Institute for Fusion Science, Toki, Japan. The topics of the symposium include laser diagnostics and diagnostics aided by lasers for fusion plasmas, industrial process plasmas, environmental plasmas as well as for other plasma applications and processes related to plasmas. Hardware development related to laser-aided plasma diagnostics is another topic. Over 80 participants attended this international symposium. 1 Akazaki lecture, 10 general talks, 10 topical talks, 12 short oral talks and 45 posters were presented. This issue is the collection of the papers presented at the title symposium. The 41 of the presented papers are indexed individually. (J.P.N.)

  14. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  15. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  16. Modeling and application of plasma charge current in deep penetration laser welding

    International Nuclear Information System (INIS)

    Zhang, Xudong; Chen, Wuzhu; Jiang, Ping; Guo, Jing; Tian, Zhiling

    2003-01-01

    Plasma charge current distribution during deep penetration CO 2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency

  17. An experimental investigation on the properties of laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    Tang Xiaoshuan; Li Chunyan; Ji Xuehan; Feng Eryin; Cui Zhifeng

    2004-01-01

    The authors have measured the time-resolved emission spectra produced by Nd: YAG laser induced Al plasma with different kinds of buffer gas (He, Ar, N 2 and Air). The dependence of emission spectra line intensity and Stark broadening on the time delay, kinds and pressure of buffer gas are studied. The results show that the atomic emission line intensity reaches maximum at 3 μs time delay, the Stark broadening increases with increasing the pressure of buffer gas, and decreases with increasing time delay. The Stark broadening in Ar buffer gas is largest among the four different kinds of buffer gas. (author)

  18. Laser plasma instability experiments with KrF lasers

    International Nuclear Information System (INIS)

    Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S.; Chan, L-Y.; Kehne, D.; Schmitt, A. J.; Colombant, D.; Velikovich, A.; Oh, J.; Lehmberg, R. H.; Afeyan, B.; Phillips, L.; Seely, J.; Brown, C.; Feldman, U.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.

    2007-01-01

    Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248 nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150 MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I∼2x10 15 W/cm 2 ). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of (3/2)ω o and (1/2)ω o harmonic emissions

  19. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  20. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  1. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  2. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-01-01

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  3. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  4. The Validity of a Paraxial Approximation in the Simulation of Laser Plasma Interactions

    International Nuclear Information System (INIS)

    Hyole, E. M.

    2000-01-01

    The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling of the interaction between lasers and plasmas. In inertial confinement fusion, initial laser pulses ablate material from the hohlraum, which contains the target, creating a plasma. Plasma density variations due to plasma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational simulations aid immensely in developing an understanding of these effects. In this paper, we compare the accuracy of two methods for calculating the propagation of laser light through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion and a laser propagation model. These two pieces interact with each other as follows. First, given the plasma density, one propagates the laser with a refractive index determined by this density. Then, given the laser intensities, the calculation of one time step of the plasma motion provides a new density for the laser propagation. Because this procedure repeats over many time steps, each piece must be performed accurately and efficiently. In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current capabilities. To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking the partial approximation applies when one expects negligible backscattering of the light and only mild scattering transverse to the direction of light propagation. This approximation results in a differential equation that is first-order in the propagation direction that can be integrated

  5. Current new applications of laser plasmas

    International Nuclear Information System (INIS)

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs

  6. Effect of irradiation angle on the efficiency of formation of multiply charged ions in a laser-produced plasma

    International Nuclear Information System (INIS)

    Bedilov, M R; Beisembaeva, Kh B; Tsoi, T G; Satybaldiev, T B; Sabitov, M S

    2000-01-01

    Mass spectrometry is used to investigate the emission behaviour and the characteristics of multiply charged ions in a plasma produced at small angles of incidence of laser radiation (α∼20 0 ) and also at grazing incidence (α∼85 0 ). It is found that upon grazing incidence of the laser radiation onto a target, the efficiency of production of multiply charged ions is reduced compared to that for α∼20 0 . However, this geometry of laser irradiation of solids can be used for the elemental analysis of surface layers of a sample. (interaction of laser radiation with matter. laser plasma)

  7. On the mutual interaction between laser beams in plasmas

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B.J.; Evans, R.G.; Fonseca, R.A.; Hemker, R.G.; Mori, W.B.

    2002-01-01

    The nonlinear interaction between light beams in a plasma is studied. In particular, nonlinearities due to relativistic mass corrections and density modulations from a plasma wave wake are considered; but the results can be generalized for other nonlinearities. A simple physical picture using the nonlinear phase velocity of the light wave in a plasma is developed to show that when two laser beams are coherent, the force can be repulsive or attractive, depending on their relative phase. When the two laser beams are polarized in mutually perpendicular directions, the force is always attractive. Using a variational method, a simple analytical expression for this attractive force is derived for Gaussian beams. The centers of the lasers move analogously to point masses under this attractive force with the laser power playing the role of the mass. Under an attractive force, solutions exist where the two lasers can spiral around each other. It is also shown that the plasma wave wake can cause the two spiraling lasers to become intertwined forming a braided pattern. The braiding is common to any nonlinearity which is not instantaneous. The analytical results concerning attraction, repulsion, and braiding have been confirmed using three dimensional particle-in-cell simulations. The simulations also show that angular momentum can radiate away leading to the coalescence of the remaining energy

  8. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  9. Free-electron laser with a plasma wave wiggler propagating through a magnetized plasma channel

    International Nuclear Information System (INIS)

    Jafari, S; Jafarinia, F; Mehdian, H

    2013-01-01

    A plasma eigenmode has been employed as a wiggler in a magnetized plasma channel for the generation of laser radiation in a free-electron laser. The short wavelength of the plasma wave allows a higher radiation frequency to be obtained than from conventional wiggler free-electron lasers. The plasma can significantly slow down the radiation mode, thereby relaxing the beam energy requirement considerably. In addition, it allows a beam current in excess of the vacuum current limit via charge neutralization. This configuration has a higher tunability by controlling the plasma density in addition to the γ-tunability of the standard FEL. The laser gain has been calculated and numerical computations of the electron trajectories and gain are presented. Four groups (I–IV) of electron orbits have been found. It has been shown that by increasing the cyclotron frequency, the gain for orbits of group I and group III increases, while a decrease in gain has been obtained for orbits of group II and group IV. Similarly, the effect of plasma density on gain has been exhibited. The results indicate that with increasing plasma density, the orbits of all groups shift to higher cyclotron frequencies. The effects of beam self-fields on gain have also been demonstrated. It has been found that in the presence of beam self-fields the sensitivity of the gain increases substantially in the vicinity of gyroresonance. Here, the gain enhancement and reduction are due to the paramagnetic and diamagnetic effects of the self-magnetic field, respectively. (paper)

  10. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S.; Haslinger, M.J.; Hinterreiter, A.; Kolmhofer, P.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2013-09-01

    We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature T{sub S} ≤ 500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with T{sub S}. The size and brightness of expanding plumes increase at higher T{sub S} while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with T{sub S}. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to T{sub S} = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes. - Highlights: • Size and emission of laser-induced plasma increase with sample temperature Ts. • Mean optical intensity of plasma is independent of Ts. • Plasma temperature and electron number density do not vary with Ts. • Major oxides in steel slag are quantified up to Ts = 450 °C. • Industrial steel slags are analyzed by calibration-free LIBS method.

