WorldWideScience

Sample records for laser nanoaxotomy properties

  1. Dipole nano-laser: Theory and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghannam, T., E-mail: gtalal@hotmail.com [King Abdullah Institute for Nano-Technology, King Saud University, PO Box 2454, Riyadh 11451 (Saudi Arabia)

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  2. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  3. Polarization Properties of Laser Solitons

    Directory of Open Access Journals (Sweden)

    Pedro Rodriguez

    2017-04-01

    Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.

  4. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  5. A Characterization of Cirrus Cloud Properties That Affect Laser Propagation

    National Research Council Canada - National Science Library

    Norquist, Donald C; Desrochers, Paul R; McNicholl, Patrick J; Roadcap, John R

    2008-01-01

    Future high-altitude laser systems may be affected by cirrus clouds. Laser transmission models were applied to measured and retrieved cirrus properties to determine cirrus impact on power incident on a target or receiver...

  6. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microstructure and Mechanical Properties of a Laser Treated Al Alloy

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    An Al-Cu-Mg alloy, Al 2024-T3, was exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan

  8. Microstructure and mechanical properties of selective laser melted magnesium

    International Nuclear Information System (INIS)

    Ng, C.C.; Savalani, M.M.; Lau, M.L.; Man, H.C.

    2011-01-01

    The effects of laser processing parameters on the microstructure and mechanical properties of selective laser-melted magnesium were investigated. The results show that the microstructure characteristics of the laser-melted samples are dependent on the grain size of SLM magnesium. The grains in the molten zone coarsen as the laser energy density increases. In addition, the average hardness values of the molten zone decreases significantly with an increase of the laser energy densities and then decreased slowly at a relatively high laser energy density irrespective of mode of irradiation. The hardness value was obtained from 0.59 to 0.95 GPa and corresponding elastic modulus ranging from 27 to 33 GPa. The present selective laser-melted magnesium parts are promising for biomedical applications since the mechanical properties are more closely matched with human bone than other metallic biomaterials.

  9. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  10. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Directory of Open Access Journals (Sweden)

    Ondřej Číp

    2013-02-01

    Full Text Available In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  11. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  12. Pulse propagation properties in high-power CO2 laser system for laser fusion

    International Nuclear Information System (INIS)

    Daido, H.; Inoue, M.; Fujita, H.; Matoba, M.; Nakai, S.

    1981-01-01

    The simulation results of nonlinear propagation properties in the CO 2 laser system using a simulation model of the SF 6 saturable absorbers and the CO 2 laser amplifiers agree well with the experimental results. The technical problems of the simultaneous irradiation of the multi-beams to a target are also discussed. (author)

  13. Laser cladding of Zr on Mg for improved corrosion properties

    International Nuclear Information System (INIS)

    Subramanian, R.; Sircar, S.; Mazumder, J.

    1989-01-01

    This paper reports the results of laser cladding of Mg-2wt%Zr, and Mg-5wt%Zr powder mixture onto magnesium. The microstructure of the laser clad was studied. From the microstructural study, the epitaxial regrowth of the clad region on the underlying substrate was observed. Martensite plates of different size were observed in transmission electron microscope for MG-2wt%Zr and Mg-5wt%Zr laser clad. The corrosion properties of the laser clad were evaluated in sea water (3.5% NaCl). The position of the laser claddings in the galvanic series of metals in sea water, the anodic polarization characteristics of the laser claddings and the protective nature and the stability of the passivating film formed have been determined. The formation of pits on the surface of the laser clad subjected to corrosion is reported. The corrosion properties of the laser claddings are compared with that of the commercially used magnesium alloy AZ91B

  14. Microstructure and mechanical properties of laser treated aluminium alloys

    NARCIS (Netherlands)

    deHosson, JTM; vanOtterloo, LDM; Noordhuis, J; Mazumder, J; Conde, O; Villar, R; Steen, W

    1996-01-01

    Al-Cu alloys and an Al-Cu-Mg alloy, Al 2024-T3, were exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property of the Al-Cu-Mg alloy is concerned a striking observation is a minimum in

  15. Laser cutting: influence on morphological and physicochemical properties of polyhydroxybutyrate.

    Science.gov (United States)

    Lootz, D; Behrend, D; Kramer, S; Freier, T; Haubold, A; Benkiesser, G; Schmitz, K P; Becher, B

    2001-09-01

    Polyhydroxybutyrate (PHB) is a biocompatible and resorbable implant material. For these reasons, it has been used for the fabrication of temporary stents, bone plates, nails and screws (Peng et al. Biomaterials 1996;17:685). In some cases, the brittle mechanical properties of PHB homopolymer limit its application. A typical plasticizer, triethylcitrate (TEC), was used to overcome such limitations by making the material more pliable. In the past few years, CO2-laser cutting of PHB was used in the manufacturing of small medical devices such as stents. Embrittlement of plasticized PHB tubes has been observed, after laser machining. Consequently, the physicochemical and morphological properties of laser-processed surfaces and cut edges of plasticized polymer samples were examined to determine the extent of changes in polymer properties as a result of laser machining. These studies included determination of the depth of the laser-induced heat affected zone by polariscopy of thin polymer sections. Molecular weight changes and changes in the TEC content as a function of distance from the laser-cut edge were determined. In a preliminary test, the cellular response to the processed material was investigated by cell culture study of L929 mouse fibroblasts on laser-machined surfaces. The heat-affected zone was readily classified into four different regions with a total depth of about 60 to 100 microm (Klamp, Master Thesis, University of Rostock, 1998). These results correspond well with the chemical analysis and molecular weight measurements. Furthermore, it was found that cells grew preferentially on the laser-machined area. These findings have significant implications for the manufacture of medical implants from PHB by laser machining.

  16. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination...

  17. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  18. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  19. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  20. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  1. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  2. Biomedical properties of laser prepared silver-doped hydroxyapatite

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Weiserová, Marie; Kocourek, Tomáš; Zezulová, Markéta; Strnad, D.

    2011-01-01

    Roč. 21, č. 7 (2011), 1265-1269 ISSN 1054-660X R&D Projects: GA ČR GA204/07/0325 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z50200510 Keywords : silver -doped hydroxyapatite * PLD * layers * antibacterial properties Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.605, year: 2011

  3. Statistical properties of laser light scattering in Brownian medium

    International Nuclear Information System (INIS)

    Suwono; Santoso, Budi; Baiquni, A.

    1983-01-01

    Relationship between statistical properties of laser light scattering in Brownian medium and photon-counting distributions are described in detail. A coherence optical detection has been constructed and by using photon-counting technique the ensemble distribution of the scattered field within space and time coherence has been measured. Good agreement between theory and experiment is shown. (author)

  4. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  5. Effect of skin tumor properties on laser penetration

    CSIR Research Space (South Africa)

    Karsten, AE

    2009-06-01

    Full Text Available Computer modeling can be a valuable tool to determine the absorption of laser light in different skin layers. For this study, the optical properties of three different skin tumors were used in the model to evaluate the effect on penetration depth...

  6. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  7. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  8. Bibliographic study of photophysical and photochemical properties of laser dyes

    International Nuclear Information System (INIS)

    Doizi, D.

    1986-06-01

    Laser isotope separation of uranium requires high power and precise wave length. This report is a bibliographic and experimental study of the photophysical and photochemical properties of seven commercial laser dyes which have an emission wavelength in the range 5500-6500 A: Rhodamine 110 or 560, rhodamine 6G or 590, rhodamine B or 610, rhodamine 101 or 640, sulforhodamine B or kiton red 620, sulforhodamine 101 or 640 and DCM or LC 6500. Absorption and emission cross section values, fluorescence lifetimes and quantum yields in various solvents are indicated. For each dye, a non exhaustive list of laboratory experiments made with two types of pump sources: Nd YAG (532) and copper vapor laser is given. When it is known, the toxicity of the dyes is mentioned [fr

  9. Hemostatic properties of the free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Cram, G.P. Jr.; Copeland, M.L. [Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37235 (United States)

    1998-09-02

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO{sub 2} and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO{sub 2} laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO{sub 2} laser. In super pulse mode, the CO{sub 2} laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO{sub 2} and

  10. Hemostatic properties of the free-electron laser

    International Nuclear Information System (INIS)

    Cram, G.P. Jr.; Copeland, M.L.

    1998-01-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely

  11. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  12. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    Science.gov (United States)

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  13. Selective laser melting of Invar 36: Microstructure and properties

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Adkins, Nicholas J.E.; Attallah, Moataz M.

    2016-01-01

    Invar 36 samples have been fabricated by selective laser melting at a constant laser power but with varied laser scanning speeds. Some samples were further heat treated or hot isostatically pressed (HIPed). The obtained microstructures were studied using optical and electron microscopes, X-ray diffraction and electron backscatter diffraction techniques and the properties evaluated through both tensile testing and thermal expansion measurement. It was found that the as-fabricated samples show very low porosity (<0.5%) when the laser scanning speeds are below 3200 mm/s but show remarkably increased porosity above 3200 mm/s (at 400 W). Increased scanning speed also led to increasingly irregular-shaped laser scanned tracks together with an increased number of pores on sample surfaces and keyhole features within the samples, all indicative of increasingly unstable melt flow behaviour. The as-fabricated microstructure was dominated by columnar γ grains decorated by nanosized α precipitates, resulting in development of texture. Heat treatment did not change microstructure significantly while HIPing closed the majority of pores but also caused pronounced coarsening of α precipitates especially those located at grain boundaries during subsequent slow cooling. With the presence of elongated pores, the vertically built samples were found to show much lower elongation than horizontally built samples while in the absence of pores their ductility has been significantly improved but their tensile strengths are still lower than the latter. The vertically built samples generally failed in a transgranular mode while the horizontally built samples failed in an intergranular mode. HIPing greatly degraded tensile properties due to the presence of coarse grain boundary α precipitates weakening the bonding between grains. Irrespective of building orientations, the as-fabricated samples show low coefficients of thermal expansion below 300 °C comparable to conventionally

  14. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  15. Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors

    International Nuclear Information System (INIS)

    Heinrich, Martin; Kluska, Sven; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2013-01-01

    We present a method that allows the extraction of relevant physical properties such as sheet resistance and dopant profile from arbitrarily shaped laser-doped micro-scale areas formed in semiconductors with a focused pulsed laser beam. The key feature of the method is to use large laser-doped areas with an identical average number of laser pulses per area (laser pulse density) as the arbitrarily shaped areas. The method is verified using sheet resistance measurements on laser-doped silicon samples. Furthermore, the method is extended to doping with continuous-wave lasers by using the average number of passes per area or density of passes

  16. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  17. Influence Of The Laser Cladding Strategies On The Mechanical Properties Of Inconel 718

    International Nuclear Information System (INIS)

    Lamikiz, A.; Tabernero, I.; Ukar, E.; Lopez de Lacalle, L. N.; Delgado, J.

    2011-01-01

    This work presents different experimental results of the mechanical properties of Inconel registered 718 test parts built-up by laser cladding. Recently, turbine manufacturers for aeronautical sector have presented high interest on laser cladding processes. This process allows building fully functional structures on superalloys, such as Inconel registered 718, with high flexibility on complex shapes. However, there is limited data on mechanical properties of the laser cladding structures. Moreover, the available data do not include the influence of process parameters and laser cladding strategies. Therefore, a complete study of the influence of the laser cladding parameters and mainly, the variation of the tensile strength with the laser cladding strategy is presented. The results show that there is a high directionality of mechanical properties, depending on the strategies of laser cladding process. In other words, the test parts show a fiber -like structure that should be considered on the laser cladding strategy selection.

  18. Mechanical properties and microstructure of laser treated Al-Cu-Mg alloys

    OpenAIRE

    De Hosson , J.; Noordhuis , J.

    1993-01-01

    The mechanical properties and microstructural features of Al-Cu-Mg alloys were investigated, as exposed to laser treatments at various scan velocities. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan velocity of 1/2 cm/s. Usually an increasing hardness with increasing laser scan velocities is reported in the literature. This remarkable property could be explained based on the microstructural features observed by transmis...

  19. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  20. New 445 nm blue laser for laryngeal surgery combines photoangiolytic and cutting properties.

    Science.gov (United States)

    Hess, Markus M; Fleischer, Susanne; Ernstberger, Marcel

    2018-06-01

    Photoangiolytic lasers have broadened the surgical armamentarium for many phonosurgical interventions. However, the pulse dye laser and potassium titanyl phosphate (KTP) laser have technical drawbacks and a smaller spectrum of indications. The new 445 nm wavelength laser, the so-called 'blue laser', proves to show tissue effects comparable to the KTP laser and is also capable of treating subepithelial vessels due to its photoangiolytic properties, it can coagulate and carbonize at higher energy levels, and can be used via glass fibers in non-contact and contact mode for in-office procedures. In contrast to the KTP, the new 445 nm laser can also be used as a cutting laser, thus combining very much wanted properties of diode or CO2 lasers with photoangiolytic lasers. Further advantages of the new laser are the; (1) portability of the shoe box sized, shock-proof laser machine for in-office and operating room usage, (2) the selection of pulse rates from continuous wave (cw) to less than a millisecond, (3) stronger tissue effects compared to KTP with similar energy and pulse settings, (4) far better cutting properties than the KTP, and thus (5) more possibilities for usage in laryngology as well as in other fields or surgery. We demonstrate the feasibility of the 445 nm laser in several laboratory experiments and show clinical cases where photoangiolysis and cutting was possible. However, this is a preliminary report and further systematic studies in greater numbers are warranted.

  1. Influence of the mechanical properties of sputtered Mo solar cell back contacts on laser scribing

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Christof; Schuele, Manuel; Quaschning, Volker; Stegemann, Bert; Fink, Frank [University of Applied Sciences (HTW) Berlin, Wilhelminenhofstr. 75A, 12459 Berlin (Germany); Endert, Heinrich [Newport Spectra-Physics GmbH, Ruhlsdorfer Strasse 95, 14532 Stahnsdorf (Germany); Bonse, Joern [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Rau, Bjoern; Schlatmann, Rutger [PVcomB - Competence Centre Thin-Film and Nanotechnology for Photovoltaics Berlin, Schwarzschildstr. 3, 12489 Berlin (Germany)

    2012-07-01

    In thin-film photovoltaics complete laser structuring of the solar modules is aimed to perform appropriate monolithic serial interconnection. We have studied the laser ablation behavior of sputtered molybdenum back contacts for chalcopyrite solar cells. The properties of these Mo layer are sensitive to the sputter conditions. The process pressure influences the mechanical layer properties and, thus, contributes directly to the quality of the laser scribes. Precise, reliable and reproducible laser scribing requires the proper adaptation of the laser parameters to the material properties. In our study it was achieved by comprehensive analysis of the laser matter interaction and by detailed determination of the ablation thresholds as a function of the Mo layer thickness and ductility for different laser wavelengths and pulse durations, accompanied by thermal modeling.

  2. Investigation of field emission properties of laser irradiated tungsten

    International Nuclear Information System (INIS)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Jalil, Sohail Abdul; Rafique, Muhammad Shahid

    2018-01-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm 2 . Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I-V characteristics and plotting corresponding electric field (E) versus emission current density (J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/μm, 1300 to 3490 and 107 to 350 μA/cm 2 , respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences. (orig.)

  3. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  4. Mechanical properties and microstructure of laser treated Al-Cu-Mg alloys

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Noordhuis, J.

    1993-01-01

    The mechanical properties and microstructural features of Al-Cu-Mg alloys were investigated, as exposed to laser treatments at various scan velocities. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan velocity of 1/2 cm/s.

  5. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... composition. ·Weld metal solidification rate measurements for prediction of phases. ·Various crack tests to assess the crack susceptibility of alloys. ·A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been...... to the crack behaviour, but do not show an expected correlation between the crack resistance and the solidification rate. The employment of pulsed seams is therefore assessed not to be usable in the present selection methods. From evaluation of several crack tests, the Weeter spot weld test has been chosen...

  6. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...... crack tests, the Weeter spot weld test has been chosen to form a basis for the development of a practicable method to select specific alloys for welding applications. A new test, the Groove weld test was developed, which has reduced the time consumption and lightened the analysis effort considerably...... measurements for prediction of phases, (3) Various crack tests to assess the crack susceptibility of alloys and (4) A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been investigated and recommendations...

  7. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  8. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  9. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  10. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  11. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Science.gov (United States)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  12. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  13. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  14. Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2013-06-01

    Full Text Available methods towards a more accurate and automated techniques to quantify aggregate shape properties. This paper validates a new flakiness index equation using three-dimensional (3-D) laser scanning data of aggregate and ballast materials obtained from...

  15. scanning speed influence on the physical properties of laser metal

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... result of the preliminary study that produces full dense and pore free deposits. ... Keywords: Additive manufacturing, Laser metal deposition (LMD), Material efficiency, Titanium alloy. 1. ... parts. Ti6Al4V is the most commonly produced titanium alloy ... In this study, effect of laser transverse speed or scanning.

  16. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  17. Influence of laser hardening with weld penetration onto mechanical and fatigue properties of 40H steel

    International Nuclear Information System (INIS)

    Napadlek, W.; Przetakiewicz, W.

    2003-01-01

    In the article were described investigations results of mechanical properties (hardness, R 0.2 , R m , A 5 , Z) and fatigue properties (rotary bending) of the 40H steel samples, being quenched and tempered, induction and laser hardened. In the laser hardened samples with weld penetration of top layer cracking process in fatigue strength is started mainly in weld penetration area as structural notch. (author)

  18. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1995-01-01

    The spectroscopic properties of Cr 2+ , Co 2+ , and Ni 2+ -doped single crystals of ZnS, ZnSe, and ZnTe have been investigated to understand their potential application as mid-IR tunable solid-state laser media. The spectroscopy indicated divalent Cr was the most favorable candidate for efficient room temperature lasing, and accordingly, a laser-pumped laser demonstration of Cr:ZnS and Cr:ZnSe has been performed. The lasers' output were peaked at ∼ 2.35 μm and the highest measured slope efficiencies were ∼ 20% in both cases

  19. Study on the effect of thermal property of metals in ultrasonic-assisted laser machining

    International Nuclear Information System (INIS)

    Lee, Hu Seung; Kim, Gun Woo; Park, Jong Eun; Cho, Sung Hak; Yang, Min Yang; Park, Jong Kweon

    2015-01-01

    The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity

  20. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  1. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  2. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    Science.gov (United States)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  3. Electronic properties of asymmetrical quantum dots dressed by laser field

    Energy Technology Data Exchange (ETDEWEB)

    Kibis, O.V. [Department of Applied and Theoretical Physics, Novosibirsk State Technical University, Karl Marx Avenue 20, 630092 Novosibirsk (Russian Federation); Slepyan, G.Ya.; Maksimenko, S.A. [Institute for Nuclear Problems, Belarus State University, Bobruyskaya St. 11, 220050 Minsk (Belarus); Hoffmann, A. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2012-05-15

    In the present paper, we demonstrate theoretically that the strong non-resonant interaction between asymmetrical quantum dots (QDs) and a laser field results in harmonic oscillations of their band gap. It is shown that such oscillations change the spectrum of elementary electron excitations in QDs: in the absence of the laser pumping there is only one resonant electron frequency, but QDs dressed by the laser field have a set of electron resonant frequencies. One expects that this modification of elementary electron excitations in QDs can be observable in optical experiments. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Photodegradation and polarization properties of vertical external surface-emitting organic laser

    International Nuclear Information System (INIS)

    Leang, Tatiana

    2014-01-01

    Although organic solid-state dye lasers can provide wavelength tunability in the whole visible spectrum and offers perspectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiencies and good beam quality, it also enables an external control on many parameters, a feature that we have used here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulse-width, repetition rate, output coupling,...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time: while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant non-radiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state. (author) [fr

  5. Fluence scan: an unexplored property of a laser beam

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Burian, Tomáš; Hájková, Věra; Juha, Libor; Polcar, T.; Gaudin, J.; Nagasono, M.; Sobierajski, R.; Yabashi, M.; Krzywinski, J.

    2013-01-01

    Roč. 21, č. 22 (2013), s. 26363-26375 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GA13-28721S; GA MŠk(CZ) LG13029; GA ČR GAP208/10/2302; GA ČR GAP205/11/0571; GA MŠk EE2.3.30.0057 Grant - others:AVČR(CZ) M100101221; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : free-electron lasers (FELs) * UV * EUV * x-ray lasers * laser beam characterization * F-scan Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  6. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    International Nuclear Information System (INIS)

    Das, Rupali; Navas, M. P.; Soni, R. K.

    2016-01-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  7. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  8. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  9. Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence

    International Nuclear Information System (INIS)

    Desarkar, Himadri Sankar; Kumbhakar, P.; Mitra, A.K.

    2012-01-01

    Colloidal tin oxide nanoparticles are prepared by laser (having a wavelength of 1064 nm) ablation of tin metallic target immersed in pure deionized water. The influences of laser ablation time and laser fluence on the size and optical properties of the synthesized nanoparticles are studied. Prepared tin oxide nanoparticles are characterized by transmission electron microscope, selected area electron diffraction and UV–Visible absorption spectroscopy. The morphology of prepared tin oxide nanoparticles is found to be mostly spherical and with sizes in the nanometric range (mean radius of 3.2 to 7.3 nm). The measured UV–Visible absorption spectra show the presence of absorption peaks in the ultraviolet region. The band gap energy of samples prepared with different laser ablation time duration is calculated and is found to be increased with decrease in size (radius) of the prepared nanoparticles. Photoluminescence emission measurements at room temperature show that all the samples exhibit photoluminescence in the visible region. The peak photoluminescence emission intensity in the sample prepared with 50 min of laser ablation time is 3.5 times larger than that obtained in the sample prepared with 10 min of laser ablation time. - Highlights: ► SnO 2 nanoparticles (6.4–14.6 nm) are prepared by laser ablation in liquid technique. ► The influences of laser ablation time and laser fluence are studied. ► Samples are characterized by TEM and UV–Visible absorption spectroscopy. ► UV–Visible absorption spectra exhibit quantum confinement effect. ► Samples exhibit enhanced photoluminescence emissions in the visible region.

  10. Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Zhou, D H; Xia, C T; Wu, F; Zhuang, S D; Wang, Z P; Xu, J

    2010-01-01

    A Nd:LYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intense parameters Ω 2,4,6 were obtained to be 2.65, 5.75, and 7.37×10 -20 cm 2 , respectively. The absorption and emission cross sections and the branching ratios were calculated. The large absorption cross section (6.14×10 -20 cm 2 ) and broad absorption band (5 nm) around 811 nm indicate that this crystal can be pumped efficiently by laser diodes. The broad emission band from the 4 F 3/2 multiplet shows that the crystal is a promising medium for ultrashort pulse lasers. Pumped by a laser diode, the maximum 814 mW continuous-wave laser output has been obtained with a slope efficiency of 28.9%. All the results show that this crystal is a promising laser material

  11. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    Science.gov (United States)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  12. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  13. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    International Nuclear Information System (INIS)

    Kido, H; Takahashi, M; Tani, J; Abe, N; Tsukamoto, M

    2011-01-01

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 μm in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10 5 Ωcm to 3.2x10 -1 Ωcm at 56 W, 2.8x10 -1 Ωcm at 91 W, and 2.0x10 -1 Ωcm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10 17 cm -3 at 56 W, 7.2x10 17 cm -3 at 91 W, and 1.9x10 18 cm -3 at 126 W.

  14. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kido, H; Takahashi, M; Tani, J [Electronic Materials Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Abe, N; Tsukamoto, M, E-mail: kido@omtri.or.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-05-15

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 {mu}m in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10{sup 5} {Omega}cm to 3.2x10{sup -1} {Omega}cm at 56 W, 2.8x10{sup -1} {Omega}cm at 91 W, and 2.0x10{sup -1} {Omega}cm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10{sup 17} cm{sup -3} at 56 W, 7.2x10{sup 17} cm{sup -3} at 91 W, and 1.9x10{sup 18} cm{sup -3} at 126 W.

  15. Influence of the focal point position on the properties of a laser-produced plasma

    International Nuclear Information System (INIS)

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Miklaszewski, R.; Parys, P.; Rosinski, M.; Wolowski, J.; Stenz, CH.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-01-01

    This paper deals with investigations of the influence of the focusing lens focal point position on the properties of a plasma produced by a defocused laser beam. The experiment was carried out at the Prague Asterix Laser System iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, T. Mocek, M. Pfeifer, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)] by using the third harmonic of laser radiation (λ=0.438 μm), laser energy of 70 J, pulse duration of 250 ps (full width at half-maximum), and beam spot radii of 250 and 400 μm. Cu and Ta were chosen as target materials. The experimental data were obtained by means of a three-frame interferometric system, ion collectors, and crater replica techniques. The reported results allow formulating an important hypothesis that the laser-produced plasma modifies strongly the laser intensity distribution. It is shown how such a modification depends on the relative position and distance of the focal point to the target surface. Of particular importance is whether the focal point is located inside or in front of the target. The irradiation geometry is crucial for the possibility of generating plasma jets by laser radiation. Well-formed jet-like plasma structures can be created if an initially homogeneous laser intensity distribution is transformed in the plasma to an annular one

  16. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  17. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  18. Atmospheric turbulence temperature on the laser wavefront properties

    Science.gov (United States)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  19. Atmospheric turbulence temperature on the laser wavefront properties

    International Nuclear Information System (INIS)

    López, J C Contreras; Rojas, O J Tíjaro; Díaz, A Ballesteros; Moreno, Y Torres

    2017-01-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting. (paper)

  20. Modification of polyimide wetting properties by laser ablated conical microstructures

    International Nuclear Information System (INIS)

    Least, Brandon T.; Willis, David A.

    2013-01-01

    Laser texturing of Kapton ® HN polyimide was performed by low-fluence ablation using a pulsed, frequency tripled (349 nm) Nd:YLF laser. The laser was scanned in two dimensions in order to generate texture over a large area. The laser overlap percentage and fluence were varied and the resulting texture was studied. The texture features were inspected by electron microscopy and energy dispersive X-Ray spectroscopy (EDS), while the static contact angle of de-ionized water was measured by a contact angle goniometer. Rounded bump features were formed at all fluences, which decreased in areal density with fluence and number of laser pulses. Conical microstructures or “cones” were also formed at most fluences. Cones were larger than the bumps and thus had lower areal density, which increased as a function of the number of laser pulses. The polyimide was hydrophilic before texturing, with a contact angle of approximately 76°. For most of the experimental conditions the contact angle increased as a result of texturing, with the contact angle exceeding 90° for some textured surfaces, and reaching values as high as 118°. In general, the surfaces with significant increases in contact angle had high density of texture features, either bumps or cones. The surfaces that experienced a decrease in contact angle generally had low density of texture features. The increase in contact angle from a wetting (θ 90°) cannot be explained by texturing alone. EDS measurements indicate that textured regions had higher carbon content than the untextured regions due to depletion of oxygen species. The increase in carbon content relative to the oxygen content increased the native contact angle of the surface, causing the transition from hydrophilic to hydrophobic behavior. The contact angle of a textured surface increased as the relative spacing of features (diameter to spacing) decreased.

  1. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Czech Academy of Sciences Publication Activity Database

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Číp, Ondřej

    2013-01-01

    Roč. 13, č. 2 (2013), s. 2206-2219 ISSN 1424-8220 R&D Projects: GA ČR GPP102/11/P820; GA ČR GA102/09/1276; GA AV ČR KAN311610701; GA MŠk ED0017/01/01; GA MŠk(CZ) LC06007 Institutional support: RVO:68081731 Keywords : nanometrology * laser noise * interferometry * nanopositioning * AFM Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.048, year: 2013

  2. Microstructure and sliding wear properties of HVOF sprayed, laser remelted and laser clad Stellite 6 coatings

    Czech Academy of Sciences Publication Activity Database

    Houdková, Š.; Pala, Zdeněk; Smazalová, E.; Vostřák, M.; Česánek, Z.

    2017-01-01

    Roč. 318, May (2017), s. 129-141 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] Institutional support: RVO:61389021 Keywords : Stellite 6 * HVOF * Laser remelting * Laser clad * Wear * Phase transformation Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0257897216308817

  3. Analysis of statistical properties of laser speckles, forming in skin and mucous of colon: potential application in laser surgery

    Science.gov (United States)

    Rubtsov, Vladimir; Kapralov, Sergey; Chalyk, Iuri; Ulianova, Onega; Ulyanov, Sergey

    2013-02-01

    Statistical properties of laser speckles, formed in skin and mucous of colon have been analyzed and compared. It has been demonstrated that first and second order statistics of "skin" speckles and "mucous" speckles are quite different. It is shown that speckles, formed in mucous, are not Gaussian one. Layered structure of colon mucous causes formation of speckled biospeckles. First- and second- order statistics of speckled speckles have been reviewed in this paper. Statistical properties of Fresnel and Fraunhofer doubly scattered and cascade speckles are described. Non-gaussian statistics of biospeckles may lead to high localization of intensity of coherent light in human tissue during the laser surgery. Way of suppression of highly localized non-gaussian speckles is suggested.

  4. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  5. Statistical spatial properties of speckle patterns generated by multiple laser beams

    International Nuclear Information System (INIS)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-01-01

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as well as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.

  6. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    International Nuclear Information System (INIS)

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-01-01

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water. In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.

  7. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    Science.gov (United States)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  8. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  9. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.

    Science.gov (United States)

    Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica

    2016-10-01

    The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p properties of GFPs.

  10. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    Science.gov (United States)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  11. Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation

    Science.gov (United States)

    Al-Asedy, Hayder J.; Al-Khafaji, Shuruq A.; Bakhtiar, Hazri; Bidin, Noriah

    2018-03-01

    This paper reports the Nd:YAG laser irradiation treated modified properties of aluminum (Al) and gallium (Ga) co-doped zinc oxide (ZnO) (AGZO) films prepared on Si-substrate via combined sol-gel and spin-coating method. The impact of varying laser energy (150-200 mJ) on the structure, morphology, electrical and optical properties of such AGZO films were determined. Laser-treated samples were characterized using various analytical tools. Present techniques could achieve a high-quality polycrystalline films compared with those produced via conventional high temperature processing. AGZO films irradiated with third harmonics UV radiation (355 nm) from Nd:YAG laser source revealed very low resistivity of 4.02 × 10- 3 Ω cm. The structural properties grain size was calculated firm the X-ray diffraction spectra using the Scherrer equation that increased from 12.7 to 22.5 nm as the annealing laser energy increased from (150-200) mJ. The differences in crystallinity and orientation are explained in terms of the thermal effect caused by laser irradiation. (FESEM) images have been demonstrated that Nd:YAG laser annealing can significantly improve the crystallinity level, densification, and surface flatness of sol-gel derived AGZO thin films that occurred as a result of laser processing. Synthesized AGZO films displayed favorable growth orientation along (101) lattice direction. AGZO films with energy band gap of 3.37-3.41 eV were obtained. Results on the crystallinity, surface morphology, roughness, bonding vibration, absorption, photoluminescence, and resistivity of the laser-irradiated films were analyzed and discussed.

  12. Microstructure and Properties of Laser Additive Manufacturing TC Bearing

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-07-01

    Full Text Available In order to solve the problem of uneven wear of TC bearing that conventional method brought and improve its service life,wear-resistant coating was fabricated on the surface of steel parts matrix with the method of laser additive manufacture. The Cr3C2/Fe based alloy was deposited by laser cladding technique on the inner-sleeve cylindrical and outer-sleeve bore of TC bearing with two different process parameters. The high-performance coating was obtained respectively, of cracks free,no pores and with good metallurgical quality. The morphology of the laser cladding coating was observed by scanning electronic microscope (SEM,the composition was analyzed by EDS,the phase transformation was characterized by XRD. The wear resistance,corrosion resistance and hardness of the laser cladding layer were tested by friction and wear tester,salt spray test chamber and digital micro-hardness tester respectively. The results show that the average micro-hardness of composite coating is HV700. The wear resistance of the composite coating is about 3 times as much as the Ni-based alloy. The corrosion resistance is close to 316L stainless steel.

  13. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  14. Orientation dependent emission properties of columnar quantum dash laser structures

    NARCIS (Netherlands)

    Hein, S.; Podemski, P.; Sek, G.; Misiewicz, J.; Ridha, P.; Fiore, A.; Patriarche, G.; Höfling, S.; Forchel, A.

    2009-01-01

    InAs columnar quantum dash (CQDash) structures on (100) InP have been realized by gas source molecular beam epitaxy for stacking numbers of up to 24. Laser devices show low threshold current densities between 0.73 and 3.5 kA/ cm2, dependent on the CQDash orientation within the cavity.

  15. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  16. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  17. Analysis of the speckle properties in a laser projection system based on a human eye model.

    Science.gov (United States)

    Cui, Zhe; Wang, Anting; Ma, Qianli; Ming, Hai

    2014-03-01

    In this paper, the properties of the speckle that is observed by humans in laser projection systems are theoretically analyzed. The speckle pattern on the fovea of the human retina is numerically simulated by introducing a chromatic human eye model. The results show that the speckle contrast experienced by humans is affected by the light intensity of the projected images and the wavelength of the laser source when considering the paracentral vision. Furthermore, the image quality is also affected by these two parameters. We believe that these results are useful for evaluating the speckle noise in laser projection systems.

  18. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  19. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  20. Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Zhuang, S. D.; Wang, Z. P.; Xia, C. T.; Wu, F.; Xu, J.

    2010-11-01

    A Nd:LYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intense parameters Ω2,4,6 were obtained to be 2.65, 5.75, and 7.37×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The large absorption cross section (6.14×10-20 cm2) and broad absorption band (5 nm) around 811 nm indicate that this crystal can be pumped efficiently by laser diodes. The broad emission band from the 4F3/2 multiplet shows that the crystal is a promising medium for ultrashort pulse lasers. Pumped by a laser diode, the maximum 814 mW continuous-wave laser output has been obtained with a slope efficiency of 28.9%. All the results show that this crystal is a promising laser material.

  1. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  2. Evaluation of 3D laser device for characterizing shape and surface properties of aggregates used in pavements

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available program for the 3D laser device using fifteen different spherical and twelve cubic shaped objects. The laser device was evaluated for accuracy and repeatability to compute aggregate surface area and volume properties. The results showed that the laser...

  3. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  4. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  5. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  6. Fiber Laser Welding Properties of Copper Materials for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Young-Tae YOU

    2017-11-01

    Full Text Available Secondary battery is composed of four main elements: cathodes, anodes, membranes and electrolyte. The cathodes and the anodes are connected to the poles that allow input and output of the current generated while the battery is being charged or discharged. In this study laser welding is conducted for 40 sheets of pure copper material with thickness of 38μm, which are used in currently manufactured lithium-ion batteries, using pulse-wave fiber laser to compare welded joint to standard bolt joint and to determine optimum process parameters. The parameters, which has significant impact on penetration of the pulse waveform laser to the overlapped thin sheets, is the peak power while the size of the weld zone is mainly affected by the pulse irradiation time and the focal position. It is confirmed that overlapping rate is affected by the pulse repetition rate rather than by the pulse irradiation time. At the cross-section of the weld zone, even with the increased peak power, the width of the front bead weld size does not change significantly, but the cross-sectional area becomes larger. This is because the energy density per pulse increases as the peak power increases.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.16316

  7. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  8. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  9. Improving the properties of stainless steel electron-beam welds by laser treatment

    International Nuclear Information System (INIS)

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  10. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Adkins, Nicholas J.E.; Attallah, Moataz M.

    2013-01-01

    Ti–6Al–4V samples have been prepared by selective laser melting (SLM) with varied processing conditions. Some of the samples were stress-relieved or hot isostatically pressed (HIPed). The microstructures of all samples were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the tensile properties measured before and after HIPing. It was found that the porosity level generally decreased with increase of laser power and laser scanning speed. Horizontally built samples were found to have a higher level of porosity than vertically built samples. The as-fabricated microstructure was dominated by columnar grains and martensites. HIPing closed the majority of the pores and also fully transformed the martensite into α and β phases. The as-fabricated microstructure exhibits very high tensile strengths but poor ductility with elongation generally smaller than 10%. The horizontally built samples show even lower elongation than vertically built samples. HIPing considerably improved ductility but led to a reduction in strength. With HIPing, the SLMed samples were found to show tensile properties comparable with those thermomechanically processed and annealed samples

  11. Mechanical properties and polymerization shrinkage of composite resins light-cured using two different lasers.

    Science.gov (United States)

    Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2015-04-01

    The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.

  12. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  13. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  14. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  15. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  16. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  17. Effect of pre-sowing laser biostimulation of seeds on physico-chemical properties of glasshouse tomato fruits

    International Nuclear Information System (INIS)

    Koper, R.; Rybak, P.

    2000-01-01

    Paper presented results of study on the effect of pre-sowing laser biostimulation of glasshouse tomato seeds, Recento cultivar, on physico-chemical properties of yielded fruits. Tomato fruit resistance to elastic strains was tested in laboratory as well as the extract content and total acidity of fruits were analysed. Positive influence of laser treatment on tested tomato fruit properties was noted

  18. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  19. Polymers designed for laser ablation-influence of photochemical properties

    International Nuclear Information System (INIS)

    Lippert, T.; Dickinson, J.T.; Hauer, M.; Kopitkovas, G.; Langford, S.C.; Masuhara, H.; Nuyken, O.; Robert, J.; Salmio, H.; Tada, T.; Tomita, K.; Wokaun, A.

    2002-01-01

    The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene and ester groups, the same polymers without the triazene group, and polyimide as reference polymer. At high fluences similar ablation parameters, i.e. etch rates and effective absorption coefficients, were obtained for all polymers. The main difference is the absence of carbon deposits for the designed polymers. At low fluences (at 308 nm) very pronounced differences are detected. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm -2 ) and the highest etch rates (up to 3 μm/pulse), followed by the designed polyesters and then polyimide. The laser-induced decomposition of the designed polymers was studied by nanosecond-interferometry. Only the triazene-polymer reveals etching without any sign of surface swelling, which is observed for all other polymers. The etching of the triazene-polymer starts and ends with the laser pulse, clearly indicating photochemical etching. The triazene-polymer was also studied by time-of-flight mass spectrometry (TOF-MS). The intensities of the ablation fragments show pronounced differences between irradiation at the absorption band of the triazene group (308 nm) and irradiation at a shorter wavelength (248 nm)

  20. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  1. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  2. Effects of Laser Energies on Wear and Tensile Properties of Biomimetic 7075 Aluminum Alloy

    Science.gov (United States)

    Yuan, Yuhuan; Zhang, Peng; Zhao, Guoping; Gao, Yang; Tao, Lixi; Chen, Heng; Zhang, Jianlong; Zhou, Hong

    2018-03-01

    Inspired by the non-smooth surface of certain animals, a biomimetic coupling unit with various sizes, microstructure, and hardness was prepared on the surface of 7075 aluminum alloy. Following experimental studies were conducted to investigate the wear and tensile properties with various laser energy inputs. The results demonstrated that the non-smooth surface with biomimetic coupling units had a positive effect on both the wear resistance and tensile property of 7075 aluminum alloy. In addition, the sample with the unit fabricated by the laser energy of 420.1 J/cm2 exhibited the most significant improvement on the wear and tensile properties owing to the minimum grain size and the highest microhardness. Also, the weight loss of the sample was one-third of the untreated one's, and the yield strength, the ultimate tensile strength, and the elongation improved by 20, 20, and 34% respectively. Moreover, the mechanisms of wear and tensile properties improvement were also analyzed.

  3. Laser alloying of Al with mixed Ti and Ni powders to improve surface properties

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-07-01

    Full Text Available Aluminium is used in industry for various applications due to its low cost, light weight and excellent workability, but lacks wear resistance and hardness. Laser alloying is used to improve surface properties such as hardness and wear resistance...

  4. Transient changes of optical properties in semiconductors in response to femtosecond laser pulses

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Ziaja, B.

    2016-01-01

    Roč. 6, č. 9 (2016), 1-12, č. článku 238. ISSN 2076-3417 Institutional support: RVO:68378271 Keywords : free-electron lasers * transient optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2016

  5. Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Bensalah-Ledoux, A.; Guy, S.; Fitl, P.; Vrňata, M.; Lančok, Ján; Moine, B.

    2014-01-01

    Roč. 117, č. 1 (2014), 377-381 ISSN 0947-8396 R&D Projects: GA ČR(CZ) GAP108/11/1298 Grant - others:AVČR(CZ) M100101271 Institutional support: RVO:68378271 Keywords : optical properties * zinc phthalocyanine * laser deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  6. Effect of laser radiation on physicochemical and functional properties of human hemoglobin in vitro

    NARCIS (Netherlands)

    Irzhak, LI; Zotova, EA; Mamaeva, SA

    Exposure to laser radiation increases pH and isoelectric point of human hemoglobin solution, improves the acid-base properties, increases affinity for oxygen, and decreases the Bohr effect in comparison with intact hemoglobin. The mechanisms underlying these changes are discussed.

  7. An analysis of transient thermal properties for high power GaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Seungtaek; Kang, Sung Bok; Kim, Young Jin; Jeong, Hoon; Lee, Kyeongkyun; Kim, Jongseok [Korea Institute of Industrial Technology, 35-3 Hongcheon-Ri, Ipjang-Myeon, Cheonan, Chungnam 331-825 (Korea); Lee, Sangdon; Suh, Dongsik [QSI Co., Ltd., 315-9 Cheonheung-Ri, Sungger-Eup, Cheonan, Chungnam 330-836 (Korea); Yi, Jeong Hoon; Choi, Yoonho; Jung, Seok Gu; Noh, Minsoo [LG Electronics Advanced Research Institute, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-724 (Korea)

    2010-07-15

    Thermal properties of 405 nm GaN-based laser diodes were investigated by employing a transient heating response method based on the temperature dependence of diode forward voltage. Thermal resistances of materials consisting of packaged laser diodes were differentiated in transient thermal response curves at a current below threshold current. With a current above threshold current, no significant change in thermal resistances and difference between junction-up and junction-down laser diodes was observed at pulses shorter than 3 sec. From an analysis with long current injections, thermal resistance of a packaged laser diode with a junction-up bonding was {proportional_to}45 C/W which was higher than that of a junction-down bonded laser diode by {proportional_to}10 C/W. Further analyses based on parameters obtained from voltage recovery curves indicated that the time constant for cooling is directly related to the thermal resistance and thermal capacitance of a laser diode package. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy

    International Nuclear Information System (INIS)

    Ocelik, V.; Furar, I.; De Hosson, J.Th.M.

    2010-01-01

    In this work orientation imaging microscopy (OIM), based on electron backscatter diffraction in scanning electron microscopy, was employed to examine in detail the relationship between laser cladding processing parameters and he properties and the microstructure of single and overlapping laser tracks. The study was performed on thick (∼1 mm) Co-based coatings prepared by 2 kW Nd:YAG laser cladding a 42CrMo4 steel substrate using different laser beam scanning speeds (1.0-15 mm s -1 ). It was found that the directional growth of individual primary grains led to the formation of a typical solidification fiber texture. The dependence of this texture on the processing speed and the shape of the solidification front were investigated in detail. Strong epitaxial growth of Co grains on austenitic steel substrate grains was found, which did not depend on the laser beam scanning velocity. During laser cladding a strong temperature gradient exists just below the coating-substrate interface that promotes the formation of a Greninger-Troiano orientation relationship between martensitic plates and the original austenitic grain inside the heat affected zone: {1 1 1} γ ∼ 1 o to {1 1 0} α and γ ∼ 2 o to α . Relatively drastic changes in grain size at the internal coating interfaces did not exhibit sharp changes in microhardness.

  9. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeyoun [Division of Restoration Technology, National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of); Cho, Namchul, E-mail: nam1611@hanmail.net [Department of Cultural Heritage Conservation Science, Kongju National University, Gongju, 314-701 (Korea, Republic of); Lee, Jongmyoung [Laser Engineering Group, IMT Co. Ltd, Gyeonggi (Korea, Republic of)

    2013-11-01

    As numerous pores are formed at plating gilt-bronze artifacts, the metal underlying the gold is corroded and corrosion products are formed on layer of gold. Through this study, the surfaces of gilt-bronze are being investigated before and after the laser irradiation to remove corrosion products of copper by using Nd:YAG laser. For gilt-bronze specimens, laser and chemical cleaning were performed, and thereafter, surface analysis with SEM-EDS, AFM, and XPS were used to determine the surface characteristics. Experimental results show that chemical cleaning removes corrosion products of copper through dissolution but it was not removed uniformly and separated the metal substrate and the gold layer. Nevertheless, through laser cleaning, some of the corrosions were removed with some damaged areas due to certain conditions and brown residues remained. Brown residues were copper corrosion products mixed with soil left within the gilt layer. It was due to surface morphology of uneven and rough gilt layer. Hence, they did not react effectively to laser beams, and thus, remained as residues. The surface properties of gilt-bronze should be thoroughly investigated with various surface analyses to succeed in laser cleaning without damages or residues.

  10. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  11. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding

    International Nuclear Information System (INIS)

    Wang, Qin-Ying; Zhang, Yang-Fei; Bai, Shu-Lin; Liu, Zong-De

    2013-01-01

    Highlights: ► Hastelloy C22 coatings were prepared by diode laser cladding technique. ► Higher laser speed resulted in smaller grain size. ► Size-effect played the key role in the hardness measurements by different ways. ► Coating with higher laser scanning speed displayed higher nano-scratch resistance. ► Small grain size was beneficial for improvement of coating corrosion resistance. -- Abstract: The Hastelloy C22 coatings H1 and H2 were prepared by laser cladding technique with laser scanning speeds of 6 and 12 mm/s, respectively. Their microstructures, mechanical properties and corrosion resistance were investigated. The microstructures and phase compositions were studied by metallurgical microscope, scanning electron microscope and X-ray diffraction analysis. The hardness and scratch resistance were measured by micro-hardness and nanoindentation tests. The polarization curves and electrochemical impedance spectroscopy were tested by electrochemical workstation. Planar, cellular and dendritic solidifications were observed in the coating cross-sections. The coatings metallurgically well-bonded with the substrate are mainly composed of primary phase γ-nickel with solution of Fe, W, Cr and grain boundary precipitate of Mo 6 Ni 6 C. The hardness and corrosion resistance of steel substrate are significantly improved by laser cladding Hastelloy C22 coating. Coating H2 shows higher micro-hardness than that of H1 by 34% and it also exhibits better corrosion resistance. The results indicate that the increase of laser scanning speed improves the microstuctures, mechanical properties and corrosion resistance of Hastelloy C22 coating

  12. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  13. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    Science.gov (United States)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  14. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    Science.gov (United States)

    Block, Michael

    2017-11-01

    The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  15. Thermal properties of high-power diode lasers investigated by means of high resolution thermography

    International Nuclear Information System (INIS)

    Kozłowska, Anna; Maląg, Andrzej; Dąbrowska, Elżbieta; Teodorczyk, Marian

    2012-01-01

    In the present work, thermal effects in high-power diode lasers are investigated by means of high resolution thermography. Thermal properties of the devices emitting in the 650 nm and 808 nm wavelength ranges are compared. The different versions of the heterostructure design are analyzed. The results show a lowering of active region temperature for diode lasers with asymmetric heterostructure scheme with reduced quantum well distance from the heterostructure surface (and the heat sink). Optimization of technological processes allowed for the improvement of the device performance, e.g. reduction of solder non-uniformities and local defect sites at the mirrors which was visualized by the thermography.