  11. Progress of laser-plasma interaction simulations with the particle-in-cell code

    International Nuclear Information System (INIS)

    Sakagami, Hitoshi; Kishimoto, Yasuaki; Sentoku, Yasuhiko; Taguchi, Toshihiro

    2005-01-01

    As the laser-plasma interaction is a non-equilibrium, non-linear and relativistic phenomenon, we must introduce a microscopic method, namely, the relativistic electromagnetic PIC (Particle-In-Cell) simulation code. The PIC code requires a huge number of particles to validate simulation results, and its task is very computation-intensive. Thus simulation researches by the PIC code have been progressing along with advances in computer technology. Recently, parallel computers with tremendous computational power have become available, and thus we can perform three-dimensional PIC simulations for the laser-plasma interaction to investigate laser fusion. Some simulation results are shown with figures. We discuss a recent trend of large-scale PIC simulations that enable direct comparison between experimental facts and computational results. We also discharge/lightning simulations by the extended PIC code, which include various atomic and relaxation processes. (author)

  12. Subsurface plasma in beam of continuous CO2-laser

    Science.gov (United States)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  13. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  14. Laser plasma interaction in rugby-shaped hohlraums

    Science.gov (United States)

    Masson-Laborde, P.-E.; Philippe, F.; Tassin, V.; Monteil, M.-C.; Gauthier, P.; Casner, A.; Depierreux, S.; Seytor, P.; Teychenne, D.; Loiseau, P.; Freymerie, P.

    2014-10-01

    Rugby shaped-hohlraum has proven to give high performance compared to a classical similar-diameter cylinder hohlraum. Due to this performance, this hohlraum has been chosen as baseline ignition target for the Laser MegaJoule (LMJ). Many experiments have therefore been performed during the last years on the Omega laser facility in order to study in details the rugby hohlraum. In this talk, we will discuss the interpretation of these experiments from the point of view of the laser plasma instability problem. Experimental comparisons have been done between rugby, cylinder and elliptical shape rugby hohlraums and we will discuss how the geometry differences will affect the evolution of laser plasma instabilities (LPI). The efficiency of laser smoothing techniques on these instabilities will also be discussed as well as gas filling effect. The experimental results will be compared with FCI2 hydroradiative calculations and linear postprocessing with Piranah. Experimental Raman and Brillouin spectrum, from which we can infer the location of the parametric instabilities, will be compared to simulated ones, and will give the possibility to compare LPI between the different hohlraum geometries.

  15. Observations of MeV electrons and scattered light from intense, subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Darrow, C.; Lane, S.; Klem, D.; Perry, M.D.

    1993-01-01

    In this paper the authors present work in progress in their experimental investigation of the coupling of intense, subpicosecond laser pulses with plasmas preformed on solid targets. (This situation is to be contrasted with the interaction of intense laser fields with solid-density matter. A subject which has generated considerable interest in the last several years.) The characterization of the energy distribution of energetic electrons which escape a solid target irradiated by an intense laser is discussed. The authors have also performed experiments to study the excitation of parametric instabilities near the quarter-critical layer and second-harmonic generation near the critical layer in the plasma. They discuss some preliminary scattered light spectroscopy measurements

  16. High Power Laser Laboratory at the Institute of Plasma Physics and Laser Microfusion: equipment and preliminary research

    Directory of Open Access Journals (Sweden)

    Zaraś-Szydłowska Agnieszka

    2015-06-01

    Full Text Available The purpose of this paper is to present the newly-opened High Power Laser Laboratory (HPLL at the Institute of Plasma Physics and Laser Microfusion (IPPLM. This article describes the laser, the main laboratory accessories and the diagnostic instruments. We also present preliminary results of the first experiment on ion and X-ray generation from laser-produced plasma that has been already performed at the HPLL.

  17. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.

  18. Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics

    Science.gov (United States)

    Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles

    2018-05-01

    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.

  19. Observation of plasma motion in a coaxial plasma opening switch with a chordal laser interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Y.; Urakami, H.; Akiyama, H. [Kumamoto Univ., Graduate School of Science and Technology, Kumamoto (Japan); Kohno, S. [Ariake National College of Technology, Dept. of Electrical Engineering, Fukuoka (Japan); Katsuki, S. [Kumamoto Univ., Dept. of Electrical and Computer Engineering, Kumamoto (Japan)

    2002-06-01

    Electron densities in a coaxial plasma opening switch were measured at many lines-of-slight. In the present experiment, electron density was measured by a He-Ne laser interferometer with chordal lines-of sight. In order to observe the motion of the POS plasma, the electron density contours during the conduction, opening and post-opening phases were drawn by combining the results of interferometer experiments. The radial and axial motion of POS plasma was investigated from the density contours. As conduction time progressed, the POS plasma moved toward downstream. At 800 ns, which corresponds to the time of opening in the current waveform, low-density region less than 10{sup 15} cm{sup -2} is seen at 10 mm from the cathode. After the opening was completed, the low-density gap disappeared and the shape of the corn-shape-like plasma was distorted. (author)

  20. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  1. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  2. Ion acceleration by laser hole-boring into plasmas

    International Nuclear Information System (INIS)

    Pogorelsky, I. V.; Dover, N. P.; Babzien, M.; Bell, A. R.; Dangor, A. E.; Horbury, T.; Palmer, C. A. J.; Polyanskiy, M.; Schreiber, J.; Schwartz, S.; Shkolnikov, P.; Yakimenko, V.; Najmudin, Z.

    2012-01-01

    By experiment and simulations, we study the interaction of an intense CO 2 laser pulse with slightly overcritical plasmas of fully ionized helium gas. Transverse optical probing is used to show a recession of the front plasma surface with an initial velocity >10 6 m/s driven by hole-boring by the laser pulse and the resulting radiation pressure driven electrostatic shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These observations are supported by PIC simulations which prove the conclusion that monoenergetic protons observed in our earlier reported experiment with a hydrogen jet result from ion trapping and reflection from a shock wave driven through the plasma.

  3. Advanced beam dynamics and diagnostics concepts for laser-plasma accelerators

    International Nuclear Information System (INIS)

    Dornmair, Irene

    2017-05-01

    Laser-Plasma Accelerators (LPAs) combine a multitude of unique features, which makes them very attractive as drivers for next generation brilliant light sources including compact X-ray free-electron lasers. They provide high accelerating gradients, thereby drastically shrinking the accelerator size, while at the same time the produced electron bunches are intrinsically as short as a few femtoseconds and carry high peak currents. LPA are subject of very active research, yet, the field currently faces the challenge of improving the beam quality, and achieving stable and well-controlled injection and acceleration. This thesis tackles this issue from three different sides. A novellongitudinal phase space diagnostics is proposed that employs the strong fields present in plasma wakefields to streak ultrashort electron bunches. This allows for a temporal resolution down to the attosecond range, enabling direct determination to the current profile and the slice energy spread, both crucial quantities for the performance of free-electron lasers. Furthermore, adiabatic matching sections at the plasma-vacuum boundary are investigated. These can drastically reduce the beam divergence and thereby relax the constraints on the subsequent beam optics. For externally injected beams, the matching sections could even provide the key technology that permits emittance conservation by increasing the matched beam size to a level achievable with currently available magnetic optics. Finally, a new method is studied that allows to modify the wakefield shape. To this end, the plasma density is periodically modulated. One possible application can be to remove the linearly correlated energy spread, or chirp, from the accelerated bunch, which is suspected of being responsible for the main part of the often large energy spread of plasma accelerated beams.