  16. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  17. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Block, Michael, E-mail: m.block@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2017-11-15

    The X. international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  18. Spike latency and response properties of an excitable micropillar laser

    Science.gov (United States)

    Selmi, F.; Braive, R.; Beaudoin, G.; Sagnes, I.; Kuszelewicz, R.; Erneux, T.; Barbay, S.

    2016-10-01

    We present experimental measurements concerning the response of an excitable micropillar laser with saturable absorber to incoherent as well as coherent perturbations. The excitable response is similar to the behavior of spiking neurons but with much faster time scales. It is accompanied by a subnanosecond nonlinear delay that is measured for different bias pump values. This mechanism provides a natural scheme for encoding the strength of an ultrafast stimulus in the response delay of excitable spikes (temporal coding). Moreover, we demonstrate coherent and incoherent perturbations techniques applied to the micropillar with perturbation thresholds in the range of a few femtojoules. Responses to coherent perturbations assess the cascadability of the system. We discuss the physical origin of the responses to single and double perturbations with the help of numerical simulations of the Yamada model and, in particular, unveil possibilities to control the relative refractory period that we recently evidenced in this system. Experimental measurements are compared to both numerical simulations of the Yamada model and analytic expressions obtained in the framework of singular perturbation techniques. This system is thus a good candidate to perform photonic spike processing tasks in the framework of novel neuroinspired computing systems.

  19. Experimental study and numerical simulations of the spectral properties of XUV lasers pumped by collisional excitation

    International Nuclear Information System (INIS)

    Meng, L.

    2012-01-01

    Improving the knowledge of the spectral and temporal properties of plasma-based XUV lasers is an important issue for the ongoing development of these sources towards significantly higher peak power. The spectral properties of the XUV laser line actually control several physical quantities that are important for applications, such as the minimum duration that can be achieved (Fourier-transform limit). The shortest duration experimentally achieved to-date is ∼1 picosecond. The demonstrated technique of seeding XUV laser plasmas with a coherent femtosecond pulse of high-order harmonic radiation opens new and promising prospects to reduce the duration to a few 100 fs, provided that the gain bandwidth can be kept large enough.XUV lasers pumped by collisional excitation of Ni-like and Ne-like ions have been developed worldwide in hot plasmas created either by fast electrical discharge, or by various types of high-power lasers. This leads to a variety of XUV laser sources with distinct output properties, but also markedly different plasma parameters (density, temperature) in the amplification zone. Hence different spectral properties are expected. The purpose of our work was then to investigate the spectral behaviour of the different types of existing collisional excitation XUV lasers, and to evaluate their potential to support amplification of pulses with duration below 1 ps in a seeded mode.The spectral characterization of plasma-based XUV lasers is challenging because the extremely narrow bandwidth (typically Δλ/λ ∼10 -5 ) lies beyond the resolution limit of existing spectrometers in this spectral range. In our work the narrow linewidth was resolved using a wavefront-division interferometer specifically designed to measure temporal coherence, from which the spectral linewidth is inferred. We have characterized three types of collisional XUV lasers, developed in three different laboratories: transient pumping in Ni-like Mo, capillary discharge pumping in Ne

  20. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition.

    Science.gov (United States)

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-12-23

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.

  1. Synthesis and properties of palladium nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Castillo, G.A. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico)

    2015-09-01

    Highlights: • Pd nanoparticle colloids were synthesized using PLAL technique. • Characterized by TEM, XPS and UV–vis spectroscopy. • Average size distribution was affected by different liquid media. • Laser post-irradiation was effective to regain optical properties. • Ultrasonic treatment helped to regain the optical properties. - Abstract: Pulsed laser ablation in liquid (PLAL) as a prominent technique for nanofabrication was employed to synthesize palladium (Pd) nanoparticles in different liquids. The synthesis of Pd nanoparticles was developed using a pulsed Nd:YAG laser with its fundamental wavelength output of 1064 nm (10 Hz, 10 ns) in a range of energy fluence (40.5–8 J/cm{sup 2}). Pure Pd metal target was immersed in distilled water, methanol–water mixture (1:1) and sodium dodecyl sulfate (SDS) to study the effect of the nature of the liquid media. Laser post-irradiation and ultrasonic treatments were applied to the precipitated colloidal solution to investigate their effects on the re-dispersion and stability. The mean size, size distributions, shape, elemental composition, optical properties and stability of nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. TEM characterizations showed smaller nanoparticles in methanol–water mixture in comparison with the other liquids. Spherical morphology was observed for Pd nanoparticles synthesized in distilled water and methanol–water mixture. In the case of SDS, spherical nanoparticles embedded on the surfactant were observed. The effect of energy fluence was different for each liquid media. Laser post-irradiation and ultrasonic agitation worked as efficient methods to re-disperse the precipitates of NPs and to recover their optical properties.

  2. Influence of laser radiation on structure and properties of steels and alloys

    International Nuclear Information System (INIS)

    Tarasova, T; Popova, E

    2013-01-01

    In present study, and laser alloying of different steels and laser cladding of Ti and SiC powders mixtures was carried out, and microstructure, as well as microhardness profile and wear properties were examined. Research of the influence of lasers alloying modes on the elastic and plastic characteristics of the surface was conducted. As a result of chemical reactions in the cladded layer, a new phase (TiC) was synthesized during cladding process. The results showed that, in the clad layer, TiC was solidified to form dendrites in the clad zone. Produced coatings have high microhardness values in the upper and middle clad areas, about two time higher than clad matrix microhardness.

  3. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  4. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nepomnyashchaya, E.K., E-mail: elina.nep@gmail.com [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Prokofiev, A.V.; Velichko, E.N. [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Pleshakov, I.V.; Kuzmin, Yu I. [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Laboratory of Quantum Electronics, Ioffe Institute, Saint-Petersburg 194021 (Russian Federation)

    2017-06-01

    Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe{sub 3}O{sub 4}) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.

  5. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    Science.gov (United States)

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  6. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  7. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    International Nuclear Information System (INIS)

    Šafka, J; Ackermann, M; Voleský, L

    2016-01-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample. (paper)

  8. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    Science.gov (United States)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  9. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  10. Single-particle and collective properties around closed shells probed by in-source laser spectroscopy

    CERN Document Server

    Cocolios, Thomas Elias; Van Duppen, P

    2010-01-01

    Resonant laser ionisation is a very versatile tool in nuclear physics, used for the production of clean radioactive ion beams as well as for the study of ground-state and isomer properties. In this Ph.D. work, many aspects of resonant laser ionisation are investigated, from improving the performance of laser ion sources at ISOL facilities to the measurement of magnetic dipole moments and charge radii. The LISOL gas catcher ion source relies on resonant laser ionisation for increased efficiency and selectivity. Using a $^{252}$Cf fission source, the element dependence of the non-resonant contribution to the ion beam has been investigated. The efficiency of extraction for a non-laser-ionised element ranges from 0.03% for krypton to 74% for ceasium. A relationship with the ionisation potential is proposed, although a few elements like rubidium and cerium do not verify this relationship. In order to suppress those non-resonantly-ionised elements, two new approaches are proposed. First, the dual-chamber gas catche...

  11. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    Science.gov (United States)

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  12. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    Science.gov (United States)

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  13. Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method

    International Nuclear Information System (INIS)

    Guan, Y.C.; Luo, F.F.; Lim, G.C.; Hong, M.H.; Zheng, H.Y.; Qi, Bojin

    2015-01-01

    Highlights: • One-stop laser method is presented to fabricate superhydrophilic surface on metals. • Wettability study shows the longest superhydrophilic duration as more than 1 month. • Water-soluble compounds, polar functional groups and dual-scale structures were formed. • Surface roughness shows an amplification effect of the wetting behavior. - Abstract: A simple method for fabricating stable superhydrophilic surface at metallic substrates is reported. This technique comprises irradiating the surface with multiple laser pulses. Surface wettability can be taylored through controlling laser parameters and processing conditions. The substrates were selected as aluminum alloy and stainless steel. Physical morphology and chemical composition of laser-textured surfaces were characterized by SEM, XPS, and 3D profiler measurements. Results showed that the longest wettability duration was achieved as more than 1 month for stainless steel and more than 200 h for Al alloy, respectively. The possible mechanism of hydrophilic behavior of laser-textured surfaces was discussed. The effect of surface topography on superhydrophilicity property was also evaluated. This study presents a promising method in fabricating long-term superhydrophilic surfaces, which is useful for improving adhesion or achieving water-assisted flow in industrial applications as well as developing cell-based technologies in biomedical applications

  14. Effects of Y2O3 upon mechanical properties of laser coating

    Institute of Scientific and Technical Information of China (English)

    Chi Deng; Yong Wang; Yaping Zhang; Jiacheng Gao

    2005-01-01

    @@ Roles of Y2O3 in mechanical properties of the bioceramic coating by the laser cladding were reported in this paper. The bonding strength of interface between the laser coatings with/without Y2O3 and substrate Ti-6Al-4V (TC4), bending strength, compressive strength, tensile strength, and hardness in these coatings were contrastively tested, and the ceramic-metal interface was observed by scanning electronic microscopy (SEM). These results indicated that the rare earth was the important factor which influenced the mechanical properties of the coating. Y2O3 was adequately dispersed in the melting pool of the laser coating, crystal grain got smaller after the melted coating was cooled, the impurity existing in crystal interface was reduced by chemical reactions, and so the strength was evidently improved. On the other hand, the rare earth could also obviously increase the hole numbers in the coating and decrease the compressive strength. So the effects of the rare earth on the laser coating were intricate and all-purpose.

  15. Investigation on interlaminar shear strength properties of disc laser machined consolidated CF-PPS laminates

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available In consequence of an increased interest in using endless carbon fibre reinforced thermoplastic composites (TPC, automated and highly productive processing technologies for cutting and trimming steps of consolidated materials are sought. In this paper, the influence on the thermal effect caused by laser cutting with respect to static strength properties of TPC based on a polyphenylene sulfide (PPS matrix is studied. For the cutting experiments, consolidated TPC laminates at varying thicknesses up to s = 3.1 mm and a disc laser emitting at a wavelength of λ = 1030 nm at a maximum output power of PL = 2 kW are used. For the first time, the resulting magnitude of the heat affected zone (HAZ at the cutting edge of the composite material is correlated with interlaminar shear strength tests. The results are compared to specimens prepared by milling and abrasive water jet cutting. Depending on the laminate thickness, the laser treated TPC samples show comparable properties to those of conventionally processed specimens. A reduced load bearing area, as a consequence of damaged fibre-matrix-adhesion due to laser impact, is identified as main factor for the reduction of interlaminar shear strengths for higher laminate thicknesses.

  16. Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.

    Science.gov (United States)

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-07-28

    Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  17. Selected properties of laser cladding coatings shaped using Flow drill technology

    Directory of Open Access Journals (Sweden)

    Bartkowski Dariusz

    2017-01-01

    Full Text Available The paper presents the investigations of selected chemical and mechanical properties as well as macro- and microstructure of materials formed using thermal drilling process (Flow drill. The aim of this study was to determine the microstructure of the coatings produced using laser cladding with powder technology. The coatings were produced on the low-carbon steel using 1 kW disc laser. After modification of surface, the thermal drilling process was applied. To produce all coatings, the pure copper powder was used. In this study the laser power equal of 500, 700 and 900 W were used. The microstructure, chemical composition (EDS and microhardness were investigation. It was found that the surface modification of low carbon steel and next conducted thermal drilling process caused change the surface properties on the hole flange. It was found that surface modification of steel using laser cladding with cooper powder and next Flow drill process contributes to the change in microhardness and chemical composition on hole flange.

  18. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    Science.gov (United States)

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-01-01

    Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755

  19. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    Directory of Open Access Journals (Sweden)

    Yiyong Wang

    2016-07-01

    Full Text Available Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV. The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  20. Mechanical Properties of Laser Weldment of V-4Cr-4Ti Alloy

    International Nuclear Information System (INIS)

    Heo, Nam-Jin; Nagasaka, Takuya; Muroga, Takeo; Nishimura, Arata; Shinozaki, Kenji; Watanabe, Hideo

    2003-01-01

    The effect of the laser welding condition on properties of the weldment, such as bending, tensile and charpy impact properties were investigated in a V-4Cr-4Ti alloy (NIFS-HEAT- 2). The microstructural and microchemical development in the weldment was also investigated for mechanistic study of the impurity behavior during the welding. Increase in hardness occurred in the weld zone. The hardening was due to the dissolution of the large and small precipitates existed in the base metal before welding. The degree of hardening varied with a distance from the bead center. The absorption energy by the impact test increased with the decrease in the input power density during the laser welding. The impact absorption energy of the weld, which is similar to that of the base metal, was obtained by optimizing the welding condition

  1. Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten Hermann

    2015-05-01

    Full Text Available Direct metal laser sintering (DMLS is a selective laser melting (SLM manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactured metals. It presents DMLS-produced Ti-6Al-4V, a titanium alloy often used in biomedical and aerospace applications. This paper also studies the effect of several heat treatments on the microstructure and mechanical properties of Ti-6Al-4V processed by SLM. It reports the achievable mechanical properties of the alloy, including quasi-static, crack growth behaviour, density and porosity distribution, and post-processing using various heat-treatment conditions.

  2. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties.

    Science.gov (United States)

    Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena

    2017-04-28

    In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.

  3. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  4. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  5. Properties of the transfer matrices of deflecting magnet systems for free electron laser

    International Nuclear Information System (INIS)

    Takao, Masaru

    1993-01-01

    The oscillation of the free electron laser (FEL) requires the high current and low emittance electron beam. The beam transport system should be achromatic and isochronous to preserve the brightness and the emittance of the electron beam. In this paper we clarify the algebraic properties of the transfer matrices of the magnetic deflection system, which is a key component in the beam transport line. (author)

  6. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  7. Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Bonek, Mirosław, E-mail: miroslaw.bonek@polsl.pl; Śliwa, Agata; Mikuła, Jarosław

    2016-12-01

    Highlights: • Prediction of the properties of laser remelted surface layer with the use of FEM analysis. • The simulation was applied to determine the shape of molten pool of remelted surface. • Applying of numerical model MES for simulation of surface laser treatment to meaningfully shorten time of selection of optimum parameters. • An FEM model was established for the purpose of building a computer simulation. - Abstract: Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the

  8. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  9. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    International Nuclear Information System (INIS)

    Gaworska-Koniarek, Dominika; Szubzda, Bronislaw; Wilczynski, Wieslaw; Drosik, Jerzy; Karas, Kazimierz

    2011-01-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  10. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    Science.gov (United States)

    Gaworska-Koniarek, Dominika; Szubzda, Bronisław; Wilczyński, Wiesław; Drosik, Jerzy; Karaś, Kazimierz

    2011-07-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  11. Effect of laser beam parameters on magnetic properties of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Fukunaga, H.; Nakano, M.; Yanai, T.; Kamikawatoko, T.; Yamashita, F.

    2011-01-01

    The effects of varying the laser power and the spot diameter of a laser beam on the magnetic properties, morphology, and deposition rate of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition (PLD) were investigated. Reducing the laser fluence on the target reduces the remanence and increases the Nd content and consequently the coercivity of the prepared films. The spot size of the laser beam was found to affect the film surface morphology, the deposition rate, and the reproducibility of the magnetic properties of the prepared films. Reducing the spot size reduces the number of droplets and the reproducibility of the magnetic properties and increases the droplet size. Controlling the spot size of the laser beam enabled us to maximize the deposition rate. Consequently, a coercivity of 1210 kA/m and a remanence of 0.51 T were obtained at a deposition rate of 11.8 μm/(h·W). This deposition rate is 30% greater than the highest previously reported deposition rate by PLD.

  12. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    Science.gov (United States)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  13. Laser-assisted preparation and photoelectric properties of grating-structured Pt/FTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nai-fei, E-mail: rnf_ujs@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing, E-mail: lij_huang@126.com [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Bao-jia [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-09-30

    Highlights: • Pt layers were deposited by DC magnetron sputtering on commercial FTO glasses. • Pt/FTO films were irradiated by laser for inducing gratings and annealing. • An ideal grating-structured Pt/FTO film was obtained using a fluence of 1.05 J/cm{sup 2}. • The grating-structured Pt/FTO film exhibited excellent photoelectric properties. • Laser-assisted treatment is effective for improving performance of FTO-based films. - Abstract: In order to improve the transparency and conductivity of commercial fluorine-doped tin oxide (FTO) glass, platinum (Pt) layers were deposited on the FTO film by direct current (DC) magnetron sputtering, followed by being irradiating with a 532 nm nanosecond pulsed laser for the dual purpose of inducing grating structures and annealing. Introducing a Pt layer decreased the average transmittance (400–800 nm) and the sheet resistance of the initial FTO film from 80.2% and 8.4 Ω/sq to 68.6% and 7.9 Ω/sq, respectively. The ideal grating-structured Pt/FTO film was obtained by laser irradiation with a fluence of 1.05 J/cm{sup 2}, and X-ray diffraction (XRD) analysis confirmed that this film underwent optimal annealing. As a result, it exhibited an average transmittance (400–800 nm) of 84.1% and a sheet resistance of 6.8 Ω/sq. These results indicated that laser-assisted treatment combined with introduction of metal layer can effectively improve photoelectric properties of FTO single-layer films.

  14. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  15. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    International Nuclear Information System (INIS)

    Vartanyants, I.A.; Singer, A.

    2009-07-01

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  16. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; Singer, A. [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2009-07-15

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  17. Photoelectric properties of GaAs materials studied by pulsed laser techniques

    International Nuclear Information System (INIS)

    Aguir, Khalifa

    1981-01-01

    This research thesis addressed the photoelectric properties of single-crystal or epitaxial GaAs (N doped or P doped) materials. The objective is to characterize and to improve the electric quality of these materials and associated components, notably for the production of high performance solar cells for ground-based or space-based applications. More particularly, this research aimed at using an excitation by a pulsed laser to analyse recombination and trapping properties of carriers created by photo-excitation, and also at studying the effect of low doses of particle irradiation on the carrier properties. Thus, the author describes conduction characteristics of two different N-type epitaxial layers, discusses carrier excitation and recombination processes which may occur in semiconductors, and proposes an overview of trapping phenomena. Photoelectric properties of the considered epitaxial layers are then studied and discussed

  18. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting

    International Nuclear Information System (INIS)

    Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P.

    2014-01-01

    Highlights: • The surface mechanical properties of the alloy have been greatly improved. • Its grain size was decreased from 100 μm to 10 μm. • The metastable ω with the size of 20–50 nm was observed in the alloy after LSR. • The strengthening effect is mainly due to fine microstructure and strengthened phase. -- Abstract: The effects of laser surface remelting (LSR) on the microstructural evolution and surface mechanical properties of Ti–Zr beta titanium alloy were investigated. The surfaces of the Ti–Zr alloy was re-melted using a CO 2 laser. X-ray diffraction, Scanning electron microscope, Transmission electron microscope, nanoindentation, and microhardness analyses were performed to evaluate the microstructural and mechanical properties of the alloy. The results showed that the alloy microstructure in the remelting region was greatly refined and homogeneous compared with that in the base material because of the rapid remelting and resolidifying. Meanwhile, the metastable hexagonal ω phases with the size of 20–50 nm was found and uniformly distributed throughout the β matrix after LSR. Phase transformation and microstructural refinement were the major microstructural changes in the alloys after LSR. The microhardness and elastic modulus in the remelted region clearly increased by 92.9% and 21.78%, respectively, compared with those in the region without laser processing. The strengthening effect of LSR on the mechanical properties of the Ti–Zr alloy was also addressed. Our results indicated that LSR was an effective method of improving the surface mechanical properties of alloys

  19. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    Science.gov (United States)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  20. Manufacturing Feasibility and Forming Properties of Cu-4Sn in Selective Laser Melting.

    Science.gov (United States)

    Mao, Zhongfa; Zhang, David Z; Wei, Peitang; Zhang, Kaifei

    2017-03-24

    Copper alloys, combined with selective laser melting (SLM) technology, have attracted increasing attention in aerospace engineering, automobile, and medical fields. However, there are some difficulties in SLM forming owing to low laser absorption and excellent thermal conductivity. It is, therefore, necessary to explore a copper alloy in SLM. In this research, manufacturing feasibility and forming properties of Cu-4Sn in SLM were investigated through a systematic experimental approach. Single-track experiments were used to narrow down processing parameter windows. A Greco-Latin square design with orthogonal parameter arrays was employed to control forming qualities of specimens. Analysis of variance was applied to establish statistical relationships, which described the effects of different processing parameters (i.e., laser power, scanning speed, and hatch space) on relative density (RD) and Vickers hardness of specimens. It was found that Cu-4Sn specimens were successfully manufactured by SLM for the first time and both its RD and Vickers hardness were mainly determined by the laser power. The maximum value of RD exceeded 93% theoretical density and the maximum value of Vickers hardness reached 118 HV 0.3/5. The best tensile strength of 316-320 MPa is inferior to that of pressure-processed Cu-4Sn and can be improved further by reducing defects.

  1. Tuning by means of laser annealing of electronic and structural properties of nc-Si/a-Si:H

    International Nuclear Information System (INIS)

    Poliani, E.; Somaschini, C.; Sanguinetti, S.; Grilli, E.; Guzzi, M.; Le Donne, A.; Binetti, S.; Pizzini, S.; Chrastina, D.; Isella, G.

    2009-01-01

    We report the effect of laser annealing on the structural and electronic properties of nc-Si/a-Si:H samples grown close to the amorphous to nanocrystalline transition. The nc-Si/a-Si:H thin films were produced by low-energy plasma-enhanced chemical vapor deposition through a gas discharge containing SiH 4 . The samples were subjected to different laser fluencies and were characterized for changes in their structural and electronic properties via Raman spectroscopy and photoluminescence measurements. The laser annealing effects are twofold: i) the nanocrystalline phase grows, during the laser treatment, respect to the amorphous phase; ii) the photoluminescence spectra show the suppression, after laser annealing, of the frequencies above the crystalline Si band-gap.

  2. Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers

    Energy Technology Data Exchange (ETDEWEB)

    György, E., E-mail: egyorgy@icmab.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Pérez del Pino, A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); Logofatu, C. [National Institute for Materials Physics, P. O. Box MG. 7, 77125 Bucharest (Romania); Duta, A.; Isac, L. [Transilvania University of Brasov, Research Centre for Renewable Energy Systems and Recycling, Eroilor 29, 500036, Brasov (Romania)

    2014-07-14

    Zinc oxide-graphene oxide nanocomposite layers were submitted to laser irradiation in air or controlled nitrogen atmosphere using a frequency quadrupled Nd:YAG (λ = 266 nm, τ{sub FWHM} ≅ 3 ns, ν = 10 Hz) laser source. The experiments were performed in air at atmospheric pressure or in nitrogen at a pressure of 2 × 10{sup 4} Pa. The effect of the irradiation conditions, incident laser fluence value, and number of subsequent laser pulses on the surface morphology of the composite material was systematically investigated. The obtained results reveal that nitrogen incorporation improves significantly the wetting and photoactive properties of the laser processed layers. The kinetics of water contact angle variation when the samples are submitted to laser irradiation in nitrogen are faster than that of the samples irradiated in air, the surfaces becoming super-hydrophilic under UV light irradiation.