  4. Advanced beam dynamics and diagnostics concepts for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Dornmair, Irene

    2017-05-15

    Laser-Plasma Accelerators (LPAs) combine a multitude of unique features, which makes them very attractive as drivers for next generation brilliant light sources including compact X-ray free-electron lasers. They provide high accelerating gradients, thereby drastically shrinking the accelerator size, while at the same time the produced electron bunches are intrinsically as short as a few femtoseconds and carry high peak currents. LPA are subject of very active research, yet, the field currently faces the challenge of improving the beam quality, and achieving stable and well-controlled injection and acceleration. This thesis tackles this issue from three different sides. A novellongitudinal phase space diagnostics is proposed that employs the strong fields present in plasma wakefields to streak ultrashort electron bunches. This allows for a temporal resolution down to the attosecond range, enabling direct determination to the current profile and the slice energy spread, both crucial quantities for the performance of free-electron lasers. Furthermore, adiabatic matching sections at the plasma-vacuum boundary are investigated. These can drastically reduce the beam divergence and thereby relax the constraints on the subsequent beam optics. For externally injected beams, the matching sections could even provide the key technology that permits emittance conservation by increasing the matched beam size to a level achievable with currently available magnetic optics. Finally, a new method is studied that allows to modify the wakefield shape. To this end, the plasma density is periodically modulated. One possible application can be to remove the linearly correlated energy spread, or chirp, from the accelerated bunch, which is suspected of being responsible for the main part of the often large energy spread of plasma accelerated beams.

  5. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  6. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  7. Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas

    International Nuclear Information System (INIS)

    Teng, Y.L.; Fedosejevs, R.; Sigel, R.

    1981-03-01

    In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)

  8. Interplay between parametric instabilities in fusion - relevant laser plasmas

    International Nuclear Information System (INIS)

    Huller, St.

    2003-01-01

    The control of parametric instabilities plays an important role in laser fusion. They are driven by the incident laser beams in the underdense plasma surrounding a fusion capsule and hinder the absorption process of incident laser light which is necessary to heat the fusion target. Due to its high intensity and power, the laser light modifies the plasma density dynamically, such that two or more parametric instabilities compete, in particular stimulated Brillouin scattering and the filamentation instability. The complicated interplay between these parametric instabilities is studied in detail by developing an adequate model accompanied by numerical simulations with multidimensional codes. The model is applied to generic and to smoothed laser beams, which are necessary to limit parametric instabilities, with parameters close to experimental conditions. (author)

  9. Application of a high-density gas laser target to the physics of x-ray lasers and coronal plasmas

    International Nuclear Information System (INIS)

    Pronko, J.G.; Kohler, D.

    1996-01-01

    An experiment has been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme uses the He- like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n=4 to n=2,3 states and the n=3 to n=2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began Jan. 1991; however circumstances made it impossible to pursue the research over the past 5 years, and it was decided not to pursue the research any further

  10. Plasma plume induced during laser welding of Magnesium alloys

    International Nuclear Information System (INIS)

    Hoffman, J.; Szymanski, Z.; Azharonok, V.

    2005-01-01

    The laser welding process is influenced by the plasma produced by laser irradiation. When the pressure of the metal vapour reaches 1 atm and the plasma temperature is 10-15 kK then the electron density is about 2-3x10 23 m -3 . Under these conditions the absorption coefficient can reach several cm -1 . This means that dense plasma over the keyhole can block the laser radiation within the path of a few millimetres. Knowledge of plasma parameters helps to control technological process. The emission spectra were registered during laser welding of magnesium alloy using of a CCD camera connected to a spectrograph of focal length 1.3 m. The entrance slit of the spectrograph was perpendicular to the metal surface, so that successive tracks of the detector recorded the radiation from the plasma slices situated at different distances (heights) from the metal surface. The space-averaged electron densities are determined from the Stark broadening of the 5528.41 A Mg I spectral line and 4481.16 A Mg II line. The Stark widths of magnesium lines are taken from other paper. It has been found that the plasma density reaches 1x10 23 m -3 . Experimentally measured line broadening is obtained from the profiles of the spectral lines integrated along the line of sight (plasma diameter) and does not correspond to the maximum plasma density. Since the plasma is non-uniform, both the electron densities and temperatures obtained from spatially integrated line profiles are lower than their maximum values in the plasma centre. This effect is much stronger for the atomic line because its intensity reaches the maximum on the plasma periphery while the maximum intensity of the ionic line originates from the plasma centre. Therefore, the absorption of the laser beam evaluated from the space-averaged plasma parameters is underestimated. To find the maximum plasma density and temperature the radial temperature distribution in the plasma plume has to be reproduced. This has been done numerically by

  11. Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma

    International Nuclear Information System (INIS)

    Barthelemy, O.; Margot, J.; Chaker, M.; Sabsabi, M.; Vidal, F.; Johnston, T.W.; Laville, S.; Le Drogoff, B.

    2005-01-01

    In this work, an aluminum laser plasma produced in ambient air at atmospheric pressure by laser pulses at a fluence of 10 J/cm 2 is characterized by time- and space-resolved measurements of electron density and temperature. Varying the laser pulse duration from 6 ns to 80 fs and the laser wavelength from ultraviolet to infrared only slightly influences the plasma properties. The temperature exhibits a slight decrease both at the plasma edge and close to the target surface. The electron density is found to be spatially homogeneous in the ablation plume during the first microsecond. Finally, the plasma expansion is in good agreement with the Sedov's model during the first 500 ns and it becomes subsonic, with respect to the velocity of sound in air, typically 1 μs after the plasma creation. The physical interpretation of the experimental results is also discussed to the light of a one-dimensional fluid model which provides a good qualitative agreement with measurements

  12. Study on laser plasma as an ion source for the controlled fasion with heavy ions

    International Nuclear Information System (INIS)

    Barabash, L.Z.; Bykovskij, Yu.A.; Golubev, A.A.; Kozyrev, Yu.P.; Krechet, K.I.; Lapitskij, Yu.Ya.; Sharkov, B.Yu.

    1981-01-01

    The results of experimental investigations of Pb 208 multiply- charged lead ions, obtained in the course of CO 2 laser radiation effect on a solid target are presented. The experimental installation, the basic units of which are CO 2 - laser with transverse discharge, ion source chamber, time- of-flight space, 9-channel electrostatic mirror type mass-analyser with a detection unit, is described. Physical characteristics of a freely spreading laser plasma, ion distribution over energies, velocities and Z charges from Z=+1 to Z=+10 are investigated. Absolute values of ion number of each charge property as well as absolute values of currents are obtained, the laser plasma temperature is estimated. The analysis of time distribution of ion quantity permits to point out the following regularities: with Z increase the ion current duration decreases according to the Δt approximately Z -1 law, with Z increase, the moment of the ion pulse beginning approaches to the moment of target irradiation which testifies that multiply-charged ions have high velocities and energies. The velocity distribution analysis permits to obtain ion velocity dependence in the field of maximum distribution on charge properties. The results presented are obtained at the temperature of hot unspreaded plasma about 60 eV. The data obtained are a basis for development of a real laser forinjector for the problems of the controlled fusion with heavy ions [ru

  13. Saturation of Langmuir waves in laser-produced plasmas

    International Nuclear Information System (INIS)

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser

  14. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  15. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  16. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  17. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  18. III International Conference on Laser and Plasma Researches and Technologies

    Science.gov (United States)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of

  19. Proton radiography of magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Le Pape, S.; Patel, P.; Chen, S.; Town, R.; Mackinnon, A.

    2009-01-01

    Electromagnetic fields generated by the interaction with plasmas of long-pulse laser beams relevant to inertial confinement fusion have been measure. A proton beam generated by the interaction of an ultra intense laser with a thin metallic foil is used to probe the B-fields. The proton beam then generated is temporally short (of the order of a ps), highly laminar and hence equivalent to a virtual point which makes it an ideal source for radiography. We have investigated, using face-on radiography, B fields at intensity around 10 14 W/cm 2 due to the non co-linearity of temperature and density gradients. (authors)

  20. Modification of K-line emission profiles in laser-created solid-density plasmas

    International Nuclear Information System (INIS)

    Sengebusch, A.; Reinholz, H.; Roepke, G.