  3. Structure and Morphology Effects on the Optical Properties of Bimetallic Nanoparticle Films Laser Deposited on a Glass Substrate

    Directory of Open Access Journals (Sweden)

    A. O. Kucherik

    2017-01-01

    Full Text Available Moving nanosecond laser system is used for laser-assisted thermodiffusion deposition of metallic nanoparticles from water-based colloidal solutions. The results obtained for both gold and silver nanoparticles show that film morphology strongly depends on laser scanning speed and the number of passages. We show, furthermore, the possibility of producing bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. As a result of several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness, and morphology. By changing laser scanning parameters, film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness, and mean separation between the particles. The transparency spectra of the deposited films are shown to be defined by their morphology.

  4. Measurement of uranium dioxide thermophysical properties by the laser flash method

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Ferreira, Ricardo Alberto Neto; Camarano, Denise das Merces; Andrade, Roberto Marcio de

    2009-01-01

    The evaluation of the thermophysical properties of uranium dioxide (UO 2 ), including a reliable uncertainty assessment, are required by the nuclear reactor design. These important information are used by thermohydraulic codes to define operational aspects and to assure the safety, when analyzing various potential situations of accident. The laser flash method had become the most popular method to measure the thermophysical properties of materials. Despite its several advantages, some experimental obstacles have been found due to the difficulty to obtain experimentally the ideals initial and boundary conditions required by the original method. An experimental apparatus and a methodology for estimating uncertainties of thermal diffusivity, thermal conductivity and specific heat measurements based on the laser flash method are presented. A stochastic thermal diffusion modeling has been developed and validated by standard samples. Inverse heat conduction problems (IHCPs) solved by finite volumes technique were applied to the measurement process with real initial and boundary conditions, and Monte Carlo Method was used for propagating the uncertainties. The main sources of uncertainty were due to: pulse time, laser power, thermal exchanges, absorptivity, emissivity, sample thickness, specific mass and dynamic influence of temperature measurement system. As results, mean values and uncertainties of thermal diffusivity, thermal conductivity and specific heat of UO 2 are presented. (author)

  5. Structural and Optical Properties of Eu Doped ZnO Nanorods prepared by Pulsed Laser Deposition

    KAUST Repository

    Alarawi, Abeer

    2014-06-23

    Nano structured wide band gap semiconductors have attracted attention of many researchers due to their potential electronic and optoelectronic applications. In this thesis, we report successful synthesis of well aligned Eu doped ZnO nano-rods prepared, for the first time to our knowledge, by pulsed laser deposition (PLD) without any catalyst. X-ray diffraction (XRD) patterns shows that these Eu doped ZnO nanorods are grown along the c-axis of ZnO wurtzite structure. We have studied the effect of the PLD growth conditions on forming vertically aligned Eu doped ZnO nanorods. The structural properties of the material are investigated using a -scanning electron microscope (SEM). The PLD parameters must be carefully controlled in order to obtain c-axis oriented ZnO nanorods on sapphire substrates, without the use of any catalyst. The experiments conducted in order to identify the optimal growth conditions confirmed that, by adjusting the target-substrate distance, substrate temperature, laser energy and deposition duration, the nanorod size could be successfully controlled. Most importantly, the results indicated that the photoluminescence (PL) properties reflect the quality of the ZnO nanorods. These parameters can change the material’s structure from one-dimensional to two-dimensional however the laser energy and frequency affect the size and the height of the nanorods; the xygen pressure changes the density of the nanorods.

  6. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    International Nuclear Information System (INIS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-01-01

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution

  7. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  8. Quantum properties of spin polarized helium 3 optically oriented by a LNA laser

    International Nuclear Information System (INIS)

    Leduc, M.; Laloe, F.; Nacher, P.J.; Tastevin, G.; Daniels, J.M.; Betts, D.

    1986-01-01

    Spin polarized helium 3 (/sup 3/He increasing) and also atomic hydrogen (H decreasing) are systems exhibiting a number of unusual and interesting properties at low temperature. This is true even for dilute polarized gases in spite of the weakness of the nuclear magnetic interaction between atoms. The changes in the macroscopic properties of the gas with the nuclear polarization P are pure consequences of the indistinguishability of the particles and of the symmetrization principle in quantum mechanics. The transport properties of the gas, such as viscosity and thermal conductivity, have been calculated and found to be strongly dependent on P below a few kelvins. Spin transport in /sup 3/He increasing gives rise at low temperature to collective oscillatory modes: the transverse spin waves. Large changes are also expected with P in the case of more dense /sup 3/He fluids, such as an increase with P in the saturated vapor pressure. Optical pumping is a convenient technique for efficient polarization of the nuclear spins in /sup 3/He gas/sup 2/ making use of the 2/sup 3/S-2/sup 3/P atomic line at 1.08 μm. The arrival of cw tunable lasers in the near IR in the early 1980s gave a strong impulse to the buildup of experiments with a view to measuring quantum properties of /sup 3/He increasing at low temperature. Color center lasers (F/sup +//sub 2/ in NaF) provide P values up to 70%. They are now being replaced by more easy to handle LNA lasers which have given so far P in excess of 50% at room temperature. At low temperature, direct optical pumping of a /sup 3/He cell leads to poor P values; for that reason a different technique is used

  9. The effect of laser irradiation on electrical and structural properties of ZnO thin films

    Directory of Open Access Journals (Sweden)

    P Kameli

    2013-03-01

    Full Text Available  In this paper, ZnO thin film was prepared by sol-gel process on glass substrates. The deposited films were dried at 100 and 240 ˚C and then annealed at 300, 400 and 500 ˚C. The two-probe measurement showed that resistance of as-prepared films is very high. The KrF excimer (λ=248 nm laser irradiation with 1000 pulses, frequency of 1 Hz and 90 mJ/cm2 energy on surface of film resulted in the reduction of the films electrical resistance. X-ray diffraction (XRD patterns confirmed the improved hexagonal wurtzite structure of film, and AFM and FE-SEM analyses showed regular and spherical grain was formed on the surface. The particle size was increased from ~10 to ~30 nm after leaser irradiation. Generally, it was showed that electrical, structural and morphological properties of films improve considerably by laser irradiation.

  10. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  11. Laser grade CaF2 with controllable properties: growing conditions and structural imperfection

    International Nuclear Information System (INIS)

    Mouchovski, J T; Temelkov, K A; Vuchkov, N K; Sabotinov, N V

    2007-01-01

    Optical properties of CaF 2 , grown by a controlled Bridgman-Stockbarger technique, are studied by CuBr and SrBr 2 vapour lasers. Absorption losses are determined as a function of the grown crystal volume, the crystallization front (CF), and the real crystallization rate. It is found that the absorption losses are relatively independent of the transmitted wavelengths in a wide spectral range from the deep ultraviolet (DUV) to the middle infrared (MIR) spectral region and their minimum corresponds to CF positions within the upper half of the adiabatic furnace zone, where the CR reaches a constant value slightly higher than the speed of crucible movement. The crystal quality conforms to laser grade CaF 2 for the DUV, visible and MIR spectral regions and may be controlled efficiently by introducing an appropriate systematic correction in the furnace temperature field, which shifts the CF position

  12. Properties of grazing-incidence pulsed Ti:sapphire laser oscillator

    International Nuclear Information System (INIS)

    Tamura, Koji

    2008-03-01

    A pulsed operation of a grazing-incidence double-grating Ti:sapphire laser oscillator that consists of a gain medium, back mirror, and a pair of gratings, was studied. A stable single-longitudinal-mode operation was achievable. From the calculation of the optical path trajectories, it can be explained by the increased beam walk-off from the gain medium by the introduction of the second grating compared with the conventional single-grating grazing-incidence cavity geometry. The improved spectral property was also explained by the calculations of increased dispersion. The results indicate that the oscillator configuration was useful for the applications which require stable mode operation and narrow linewidth such as the high resolution spectroscopy or the laser isotope separation. (author)

  13. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting

    International Nuclear Information System (INIS)

    Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    2014-01-01

    Selective laser melting (SLM) is an additive manufacturing process in which functional, complex parts are produced by selectively melting consecutive layers of powder with a laser beam. This flexibility enables the exploration of a wide spectrum of possibilities in creating novel alloys or even metal–metal composites with unique microstructures. In this research, Ti6Al4V-ELI powder was mixed with 10 wt.% Mo powder. In contrast to the fully α′ microstructure of Ti6Al4V after SLM, the novel microstructure consists of a β titanium matrix with randomly dispersed pure Mo particles, as observed by light optical microscopy, scanning electron microscopy and X-ray diffraction. Most importantly, the solidification mechanism changes from planar to cellular mode. Microstructures after heat treatment indicate that the β phase is metastable and locate the β transus at ∼900 °C, and tensile properties are equal to or better than conventional β titanium alloys

  14. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  15. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment

    International Nuclear Information System (INIS)

    Bizi-Bandoki, P.; Benayoun, S.; Valette, S.; Beaugiraud, B.; Audouard, E.

    2011-01-01

    Topographic and wetting properties of AISI 316L stainless steel and Ti-6Al-V alloys were modified via linearly polarized femtosecond laser pulse irradiation. In order to induce a gradual evolution of the surface topography and wettability, four samples of each alloy were irradiated with different number of pulses. From the topographic point of view, a multi-scale morphology made of nano- and micro-periodic ripples was induced. The increase in the number of pulses led to the appearance of a third scale structure of waviness that is due to the laser scanning. The wettability of alloys was changed from a hydrophilic behavior to a hydrophobic one without lowering surface energies by chemical coatings. The apparent contact angle (CA) increased with increasing the number of pulses. A rise of about 50 deg. of the apparent CA of the Ti-6Al-V was noticed.

  16. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing

    International Nuclear Information System (INIS)

    Luo, Kai-yu; Lu, Jin-zhong; Zhang, Ling-feng; Zhong, Jun-wei; Guan, Hai-bing; Qian, Xiao-ming

    2010-01-01

    This paper described nanoindentation techniques for measuring thin films mechanical properties, including elastic modulus and nano-hardness. The effects of laser shock processing (LSP) on elastic modulus and nano-hardness of the sample manufactured by LY2 aluminum alloy were experimentally investigated by nanoindentation techniques. Transmission electron microscope (TEM) observations of the microstructures in different regions after LSP are carried out. Experimental results showed that the values of nano-hardness and elastic modulus in the laser-shocked region were obviously increased by 58.13% and 61.74% compared to those in the non-shocked region, respectively. The influences of LSP on microstructure and grain size of LY2 aluminum alloy were discussed, and the enhancement mechanism of LSP on nano-hardness and elastic modulus was also addressed.

  17. Applied biomechanics to evaluate the properties of laser beam treated orthopedic implants

    International Nuclear Information System (INIS)

    Pieretti, Eurico Felix

    2016-01-01

    Laser beam marking is used to ensure biomaterials’ identification and traceability. The texturing imparts greater adhesion to the surfaces of implantable medical devices. The aim of this work was to evaluate the surface behaviour of the austenitic stainless steel ABNT NBR ISO 5832-1 marked and textured by optical fiber laser beam using selected parameters, changing the pulse frequency; in face of its biomechanical behaviour, through tests of tensile strength, fatigue and wear; verify the localized corrosion susceptibility by electrochemical tests in a solution that simulates the body fluids; and analyze microstructural changes. The treatments performed altered the biomaterials roughness and their micro hardness as a function of the increase of the pulse frequency. The microstructure and chemical composition of the surfaces underwent changes that directly affected the passive layer of the stainless steels, triggering the corrosion process. This effect was evidenced by SVET, XPS and characterization of electronic properties of the passive film by the Mott-Schottky technique. These two types of laser treatments increased the surfaces' magnetic susceptibility. The parameters used for the marking and texturing did not induce a decrease in the cellular viability of the samples, as no cytotoxicity was showed even after prolonged incubation. This biomaterial was adequate on the biomechanical tests, since the laser treatments, under the conditions used, did not induce the formation of surface tensions of magnitude capable of leading the fatigue fracture, indicating infinite fatigue life; the region of fracture by tension could not be related to the laser marking. The wear volume decreased as a function of the increase in micro hardness produced by the increase of the pulse frequency in the texturing. The visual character of the markings and texturing was assured after the majority of the tests performed. (author)

  18. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    Science.gov (United States)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  19. Growth, thermal properties and laser operation of a novel disordered Yb:Ca3La2(BO3)4 laser crystal

    Science.gov (United States)

    Pan, Zhongben; Cai, Huaqiang; Huang, Hui; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-10-01

    A high quality disordered Yb:Ca3La2(BO3)4 laser crystal has been successfully grown by the Czochralski method. The complete set of anisotropic thermal properties were systematically measured for the first time. In addition, continuous-wave laser along the three crystallographic axis were obtained. Passively Q-switched by a Cr4+:YAG saturable absorber, the laser yielded an average output power of 0.47 W with a slope efficiency of 7.6% for the first time. The generated pulse energy, duration, and peak power were 94 μJ, 33 ns, and 2.85 KW, respectively. We believe that the reliability and stability of these lasers makes the disordered Yb:Ca3La2(BO3)4 crystal of considerable interest for future applications.

  20. Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid

    International Nuclear Information System (INIS)

    Resano-Garcia, A.; Battie, Y.; Koch, A.; En Naciri, A.; Chaoui, N.

    2015-01-01

    Silver nanoparticles were produced by nanosecond pulsed-laser ablation at 1064 nm of Ag in pure water. These experiments were performed using an alternative ablation cell design where a cylindrical shaped Ag target was horizontally irradiated, while the liquid was stirred by a stir rod coaxially arranged to the target. The repeatability of the generated colloids properties (extinction and size distribution) is assessed by statistical tools. The colloids properties prepared under stationary liquid are found to be unpredictable, while they are highly repeatable at high stirring speed. At the same time, electronic microscopy examinations of the irradiated Ag targets revealed that the width of the laser-machined grooves exponentially decays in stationary liquid and almost linearly under high stirring speed as the ablation proceeds. In the latter case, the decay rate was found to be constant from one experiment to the other, while it was not repeatable stationary liquid. We show that the decay of the groove width is due to an attenuation of the laser energy reaching the target surface due to the formation of a more or less dense NPs layer in front of the target as the ablation proceeds. Using the ablation time-dependence of the groove width, we can quantify the attenuation factor of the laser energy with exposure time. Finally, the relationship between the laser energy attenuation, stirring speed, and repeatability of the colloids properties is interpreted and discussed in terms of mass transfer

  1. Microstructure and mechanical properties of selective laser melted Ti6Al4V alloy

    Science.gov (United States)

    Losertová, M.; Kubeš, V.

    2017-11-01

    The present work was focused on the properties of porous Ti6Al4V specimens processed by selective laser melting (SLM) and tested in tension and compression before and after heat treatment. The SLM samples were annealed at 955 °C, water quenched and aged at 600 °C with following air cooling. The values of the mechanical tests showed that the samples exhibited high mechanical properties. The anisotropy of tensile and compressive strength was observed, which was related to the occurrence of voids. The plastic properties of specimens were improved by means of the heat treatment that led to the transformation of martensitic to lamellar structure composed of α + β phases. The microstructure of SLM samples were evaluated before and after the heat treatment. The brittle nature of failures of non-heat treated samples can be explained by synergy of martensite presence, microcracks and residual stresses produced by SLM.

  2. Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels

    International Nuclear Information System (INIS)

    Mujica, L.; Weber, S.; Pinto, H.; Thomy, C.; Vollertsen, F.

    2010-01-01

    With the aim of investigating a laser-welded dissimilar joint of TWIP and TRIP steel sheets, the microstructure was characterized by means of OM, SEM, and EBSD to differentiate the fusion zone, heat-affected zone, and the base material. OIM was used to differentiate between ferritic, bainitic, and martensitic structures. Compositions were measured by means of optical emission spectrometry and EDX to evaluate the effect of manganese segregation. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joint. Residual stresses and XRD phase quantification were used to characterize the weld. Grain coarsening and martensitic areas were found in the fusion zone, and they had significant effects on the mechanical properties of the weld. The heat-affected zone of the TRIP steel and the corresponding base material showed considerable differences in the microstructure and properties.

  3. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.

    Science.gov (United States)

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  4. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA. P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  5. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder

    International Nuclear Information System (INIS)

    Zhang, Baicheng; Dembinski, Lucas; Coddet, Christian

    2013-01-01

    In this work, a systematic analysis of the main parameters for the selective laser melting (SLM) of a commercial stainless steel 316L powder was conducted to improve the mechanical properties and dimensional accuracy of the fabricated parts. First, the effects of the processing parameters, such as the laser beam scanning velocity, laser power, substrate condition and thickness of the powder layer, on the formation of single tracks for achieving a continuous melting and densification of the material were analysed. Then, the influence of the environmental conditions (gas nature) and of the preheating temperature on the density and dimensional accuracy of the parts was considered. The microstructural features of the SLM SS 316L parts were carefully observed to elucidate the melting-solidification mechanism and the thermal history, which are the basis of the manufacturing process. Finally, the mechanical properties of the corresponding material were also determined

  6. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  7. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  8. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Huang, Tzu-Teng

    2013-01-01

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm −2 ) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm −2 ) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm 2 had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10 3 Ω cm) was lower than that of TA thin films (1.39 × 10 4 Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films

  9. Properties of laser-crystallized polycrystalline SiGe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, Moshe

    2008-06-06

    In this thesis, structural, electrical, and optical properties of laser-crystallized polycrystalline Si{sub 1-x}Ge{sub x} thin films with 0Laser crystallization of amorphous Si{sub 1-x}Ge{sub x} thin films with 0.3laser pulse exhibit a ripple structure that evolves into a hillock structure when the samples are irradiated with additional laser pulses. - It is maintained that the main mechanism behind the structure formation is an instability of the propagating solid-liquid interface during solidification. - The study of defects with electron spin resonance showed that laser-crystallized poly-Si{sub 1-x}Ge{sub x} thin films with 0laser-crystallized poly-SiGe thin films exhibited mostly a broad atypical electric dipole spin resonance (EDSR) signal that was accompanied by a nearly temperature-independent electrical conductivity in the range 20-100 K. - Most likely, the origin of the grain boundary conductance is due to dangling-bond defects and not impurities. Metallic-like conductance occurs when the dangling-bond defect density is above a critical value of about N{sub C} {approx} 10{sup 18} cm{sup -3}. - Laser crystallized poly-Si{sub 1-x}Ge{sub x} thin films with x{>=}0.5 exhibit optical absorption behavior that is characteristic for disordered SiGe, implying that the absorption occurs primarily at the grain boundaries. A sub-band-gap absorption peak was found for

  10. Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy

    Directory of Open Access Journals (Sweden)

    Hwang ES

    2017-10-01

    Full Text Available Eileen S Hwang,1 Brian C Stagg,1 Russell Swan,1 Carlton R Fenzl,1 Molly McFadden,2 Valliammai Muthappan,1 Luis Santiago-Caban,1 Mark D Mifflin,1 Majid Moshirfar1,3 1Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, 2Department of Internal Medicine, University of Utah, Salt Lake City, 3HDR Research Center, Hoopes Vision, Draper, UT, USA Background: The purpose of this study was to evaluate the effects of laser-assisted in situ keratomileusis (LASIK and photorefractive keratectomy (PRK on corneal biomechanical properties.Methods: We used the ocular response analyzer to measure corneal hysteresis (CH and corneal resistance factor (CRF before and after refractive surgery.Results: In all, 230 eyes underwent LASIK and 115 eyes underwent PRK without mitomycin C (MMC. Both procedures decreased CH and CRF from baseline. When MMC was used after PRK in 20 eyes, it resulted in lower corneal biomechanical properties at 3 months when compared to the other procedures, but all three procedures had similar values at 12 months.Conclusion: Significant but similar decreases in corneal biomechanical properties after LASIK, PRK without MMC, and PRK with MMC were noted. Keywords: corneal biomechanics, photorefractive keratectomy, laser-assisted in situ keratomileusis, corneal hysteresis, corneal resistance factor, mitomycin C

  11. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    Science.gov (United States)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  12. Surface modifications induced by pulsed-laser texturing—Influence of laser impact on the surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Costil, S., E-mail: sophie.costil@utbm.fr [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Lamraoui, A.; Langlade, C. [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Heintz, O.; Oltra, R. [ICB, Université de Bourgogne, 21078 Dijon Cedex (France)

    2014-01-01

    Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.

  13. Ultrafast switching in wetting properties of TiO2/YSZ/Si(001) epitaxial heterostructures induced by laser irradiation

    International Nuclear Information System (INIS)

    Bayati, M. R.; Molaei, R.; Narayan, J.; Joshi, S.; Narayan, R. J.

    2013-01-01

    We have demonstrated dark hydrophilicity of single crystalline rutile TiO 2 (100) thin films, in which rapid switching from a hydrophobic to a hydrophilic surface was achieved using nanosecond excimer laser irradiation. The TiO 2 /YSZ/Si(001) single crystalline heterostructures were grown by pulsed laser deposition and were subsequently irradiated by a single pulse of a KrF excimer laser at several energies. The wettability of water on the surfaces of the samples was evaluated. The samples were hydrophobic prior to laser annealing and turned hydrophilic after laser annealing. Superhydrophilic surfaces were obtained at higher laser energy densities (e.g., 0.32 J.cm −2 ). The stoichiometries of the surface regions of the samples before and after laser annealing were examined using XPS. The results revealed the formation of oxygen vacancies on the surface, which are surmised to be responsible for the observed superhydrophilic behavior. According to the AFM images, surface smoothening was greater in films that were annealed at higher laser energy densities. The samples exhibited hydrophobic behavior after being placed in ambient atmosphere. The origin of laser induced wetting behavior was qualitatively understood to stem from an increase of point defects near the surface, which lowered the film/water interfacial energy. This type of rapid hydrophobic/hydrophilic switching may be used to facilitate fabrication of electronic and photonic devices with novel properties.

  14. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  15. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-11-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters.

  16. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    Science.gov (United States)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  17. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    International Nuclear Information System (INIS)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-01-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters

  18. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    International Nuclear Information System (INIS)

    Zenou, M; Kotler, Z; Sa’ar, A

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures. (paper)

  19. Laser patterning: A new approach to measure local magneto-transport properties in multifilamentary superconducting tapes

    International Nuclear Information System (INIS)

    Sanchez Valdes, C.F.; Perez-Penichet, C.; Noda, C.; Arronte, M.; Batista-Leyva, A.J.; Haugen, O.; Johansen, T.H.; Han, Z.; Altshuler, E.

    2007-01-01

    The determination of inter- and intra-filament characteristics in superconducting composites such as BSCCO-Ag tapes is of great importance for material evaluation towards applications. Most attempts to separate the two contributions have relied on indirect methods based on magnetic measurements such as SQUID or magneto-optic imaging techniques. Here we show that laser patterning of superconducting BSCCO-Ag tapes constitutes a simple approach to measure local transport properties in a direct way, even able to separate inter- and intra-filament contributions to the overall transport behavior of the sample

  20. Research on Mechanical Properties of Concrete Constructs Based on Terrestrial Laser Scanning Measurement

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2016-05-01

    Full Text Available Terrestrial laser scanning (TLS technology is broadly accepted as a structural health monitoring device for reinforced concrete (RC composite structures. Both experiments and numerical analysis are considered. In this submit, measurements were conducted for the composite concrete beams. The emphasis in numerical simulation is given on finite element methods (FEM which is corrected by the response surface methodology (RSM. Aspects considered are effects of material parameters and variation in geometry. This paper describes our recent progress on FEM modeling of damages in concrete composite structures based on the TLS measurement. We also focus on the research about mechanical properties of concrete constructs here.