    2010-01-01

    Complete text of publication follows. X-ray emissions in the keV energy range have shown to be suitable radiation to investigate the properties of laser-created solid-density plasmas. We use the modifications of inner shell transitions due to the environment to characterize these plasmas. A theoretical treatment of spectral line profiles based on a self-consistent ion sphere model is applied on moderately ionized mid-Z materials, such as titanium, silicon and chlorine. We observe large contributions of satellite transitions due to M-shell ionization and excitation. To determine the composition a mixture of various excited and ionized ionic states embedded in a plasma has to be considered. Plasma polarization effects that cause shifts of the emission and ionization energies are taken into account. K-line profiles are calculated for bulk temperatures up to 100 eV and free electron densities up to 10 24 cm -3 in order to analyze recent measurements with respect to the plasma parameters of electron heated target regions. Moreover, in high-intensity laser-matter interactions, inevitable prepulses are likely to create preplasma and shocks within the target before the main pulse arrives. We investigate the influence of density gradients due to prepulses on the spectral profiles. Further, radial bulk temperature distributions as well the composition of the created warm dense matter are inferred.

  1. Optically pumped FIR lasers and their application in plasma diagnostics

    International Nuclear Information System (INIS)

    Bakos, J.S.

    1986-06-01

    The pysics and the construction of the far infrared lasers (FIRL) and of the infrared lasers pumping them are reviewed. The details of the construction, resonating and pumping systems, spectral and power characteristics of the FIRLs are discussed. Recently more than 1000 laser lines are known and used in the 27-80 mm wavelength range, but in many cases the laser kinetics are not fully understood, and some instability phenomena cannot be prevented. New nonlinear processes were found: two-photon pumping, hyper Raman laser tuning and relaxation phenomena. A broad application field, the plasma diagnostics by far infrared lasers is described. Scattering of infrared laser radiation can give new interesting information on the not understood effect of the anomalous transport in the high temperature plasma. (D.Gy.)

  2. Collaborative Research: Tomographic imaging of laser-plasma structures

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael [University of Texas at Austin

    2018-01-18

    The interaction of intense short laser pulses with ionized gases, or plasmas, underlies many applications such as acceleration of elementary particles, production of energy by laser fusion, generation of x-ray and far-infrared “terahertz” pulses for medical and materials probing, remote sensing of explosives and pollutants, and generation of guide stars. Such laser-plasma interactions create tiny electron density structures (analogous to the wake behind a boat) inside the plasma in the shape of waves, bubbles and filaments that move at the speed of light, and evolve as they propagate. Prior to recent work by the PI of this proposal, detailed knowledge of such structures came exclusively from intensive computer simulations. Now “snapshots” of these elusive, light-velocity structures can be taken in the laboratory using dynamic variant of holography, the technique used to produce ID cards and DVDs, and dynamic variant of tomography, the technique used in medicine to image internal bodily organs. These fast visualization techniques are important for understanding, improving and scaling the above-mentioned applications of laser-plasma interactions. In this project, we accomplished three things: 1) We took holographic pictures of a laser-driven plasma-wave in the act of accelerating electrons to high energy, and used computer simulations to understand the pictures. 2) Using results from this experiment to optimize the performance of the accelerator, and the brightness of x-rays that it emits. These x-rays will be useful for medical and materials science applications. 3) We made technical improvements to the holographic technique that enables us to see finer details in the recorded pictures. Four refereed journal papers were published, and two students earned PhDs and moved on to scientific careers in US National Laboratories based on their work under this project.

  3. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  4. Dynamics of C2 formation in laser-produced carbon plasma in helium environment

    International Nuclear Information System (INIS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We investigated the role of helium ambient gas on the dynamics of C 2 species formation in laser-produced carbon plasma. The plasma was produced by focusing 1064 nm pulses from an Nd:YAG laser onto a carbon target. The emission from the C 2 species was studied using optical emission spectroscopy, and spectrally resolved and integrated fast imaging. Our results indicate that the formation of C 2 in the plasma plume is strongly affected by the pressure of the He gas. In vacuum, the C 2 emission zone was located near the target and C 2 intensity oscillations were observed both in axial and radial directions with increasing the He pressure. The oscillations in C 2 intensity at higher pressures in the expanding plume could be caused by various formation zones of carbon dimers.

  5. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  6. Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1995-01-01

    We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity

  7. En Route: next-generation laser-plasma-based electron accelerators

    International Nuclear Information System (INIS)

    Hidding, Bernhard

    2008-05-01

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to ∼50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the ∼80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10 19 W=cm 2 into gas jets. The experimental observations could be explained via ''bubble acceleration'', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations < or similar 5 fs can thus be created, which is at least an order of magnitude shorter than with conventional accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table-top accelerators, while at the

  8. The Influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere

    International Nuclear Information System (INIS)

    Li, Xingwen; Wei, Wenfu; Wu, Jian; Jia, Shenli; Qiu, Aici

    2013-01-01

    Laser produced copper plasmas of different spot sizes in air were investigated using fast photography and optical emission spectroscopy (OES). The laser energy was 33 mJ. There were dramatic changes in the plasma plume expansion into the ambient air when spot sizes changed from ∼0.1 mm to ∼0.6 mm. A stream-like structure and a hemispherical structure were, respectively, observed. It appeared that the same spot size resulted in similar expansion dynamics no matter whether the target was located in the front of or behind the focal point, although laser-induced air breakdown sometimes occurred in the latter case. Plasma plume front positions agree well with the classic blast wave model for the large spot-size cases, while an unexpected stagnation of ∼80 ns occurred after the laser pulse ends for the small spot size cases. This stagnation can be understood in terms of the evolution of enhanced plasma shielding effects near the plasma front. Axial distributions of plasma components by OES revealed a good confinement effect. Electron number densities were estimated and interpreted using the recorded Intensified Charge Coupled Device (ICCD) images.

  9. EUV laser produced and induced plasmas for nanolithography

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2017-10-01

    EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.

  10. Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet

    Science.gov (United States)

    Anija, M.; Philip, Reji

    2009-09-01

    We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.

  11. Characterization of thermal plasmas by laser light scattering

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.; Fincke, J.R.

    1993-01-01

    Characterization of an atmospheric pressure free-burning arc discharge and a plasma jet by lineshape analysis of scattered laser light is described. Unlike emission spectroscopy, this technique provides direct measurement of plasma gas temperature, electron temperature and electron density without the assumption of local thermodynamic equilibrium (LTE). Plasma gas velocity can also be determined from the Doppler shift of the scattered laser light. Radial gas temperature, electron temperature and electron density profiles are presented for an atmospheric pressure argon free-burning arc discharge. These results show a significant departure from LTE in the arc column, contradicting results obtained from emission spectroscopy. Radial gas temperature and gas velocity profiles in the exit plane of a subsonic atmospheric pressure argon plasma jet are also presented. In this case, the results show the plasma jet is close to LTE in the center, but not in the fringes. The velocity profile is parabolic

  12. Initiation of an early-stage plasma during picosecond laser ablation of solids

    International Nuclear Information System (INIS)

    Mao, Samuel S.; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2000-01-01

    Picosecond time-resolved images of plasma initiation were recorded during pulsed-laser ablation of metal targets in an air atmosphere. An early-stage plasma was observed to form before the release of a material vapor plume. Close to the target surface, interferometry measurements indicate that the early-stage plasma has an electron number density on the order of 10 20 cm -3 . The longitudinal expansion of the ionization front for this plasma has a velocity 10 9 cm/s, during the laser pulse. In contrast, a material--vapor plume forms approximately 200 ps after the laser pulse, and it moves away from the target at 10 6 cm/s. The experimental observations of the early-stage plasma were simulated by using a theoretical model based on a two-fluids description of laser plasmas. The results indicate that the initiation of the plasma is due to air breakdown assisted by electron emission from the target

  13. Laser Interaction and Related Plasma Phenomena: 13th International Conference. Proceedings

    International Nuclear Information System (INIS)

    Miley, G.H.; Campbell, E.M.; Hogan, W.J.; Maille-Petersen, C.; Coppedge, H.; Montoya, E.