  1. Manipulative Properties of Asymmetric Double Quantum Dots via Laser and Gate Voltage

    International Nuclear Information System (INIS)

    Shun-Cai, Zhao; Zheng-Dong, Liu

    2009-01-01

    We present a density matrix approach for the theoretical description of an asymmetric double quantum dot (QD) system. The results show that the properties of gain, absorption and dispersion of the double QD system, the population of the state with one hole in one dot and an electron in another dot transferred by tunneling can be manipulated by a laser pulse or gate voltage. Our scheme may demonstrate the possibility of electro-optical manipulation of quantum systems. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  2. Effect of laser cutting on microstructure and on magnetic properties of grain non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Belhadj, A. E-mail: ahmed@metallur.rug.ac.be; Baudouin, P.; Breaban, F.; Deffontaine, A.; Dewulf, M.; Houbaert, Y

    2003-01-01

    Non-oriented electrical steels have been cut with two different techniques, the laser cutting and the mechanical cutting. In order to investigate the effect of the first technique on magnetic properties, different cutting parameters have been tested. Despite this, the best magnetic properties have been obtained after mechanical cutting. The laser cutting causes a coercive field increase and a permeability drop. Due to thermal effect, internal stress seems to be the main process drawback. No correlation between the heat affected zone and the magnetic properties has been found00.

  3. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    Science.gov (United States)

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  4. Thermophysical property measurement at high temperatures by laser-produced plasmas

    International Nuclear Information System (INIS)

    Kim, Y.W.

    1993-01-01

    Excitation by a high-power laser pulse of a material surface generates a sequence of plasma, fluid flow, and acoustic events. These are well separated in time, and their detection and analysis can lead to determination of material properties of the condensed phase target. We have developed a new methodology for real-time determination of molten metal composition by time-resolved spectroscopy of laser-produced plasmas (LPP). If the laser pulse is shaped in such a way that the movement of the bulk surface due to evaporation is kept in pace with the thermal diffusion front advancing into the interior of the target, the LPP plume becomes representative of the bulk in elemental composition. In addition, the mass loss due to LPP ablation is very well correlated with the thermal diffusivity of the target matter. For several elemental solid specimens, we show that the product of the ablation thickness and heat of formation is proportional to the thermal diffusivity per unit molecular weight. Such measurements can be extended to molten metal specimens if the mass loss by ablation, density, heat of formation, and molecular weight can be determined simultaneously. The results from the solid specimen and the progress with a levitation-assisted molten metal experiment are presented

  5. Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel

    Directory of Open Access Journals (Sweden)

    Wang Wen-Quan

    2018-01-01

    Full Text Available Fiber laser welding of cold rolled TRIP steel (transformation Induced Plasticity steel sheet with tensile strength of 820MPa and thickness of 1.4mm was carried out using shielding gases Ar and He, respectively. For the same laser power and welding speed, the effects of different shielding gases on penetration and bead section morphologies were investigated. The microstructures and properties of the TRIP steel joints were also studied. The investigation showed that higher penetration and lower porosity could be obtained under shielding gas He using the same laser power and welding speed. The microstructures of the TRIP joint mainly included martensite and retained austenite. But the joint microhardness and tensile strength were higher under the shielding gas He. The tensile strength of the welded joint perpendicular to the weld line was equal to that of the base metal. But the tensile strength of the joint parallel with the weld line was higher than that of the base metal. The plasticity and formability of the welded joint were impaired due to the formation of martensite in the weld metal.

  6. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  7. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  8. THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-03-01

    Full Text Available In this work, the influence of processing conditions on the microstructure and abrasive wear behavior of a NiCrBSi laser clad coating is analyzed. The powder was applied onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds providing 0.7 – 1.2 mm thick coatings. The microstructure of coatings was analyzed by scanning electron microscopy (SEM. Energy-dispersive X-ray spectroscopy (EDX was applied for chemical analysis and tribological properties of coatings were evaluated by pin-on-disc wear test. EDX analysis reveals the influence of cladding speed on dilution of iron from the substrate into the coating. Higher iron content matches with lower hardness and wear resistance of appropriate coatings. Obtained results indicate that laser cladding is suitable technique for manufacturing NiCrBSi abrasive wear coatings and that it is possible to find out proper parameters in order to optimize tribological behavior of these coatings.

  9. A study on electric properties for pulse laser annealing of ITO film after wet etching

    International Nuclear Information System (INIS)

    Lee, C.J.; Lin, H.K.; Li, C.H.; Chen, L.X.; Lee, C.C.; Wu, C.W.; Huang, J.C.

    2012-01-01

    The electric properties of ITO thin film after UV or IR laser annealing and wet etching was analyzed via grazing incidence in-plane X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectra and residual stress measurement. The laser annealing process readily induced microcracks or quasi-microcracks on the ITO thin film due to the residual tension stress of crystalline phase transformation between irradiated and non-irradiated areas, and these defects then became the preferred sites for a higher etching rate, resulting in discontinuities in the ITO thin film after the wet etching process. The discontinuities in the residual ITO thin film obstruct carrier transmission and further result in electric failure. - Highlights: ► The laser annealing process induces microcracks in InSnO 2 thin films. ► The defects result in higher local etching rate during wet etching. ► These process defects originate from residual tension stress. ► Decreasing the thermal shock is suggested in order to reduce these process defects.

  10. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  11. High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening

    International Nuclear Information System (INIS)

    Ren, N.F.; Yang, H.M.; Yuan, S.Q.; Wang, Y.; Tang, S.X.; Zheng, L.M.; Ren, X.D.; Dai, F.Z.

    2014-01-01

    Highlights: • The properties of 00C r 12 were improved by laser shock processing. • A deep layer of residual compressive stresses was introduced. • Fatigue life was enhanced about 58% at elevated temperature up to 600 °C. • The pinning effect is the reason of prolonging fatigue life at high temperature. - Abstract: Laser shock peening was carried out to reveal the effects on ASTM: 410L 00C r 12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin 2 ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature

  12. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  13. Spectroscopic properties and laser performance at 1,066 nm of a new laser crystal Nd:GdTaO4

    Science.gov (United States)

    Peng, Fang; Yang, Huajun; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2015-03-01

    A new laser medium Nd3+:GdTaO4 single crystal with high optical quality was grown successfully by the Czochralski method, and its high-efficiency laser operation at 1,066 nm was demonstrated for the first time. The absorption cross section of the crystal at 808 nm is 5.098 × 10-20 cm2, and the full width at half maximum of this absorption band is about 6 nm. Spectral properties are investigated by Judd-Ofelt theory. The stimulated emission cross section at 1,066 nm is 3.9 × 10-19 cm2, and the fluorescence lifetime of 4F3/2 level is 178.4 μs. A diode end-pumped Nd:GdTaO4 laser at 1,066 nm with the maximum output power of 2.5 W is achieved in the continuous-wave mode. The optical-to-optical conversion efficiency and slope efficiency are 34.6 and 36 %, respectively. In addition, the fluorescence branching ratio of 4F3/2 → 4I9/2 transition reaches 44.4 %, indicating that Nd:GdTaO4 may be an efficient laser medium at 920 nm. All the results demonstrate that Nd:GdTaO4 crystal is a good candidate for laser diode-pumped laser material.

  14. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling

    Directory of Open Access Journals (Sweden)

    Biagio Palumbo

    2017-02-01

    Full Text Available A statistical approach for the characterization of Additive Manufacturing (AM processes is presented in this paper. Design of Experiments (DOE and ANalysis of VAriance (ANOVA, both based on Nested Effects Modeling (NEM technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS. Due to the wide industrial interest in AM technologies in many different fields, it is extremely important to ensure high parts performances and productivity. For this aim, the present paper focuses on the evaluation of tensile properties of specimens built with different laser exposure strategies. Two optimal laser parameters settings, in terms of both process quality (part performances and productivity (part build rate, are identified.

  15. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling.

    Science.gov (United States)

    Palumbo, Biagio; Del Re, Francesco; Martorelli, Massimo; Lanzotti, Antonio; Corrado, Pasquale

    2017-02-08

    A statistical approach for the characterization of Additive Manufacturing (AM) processes is presented in this paper. Design of Experiments (DOE) and ANalysis of VAriance (ANOVA), both based on Nested Effects Modeling (NEM) technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS). Due to the wide industrial interest in AM technologies in many different fields, it is extremely important to ensure high parts performances and productivity. For this aim, the present paper focuses on the evaluation of tensile properties of specimens built with different laser exposure strategies. Two optimal laser parameters settings, in terms of both process quality (part performances) and productivity (part build rate), are identified.

  16. TC17 titanium alloy laser melting deposition repair process and properties

    Science.gov (United States)

    Liu, Qi; Wang, Yudai; Zheng, Hang; Tang, Kang; Li, Huaixue; Gong, Shuili

    2016-08-01

    Due to the high manufacturing cost of titanium compressor blisks, aero engine repairing process research has important engineering significance and economic value. TC17 titanium alloy is a rich β stable element dual α+β phase alloy whose nominal composition is Ti-5Al-2Sn-2Zr-4Mo-4Cr. It has high mechanical strength, good fracture toughness, high hardenability and a wide forging-temperature range. Through a surface response experiment with different laser powers, scanning speeds and powder feeding speeds, the coaxial powder feeding laser melting deposition repair process is studied for the surface circular groove defects. In this paper, the tensile properties, relative density, microhardness, elemental composition, internal defects and microstructure of the laser-repaired TC17 forging plate are analyzed. The results show that the laser melting deposition process could realize the form restoration of groove defect; tensile strength and elongation could reach 1100 MPa and 10%, which could reach 91-98% that of original TC17 wrought material; with the optimal parameters (1000 W-25 V-8 mm/s), the microhardness of the additive zone, the heat-affected zone and base material is evenly distributed at 370-390 HV500. The element content difference between the additive zone and base material is less than ±0.15%. Due to the existence of the pores 10 μm in diameter, the relative density could reach 99%, which is mainly inversely proportional to the powder feeding speed. The repaired zone is typically columnar and dendrite crystal, and the 0.5-1.5 mm-deep heat-affected zone in the groove interface is coarse equiaxial crystal.

  17. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  18. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  19. Spectroscopic and thermal properties of uranium relevant to atomic schemes for laser isotope separation

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Pandey, P.L.

    1980-01-01

    Spectroscopic data on uranium atom and thermal properties of uranium relevant to atomic schemes for laser isotope separation have been presented in this report. All the relevant spectroscopic data reported in literature so far, as well as some other parameters like photo-absorption cross sections, branching ratios, effects of magnetic and electric fields, evaluated using the existing data, have been presented here. Among the thermal properties, parameters like vapour pressure and number densities for U/Liquid U, U/URe 2 and U/UP systems, partition function, percentage population distribution in energy levels, thermal ionisation and velocities of uranium atom have been presented at different temperatures. Different possible collision processes are mentioned and cross-sections of U-U + charge-exchange and U + + e radiative recombination processes have been also evaluated. (author)

  20. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  1. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  2. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  3. MECHANICAL PROPERTIES OF CR-DLC LAYERS PREPARED BY HYBRID LASER TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Petr Písařík

    2017-06-01

    Full Text Available Diamond like carbon (DLC layers have excellent biological properties for use in medicine for coating implants, but poor adhesion to biomedical alloys. The adhesion can be improved by doping the DLC layer by chromium, as described in this article. Chromium doped diamond like carbon layers (Cr‑DLC were deposited by hybrid deposition system using KrF excimer laser and magnetron sputtering. Carbon and chromium contents were determined by wavelength dispersive X-ray spectroscopy. Mechanical properties were studied by nanoindentation. Hardness and reduced Young's modulus reached 31.2 GPa and 271.5 GPa, respectively. Films adhesion was determined by scratch test and reached 19 N for titanium substrates. Good adhesion to biomedical alloys and high DLC hardness will help to progress in the field of implantology.

  4. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  5. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  6. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties

    Science.gov (United States)

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-01

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  7. New materials properties achievable by ion implantation doping and laser processing

    International Nuclear Information System (INIS)

    Appleton, B.R.; Larson, B.C.; White, C.W.; Narayan, J.; Wilson, S.R.; Pronko, P.P.

    1978-12-01

    It is well established that ion implantation techniques can be used to introduce selected impurities into solids in a controlled, accurate and often unique manner. Recent experiments have shown that pulsed laser processing of materials can lead to surface melting, dopant redistribution and crystal regrowth, all on extremely short time scales (approx. < 1 μ sec.). These two processes can be combined to achieve properties not possible with normal materials preparation techniques, or to alter materials properties in a more efficient manner. Investigations are presented utilizing the combined techniques of positive ion scattering-channeling, x-ray scattering and transmission electron microscopy which show that supersaturated alloys can be formed in the surface regions (approx. 1 μm) of ion implanted, laser annealed silicon single crystals, and that these surfaces undergo a unique one dimensional lattice contraction or expansion depending on the dopant species. The resultant surface has a lattice parameter significantly different from the bulk, is free from any damage defects, has essentially all the dopant atoms in substitutional sites and the impurity concentrations can exceed solid solubility limits by more than an order of magnitude

  8. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  9. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    Science.gov (United States)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  10. THE INVESTIGATION OF INFLUENCE OF LASER RADIATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF COMPOSITE ELECTROLYTIC NICKEL COATING

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovsky

    2013-09-01

    Full Text Available Purpose. Investigation of laser radiation effect on the structure and mechanical properties of electrodeposited nickel composite coatings containing ultrafine diamonds. Methodology. Electrodeposition of nickel films was carried out with the addition of a standard solution of ultrafine diamonds (UFD on laser-electrolytic installation, built on the basis of the gas-discharge CO2 laser. Mechanical testing the durability of coatings were performed on a machine with reciprocating samples in conditions of dry friction against steel. The spectral microanalysis of the elemental composition of the film - substrate was performed on REMMA-102-02. Findings. Research of nickel coatings and modified ultrafine diamond electrodeposited under external stimulation laser demonstrated the dependence of the structure and mechanical properties of composite electrolytic coating (CEC, and the qualitative and quantitative distribution of nanodiamond coprecipitated from an electrodeposition method. Originality. The effect of laser light on the process of co-precipitation of the UFD, which increases the micro-hardness and wear resistance of electrolytic nickel coatings was determined. Practical value. The test method of laser-stimulated composite electrolytic nickel electrodeposition coating is an effective method of local increase in wear resistance of metal coatings, which provides durability save performance (functional properties of the surface.

  11. The Effect of Laser Surface Treatment on Structure and Mechanical Properties Aluminium Alloy ENAC-AlMg9

    Directory of Open Access Journals (Sweden)

    Pakieła W.

    2016-09-01

    Full Text Available In this work, the influence of a high power diode laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this study was to improve the mechanical and tribological properties of the surface layer of the aluminium alloy by simultaneously melting and feeding tungsten carbide particles into the molten pool. During the process was used high-power diode laser HPDL. In order to remelt the aluminium alloy surface the HPDL laser of 1.8, 2.0 and 2.2 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 cm/s. In order to protect the liquid metal during laser treatment was used argon. As a base material was used aluminium alloy ENAC-AlMg9. To improve the surface mechanical and wear properties of the applied aluminium alloy was used biphasic tungsten carbide WC/W2C. The size of alloying powder was in the range 110-210 µm. The ceramic powder was introduced in the remelting zone by a gravity feeder at a constant rate of 8 g/m.

  12. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Lillevang, Lasse H. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Götte, Nadine; Zielinski, Bastian [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Balling, Peter [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Senftleben, Arne [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Baumert, Thomas, E-mail: baumert@physik.uni-kassel.de [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany)

    2016-06-30

    Highlights: • Temporally asymmetric shaped femtosecond laser pulses lead to excitation over smaller area and larger depth in water. • Transient optical properties are measured radially resolved by spectral interference in an imaging geometry. • Radially resolved spectral interference shows indications of nonlinear propagation effects at high fluences. - Abstract: In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  13. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  14. Laser-Beam Welding Impact on the Deformation Properties of Stainless Steels When Used for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Evin Emil

    2016-09-01

    Full Text Available Materials other than standard and advanced high strength steels are remarkable for the thin-walled structures of the car-body in recent years in order to safety enhancement, weight and emission reduction, corrosion resistance improvement. Thus, there are presented in the paper the deformation properties of laser welded austenitic AISI 304 and ferritic AISI 430 stainless steels compared to these one measured for the high strength low alloyed steel H220PD. The properties were researched by tensile test and 3-point bending test with fixed ends on specimens made of basic material and laser welded one. The specimens were welded by solid state fiber laser YLS-5000 in longitudinal direction (the load direction. The deformation properties such as strength, stiffness and deformation work were evaluated and compared. The strength and stiffness were calculated from tensile test results and the deformation work was calculated from both, tensile test and 3-point bending test results. There has been found only minor effect of laser welding to the deformation properties for high strength low alloyed steel H220PD and austenitic stainless steel AISI 304. Otherwise, the laser welding strongly influenced the deformation work of the ferritic stainless steel AISI 430 as well as the elongation at tensile test.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    Science.gov (United States)

    Bagratashvili, Viktor N.; Bagratashvili, N. V.; Gapontsev, V. P.; Makhmutova, G. Sh; Minaev, V. P.; Omel'chenko, A. I.; Samartsev, I. E.; Sviridov, A. P.; Sobol', E. N.; Tsypina, S. I.

    2001-06-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues.

  16. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring

    Science.gov (United States)

    Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing

    2018-02-01

    The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.

  17. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting

    Science.gov (United States)

    Zhang, David Z.; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-01-01

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress–strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength. PMID:29510492

  18. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting.

    Science.gov (United States)

    Liu, Fei; Zhang, David Z; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-03-03

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress-strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength.

  19. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  20. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zeng [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Key Lab. of D& A for Metal-Functional Materials, Shanghai 201804 (China); Wang, Lianfeng [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Aerospace Equipments Manufacturer, Shanghai 200240 (China); Jia, Min [Shanghai Aircraft Manufacturing Co., Ltd, Shanghai 200436 (China); Cheng, Lingyu [Shanghai Aerospace Equipments Manufacturer, Shanghai 200240 (China); Yan, Biao, E-mail: 84016@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Shanghai Key Lab. of D& A for Metal-Functional Materials, Shanghai 201804 (China)

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO{sub 3}) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO{sub 3} particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO{sub 3} precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320–722 MPa. The microhardness and elastic modulus are around 250 HV and 215 GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO{sub 3} composites can be a potential biomedical metallic materials in the medical field. - Highlights: • 316L SS/CaSiO{sub 3} composites were fabricated by selective laser melting. • Microstructure, mechanical properties, corrosion resistance of samples was studied. • Composites is a ductile material and mixed mode of ductile and brittle fracture. • Composites is a potential biomedical metallic materials in the medical field.

  1. Femtosecond laser effect on the self-sealing properties of the corneal incision of various lengths and profile (experimental trial

    Directory of Open Access Journals (Sweden)

    Yulduz Shavkatovna Nizametdinova

    2015-06-01

    Full Text Available An experimental investigation was carried out to study self-sealing properties of corneal incisions of different profile and length carried out with femtosecond laser Victus (Technolas Perfect Vision/Bausch&Lomb. Using femtosecond laser for this purpose allows creating corneal incisions of high precision and predictability. Reproducibility and standardization of the incision profile and length are an advantage of this technology. Obtained results showed that single-profile incisions are less stable and safe when compared to multi-profile ones. It was noted that incision length increase promotes its self-sealing properties.

  2. Optimization of the Laser Properties of Polymer Films Doped with N,N´-Bis(3-methylphenyl-N,N´-diphenylbenzidine

    Directory of Open Access Journals (Sweden)

    María A. Díaz-García

    2009-09-01

    Full Text Available This review compiles the work performed in the field of organic solid-state lasers with the hole-transporting organic molecule N,N´-bis(3-methylphenyl-N,N´-diphenylbenzidine system (TPD, in view of improving active laser material properties. The optimization of the amplified spontaneous emission characteristics, i.e., threshold, linewidth, emission wavelength and photostability, of polystyrene films doped with TPD in waveguide configuration has been achieved by investigating the influence of several materials parameters such as film thickness and TPD concentration. In addition, the influence in the emission properties of the inclusion of a second-order distributed feedback grating in the substrate is discussed.

  3. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    International Nuclear Information System (INIS)

    Zhao, Yanhua; Sun, Jie; Li, Jianfeng

    2014-01-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La 2 O 3 mixed powder. The effect of La 2 O 3 on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La 2 O 3 on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La 2 O 3 content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La 2 O 3 are improved significantly; and (c) the machining vibrations of laser cladding layer with La 2 O 3 are obviously reduced and the chatter is effectively avoided occurring

  4. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanhua, E-mail: zhaoyanhua_007@163.com [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Sun, Jie, E-mail: sunjie@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Li, Jianfeng [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-12-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La{sub 2}O{sub 3} mixed powder. The effect of La{sub 2}O{sub 3} on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La{sub 2}O{sub 3} on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La{sub 2}O{sub 3} content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La{sub 2}O{sub 3} are improved significantly; and (c) the machining vibrations of laser cladding layer with La{sub 2}O{sub 3} are obviously reduced and the chatter is effectively avoided occurring.

  5. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  6. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  7. Self-focusing, self modulation and stability properties of laser beam propagating in plasma: A variational approach

    International Nuclear Information System (INIS)

    Kaur, Ravinder; Gill, Tarsem Singh; Mahajan, Ranju

    2010-01-01

    Laboratory as well as Particle in cell (PIC) simulation experiments reveal the strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. A Lagrangian for the problem is set up and assuming a trial Gaussian profile, we solve the reduced Lagrangian problem for beam width and curvature. Besides self-focusing and self-modulation of laser beam, we observe that stability properties of such plasma system are studied about equilibrium values using this variational approach. We obtained an eigen value equation, which is cubic in nature and investigated the criterion for stability using Hurwitz conditions for laser beam plasma system.

  8. Optical and electronic properties of HWCVD and PECVD silicon films irradiated using excimer and Nd:Yag lasers

    International Nuclear Information System (INIS)

    Shaikh, M.Z.; O'Neill, K.A.; Anthony, S.; Persheyev, S.K.; Rose, M.J.

    2006-01-01

    Thin silicon film samples were deposited using HWCVD and PECVD techniques to study the influence of laser annealing on their optical and electronic properties. Samples were annealed in air using a XeCl excimer and Nd:Yag lasers. Excimer laser annealing (ELA) at 50 to 222 mJ/cm 2 increased conductivity in PECVD films by 2 to 3 orders of magnitude and in HWCVD films by 1 to 2 orders of magnitude. ELA was also seen to decrease the optical gap in PECVD films by 0.5 eV and HWCVD films by 0.15 eV. Silicon-oxygen bond content was higher in as-deposited HWCVD films than PECVD films. Hydrogen content (at.%) in PECVD films was higher than HWCVD for higher H dilution ratios. A Nd:Yag laser 3-beam interference pattern was used to produce a periodic array of crystals in both PECVD and HWCVD films

  9. Spectral properties of a broad-area diode laser with off-axis external-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    Spectral properties, both the optical spectrum and the intensity noise spectrum, of a broad-area diode laser with off-axis external-cavity feedback are presented. We show that the optical spectrum of the diode laser system is shifted to longer wavelengths due to the external-cavity feedback....... The intensity noise spectrum of the diode laser shows that the intensity noise is increased strongly by the external-cavity feedback. External-cavity modes are excited in the external cavity even in the off-axis configuration. The peak spacing of the intensity noise spectrum shows that single roundtrip external......-cavity modes are excited. We believe that the four-wave mixing process in the broad-area diode laser is responsible for the establishment of the external-cavity mode....

  10. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    Directory of Open Access Journals (Sweden)

    Katarzyna Grochowska

    2014-11-01

    Full Text Available A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs which have a size distribution (80 ± 42 nm and self-organization characterized by a short-distance order (length scale ≈140 nm. For the NP shapes produced, an observably broader tuning range (of about 150 nm of the surface plasmon resonance (SPR band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.

  11. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  12. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    Science.gov (United States)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  13. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  14. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunming; Cai, Yuanzheng; Hu, Chongjing; Zhang, Xiong; Yan, Fei; Hu, Xiyuan [Huazhong University of Science and Technology, Wuhan (China)

    2017-05-15

    The experimental laser welding of GH909 alloy was conducted in this study. The morphology, microstructure, and mechanical properties of laser-welded joints were analyzed by scanning electron microscopy, energy diffraction spectroscopy, and other techniques. Results revealed that the microstructure of the welded joints mainly consisted of tiny cellular structures, dendritic structures, and equiaxed crystals. Pores appeared in the interdendritic regions because of the insufficient local feeding of molten metal during solidification. Nb segregation in the heat-affected zone caused liquation cracking, whereas C segregation further induced the formation of carbide precipitates along the grain boundaries during the welding thermal cycle. The instability of the keyhole significantly promoted the escape of the metal vapor/plasma from the hole; as a result, porosity defects formed in the weld. The average tensile strength of the test joints was 756 MPa, which is 93.1 % of that of the base metal. The average microhardness of the weld zone (250 HV) was higher than that of the GH909 alloy substrate (208 HV), peaking at 267 HV. Microcracks appeared along the grain boundaries, proving that the grain boundaries were the weakest areas in the joint.

  15. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao; Song, Bo, E-mail: bosong@hust.edu.cn; Fan, Wenrui; Zhang, Yuanjie; Shi, Yusheng

    2016-04-25

    Carbon nanotubes/AlSi10Mg composites has drawn lots of attention in structural engineering and functional device applications due to its extraordinary high elastic modulus and mechanical strength as well as excellent electrical and thermal conductivities. In this study, the CNTs/AlSi10Mg composites was firstly prepared and then processed by selective laser melting. The powder preparation, SLM process, and microstructure evolution, properties were clarified. The results showed that CNTs were decomposed due to the direct interaction with the laser beam. The SLMed composites displayed a similar microstructure to that of SLMed AlSi10Mg. The common brittleness phase Al{sub 4}C{sub 3} didn't form, and the carbon dispersion strengthening was observed. The electrical resistivity of the composites was reduced significantly and the hardness was improved. - Highlights: • Carbon nanotubes/AlSi10Mg powder were prepared by slurry ball milling process. • Carbon nanotubes/AlSi10Mg composites were firstly prepared by SLM. • The electrical resistivity of the composites was significantly reduced and hardness was improved.

  16. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    Science.gov (United States)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  17. Strain dependent magnetic properties of LSMO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Prajapat, C.L.; Gupta, N.; Singh, M.R.; Mishra, P.K.; Gupta, S.K.; Ravikumar, G.; Bhattacharya, D.; Singh, Surendra; Basu, S.; Roul, B.K.

    2014-01-01

    Perovskite manganites exhibiting colossal magnetoresistance (CMR) are ideal candidates for growth of epitaxial multilayers with oxide high temperature superconductors owing to their structural similarity and comparable growth conditions. They are widely employed in studies on superconductor/ferromagnet-superlattices. Among the manganites, La 2/3 Sr 1/3 MnO 3 (LSMO) has one of the highest FM transition temperatures (above 300K). Magnetic properties of films that are dependent on strain (such as coercivity) can be tuned by varying deposition conditions, by using different substrates and varying thickness of films in nano range. Lattice mismatch between LSMO with STO and MgO substrates are 0.6% and 8% respectively. This mismatch produces tensile strain in LSMO films and changes its magnetic properties. We study the change in magnetic properties of epitaxial LSMO thin films on MgO (100) and STO (100) substrates with varying thickness to change the strain in the film. LSMO films are prepared by pulsed laser deposition

  18. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  19. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting (SLM manufacturing of removable partial dentures (RPD

    Directory of Open Access Journals (Sweden)

    D. Jevremovic

    2012-04-01

    Full Text Available The presented work discusses the applicability of the selective laser melting technique (SLM in manufacture of removable partial denture (RPD frameworks with the emphasis on material properties. The paper presents initial results of a conducted test of the mechanical properties of the F75 Co-Cr dental alloy used with selective laser melting.

  20. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    International Nuclear Information System (INIS)

    Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.

    2015-01-01

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers

  1. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    Science.gov (United States)

    Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.

    2015-10-01

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.

  2. Direct Laser Interference Patterning: Tailoring of Contact Area for Frictional and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Andreas Rosenkranz

    2016-01-01

    Full Text Available Surface functionalization by topographic micro- and nano-structures in order to achieve unique properties, like super-hydrophobicity or ultrahigh light absorption, is a common strategy in nature. In this paper, direct laser interference patterning (DLIP is presented as a promising tool allowing for the generation of such surface patterns on technical surfaces in order to mimic these biological surfaces and effects. Friction optimization and antibacterial effects by DLIP are exemplarily described. Topographic surface patterns on the micro- and nano-scale demonstrated a significant reduction in the coefficient of friction and bacterial adhesion. It was shown that in both cases, the control of the contact area between surfaces or between surface and bacteria is of utmost importance.

  3. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    Science.gov (United States)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  4. Investigation of InGaN/GaN laser degradation based on luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Pengyan; Zhang, Shuming, E-mail: smzhang2010@sinano.ac.cn; Liu, Jianping; Li, Deyao; Zhang, Liqun; Sun, Qian; Tian, Aiqin; Zhou, Kun; Yang, Hui [Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou 215123 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zhou, Taofei [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2016-06-07

    Degradation of InGaN/GaN laser diode (LD) is investigated based on the luminescence properties. Gradual degradation of the LD is presented with the threshold current increase and the slope efficiency decrease. The cathodoluminescence and photoluminescence characterizations of the LD show a dislocation independent degradation of the active region under the ridge. Detailed studies on the temperature-dependent micro-photoluminescence and the electroluminescence indicate that the degradation of the LD is attributed to the generation of non-radiative recombination centers in the local multiple quantum well regions with lower indium content. The activation energy of the non-radiative recombination centers is about 10.2 meV.

  5. Structural, morphological and electronic properties of pulsed laser grown Eu2O3 thin films

    Science.gov (United States)

    Kumar, Sandeep; Prakash, Ram; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, we report the growth, structural, morphological and electronic properties of Europium sesquioxide (Eu2O3) thin films on Si [1 0 0] substrate using pulsed laser deposition technique. The films were deposited at ˜750 °C substrate temperature while the oxygen partial pressure (OPP) was varied (vacuum,˜1 mTorr, ˜10 mTorr and ˜300 mTorr). X-ray diffraction results confirm the single phase cubic structure of the film grown at ˜300 mTorr. The XRD results are also supported by the Raman's spectroscopy results. Eu-3d XPS core level spectra confirms the dominant contributions from the "3+" states of Eu in the film.

  6. The properties of Ge quantum rings deposited by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2010-07-01

    SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.

  7. Memory properties of a Ge nanoring MOS device fabricated by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2008-07-09

    The non-volatile charge-storage properties of memory devices with MOS structure based on Ge nanorings have been studied. The two-dimensional Ge nanorings were prepared on a p-Si(100) matrix by means of pulsed laser deposition (PLD) using the droplet technique combined with rapid annealing. Complete planar nanorings with well-defined sharp inner and outer edges were formed via an elastic self-transformation droplet process, which is probably driven by the lateral strain of the Ge/Si layers and the surface tension in the presence of Ar gas. The low leakage current was attributed to the small roughness and the few interface states in the planar Ge nanorings, and also to the effect of Coulomb blockade preventing injection. A significant threshold-voltage shift of 2.5 V was observed when an operating voltage of 8 V was implemented on the device.

  8. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    International Nuclear Information System (INIS)

    Feng, ShiQuan; Cheng, XinLu; Zhao, JianLing; Zhang, Hong

    2013-01-01

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from T e = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect

  9. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    Science.gov (United States)

    Feng, ShiQuan; Zhao, JianLing; Cheng, XinLu; Zhang, Hong

    2013-07-01

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from Te = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect.

  10. Mechanical Properties of TC4 Matrix Composites Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    WANG Lin

    2017-06-01

    Full Text Available In order to improve the penetration performance of TC4, the direct laser deposition technology was used to prepare TC4 composite material. TA15+30% TiC powder, TA15+20%Cr3C2 powder and TA15+15%B4C powder were used as deposited materials for TC4 matrix. The micromorphology, change of hardness of the deposited coating and mechanical properties of the three composites were studied. The experimental results demonstrate that the TC4 matrix with the three kinds of materials can form a complete metallurgical bonding, and the strength of TC4-(TA15+TiC, TC4-(TA15+Cr3C2 and TC4-(TA15+B4C are higher than that of TC4 matrix materials, while the plasticity is slightly worse.

  11. Compositional and structural properties of pulsed laser-deposited ZnS:Cr films

    Science.gov (United States)

    Nematollahi, Mohammadreza; Yang, Xiaodong; Seim, Eivind; Vullum, Per Erik; Holmestad, Randi; Gibson, Ursula J.; Reenaas, Turid W.

    2016-02-01

    We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0-5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.

  12. Optical, compositional and structural properties of pulsed laser deposited nitrogen-doped Titanium-dioxide

    Science.gov (United States)

    Farkas, B.; Heszler, P.; Budai, J.; Oszkó, A.; Ottosson, M.; Geretovszky, Zs.

    2018-03-01

    N-doped TiO2 thin films were prepared using pulsed laser deposition by ablating metallic Ti target with pulses of 248 nm wavelength, at 330 °C substrate temperature in reactive atmospheres of N2/O2 gas mixtures. These films were characterized by spectroscopic ellipsometry, X-ray photoelectron spectroscopy and X-ray diffraction. Optical properties are presented as a function of the N2 content in the processing gas mixture and correlated to nitrogen incorporation into the deposited layers. The optical band gap values decreased with increasing N concentration in the films, while a monotonically increasing tendency and a maximum can be observed in case of extinction coefficient and refractive index, respectively. It is also shown that the amount of substitutional N can be increased up to 7.7 at.%, but the higher dopant concentration inhibits the crystallization of the samples.

  13. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yulia N., E-mail: iuliiamaliutina@gmail.ru; Lazurenko, Daria V., E-mail: pavlyukova-87@mail.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Movtchan, Igor A., E-mail: igor.movtchan@enise.fr [National Engineering School in Saint-Etienne, Saint-Etienne, 42000 France (France)

    2015-10-27

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.

  14. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, M.; Romano, V.; Forrer, M.; Weber, H.P. (Inst. of Applied Physics, Bern Univ. (Switzerland)); Mischler, C.; Mueller, O.M. (Anatomical Inst., Bern Univ. (Switzerland))

    1991-04-01

    The damage created instantaneously in dorsal skin and in the subjacent skeletal muscle layer after CO{sub 2} and Er{sup 3+} laser incisions is histologically and ultrastructurally investigated. Light microscopical examinations show an up to three times larger damage zone in the subcutaneous layer of skeletal muscle than in the connective tissue above. The extent of thermally altered muscle tissue is classified by different zones and characterized by comparison to long time heating injuries. The unexpectedly large damage is a result of the change of elastic properties occurring abruptly at the transition between different materials. This leads to a discontinuity of the cutting dynamics that reduces the ejection of tissue material. We show that the degree of thermal damage originates from the amount of hot material that is not ejected out of the crater acting as a secondary heat source. (orig.).

  15. Coherence properties of the radiation from X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2006-08-15

    We present a comprehensive analysis of coherence properties of the radiation from X-ray free electron laser (XFEL). We consider practically important case when XFEL is optimized for maximum gain. Such an optimization allows to reduce significantly parameter space. Application of similarity techniques to the results of numerical simulations allows to present all output characteristics of the optimized XFEL as functions of the only parameter, ratio of the emittance to the radiation wavelength, {epsilon}=2{pi} {epsilon}/{lambda}. Our studies show that optimum performance of the XFEL in terms of transverse coherence is achieved at the value of the parameter {epsilon} of about unity. At smaller values of {epsilon} the degree of transverse coherence is reduced due to strong influence of poor longitudinal coherence on a transverse one. At large values of the emittance the degree of transverse coherence degrades due to poor mode selection. Comparative analysis of existing XFEL projects, European XFEL, LCLS, and SCSS is presented as well. (orig.)

  16. Statistical properties of single-mode emission in free-electron lasers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Luks, A.; Perina, J.; Perinova, V.; Sibilia, C.

    1984-01-01

    The authors of this paper discuss the statistical properties of radiation produced in the free electron laser, in the case of singlemode emission when the system is used as an amplifier, with very small gain. The coherent states technique and the q-c number correspondence is employed, starting from the master-equation and obtaining the generalized Fokker-Planck equation for the anti-normal quasidistribution function. Solutions of Fokker-Planck equation provide the photocounting distribution and its factorial moments. No losses are included. It is shown that, in the short-time approximation, the radiation field exhibits antibunching, and that the photocounting distributions, when some suitable conditions on the field intensities are fulfilled, in the stationary regime shows a two-peak behavior, evidencing the existence of bistable states

  17. Biomechanical properties: effects of low-level laser therapy and Biosilicate® on tibial bone defects in osteopenic rats.

    Science.gov (United States)

    Fangel, Renan; Bossini, Paulo S; Renno, Ana Cláudia; Granito, Renata N; Wang, Charles C; Nonaka, Keico O; Driusso, Patricia; Parizotto, Nivaldo A; Oishi, Jorge

    2014-12-30

    The aim of this study was to investigate the effects of laser therapy and Biosilicate® on the biomechanical properties of bone callus in osteopenic rats. Fifty female Wistar rats were equally divided into 5 groups (n=10/group): osteopenic rats with intact tibiae (SC); osteopenic rats with unfilled and untreated tibial bone defects (OC); osteopenic rats whose bone defects were treated with Biosilicate® (B); osteopenic rats whose bone defects were treated with 830-nm laser, at 120 J/cm2 (L120) and osteopenic rats whose bone defects were treated with Biosilicate® and 830-nm laser, at 120 J/cm2 (BL120). Ovariectomy (OVX) was used to induce osteopenia. A non-critical bone defect was created on the tibia of the osteopenic animals 8 weeks after OVX. In Biosilicate® groups, bone defects were completely filled with the biomaterial. For the laser therapy, an 830-nm laser, 120 J/cm2 was used. On day 14 postsurgery, rats were euthanized, and tibiae were removed for biomechanical analysis. Maximal load and energy absorption were higher in groups B and BL120, according to the indentation test. Animals submitted to low-level laser therapy (LLLT) did not show any significant biomechanical improvement, but the association between Biosilicate® and LLLT was shown to be efficient to enhance callus biomechanical properties. Conversely, no differences were found between study groups in the bending test. Biosilicate® alone or in association with low level laser therapy improves biomechanical properties of tibial bone callus in osteopenic rats.

  18. Femtosecond laser ablation profile near an interface: Analysis based on the correlation with superficial properties of individual materials

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: nicolodelli@ursa.ifsc.usp.br [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil); Kurachi, Cristina; Bagnato, Vanderlei Salvador [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil)

    2011-01-15

    Femtosecond laser ablation of materials is turning to be an important tool for micromachining as well as for selective removal of biological tissues. In a great number of applications, laser ablation has to process through interfaces separating media of different properties. The investigation of the ablation behavior within materials and passing through interfaces is the main aim of this study. Especially, the analysis of the discontinuity in the ablation profile close to interfaces between distinct materials can reveal some of the phenomena involved in the formation of an ablated microcavity geometry. We have used a method that correlates the ablation cross sectional area with the local laser intensity. The effective intensity ablation properties were obtained from surface ablation data of distinct materials. The application of this method allows the prediction of the occurrence of a size discontinuity in the ablation geometry at the interface of distinct media, a fact which becomes important when planning applications in different media.

  19. Pulsed laser deposited Pb(Zr,Ti)O3 thin films with excellent piezoelectric and mechanical properties

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    We present for the first time the combined measured piezoelectric and mechanical properties of epitaxial, (110) oriented Pb(ZrxTi1-x) (PZT) thin films grown on microfabricated silicon cantilevers using pulsed laser deposition (PLD, x=0.4, 0.52, 0.6 and 0.8). The grown PZT thin films develop a strong

  20. Thermal annealing using ultra-short laser pulses to improve the electrical properties of Al:ZnO thin films

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, Teunis Cornelis; Eijt, S.W.H.; Schut, H.; Römer, Gerardus Richardus, Bernardus, Engelina; Klein Gunnewiek, Michel; Lenferink, Aufrid T.M.; Kniknie, B.; Joy, R.M.; Dorenkamper, M.S.; de Lange, D.F.; Otto, Cornelis; Borsa, D.; Soppe, W.J.; Huis in 't Veld, Bert

    2015-01-01

    Industrial-grade Al:ZnO thin films, were annealed by UV picosecond laser irradiation in argon atmosphere. A remarkable increase of both the carrier density and electron mobility was measured, while the optical properties in the 400–1000 nm range did not change significantly. We studied the

  1. Thermal annealing using ultra-short laser pulses to improve the electrical properties of Al:ZnO thin films

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.C.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Klein Gunnewiek, M.; Lenferink, A.T.M.; Kniknie, B.J.; Mary Joy, R.; Dorenkamper, M.S.; Lange, D.F. de; Otto, C.; Borsa, D.; Soppe, W.J.; Huis in 't Veld, A.J.

    2015-01-01

    Abstract Industrial-grade Al:ZnO thin films, were annealed by UV picosecond laser irradiation in argon atmosphere. A remarkable increase of both the carrier density and electron mobility was measured, while the optical properties in the 400-1000 nm range did not change significantly. We studied the

  2. Physical and photocatalytic properties of laser fabricated crystalline TiO.sub.2./sub. at low temperatures

    Czech Academy of Sciences Publication Activity Database

    Remsa, Jan; Jelínek, M.; Kocourek, T.; Mikšovský, J.; Studnička, Václav; Vorlíček, Vladimír; Sváta, V.; Vymětalová, V.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 754-757 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed laser deposition * TiO 2 * contact angle * photocatalytic properties * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.412, year: 2010

  3. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    Science.gov (United States)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  4. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Huang, Tzu-Teng

    2013-06-15

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm{sup −2}) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm{sup −2}) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm{sup 2} had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10{sup 3} Ω cm) was lower than that of TA thin films (1.39 × 10{sup 4} Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films.

  5. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    Science.gov (United States)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  6. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to

  7. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718

    Science.gov (United States)

    Qi, H.; Azer, M.; Ritter, A.

    2009-10-01

    Laser net shape manufacturing (LNSM) is a laser cladding/deposition based technology, which can fabricate and repair near-net-shape high-performance components directly from metal powders. Characterizing mechanical properties of the laser net shape manufactured components is prerequisite to the applications of LNSM in aircraft engine industrial productions. Nickel-based superalloys such as INCONEL 718 are the most commonly used metal materials in aircraft engine high-performance components. In this study, the laser deposition process is optimized through a set of designed experiments to reduce the porosity to less than 0.03 pct. It is found that the use of plasma rotating electrode processed (PREP) powder and a high energy input level greater than 80 J/mm are necessary conditions to minimize the porosity. Material microstructure and tensile properties of laser-deposited INCONEL 718 are studied and compared under heat treatment conditions of as deposited, direct aged, solution treatment and aging (STA), and full homogenization followed by STA. Tensile test results showed that the direct age heat treatment produces the highest tensile strength equivalent to the wrought material, which is followed by the STA-treated and the homogenization-treated tensile strengths, while the ductility exhibits the reverse trend. Finally, failure modes of the tensile specimens were analyzed with fractography.

  8. Effects of laser-induced recovery process on conductive property of SnO2:F thin films

    International Nuclear Information System (INIS)

    Chen, Ming-Fei; Lin, Keh-moh; Ho, Yu-Sen

    2011-01-01

    In this study, we developed a laser annealing process to enhance the electrical properties of SnO 2 :F (FTO) films. It is already known that in contrast to indium oxides or zinc oxides, the carrier mobility of FTO films is relatively lower. Thus, improving the mobility is a direct way to enhance the conductivity of FTO films. Furthermore, improving the crystal quality of the thin films is in turn a direct way to enhance the mobility effectively. Contrary to the high working temperatures of traditional annealing processes, the laser annealing process, with its focusing character, enables us to modify the crystal quality of oxide films on substrates with low-melting points. Using a self-built laser system, which consists of a Nd:YAG solid-state laser with a wavelength of 1064 nm and a beam shaper lens, we carried out a series of experiments to achieve the optimal laser annealing process. Hall, SEM, and XRD measurements were used to characterize the opto-electrical as well as the structural properties. As experimental results show, the tin oxide crystallites recovered well during the laser annealing process. By using a suitable beam profile and a proper laser intensity, the film resistivity was reduced from 7.19 ± 0.55 x 10 -3 Ω cm to 6.70 ± 0.20 x 10 -3 Ω cm while the carrier mobility was enhanced from 11.18 ± 0.29 cm 2 /V s to 11.71 ± 0.34 cm 2 /V s.

  9. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    Science.gov (United States)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  10. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting.

    Science.gov (United States)

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO 3 ) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO 3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO 3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO 3 composites can be a potential biomedical metallic materials in the medical field. Copyright © 2016. Published by Elsevier B.V.

  11. Microstructure and Mechanical Properties of Laser Melting Deposited GH4169 Superalloy

    Directory of Open Access Journals (Sweden)

    DU Bo-rui

    2017-01-01

    Full Text Available The block samples of a Ni-based superalloy named GH4169 were prepared by laser melting deposited method using the corresponding GH4169 alloy powders,and then were heat treated with solution treatment followed by double aging.The microstructure and element segregation analysis of both as-deposited and heat treated samples were studied by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS.The microhardness as well as tensile properties at room and elevated temperatures were tested.The results indicate that the microstructure of as-deposited sample mainly consists of columnar dendritic crystals that grow along with different directions.Grains are refined after solution and aging heat treatment,but remain dendritic crystals substructure inside.Compared with the as-deposited sample,the microhardness and tensile strength of the heat treated sample increase substantially,but the plasticity somewhat decreases.Nonetheless the tensile properties are superior to the standard values of forgings.The fracture surface exhibits ductile transcrystalline fracture mode.

  12. Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties

    Science.gov (United States)

    Xu, W.; Sun, S.; Elambasseril, J.; Liu, Q.; Brandt, M.; Qian, M.

    2015-03-01

    The Achilles' heel of additively manufactured Ti-6Al-4V by selective laser melting (SLM) is its inferior mechanical properties compared with its wrought (forged) counterparts. Acicular α' martensite resulted from rapid cooling by SLM is primarily responsible for high strength but inadequate tensile ductility achieved in the as-fabricated state. This study presents a solution to eliminating the adverse effect of the nonequilibrium α' martensite. This is achieved by enabling in situ martensite decomposition into a novel ultrafine (200-300 nm) lamellar ( α + β) microstructure via the selection of an array of processing variables including the layer thickness, energy density, and focal offset distance. The resulting tensile elongation reached 11.4% while the yield strength was kept above 1100 MPa. These properties compare favorably with those of mill-annealed Ti-6Al-4V consisting of globular α and β. The fatigue life of SLM-fabricated Ti-6Al-4V with an ultrafine lamellar ( α + β) structure has approached that of the mill-annealed counterparts and is much superior to that of SLM-fabricated Ti-6Al-4V with α' martensite.