    1997-01-01

    These proceedings contain papers presented at the Thirteenth International Conference on Laser Interaction and Related Plasma Phenomena held in Monterey, California in April, 1997. Topics covered in the conference included laser design, alternate concepts in volume ignition and advance fuels, beam/plasma interactions, nuclear-pumped lasers, alternate fast ignitors, heavy ion fusions, laser-ion beam interactions, extreme short-pulse interactions, high-energy-density plasma physics, and hydrodynamic instabilities. The conference was sponsored in part by the Lawrence Livermore National Laboratory of the United States Department of Energy. There were 80 papers presented and 23 have been abstracted for the Energy Science and Technology database

  14. Plasma effects in attosecond pulse generation from ultra-relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Boyd, T.J.M.

    2010-01-01

    Complete text of publication follows. Particle-in-cell simulations were performed to examine the influence of plasma effects on high harmonic spectra from the interaction of ultra-intense p-polarized laser pulses with overdense plasma targets. Furthermore, a theoretical model is proposed to explain the radiation mechanism that leads to attosecond pulse generation in the reflected field. It is shown that plasma harmonic emission affects the spectral characteristics, causing deviations in the harmonic power decay as compared with the so-called universal 8/3-decay. These deviations may occur, in a varying degree, as a consequence of the extent to which the plasma line and its harmonics affect the emission. It is also found a strong correlation of the emitted attosecond pulses with electron density structures within the plasma, responsible to generate intense localised electrostatic fields. A theoretical model based on the excitation of Langmuir waves by the re-entrant Brunel electron beams in the plasma and their electromagnetic interaction with the laser field is proposed to explain the flatter power spectral emission - described by a weaker 5/3 index and observed in numerical simulations - than that of the universal decay.

  15. Investigation of nonlinear processes associated with stimulated Brillouin scattering in an underdense and extended plasma

    International Nuclear Information System (INIS)

    Rizvi, S.A.H.

    1983-01-01

    In our experiment, the plasma was performed by means of a Z-pinch. Although a plasma near or above the critical density could have been produced, our experiment was deliberately restricted to underdense plasma as a) our interest was to investigate similar situations as encountered in the large extended coronal region of laser-pellet interaction which may endanger the prospects of laser fusion, b) it is readily accessible to various diagnostic methods, and, c) there is sufficient experimental data and theory availabe for comparison. After a brief introduction of the subject, the theory of laser-induced parametric instabilities, as well as various saturation mechanisms are discussed in the second chapter. The third Chapter contains the experimental details of the complete CO 2 laser system, the Z-pinch, and the laser plasma interaction experiment. Experimental results are reported in the next Chapter and are analyzed in the light of predictions discussed in the second Chapter. A comparison of our results with other experiments is made in Chapter 5, and the discrepancies are explained on the basis of a simple model. The last Chapter sums up the entire work. For a better understanding of the subject, the physics of the laser has been given in Appendix. (orig./HT)

  16. How much laser power can propagate through fusion plasma?

    International Nuclear Information System (INIS)

    Lushnikov, Pavel M; Rose, Harvey A

    2006-01-01

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data. This maximum is determined by the collective forward stimulated Brillouin scattering instability which suggests a way to increase the maximum power by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and therefore raises the possibility of indirect control of backscatter through manipulation of plasma ionization state or acoustic damping. We find a simple expression for laser intensity at onset of enhanced beam angular divergence (beam spray)

  17. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    International Nuclear Information System (INIS)

    Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.

    2010-01-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ∼1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  18. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  19. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    Science.gov (United States)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  20. Laser and Plasma Technology Division annual report 1994

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1995-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: 1) laser activities, 2) thermal plasma activities, 3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs

  1. Laser and Plasma Technology Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1996-12-31

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: (1) laser activities, (2) thermal plasma activities, (3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs.

  2. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  3. A laser plasma beatwave accelerator experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1987-03-01

    An experiment to test the laser plasma beatware accelerator concept is outlined. A heuristic estimate of the relevant experimental parameters is obtained from fluid theory and considerations of wave-particle interactions. Acceleration of 10 MeV electrons to approximately 70 MeV over a plasma length of 3 cm appears to be feasible. This corresponds to an accelerating gradient of approximately 2.5 GeV/m

  4. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  5. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    Science.gov (United States)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  6. Laser and Plasma Technology Division annual report 1992

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1993-01-01

    The report describes the research and development (R and D) activities of Laser and Plasma technology Division, Bhabha Atomic Research Centre, Bombay during 1992. The broad programme objectives of the Division are: (1) development and technology readiness studies of laser, plasma and electron beam devices, (2) studies on related physical phenomena with a view to gain better understanding of the devices, and (3) improvements in technology and exploration of new areas. The R and D activities are reported under the sections entitled: (1) Laser Activities, (2) Thermal Plasma Activities, and (3) Electron Beam Activities. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. Some of the highlights of R and D work during 1992 are:(1) fabrication of an electron beam sustained CO 2 laser, (2) commissioning of a 6.5 m high LMMHD (Liquid Metal Magneto-hydrodynamic) generator loaded with 1.5 tons of mercury, (3) fabrication of electron beam processing equipment, and (4) study of the magnetic properties of vanadium nitride films produced by reactive sputtering in an indigenously developed DC magnetron sputtering equipment. (author). 56 figs., 6 tabs

  7. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, H. J., E-mail: hjquevedo@utexas.edu; McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-01-15

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  8. First observations of acceleration of injected electrons in a laser plasma beatwave experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Martin, F.; Bordeur, P.; Heighway, E.A.; Matte, J.P.; Pepin, H.; Lavigne, P.

    1986-01-01

    The first experimental observations of acceleration of injected electrons in a laser driven plasma beatwave are presented. The plasma waves were excited in an ionized gas jet, using a short pulse high intensity CO 2 laser with two collinearly propagating beams (at λ = 9.6 μm and 10.6 μm) to excite a fast wave (v/sub p/ = c). The source of electrons was a laser plasma produced on an aluminum slab target by a third, synchronized CO 2 laser beam. A double-focusing dipole magnet was used to energy select and inject electrons into the beatwave, and a second magnetic spectrograph was used to analyze the accelerated electrons. Electron acceleration was only observed when the appropriate resonant plasma density was produced (∼ 10 17 cm -3 ), the two laser lines were incident on the plasma, and electrons were injected into this plasma from an external source

  9. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma

    International Nuclear Information System (INIS)

    Kameshima, T.; Kotaki, H.; Kando, M.; Daito, I.; Kawase, K.; Fukuda, Y.; Homma, T.; Esirkepov, T. Zh.; Chen, L. M.; Kondo, S.; Bobrova, N. A.; Sasorov, P. V.; Bulanov, S. V.

    2009-01-01

    The results of experiments are presented for the laser electron acceleration in the ablative capillary discharge plasma. The plasma channel is formed by the discharge inside the ablative capillary. The intense short laser pulse is guided over a 4 cm length. The generated relativistic electrons show both the quasimonoenergetic and quasi-Maxwellian energy spectra, depending on laser and plasma parameters. The analysis of the inner walls of the capillaries that underwent several tens of shots shows that the wall deformation and blistering resulted from the discharge and laser pulse effects.

  10. Laser and Plasma Technology Division annual report 1995

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1996-01-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Mumbai during the period 1995. This division is engaged in the research and development of high power beams namely lasers, plasma and electron beams which are characterized by high power density. This division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad program objectives of the division are (1) development and technology readiness studies of laser, plasma and electron beam devices; (2) studies on related physical phenomena with a view to gain better understanding of the devices and (3) improvements in technology and exploration of new areas. This report has been compiled from individual reports of various groups/sections with marginal editing. At the end of each section; a list of publications by the staff members in the field indicated by the title of the section is given. refs., figs., tabs

  11. Summary Report of Working Group: Laser-Plasma Acceleration

    International Nuclear Information System (INIS)

    Esarey, Eric; Schroeder, Carl B.; Tochitsky, Sergei; Milchberg, Howard M.

    2004-01-01

    A summary is given on the work presented and discussed in the Laser-Plasma Acceleration Working Group at the 2004 Advanced Accelerator Concepts Workshop, including the Plasma Acceleration Subgroup (Group-Leader: Eric Esarey; Co-Group-Leader: Sergei Tochitsky) and the Plasma Guiding Subgroup (Group-Leader: Howard Milchberg; Co-Group-Leader: Carl Schroeder)

  12. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  13. Expansion of laser-produced plasmas into vacuum and ambient gases

    International Nuclear Information System (INIS)

    Williams, T.

    2001-01-01

    Presented in this thesis are observations recorded using optical absorption spectroscopy, laser induced fluorescence imaging and Langmuir probe techniques for a low temperature laser-produced plasma. The plasma was generated using a KrF (248 nm, 30ns) excimer laser system focused onto a solid target surface (Ti, Mg) housed within a vacuum chamber. Plasma studies were made within vacuum (x10 -5 mTorr) and low pressure ( 2 and Ar ambient gas environments. Experimental results from a volumetric integration technique for plasma species number densities are used to yield total plume content for a laser-produced plasma in vacuum. This was used to determine the threshold power density for titanium neutral species formation. Temporally resolved electron number densities were determined using a Langmuir probe technique, for a titanium plasma generated under 532 nm and 248 nm ablation, for similar power densities and spot geometries. In this case the ablation thresholds for titanium are determined in terms of average power density and peak power density. Plume opacity problems which limit OAS and LIF diagnostic techniques are minimised using novel ablations configurations. Both techniques used, the 'composite target' and the 'plasma-jet' configurations, rely on reducing the optical thickness of the plume. The plasma-jets produced were allowed to interact with an ambient argon background and the ion/neutral ratio of the plasma-jet determined. Laser-produced plasma interactions with a d.c. biased copper mesh ∼15 mm in front of the target surface are observed. Self-emission studies of plume interactions with the mesh are monitored for positive and negative biases. Also ground-state neutral and ion interactions with the mesh are observed using OAS and LIF techniques to study individual species effects. A simple model was used to predict the perturbations to charged species distributions resulting from positive and negative applied potentials, but more complex interaction

  14. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  15. Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2003-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the sensitivity could be significantly enhanced if the plume was resonantly rekindled by a dye laser pulse. The extent of the enhancement was found to depend on the ambient gas. Air, nitrogen, helium, argon and xenon at pressures ranging from vacuum to 1 bar were investigated. In vacuum, the analyte signal was boosted because of reduced cooling, but it soon decayed as the plume freely expanded. By choosing the right ambient gas at the right pressure, the expanding plume could be confined as well as thermally insulated to maximize the analyte signal. For instance, an ambient of 13 mbar xenon yielded a signal-to-noise ratio of 110. That ratio was 53 when the pellet was ablated in air, and decreased further to 5 if the dye laser was tuned off resonance

  16. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  17. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  18. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  19. XUV laser-produced plasma sheet beam and microwave agile mirror

    International Nuclear Information System (INIS)

    Shen, W.; Scharer, J.E.; Porter, B.; Lam, N.T.

    1994-01-01

    An excimer-laser (λ = 193 nm) produced plasma in an organic gas (TMAE) has been generated and studied. These studies have determined the ion-electron recombination coefficient and the photon absorption cross-section, of the neutral gas. The dependences of wave transmission, reflection and absorption on plasma density are obtained. A new optical system with an array of cylindrical XUV coated lenses has been implemented to form a plasma sheet to study its usage as agile mirror microwave reflector. The lens system expands the incident laser beam in X direction and compresses it in Y direction to form a sheet beam. The expanded beam then passes through a vacuum chamber filled with TMAE at 50--500 nTorr to produce the plasma sheet. Space-time measurements of the plasma density and temperature as measured by a Langmuir probe are presented. XUV optical measurements of the laser beam as measured by a photodiode are presented. Initial experiments have generated a plasma sheet of 5--10 mm x 11 cm with peak plasma density of 5 x 10 13 cm -3 . A microwave source will be utilized to study the agile mirror character of the plasma sheet. Modeling of the microwave reflection from the plasma profile will also be discussed

  20. Diffraction, self-focusing, and the geometrical optics limit in laser produced plasmas

    International Nuclear Information System (INIS)

    Marchand, R.; Rankin, R.; Capjack, C.E.; Birnboim, A.

    1987-01-01

    The effect of diffraction on the self-modulation of an intense laser beam in an initially uniform hydrogen plasma is investigated. A formalism is used in which the diffraction term in the paraxial wave equation can be arbitrarily reduced by the use of a weight factor iota. In the limit where iota approaches zero, it is shown that the paraxial wave equation correctly reduces to the geometrical optics limit and that the problem then becomes formally equivalent to solving the ray-tracing equations. When iota = 1, the paraxial wave equation takes its usual form and diffraction is fully accounted for. This formalism is applied to the simulation of self-modulation of an intense laser beam in a hydrogen plasma, for which diffraction is shown to be significant

  1. Fast ion generation in femto- and picosecond laser plasma at low fluxes of heating radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.

    2006-01-01

    X-ray spectra from fluoroplastic targets irradiated by laser pulses with duration of 60 fs to 1 ps have been investigated experimentally. It is shown that, when the contrast of the laser pulse is sufficiently low, the effect of self-focusing of the main laser pulse in the plasma produced by the prepulse can significantly enhance the generation efficiency of fast particles. In this case, ions with energies as high as ∼1 MeV are observed at relatively low laser intensities [ru

  2. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  4. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  5. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  6. Experimental Investigation of Molecular Species Formation in Metal Plasmas During Laser Ablation

    Science.gov (United States)

    Radousky, H.; Crowhurst, J.; Rose, T.; Armstrong, M.; Stavrou, E.; Zaug, J.; Weisz, D.; Azer, M.; Finko, M.; Curreli, D.

    2016-10-01

    Atomic and molecular spectra on metal plasmas generated by laser ablation have been measured using single, nominally 6-7 ns pulses at 1064 nm, and with energies less than 50 mJ. The primary goal for these studies is to constrain the physical and chemical mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation. In this work, laser emission spectroscopy was used to obtain in situdata for vapor phase molecular species as they form in a controlled oxygen atmosphere for a variety of metals such as Fe, Al, as well as preliminary results for U. In particular, the ablation plumes created from these metals have been imaged with a resolution of 10 ns, and it is possible to observe the expansion of the plume out to 0.5 us. These data serve as one set of inputs for a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.