  13. Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Pan Ma

    2014-01-01

    Full Text Available The microstructure and mechanical properties of Al-20Si produced by selective laser melting (SLM are investigated for different heat treatment conditions. As a result of the high cooling rate during processing, the as-built SLM material displays a microstructure consisting of a supersaturated Al(Si solid solution along with heavily refined eutectic Si and Si particles. The Si particles become coarser, and the eutectic Si gradually changes its morphology from fibrous to plate-like shape with increasing annealing temperature. The microstructural variations occurring during heat treatment significantly affect the mechanical behavior of the samples. The yield and ultimate strengths decrease from 374 and 506 MPa for the as-built SLM material to 162 and 252 MPa for the sample annealed at 673 K, whereas the ductility increases from 1.6 to 8.7%. This offers the possibility to tune microstructure and corresponding properties of the Al-20Si SLM parts to meet specific requirements.

  14. Influence of CO2 Laser Radiation on the Mechanical Properties of Portland Cement Pastes

    Directory of Open Access Journals (Sweden)

    González-Mota, R.

    2011-03-01

    Full Text Available This article presents the results of the treatment of fresh cement pastes with CO2 laser radiation (10.6μm, in order to improve its mechanical properties in addition to obtaining lower setting times than those of a natural setting (without radiation . It was observed that the CO2 laser radiation has a positive influence on the mechanical properties of cement paste, not due to the heat produced during irradiation, but due to the effect of electric field propagation on water molecules, whose are arranged around functional groups of the binder and by the effect of ration, causes a micro vibration effect, resulting in a more compact and less porous paste which has better mechanical properties compared to natural setting paste. The internal and surface temperature of the samples, the evolution of setting, Young's modulus (using ultrasonic pulse velocity and compressive strength were registered.En este artículo se presentan los resultados correspondientes al tratamiento de pastas frescas de cemento con radiación láser de CO2 (10.6µm, con el propósito de mejorar sus propiedades mecánicas además de obtener tiempos de fraguado menores a los del fraguado en forma natural (sin radiación. Se demostró que la radiación con láser de CO2 influye positivamente en las propiedades mecánicas de la pasta de cemento, no por el calentamiento producido durante la irradiación, sino por el efecto de la propagación del campo eléctrico sobre las moléculas de agua que están dispuestas alrededor de los grupos funcionales del aglutinante y que al rotar producen un efecto equivalente a micro vibraciones, dando como resultado un material más compacto, con menos poros y mejores propiedades mecánicas respecto al fraguado natural. Se registró la temperatura interna y superficial de las muestras, la evolución del fraguado, el módulo de Young y la resistencia a compresión.

  15. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    problems. The use of photons to both excite and measure the thermal response of any surface material to a high resolution (estimated footprint = 10 square centimeters) is a generational leap in physical properties measurements. The proposed method consists of spot-heating the surface of a material with a low (less than 1 W) power laser. This produces a moderate (5-10 K) temperature increase in the material.

  16. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry.

    Science.gov (United States)

    Wiegelmann, Marcel; Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-09-01

    A high analytical sensitivity in ultraviolet matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is only achieved if the laser wavelength corresponds to a high optical absorption of the matrix. Laser fluence and the physicochemical properties of the compounds, e.g., the proton affinity, also influence analytical sensitivity significantly. In combination, these parameters determine the amount of material ejected per laser pulse and the ion yield, i.e., the fraction of ionized biomolecules. Here, we recorded peptide ion signal intensities as a function of these parameters. Three cinnamic acid matrices were investigated: α-cyano-4-hydroxycinnamic acid, α-cyano-4-chlorocinnamic acid, and α-cyano-2,4-difluorocinnamic acid. In addition, 2,5-dihydroxybenzoic acid was used in comparison experiments. Ion signal intensities "per laser shot" and integrated ion signal intensities were acquired over 900 consecutive laser pulses applied on distinct positions on the dried-droplet sample preparations. With respect to laser wavelength, the two standard MALDI wavelengths of 337/355 nm were investigated. Also, 305 or 320 nm was selected to account for the blue-shifted absorption profiles of the halogenated derivatives. Maximal peptide ion intensities were obtained if the laser wavelength fell within the peak of the absorption profile of the compound and for fluences two to three times the corresponding ion detection threshold. The results indicate ways for improving the analytical sensitivity in MALDI-MS, and in particular for MALDI-MS imaging applications where a limited amount of material is available per irradiated pixel.

  17. Thick metallic coatings produced by coaxial and side laser cladding : Processing and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.T.M.

    2010-01-01

    Cobalt and iron-based, defect-free coatings with thicknesses from 1 to 3.3. mm were created by a laser cladding process on different steel substrates. Extensive laser cladding experiments with a gradual change of laser power were used to study relations between main processing parameters and

  18. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.

    Science.gov (United States)

    Kaufmann, R; Hartmann, A; Hibst, R

    1994-02-01

    Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.

  19. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  20. Properties of the ablation process for excimer laser ablation of Y1Ba2Cu3O7

    International Nuclear Information System (INIS)

    Neifeld, R.A.; Potenziani, E.; Sinclair, W.R.; Hill III, W.T.; Turner, B.; Pinkas, A.

    1991-01-01

    The process of excimer laser ablation has been studied while varying the laser fluence from 0.237 to 19.1 J/cm 2 . Ion time-of-flight, total charge, target etch depth per pulse, and etch volume per pulse have been measured. Results indicate a maximum ablation volume and minimum ionization fraction occur near 5 J/cm 2 . Several of the parameters measured vary rapidly in the 1--5 J/cm 2 range. Variation in these parameters strongly influences the properties of films grown by this technique

  1. Physico-chemical properties of Pd nanoparticles produced by Pulsed Laser Ablation in different organic solvents

    International Nuclear Information System (INIS)

    Cristoforetti, Gabriele; Pitzalis, Emanuela; Spiniello, Roberto; Ishak, Randa; Giammanco, Francesco; Muniz-Miranda, Maurizio; Caporali, Stefano

    2012-01-01

    Palladium nanoparticles are arousing an increasing interest because of their strong activity in heterogeneous catalysis in a wide range of reactions. Driven by the interest of producing Pd nanoparticles to be deposited for catalysis over hydrophobic supports, we investigated their synthesis via Pulsed Laser Ablation in Liquid in several organic solvents, as acetone, ethanol, 2-propanol, toluene, n-hexane. The colloids were produced by using a Nd:YAG ns laser and without the addition of surfactant agents. The morphology, composition, stability and oxidation state of the obtained nanoparticles were investigated by TEM-EDS analysis, UV-vis spectroscopy, X-ray Photoelectron Spectroscopy and micro-Raman spectroscopy. The results evidence that the nature of the solvent influences both the yield and the physico-chemical properties of the produced nanoparticles. While in acetone and alcohols spheroidal, non aggregated and stable particles are obtained, in case of toluene and n-hexane few unstable particles surrounded by a gel-like material are produced. Raman/XPS measurements suggest the presence of amorphous or graphitic carbon onto crystalline Pd nanoparticles, which could have hindered their growth and determined the observed smaller sizes if compared to nanoparticles produced in water. The stability of Pd colloids obtained in acetone and alcohols was attributed to adsorbed anions like enolates or alcoholates; non polar solvents like toluene and n-hexane, unable to give rise to adsorbed anionic species, cannot provide any stabilization to the palladium nanoparticles. XPS analyses also evidenced a partial oxidation of particles surface, with a ratio Pd 2+ :Pd 0 of 1:2.5 and 1:4 in acetone and ethanol, respectively.

  2. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  3. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    Science.gov (United States)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  4. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Chi-Sheng Chien

    2016-05-01

    Full Text Available Hydroxyapatite (HA is one of the most commonly used materials for the coating of bioceramic titanium (Ti alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA and 20 wt % yttria (3 mol % stabilized zirconia (ZrO2, 3Y-TZP. The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL and the transition layer (TL. Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO42O (TTCP, CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2, together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2 also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase.

  5. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates.

    Science.gov (United States)

    Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan

    2016-05-17

    Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO₂, 3Y-TZP). The FA/ZrO₂ coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO₂ is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca₄(PO₄)₂O (TTCP), CaF₂, CaZrO₃, CaTiO₃ and monoclinic phase ZrO₂ (m-ZrO₂), together with a small amount of θ-Al₂O₃. As the laser power is increased, CaO, CaCO₃ and trace amounts of tetragonal phase ZrO₂ (t-ZrO₂) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO₃ phase.

  6. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates

    Science.gov (United States)

    Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan

    2016-01-01

    Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO2, 3Y-TZP). The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO4)2O (TTCP), CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2), together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase. PMID:28773503

  7. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  8. The Influence of Selective Laser Melting Parameters on Density and Mechanical Properties of AlSi10Mg

    Directory of Open Access Journals (Sweden)

    Raus A. A.

    2016-01-01

    Full Text Available Selective Laser Melting (SLM is one of the most effective powder bed technique in the additive Manufacturing (AM which able to fabricate functional metal parts directly from 3D Computer Aided Design (CAD file data. In this paper, the influence of SLM parameters, such as laser power, scanning speed and hatching distance on the density of AlSi10Mg samples are investigated using one factor at a time (OFAT. Furthermore, the optimum results are used to fabricate samples for hardness, tensile strength, and impact toughness test. It is revealed that AlSi10Mg parts fabricated by SLM achieving the best density of 99.13% at the value of 350 watts laser power, 1650 mm/s scanning speed and hatching distance 0.13mm, whereby resulted comparable and even better mechanical properties to those of conventionally HDPC A360F and HDPC A360T6 alloys although without any comprehensive post processing methods.

  9. On the Selective Laser Melting (SLM of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Francesco Trevisan

    2017-01-01

    Full Text Available The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM technique known as Selective Laser Melting (SLM. This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.

  10. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties.

    Science.gov (United States)

    Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego

    2017-01-18

    The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.

  11. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    Science.gov (United States)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  12. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  13. Experimental Study of The Physical Properties of The Laser Diode (AlGaAs/GaAs) (Arsenic Gallium Aluminum) To Use as a Pumping Source of Laser Nd:YAG

    International Nuclear Information System (INIS)

    Dayoub, N.; Altwel, E.

    2009-01-01

    The research includes an experimental study of the physical properties of the laser diode (AlGaAs/GaAs). We have made a detailed display of the structure of diode and mechanism of its operation, as well as its convenience as a pumping source for Solid-state laser Nd:YAG. Then we studied the changes of potential difference (expressing the capacity of laser diode) by the dependence of diode temperature, for variant intensity of the injection current, and the changes of potential by dependence of the injection current; and finally, we made a study of the capacity of laser diode output by dependence of the injection current. (author)

  14. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  15. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    Science.gov (United States)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  16. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    Science.gov (United States)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  17. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  18. UV-laser treatment of nanodiamond seeds - a valuable tool for modification of nanocrystalline diamond films properties

    International Nuclear Information System (INIS)

    Vlček, J; Fitl, P; Vrňata, M; Fekete, L; Taylor, A; Fendrych, F

    2013-01-01

    This work aimed to study the UV-laser treatment of precursor (i.e. nanodiamond (ND) seeds on silicon substrates) and its influence on the properties of grown nanocrystalline diamond (NCD) films. Pulsed Nd:YAG laser operating at the fourth harmonic frequency (laser fluence E L = 250 mJ cm -2 , pulse duration 5 ns) was used as a source, equipped with an optical system for focusing laser beam onto the sample, allowing exposure of a local spot and horizontal patterning. The variable parameters were: number of pulses (from 5 to 400) and the working atmosphere (He, Ar and O 2 ). Ablation and/or graphitization of seeded nanodiamond particles were observed. Further the microwave plasma-enhanced chemical vapour deposition was employed to grow NCD films on exposed and non-exposed areas of silicon substrates. The size, shape and density distribution of laser-treated nanodiamond seeds were observed by atomic force microscopy (AFM) and their chemical composition by x-ray photoelectron spectroscopy (XPS) analysis. The resulting NCD films (uniform thickness of 400 nm) were characterized by: Raman spectroscopy to analyse occurrence of graphitic phase, and AFM to observe morphology and surface roughness. The highest RMS roughness (∼85 nm) was achieved when treating the precursor in He atmosphere. Horizontal microstructures of diamond films were fabricated.

  19. Development of Ultrafast Laser Flash Methods for Measuring Thermophysical Properties of Thin Films and Boundary Thermal Resistances

    Science.gov (United States)

    Baba, Tetsuya; Taketoshi, Naoyuki; Yagi, Takashi

    2011-11-01

    Reliable thermophysical property values of thin films are important to develop advanced industrial technologies such as highly integrated electronic devices, phase-change memories, magneto-optical disks, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), semiconductor lasers (LDs), flat-panel displays, and power electronic devices. In order to meet these requirements, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed ultrafast laser flash methods heated by picosecond pulse or nanosecond pulse with the same geometrical configuration as the laser flash method, which is the standard method to measure the thermal diffusivity of bulk materials. Since these pulsed light heating methods induce one-dimensional heat diffusion across a well-defined length of the specimen thickness, the absolute value of thermal diffusivity across thin films can be measured reliably. Using these ultrafast laser flash methods, the thermal diffusivity of each layer of multilayered thin films and the boundary thermal resistance between the layers can be determined from the observed transient temperature curves based on the response function method. The thermophysical properties of various thin films important for modern industries such as the transparent conductive films used for flat-panel displays, hard coating films, and multilayered films of next-generation phase-change optical disks have been measured by these methods.

  20. Effect of active-region “volume” on the radiative properties of laser heterostructures with radiation output through the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nekorkin, S. M.; Zvonkov, B. N.; Baidus, N. V.; Dikareva, N. V., E-mail: dnat@ro.ru; Vikhrova, O. V. [Nizhny Novgorod State University, Physicotechnical Research Institute (Russian Federation); Afonenko, A. A.; Ushakov, D. V. [Belarussian State University (Belarus)

    2017-01-15

    The radiative properties of InGaAs/GaAs/InGaP laser structures with radiation output through the substrate depending on the number of quantum wells in the active region and laser diodes on their basis are investigated. It is established that the presence of six–eight quantum wells in the active region is optimum from the viewpoint of observable values of the threshold current and the output optical power of lasers.

  1. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    Science.gov (United States)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  2. Experimental Study on Tribological Properties of Laser Textured 45 Steel Surface

    Directory of Open Access Journals (Sweden)

    Li Zhi Peng

    2016-01-01

    Full Text Available In order to study the influence of pits’ size parameters on the tribological properties of textured friction pairs, using the Nd:YAG laser micro machining system and the “single pulse at the same point, interval more times” processing technics to process the pits on the surface of 45 steel. The dimension parameters of pits texture were obtained by orthogonal experimental design. The tribological experiment of GCr15 pin/45 steel disc was carried out by UMT-2 test machine. The surface morphology of the specimens was analyzed by using scanning electron microscopy. The experimental results show that the pits texture on the surface of 45 steel can effectively reduce the friction coefficient and the wear on the condition of oil-rich lubrication. The textured specimen with diameter 60μm, depth 6μm and surface density 10% has the lowest friction coefficient, and the friction coefficient is reduced by 21% compared with the smooth specimen. By analyzing the wear morphology on the surface of 45 steel, it is found that the surface of pits texture can obviously reduce the wear.

  3. Magnetic properties of Fe3O4 thin films grown on different substrates by laser ablation

    International Nuclear Information System (INIS)

    Parames, M.L.; Viskadourakis, Z.; Rogalski, M.S.; Mariano, J.; Popovici, N.; Giapintzakis, J.; Conde, O.

    2007-01-01

    Magnetite thin films have been grown onto (1 0 0)Si (1 0 0)GaAs and (0 0 0 1)Al 2 O 3 , at substrate temperatures varying from 473 to 673 K, by UV pulsed laser ablation of Fe 3 O 4 targets in reactive atmospheres of O 2 and Ar, at working pressure of 8 x 10 -2 Pa. The influence of the substrate on stoichiometry, microstructure and the magnetic properties has been studied by X-ray diffraction (XRD), conversion electron Moessbauer spectroscopy (CEMS) and magnetic measurements. Magnetite crystallites, with stoichiometry varying from Fe 2.95 O 4 to Fe 2.99 O 4 , are randomly oriented for (1 0 0)GaAs and (1 0 0)Si substrates and exhibit (1 1 1) texture if grown onto (0 0 0 1)Al 2 O 3 . Interfacial Fe 3+ diffusion, which is virtually absent for (1 0 0)Si substrates, was found for both (0 0 0 1)Al 2 O 3 and (1 0 0)GaAs, with some deleterious effect on the subsequent microstructure and magnetic behaviour

  4. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D.C., E-mail: dcsaha@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Westerbaan, D.; Nayak, S.S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Biro, E. [ArcelorMittal Global Research, 1390 Burlington Street East, Hamilton, ON, Canada L8N 3J5 (Canada); Gerlich, A.P.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2014-06-01

    Similar and dissimilar welds of dual-phase (DP) and high strength low alloy (HSLA) steels were made by fiber laser welding (FLW). The welds were characterized with respect to microstructure, micro- and nano-hardness, and tensile properties. The fusion zone (FZ) in the DP welds consisted of fully martensitic structure; whereas HSLA and dissimilar weld FZ microstructure were mixture of martensite and bainite. Analytical transmission electron microscopy (TEM) confirmed bainite structures containing bainitic ferrite laths with intralath and interlath cementite. Precipitation of single variant carbides inside the bainitic ferrite laths were confirmed by measuring the interplanar spacing. The cooling rate in the FZ, estimated using Rosenthal equation, and continuous-cooling-transformation diagrams corroborated the microstructure formed. Nanoindentation was used to verify the hardness of these individual microconstituents, since a much lower nano-hardness for bainite (4.11 GPa) was observed compared to martensite (6.57 GPa) phase. Tensile failure occurred in the tempered area of the heat affected zone (HAZ) in the DP steel welded, which was confirmed by typical cup-like dimple fracture; likewise failure in the HSLA base metal, which occurred in dissimilar and HSLA welds, indicated distinctive dimple and shear dimple ductile morphology.

  5. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

    Science.gov (United States)

    Písařík, P.; Mikšovský, J.; Remsa, J.; Zemek, J.; Tolde, Z.; Jelínek, M.

    2018-01-01

    Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp 3/ sp 2 ratio were determined by XPS. sp 3/ sp 2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young's modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; L C3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp 3/ sp 2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

  6. Effect of Molybdenum on the Microstructures and Properties of Stainless Steel Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Kaiming Wang

    2017-10-01

    Full Text Available Stainless steel powders with different molybdenum (Mo contents were deposited on the substrate surface of 45 steel using a 6 kW fiber laser. The microstructure, phase, microhardness, wear properties, and corrosion resistance of coatings with different Mo contents were studied by scanning electron microscopy (SEM, electron probe microanalyzer (EPMA, X-ray diffraction (XRD, microhardness tester, wear tester, and electrochemical techniques. The results show that good metallurgical bonding was achieved between the stainless steel coating and the substrate. The amount of M7(C, B3 type borocarbide decreases and that of M2B and M23(C, B6 type borocarbides increases with the increase of Mo content in the coatings. The amount of martensite decreases, while the amount of ferrite gradually increases with the increase of Mo content. When the Mo content is 4.0 wt. %, Mo2C phase appears in the coating. The microstructure of the coating containing Mo is finer than that of the Mo-free coating. The microhardness decreases and the wear resistance of the coating gradually improves with the increase of Mo content. The wear resistance of the 6.0 wt. % Mo coating is about 3.7 times that of the Mo-free coating. With the increase of Mo content, the corrosion resistance of the coating firstly increases and then decreases. When the Mo content is 2.0 wt. %, the coating has the best corrosion resistance.

  7. Electrical transport properties of MoO3 thin films prepared by laser assisted evaporation

    International Nuclear Information System (INIS)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E.; Cortes-Bracho, O.L.

    2007-01-01

    In the present paper the growth of MoO 3 thin films on common glass substrates are described. The films were prepared by evaporation of a MoO 3 target with a CO 2 laser (10.6 μm), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO 3 thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10 -9 to 10 -5 (Ωcm) -1 in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Electrical transport properties of MoO{sub 3} thin films prepared by laser assisted evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Cortes-Bracho, O.L. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Electronic Engineering Department, Universidad Nacional de Colombia, Bogota (Colombia)

    2007-07-01

    In the present paper the growth of MoO{sub 3} thin films on common glass substrates are described. The films were prepared by evaporation of a MoO{sub 3} target with a CO{sub 2} laser (10.6 {mu}m), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO{sub 3} thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10{sup -9} to 10{sup -5} ({omega}cm){sup -1} in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Laser Interferometric Measurements of the Physical Properties for He, ne Gases and Their Mixture

    Science.gov (United States)

    Abdel-Moniem, N. M.; El-Masry, M. M.; El-Bradie, B.; El-Mekawy, F. M.

    2010-04-01

    A Mach-Zehner interferometer MZI illuminated with He-Ne Laser 632.8nm is used for measuring the refractive index for He, Ne gases and their mixture HeNe. The measurements are carried out at different pressures and temperatures. The error factors of the refractive index measurements for He, Ne and HeNe gases are equal to ±1.7×10-5, ±9.5×10-6 and ±7.25×10-5 respectively. Some calculations of the electrical properties are carried out such as the optical permittivity dielectric susceptibility and specific refractivity from the determination of the refractive index. Also, the molecular radii of the gases under investigation are computed then the transport coefficients (diffusion. viscosity and thermal conductivity) are calculated. All of these calculations are carried out at different pressures and temperatures. The experimental results of refractive index for the above mixture are compared with the results estimated using one of the mixing rules and a good agreement is achieved. Also, some physical parameters are compared with other values in another literatures.

  10. Structural and optical properties of surface-hydrogenated silicon nanocrystallites prepared by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Makino, Toshiharu; Inada, Mitsuru; Umezu, Ikurou; Sugimura, Akira

    2005-01-01

    Pulsed laser ablation (PLA) in an inert background gas is a promising technique for preparing Si nanoparticles. Although an inert gas is appropriate for preparing pure material, a reactive background gas can be used to prepare compound nanoparticles. We performed PLA in hydrogen gas to prepare hydrogenated silicon nanoparticles. The mean diameter of the primary particles measured using transmission electron microscopy was approximately 5 nm. The hydrogen content in the deposits was very high and estimated to be about 20%. The infrared absorption corresponding to Si-H n (n = 1, 2, 3) bonds on the surface were observed at around 2100 cm -1 . The Raman scattering peak corresponding to crystalline Si was observed, and that corresponding to amorphous Si was negligibly small. These results indicate that the Si nanoparticles were not an alloy of Si and hydrogen but Si nanocrystallite (nc-Si) covered by hydrogen or hydrogenated amorphous silicon. This means that PLA in reactive H 2 gas is a promising technique for preparing surface passivated nc-Si. The deposition mechanism and optical properties of the surface passivated silicon nanocrystallites are discussed

  11. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp

    International Nuclear Information System (INIS)

    Su Hui; Lester, Luke F

    2005-01-01

    The dynamic properties of distributed feedback lasers (DFBs) based on InAs/InGaAs quantum dots (QDs) are studied. The response function of QD DFBs under external modulation is measured, and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is also analysed for the first time. The linewidth of the QD DFBs is found to be more than one order of magnitude narrower than that of conventional quantum well (QW) DFBs at comparable output powers. The figure of merit for the narrow linewidth is compared between different semiconductor materials, including bulk, QWs and QDs. Linewidth re-broadening and the effects of gain offset are also investigated. Finally, the chirp of QD DFBs is studied by time-resolved-chirp measurements. The wavelength chirping of the QD DFBs under 2.5 Gbps modulation is characterized. The strong dependence of the linewidth enhancement factor on the photon density is explained by the enhancement of gain compression by the gain saturation with the carrier density, which is related to the inhomogeneous broadening and spectral hole burning in QDs

  12. Microstructure and Properties of AlSi10Mg Powder for Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    TANG Pengjun

    2018-02-01

    Full Text Available The AlSi10Mg powder was prepared by supersonic gas atomization. After classified, the powder was fabricated into block by selective laser melting (SLM. The microstructure, phase, and evolutions of powder and block were investigated by optical microscope, scanning electron microscope and X-Ray Diffraction. The tensile properties of SLM block were tested by tensile experiments at room temperature. The results show that the size distribution of AlSi10Mg powder after classified can meet the requirements of SLM technology. The powder always is spherical and spherical-like. Meanwhile, the microstructure of powders is fine and uniform, which contain α(Al matrix and (α+Si eutectic. In addition, the melt pool boundaries of SLM block are legible. The microstructure is also uniform and densified, the relative density approaches to 99.5%. On the other hand, only α(Al and few Silicon phase are detected in this condition, due to the most alloying elements are dissolved in α(Al matrix. At room temperature, the ultimate tensile strength of SLM block reaches up to 442 MPa.