  7. Laser light scatter experiments on plasma focus plant

    International Nuclear Information System (INIS)

    Wenzel, N.

    1985-01-01

    The plasma focus plant is an experiment on nuclear fusion, which is distinguished by a high neutron yield. Constituting an important method of diagnosis in plasma focussing, the laser light scatter method makes it possible, apart from finding the electron temperature and density, to determine the ion temperature resolved according to time and place and further, to study the occurrence of micro-turbulent effects. Starting from the theoretical basis, this dissertation describes light scatter measurements with ruby lasers on the POSEIDON plasma focus. They are given, together with earlier measurements on the Frascati 1 MJ plant and the Heidelberg 12 KJ plant. The development of the plasma parameters and the occurrence of superthermal light scatter events are discussed in connection with the dynamics of the plasma and the neutron emission characteristics of the individual plants. The results support the view that the thermo-nuclear neutron production at the plasma focus is negligible. Although the importance of micro-turbulent mechanisms in producing neutrons cannot be finally judged, important guidelines are given for the spatial and time relationships with plasma dynamics, plasma parameters and neutron emission. The work concludes with a comparison of all light scatter measurements at the plasma focus described in the literature. (orig.) [de

  8. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  9. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis.

    Science.gov (United States)

    Ter-Avetisyan, S; Ramakrishna, B; Doria, D; Sarri, G; Zepf, M; Borghesi, M; Ehrentraut, L; Stiel, H; Steinke, S; Priebe, G; Schnürer, M; Nickles, P V; Sandner, W

    2009-10-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  10. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis

    International Nuclear Information System (INIS)

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Sarri, G.; Zepf, M.; Borghesi, M.; Ehrentraut, L.; Stiel, H.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Priebe, G.

    2009-01-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  11. Dual-wavelength differential spectroscopic imaging for diagnostics of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Ma, Q.L. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Gregoire, S. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Lei, W.Q.; Wang, X.C. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Pelascini, F.; Surma, F. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Detalle, V. [Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Yu, J. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-08-15

    A specific configuration for plasma fast spectroscopic imaging was developed, where a pair of narrowband filters, one fitting an emission line of a species to be studied and the other out of its emission line, allowed double images to be taken for a laser-induced plasma. A dedicated software was developed for the subtraction between the double images. The result represents therefore the monochromatic emission image of the species in the plasma. We have shown in this work that such configuration is especially efficient for the monitoring of a plasma generated under the atmospheric pressure at very short delays after the impact of the laser pulse on the target, when a strong continuum emission is observed. The efficiency of the technique has been particularly demonstrated in the study of laser-induced plasma on a polymer target. Molecular species, such as C{sub 2} and CN, as well as atomic species, such as C and N, were imaged starting from 50 ns after the laser impact. Moreover space segregation of different species, atomic or molecular, inside of the plasma was clearly observed. - Highlights: Black-Right-Pointing-Pointer Imaging to study species with time and space resolution in laser induced plasma. Black-Right-Pointing-Pointer Image display of multiple species is proposed based on RGB color model. Black-Right-Pointing-Pointer Molecular emission (CN and C{sub 2}) is observed at very short delays (50 ns). Black-Right-Pointing-Pointer Segregation of different species inside the plasma is clearly established.

  12. Radiation transfer effects on the spectra of laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Kerr, F.M.; Wolfrum, E.; Hawreliak, J.; Chambers, D.; Rose, S. J.; Wark, J. S.; Scott, H.A.; Patel, P.

    2006-01-01

    Roč. 96, č. 18 (2006), 185002/1-185002/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * spectral line shapes * plasma modeling * radiative transfer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.072, year: 2006

  13. Hot electron spatial distribution under presence of laser light self-focusing in over-dense plasmas

    International Nuclear Information System (INIS)

    Tanimoto, T; Yabuuchi, T; Habara, H; Kondo, K; Kodama, R; Mima, K; Tanaka, K A; Lei, A L

    2008-01-01

    In fast ignition for laser thermonuclear fusion, an ultra intense laser (UIL) pulse irradiates an imploded plasma in order to fast-heat a high-density core with hot electrons generated in laser-plasma interactions. An UIL pulse needs to make plasma channel via laser self-focusing and to propagate through the corona plasma to reach close enough to the core. Hot electrons are used for heating the core. Therefore the propagation of laser light in the high-density plasma region and spatial distribution of hot electron are important in issues in order to study the feasibility of this scheme. We measure the spatial distribution of hot electron when the laser light propagates into the high-density plasma region by self-focusing

  14. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics

    International Nuclear Information System (INIS)

    Jiang Lan; Tsai, H.-L.

    2008-01-01

    It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. By combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using (1) the plasma model only and (2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data

  15. CO2 laser interaction with magnetically confined plasmas. Annual report

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1977-08-01

    The experimental program involves two basic experimental configurations termed the slow (or steady) solenoid, and the fast solenoid. In the former, the field is essentially steady during the experiment lifetime, the gas (plasma) remains in contact with the wall, and all the heating is done by the laser. In the fast solenoid, the field rises on a timescale comparable to the laser pulse length, removing the plasma from the wall, and contributing to the plasma energy content via compression work. In the slow solenoid, preionization is generally not used, and the laser both creates the plasma and heats it. In the fast solenoid, the preionization technique is relatively critical as it must create conditions leading to a true particle minimum on axis in order to insure favorable refraction of the laser beam (''trapping''). Substantial progress has been made in both experiments this year, particularly with respect to diagnostic capabilities. In addition, the theoretical effort has expanded considerably. Highlights of this year's program are listed and details are contained in the balance of the report

  16. Adventures in Laser Produced Plasma Research

    Energy Technology Data Exchange (ETDEWEB)

    Key, M

    2006-01-13

    In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

  17. Fine Structure of a Laser-Plasma Filament in Air

    International Nuclear Information System (INIS)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-01-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ∼3 orders of magnitude decrease from the peak density level

  18. Fine Structure of a Laser-Plasma Filament in Air

    Science.gov (United States)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.

  19. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  20. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    Science.gov (United States)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  1. Mechanism of laser beam reentry into a laser breakdown plasma

    International Nuclear Information System (INIS)

    Savic, P.; Kekez, M.M.; Makomaski, A.H.

    1975-01-01

    It is shown that the focus-directed filament often observed in streak photographs of CO 2 -laser produced gas breakdown can be explained by the lateral expansion and consequent cooling of the plasma behind the radiation supported shock. A simple analysis and more detailed numerical calculations show a temperature maximum developing in the plasma, which travels either towards or away from the light source, depending on the nature of the gas. Thus, the locus of the cutoff temperature also travels along the beam, allowing it to reenter the plasma at a velocity which may attain the speed of light. (Auth.)

  2. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  3. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    Science.gov (United States)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  4. Experimental Studies of Simultaneous 351 nm and 527 nm Laser Beam Interactions in a Long Scalelength Plasma

    International Nuclear Information System (INIS)

    Moody, J D; Divol, L; Glenzer, S H; MacKinnon, A J; Froula, D H; Gregori, G; Kruer, W L; Suter, L J; Williams, E A; Bahr, R; Seka, W

    2003-01-01

    We describe experiments investigating the simultaneous backscattering from 351 nm (3w) and 527 nm (2w) interaction beams in a long scalelength laser-produced plasma for intensities (le) 1 x 10 15 W/cm 2 . Measurements show comparable scattering fractions for both color probe beams. Time resolved spectra of stimulated Raman and Brillouin scattering (SRS and SBS) indicate the effects of laser intensity and smoothing as well as plasma composition and parameters on the scattering levels

  5. ''Flicker'' in laser-plasma self-focusing

    International Nuclear Information System (INIS)

    Coggeshall, S.V.; Mead, W.C.; Jones, R.D.

    1988-01-01

    Under certain conditions, a new mode of laser-plasma self-focusing can occur which is characterized by a self-sustaining, continual shifting of filament-produced focal spots and a somewhat chaotic redistribution of light at the critical surface. Associated with this phenomenon is the possibility of significant intensity multiplication due to self-focusing. This flickering of laser light is caused by small amplitude, short wavelength ion acoustic waves which are produced near the foci of the filaments and subsequently propagate and convect toward the laser. As these ion fluctuations move toward the laser, they cause further light ray trajectory changes which shift the locations of the foci. New sound waves are launched and the process is self-perpetuated. 7 refs., 5 figs

  6. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Directory of Open Access Journals (Sweden)

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  7. Nonlinear processes in laser-produced dense plasma (observation of the fractional harmonics)

    International Nuclear Information System (INIS)

    Lyu, K.S.

    1988-01-01

    One of the main issues of laser plasma physics interactions is harmonic generation. The harmonic emission spectrum provides clues as to which non-linear processes take place in the plasma. Several effects contribute to a given line as judged from the complexity of the actual spectra. Unfolding of them has not been done satisfactorily yet. Harmonic lines with half integer or integer orders have been observed, but the physics are far from complete. In this dissertation research, we observed the usual second harmonic generation and a set of fractional harmonics which we believe have been observed for the first time in plasma physics. The plasma was produced by a high power laser and we have characterized its properties from the analysis of the radiation spectra, including the harmonic lines, as measured using the methods of transient spectroscopy. We produced the plasma with a Nd:glass laser which had a 65 nsec pulse width (FWHM) with a total energy of up to 6 Joules. The targets were steel alloys, copper, and aluminum. The harmonic generation from the plasma with a planar metal target was not strong. But, it became stronger when we made a dead hole (cavity) at the laser spot on the target surface. The second harmonic line appears first before the time of the peak of laser pulse. The fractional harmonics, which are related to the laser wavelength by rational number other than integers or half integers, appear near or after the time of the laser peak and weaker in UV wavelength range but stronger if some atomic emission line are near by. To understand the plasma evolution better, we developed computer simulation codes. The codes contain all relevant processes necessary to compute the plasma evolution

  8. Laser and Plasma Technology Division : annual report (1990-91)

    International Nuclear Information System (INIS)

    1991-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period 1990-91 is presented. The R and D activities are reported under the headings: 1) Laser Activities, 2) Thermal Plasma Activities, and 3) Electron Beam Activities. List of publications including journal articles, papers published in symposia, conferences etc. is given at the end. (original). figs

  9. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  10. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  11. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  12. Propagation of an intense laser beam in a tapered plasma channel

    International Nuclear Information System (INIS)

    Jha, Pallavi; Singh, Ram Gopal; Upadhyaya, Ajay K.; Mishra, Rohit K.

    2008-01-01

    Propagation characteristics and modulation instability of an intense laser beam propagating in an axially tapered plasma channel, having a parabolic radial density profile, are studied. Using the source-dependent expansion technique, the evolution equation for the laser spot is set up and conditions for propagation of the laser beam with a constant spot size (matched beam) are obtained. Further, the dispersion relation and growth rate of modulation instability of the laser pulse as it propagates through linearly and quadratically tapered plasma channels, have been obtained

  13. Cascade generation in Al laser induced plasma

    Science.gov (United States)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  14. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    International Nuclear Information System (INIS)

    Ionin, A A; Seleznev, L V; Sunchugasheva, E S

    2015-01-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (∼100 ns) laser pulses for triggering and guiding long (∼1 m) electric discharges is discussed. (topical review)

  15. Vacuum laser-initiated plasma shutters for retropulse isolation in Antares

    International Nuclear Information System (INIS)

    Sheheen, T.W.; Czuchlewski, S.J.; Hyde, J.; Ainsworth, R.L.

    1983-03-01

    We have demonstrated that sintered LiF spatial filters may be used in a 10 -6 -torr vacuum environment as laser-initiated plasma shutters for retropulse isolation in the Antares high-energy laser fusion system. In our experiments, a 1.1-ns pulsed CO 2 laser, at a 10-μm wavelength and an energy of up to 3.0 J, was used for plasma initiation; a chopped probe laser tuned to a 9l6-μm wavelength was used in determining the blocking time of the plasma. We measured the 10.6- and 9.6-μm beam transmissions as a function of fluence on the aperture edge. For an 800-μm-diam aperture and a 1.2-mm-diam Gaussian beam determined at the 1/e 2 intensity points, we observed blocking times in excess of 1.0 μs

  16. Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Bulgakova

    2014-12-01

    Full Text Available In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a “plasma pipe”; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.

  17. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  18. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  19. Experimental investigation of the interaction of an intense laser beam with a long and hot plasma in the context of shock ignition

    International Nuclear Information System (INIS)

    Goyon, Clement

    2014-01-01

    Shock ignition is an alternative direct-drive scheme for inertial fusion that consists in two steps. The first one is a several nanoseconds long compression with low intensity beams. The second one is a several hundred of picoseconds stage using high intensity beams to create a converging shock leading to ignition. During the second phase, the laser beam goes through a long and hot under-critical plasma. However, the coupling of this intense pulse with the coronal plasma has not been much studied experimentally or numerically. Then, the energy absorbed as well as the role of parametric instabilities regarding reflected or transmitted intensity cannot be predicted. In this PhD dissertation, we describe an experimental study of an intense laser pulse between 2.10 15 W/cm 2 and 2.10 16 W/cm 2 interacting with millimetric plasma heated close to one keV. We begin with a theoretical description of the interaction conditions in the coronal plasma. Brillouin scattering is in strongly coupled regime, Raman instability is kinetic regime and laser intensity is above ponderomotive filamentation threshold. We recreate these interaction conditions experimentally by means of pre-heated targets which are foams or thin plastic foils. Then, we present the first measurements of time resolved backscattered spectra from the smoothed picosecond beam as well as transmitted intensity distribution through the plasma. We find that Brillouin instability can be responsible for up to 60% reflectivity in plasmas with electronic density close to critical while Raman reflectivity stays at low levels. Transmitted intensity distribution is smoothed by the propagation and its diameter increases compared to the laser focal spot in vacuum. Finally, we discuss interaction measurements in nanosecond regime to highlight the fact that parametric instabilities reduction is essential for shock ignition to be a successful scheme. (author) [fr

  20. Optimising hard X-ray generation from laser-produced plasmas

    International Nuclear Information System (INIS)

    Lindheimer, C.

    1995-04-01

    The aim of this work is to increase the X-ray yield for a laser produced plasma by optimising the focusing conditions and temporal shape of the laser pulses. The focusing conditions are improved by introducing a control system that secures the laser target surface to exact focus within a range of a few micrometers, allowing continuously high laser intensity for plasma generation. The temporal shape of the laser pulses is changed by introducing a saturable absorber in the laser beam. The laser produces a substantial pre-pulse that heats and expands the target material prior to main pulse arrival. The saturable absorber can increase the main pulse/pre-pulse ratio of the laser pulse up to four orders of magnitude and consequently reduce expansion of the target material before the main pulse. The belief is that an increase in target density at the time of main pulse arrival will change the energy distribution of the X-rays, towards a more efficient X-ray production in the hard X-ray region. This report and the work connected to it, includes the preliminary measurements and results for these improvements. 17 refs