  13. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    Science.gov (United States)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  14. Thermal, Spectral and Laser Properties of Er3+:Yb3+:GdMgB₅O10: A New Crystal for 1.5 μm Lasers.

    Science.gov (United States)

    Huang, Yisheng; Yuan, Feifei; Sun, Shijia; Lin, Zhoubin; Zhang, Lizhen

    2017-12-25

    A novel laser crystal of Er 3+ :Yb 3+ :GdMgB₅O 10 with dimension of 26 × 16 × 12 mm³ was grown successfully from K₂Mo₃O 10 flux by the top seeded solution growth method. The thermal diffusivity and specific heat capacity were measured to calculate the thermal conductivity of the crystal. The absorption and fluorescence properties of the crystal at room temperature were investigated in detail. The Judd-Ofelt method was used to analyze the polarized absorption spectra. The emission cross-section of the ⁴I 13/2 →⁴I 15/2 transition was calculated by the Füchtbauer-Ladenburg formula and the relevant gain cross-sections were estimated. Continuous-wave laser output of 140 mW at 1569 nm with the slope efficiency of 17.8% was demonstrated in a plano-concave resonator. The results reveal that Er 3+ :Yb 3+ :GdMgB₅O 10 crystal is a promising material for 1.5 μm lasers.

  15. Analytical and laser scanning techniques to determine shape properties of aggregates used in pavements

    CSIR Research Space (South Africa)

    Komba, Julius J

    2013-06-01

    Full Text Available and volume of an aggregate particle, the sphericity computed by using orthogonal dimensions of an aggregate particle, and the flat and elongated ratio computed by using longest and smallest dimensions of an aggregate particle. The second approach employed.... Further validation of the laser-based technique was achieved by correlating the laser-based aggregate form indices with the results from two current standard tests; the flakiness index and the flat and elongated particles ratio tests. The laser...

  16. Numerical analysis of laser welding with consideration analytical methods of determining phase transformations and mechanical properties of welded joint

    Directory of Open Access Journals (Sweden)

    Piekarska Wiesława

    2018-01-01

    Full Text Available The numerical analysis of laser welding process with consideration analytical methods determining phase transformations and mechanical properties of welded joints are presents in this paper. The analytical CCT diagram and final structural composition of S355 steel are presented. The empirical relations presents in paper are determined by chemical compositions investigated steel and cooling rate between temperatures 800-500°C (t8/5. Phase composition and mechanical properties each of structures of steel in weld and heat affected zone (HAZ are determined on the basis of analytical methods. Laser welded flat is used in numerical simulations in ABAQUS. Mathematical modes of volumetric welding source are used in the calculations. Temperature fields, shape and size of melting zone for selected points in the cross-section of the joint are determined on the basis of thermal cycles obtained numerical.

  17. Microstructure and tensile properties of Ti-6Al-4V alloys manufactured by selective laser melting with optimized processing parameters

    Science.gov (United States)

    Wang, L.; Ma, C.; Huang, J.; Ding, H. Y.; Chu, M. Q.

    2017-11-01

    Selective laser melting (SLM) is a precise additive manufacturing process that the metallic powders without binder are melted layer by layer to complex components using a high bright fiber laser. In the paper, Ti-6Al-4V alloy was fabricated by SLM and its microstructure and mechanical properties were investigated in order to evaluate the SLM process. The results show that the microstructure exists anisotropy between the horizontal and vertical section due to the occurrence of epitaxial growth, and the former microstructure seems equal-axis and the latter is column. Moreover, there is little difference in tensile test between the horizontal and vertical sections. Furthermore, the tensile properties of fabricated Ti-6Al-4V alloy by SLM are higher than the forged standard ones. However, the fatigue results show that there are some scatters, which need further investigation to define the fatigue initiation.

  18. Defect, Microstructure, and Mechanical Property of Ti-6Al-4V Alloy Fabricated by High-Power Selective Laser Melting

    Science.gov (United States)

    Cao, Sheng; Chen, Zhuoer; Lim, Chao Voon Samuel; Yang, Kun; Jia, Qingbo; Jarvis, Tom; Tomus, Dacian; Wu, Xinhua

    2017-12-01

    To improve the selective laser melting (SLM) productivity, a high laser power and accordingly adjusted parameters are employed to facilitate a high build rate. Three distinct processing strategies with incremental build rate are developed for SLM Ti-6Al-4V. Various types of defects are investigated. Further studies were carried out by heat-treatment and hot isostatic pressing to evaluate the influence of microstructure and porosity on mechanical properties. The anisotropic mechanical property in horizontally and vertically build samples were observed, which was attributable to the columnar grains and spatial arrangement of defects. Regardless of anisotropy, a post-SLM heat-treatment at 800°C for 2 h produces a combined high strength and ductility.

  19. Nd:YVO{sub 4} laser removal of graffiti from granite. Influence of paint and rock properties on cleaning efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, T., E-mail: trivas@uvigo.es [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente. Universidad de Vigo, Lagoas-Marcosende s/n, 36310 Vigo (Spain); Pozo, S. [Dpto. Ingenieria de los Recursos Naturales y Medio Ambiente. Universidad de Vigo, Lagoas-Marcosende s/n, 36310 Vigo (Spain); Fiorucci, M.P.; Lopez, A.J.; Ramil, A. [Centro de Investigacions Tecnoloxicas (CIT), Universidade da Coruna, 15403 Ferrol (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Cleaning using NdYVO{sub 4} laser at 355 nm of four different graffiti colours applied on granites. Black-Right-Pointing-Pointer Analysis of the influence of paint composition and properties of rocks on the process. Black-Right-Pointing-Pointer Composition of the paints and, in turn reflectance, determine the removal effectiveness. Black-Right-Pointing-Pointer The laser removal is not conditioned by properties of the stones. - Abstract: This paper presents the cleaning efficiency results for four differently coloured graffiti paints applied to two types of granitic stone by Nd:YVO{sub 4} laser at 355 nm. The paints were characterized in terms of mineralogy and chemistry using x-ray fluorescence, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM); paint absorbance in the ultraviolet-visible-infrared range (200-2000 nm) was also assessed. The studied granites had different mineralogy, texture and porosity properties. Cleaning efficiency was evaluated by polarized microscopy, SEM, FTIR spectroscopy and spectrophotometer colour measurements. The results indicate differences in the effectiveness of surface cleaning for the blue, red and black paints as opposed to the silver paint, mainly attributed to chemical composition. No evidence was found that the granite properties had a bearing on laser effectiveness, although the degree, type and spatial distribution of transgranular fissures in the stone affected the overall assessment of cleaning effectiveness. Polarized light microscopy observations and colour measurements showed that the intensity and distribution of fissures affect the depth of paint penetration, ultimately affecting the cleaning efficiency for both granites.

  20. Nd:YVO4 laser removal of graffiti from granite. Influence of paint and rock properties on cleaning efficacy

    International Nuclear Information System (INIS)

    Rivas, T.; Pozo, S.; Fiorucci, M.P.; López, A.J.; Ramil, A.

    2012-01-01

    Highlights: ► Cleaning using NdYVO 4 laser at 355 nm of four different graffiti colours applied on granites. ► Analysis of the influence of paint composition and properties of rocks on the process. ► Composition of the paints and, in turn reflectance, determine the removal effectiveness. ► The laser removal is not conditioned by properties of the stones. - Abstract: This paper presents the cleaning efficiency results for four differently coloured graffiti paints applied to two types of granitic stone by Nd:YVO 4 laser at 355 nm. The paints were characterized in terms of mineralogy and chemistry using x-ray fluorescence, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM); paint absorbance in the ultraviolet–visible-infrared range (200–2000 nm) was also assessed. The studied granites had different mineralogy, texture and porosity properties. Cleaning efficiency was evaluated by polarized microscopy, SEM, FTIR spectroscopy and spectrophotometer colour measurements. The results indicate differences in the effectiveness of surface cleaning for the blue, red and black paints as opposed to the silver paint, mainly attributed to chemical composition. No evidence was found that the granite properties had a bearing on laser effectiveness, although the degree, type and spatial distribution of transgranular fissures in the stone affected the overall assessment of cleaning effectiveness. Polarized light microscopy observations and colour measurements showed that the intensity and distribution of fissures affect the depth of paint penetration, ultimately affecting the cleaning efficiency for both granites.

  1. Material properties identification using ultrasonic waves and laser Doppler vibrometer measurements: a multi-input multi-output approach

    International Nuclear Information System (INIS)

    Longo, R; Vanlanduit, S; Guillaume, P

    2013-01-01

    In this paper a multi-input multi-output approach able to determine the material properties of homogeneous materials is presented. To do so, an experimental set-up which combines the use of multi harmonic signals with interleaved frequencies and laser Doppler vibrometer measurements has been developed. A modeling technique, based on transmission and reflection measurements, allowed the simultaneous determination of longitudinal wave velocity, density and thickness of the materials under test with high levels of precision and accuracy. (paper)

  2. Polarized spectral properties of Yb3+ : Li2Gd4(MoO4)7 crystal: a candidate for tunable and ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Zhu Haomiao; Chen Yujin; Lin Yanfu; Gong Xinghong; Liao Jinsheng; Chen Xueyuan; Luo Zundu; Huang Yidong

    2007-01-01

    Detailed polarized spectral properties of a 3.2 at.% Yb 3+ : Li 2 Gd 4 (MoO 4 ) 7 crystal, including absorption cross-section, emission cross-section, up-conversion spectrum and intrinsic fluorescence lifetime, were investigated. The laser potentiality was also evaluated and the results show that this crystal is a good candidate for tunable and ultrashort pulse lasers

  3. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  4. Superradiant properties of 4,4'-bis(1¤H¤-phenanthro[9,10-¤d¤]imidazol-2-yl)biphenyl and how a laser dye with exceptional stability can be obtained in only one synthetic step

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Lindvold, Lars René; Jørgensen, M.

    2001-01-01

    The extremely facile synthesis of a very stable laser dye with superradiant properties is reported. The laser action of the dye is demonstrated through a transverse pumping scheme with the advantage that no elaborate laser resonator is required due to the very high gain of the laser medium...

  5. Lasers: principles, applications and energetic measures

    International Nuclear Information System (INIS)

    Subran, C.; Sagaut, J.; Lapointe, S.

    2009-01-01

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  6. Dose properties of a laser accelerated electron beam and prospects for clinical application

    International Nuclear Information System (INIS)

    Kainz, K.K.; Hogstrom, K.R.; Antolak, J.A.; Almond, P.R.; Bloch, C.D.; Chiu, C.; Fomytskyi, M.; Raischel, F.; Downer, M.; Tajima, T.

    2004-01-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25x25 cm2 field. An energy window (ΔE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to ΔE. However, since the falloff of the depth-dose curve (R 10 -R 90 ) and the dose rate both increase with ΔE, a tradeoff between minimizing (R 10 -R 90 ) and maximizing dose rate is implied. If ΔE is constrained so that R 10 -R 90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min-1

  7. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  8. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  9. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding

    International Nuclear Information System (INIS)

    Guo Baogang; Zhou Jiansong; Zhang Shitang; Zhou Huidi; Pu Yuping; Chen Jianmin

    2007-01-01

    Ti-Al coatings with ∼14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2θ values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of α-Ti and α 2 -Ti 3 Al phases, while those with 25.2 and 29.7 at.% Al were composed of α 2 -Ti 3 Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was ≤18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content ≥25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load

  10. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2007-10-15

    Ti-Al coatings with {approx}14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2{theta} values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of {alpha}-Ti and {alpha}{sub 2}-Ti{sub 3}Al phases, while those with 25.2 and 29.7 at.% Al were composed of {alpha}{sub 2}-Ti{sub 3}Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was {<=}18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content {>=}25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load.

  11. Fundamental and dynamic properties of intermixed InGaAs-InGaAsP quantum-well lasers

    KAUST Repository

    Chen, Cheng

    2010-09-01

    The fundamental and dynamic properties of InGaAs-InGaAsP lasers, where emission wavelengths were blue-shifted by quantum-well intermixing through ion implantation and annealing, were investigated to assess possible degradation by intermixing. It was found that the fundamental properties such as threshold current and slope efficiency were largely unchanged even after as much as 120 nm of wavelength shift. Meanwhile, the dynamic properties such as modulation efficiency and K factor were degraded after just a moderate degree of intermixing, but the degradation was not worsened by further intermixing. Provided the finite degradation of dynamic properties is tolerable, the present intermixing technique will be very useful for the fabrication of photonic integrated circuits. © 2006 IEEE.

  12. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  13. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  14. Spatially dependent properties in a laser additive manufactured Ti–6Al–4V component

    International Nuclear Information System (INIS)

    Palanivel, S.; Dutt, A.K.; Faierson, E.J.; Mishra, R.S.

    2016-01-01

    Automotive and aerospace sectors have provided a strong product pull for advancing powder bed fusion technologies. However, as these technologies mature towards large-scale production, issues of build consistency and surface finish are of concern. In order to study these issues, a Ti–6Al–4V mini impeller was fabricated using laser additive manufacturing. The primary objective of this work was to quantify and correlate the variation in mechanical properties and microstructure across and along different locations in the component. Hardness measured at various build locations revealed a stronger hub (highest value: 428 HV) with lower spatial variations in comparison to the blade (highest value: 415 HV). Additional examinations to assess anisotropy showed an average hardness of 397±11 and 385±8 HV along the blade build (Z) and longitudinal (X) directions respectively. Region and direction specific uniaxial tensile testing of the samples indicated a strong hub bottom with yield strength (YS) of 1193 MPa, ultimate tensile strength (UTS) of 1310 MPa, and a total elongation of 5.5% in the longitudinal direction. Although the low elongation value correlates well with previous studies, strength is significantly higher and is attributed to having a complete martensitic structure induced by the high cooling rates experienced at the build–substrate interface. On the other hand, YS, UTS and total elongation in the blade were recorded as 978 MPa, 1096 MPa and 9.12%, respectively, along the build direction. Microstructure in the blade region consisted of α′ and α+β. When compared to the polished specimen in the blade, its unpolished counterpart yielded at 896 MPa, had UTS of 1018 MPa, and elongation of 6.24%. An understanding of the reduction in performance of the unfinished blade would help in deciding the need for surface finishing operations after fabrication.

  15. Spatially dependent properties in a laser additive manufactured Ti–6Al–4V component

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, S.; Dutt, A.K. [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Faierson, E.J. [Quad City Manufacturing Laboratory, Western Illinois University, Rock Island, IL 61201 (United States); Mishra, R.S., E-mail: Rajiv.Mishra@unt.edu [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States)

    2016-01-27

    Automotive and aerospace sectors have provided a strong product pull for advancing powder bed fusion technologies. However, as these technologies mature towards large-scale production, issues of build consistency and surface finish are of concern. In order to study these issues, a Ti–6Al–4V mini impeller was fabricated using laser additive manufacturing. The primary objective of this work was to quantify and correlate the variation in mechanical properties and microstructure across and along different locations in the component. Hardness measured at various build locations revealed a stronger hub (highest value: 428 HV) with lower spatial variations in comparison to the blade (highest value: 415 HV). Additional examinations to assess anisotropy showed an average hardness of 397±11 and 385±8 HV along the blade build (Z) and longitudinal (X) directions respectively. Region and direction specific uniaxial tensile testing of the samples indicated a strong hub bottom with yield strength (YS) of 1193 MPa, ultimate tensile strength (UTS) of 1310 MPa, and a total elongation of 5.5% in the longitudinal direction. Although the low elongation value correlates well with previous studies, strength is significantly higher and is attributed to having a complete martensitic structure induced by the high cooling rates experienced at the build–substrate interface. On the other hand, YS, UTS and total elongation in the blade were recorded as 978 MPa, 1096 MPa and 9.12%, respectively, along the build direction. Microstructure in the blade region consisted of α′ and α+β. When compared to the polished specimen in the blade, its unpolished counterpart yielded at 896 MPa, had UTS of 1018 MPa, and elongation of 6.24%. An understanding of the reduction in performance of the unfinished blade would help in deciding the need for surface finishing operations after fabrication.

  16. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  17. Physical properties of laser-ablated La1-xSrxCoO3-δ films

    International Nuclear Information System (INIS)

    Park, J. S.; Park, S. Y.; Park, H. G.; Kim, S. M.; Lee, Y. P.; Prokhorov, V. G.; Ishchuk, V. M.

    2002-01-01

    The magnetic and the transport properties of La 1-x Sr x CoO 3 films prepared by using laser ablation were investigated. The metal-insulator transition was observed with decreasing Sr 2+ doping (x ≤ 0.25). The temperature-dependent resistivity, ρ(T), in the metallic state was shown to be governed by electron-electron scattering by taking into account the origin of a small energy gap in the spectrum of electron excitations. The analysis of the ρ(T) data showed that the transport of carriers at high temperatures (above the temperature of the magnetic transition) in the insulating state (x ≤ 0.25) was governed by Mott-like variable-range hopping rather than by the motion of lattice polarons. In the low-temperature range, the ρ(T) dependence was fairly well fitted by using the two parallel-resistance model, where one resistance corresponded to the ferromagnetic metal cluster network and the other to the insulating matrix. Two mechanisms of magnetoresistance were involved in the investigated films. In the metallic state (x > 0.25) the magnetoresistance was provided by a change in the rate of electron scattering with spin disorder, which was influenced by the magnetic field and resulted in a small peak at the Curie temperature. In the insulating state (x ≤ 0.25), a phase separation into ferromagnetic metal clusters and the insulating matrix occurred, and an applied magnetic field induced the growth of the ferromagnetic metal phase, with the double-exchange mechanism not playing a role

  18. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties

    International Nuclear Information System (INIS)

    Li, X.P.; Kang, C.W.; Huang, H.; Zhang, L.C.; Sercombe, T.B.

    2014-01-01

    In this study, single line scans at different laser powers were carried out using selective laser meting (SLM) equipment on a pre-fabricated porous Al 86 Ni 6 Y 4.5 Co 2 La 1.5 metallic glass (MG) preform. The densification, microstructural evolution, phase transformation and mechanical properties of the scan tracks were systematically investigated. It was found that the morphology of the scan track was influenced by the energy distribution of the laser beam and the heat transfer competition between convection and conduction in the melt pool. Due to the Gaussian distribution of laser energy and heat transfer process, different regions of the scan track experienced different thermal histories, resulting in a gradient microstructure and mechanical properties. Higher laser powers caused higher thermal stresses, which led to the formation of cracks; while low power reduced the strength of the laser track, also inducing cracking. The thermal fluctuation at high laser power produced an inhomogeneous chemical distribution which gave rise to severe crystallization of the MG, despite the high cooling rate. The crystallization occurred both within the heat affected zone (HAZ) and at the edge of melt pool. However, by choosing an appropriate laser power crack-free scan tracks could be produced with no crystallization. This work provides the necessary fundamental understanding that will lead to the fabrication of large-size, crack-free MG with high density, controllable microstructure and mechanical properties using SLM

  19. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

    Directory of Open Access Journals (Sweden)

    Gerrit M. Ter Haar

    2018-01-01

    Full Text Available Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α’/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  20. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.

    Science.gov (United States)

    Ter Haar, Gerrit M; Becker, Thorsten H

    2018-01-17

    Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α'/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  1. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    Science.gov (United States)

    Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  2. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    Directory of Open Access Journals (Sweden)

    Karl T Bates

    Full Text Available Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize

  3. Properties of aerosol particles generated during 213 nm laser ablation: a study of compact and powdered tungsten carbides as materials with a two-component matrix

    International Nuclear Information System (INIS)

    Hola, M.; Konecna, V.; Kanicky, V.; Mikuska, P.; Kaiser, J.; Hanzlikova, R.

    2009-01-01

    Full text: The laser ablation process of tungsten carbide hardmetals was studied using 213 nm Nd:YAG laser. The samples were presented for ablation as sintered compacts or powders pressed into pellets to compare the generation of particles from samples with similar chemical composition but different physical properties. The influence of laser ablation parameters on the aerosol generation was studied using an optical aerosol spectrometer. In the case of powders, the effect of binder amount was investigated. The structure of generated particles and the properties of ablation-craters were additionally studied by SEM. (author)

  4. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Sung Hyuk; Kwon, Hyuk Sun; Kim, Gyo Sung; Lee, Chong Soo

    2014-01-01

    Highlights: • We report the mechanical properties of DP780 steel welded by three methods. • The size of the welded zone increases with heat input (MAG > TIG > laser). • The hardness of the welded zone increases with cooling rate (laser > TIG > MAG). • Tensile and fatigue properties are strongly dependent on welding method. • Crack initiation sites depend on the microstructural features of the welded zone. - Abstract: The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading

  5. Effect of laser fluence on surface, structural and mechanical properties of Zr after irradiation in the ambient environment of oxygen

    International Nuclear Information System (INIS)

    Jelani, M.; Bashir, S.; Khaleeq-ur Rehman, M.; Ahamad, R.; Ul-Haq, F.; Yousaf, D.; Akram, M.; Afzal, N.; Umer Chaudhry, M.; Mahmood, K.; Hayat, A.; Ahmad, Sajjad

    2013-01-01

    The laser irradiation effects on surface, structural and mechanical properties of zirconium (Zr) have been investigated. For this purpose, Zr samples were irradiated with Excimer (KrF) laser (λ = 248 nm, τ = 18 ns, repetition rate ∼ 30 Hz). The irradiation was performed under the ambient environment of oxygen gas at filling pressure of 20 torr by varying laser fluences ranging from 3.8 to 5.1 cm -2 . The surface and structural modification of irradiated targets was investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). In order to explore the mechanical properties of irradiated Zr, the tensile testing and Vickers micro hardness testing techniques were employed. SEM analysis reveals the grain growth on the irradiated Zr surfaces for all fluences. However, the largest sized grains are grown for the lowest fluence of 3.8 J/cm 2 . With increasing fluence from 4.3 to 5.1 J cm -2 , the compactness and density of grains increase whereas their size decreases. XRD analysis reveals the appearance of new phases of ZrO 2 and Zr 3 O. The variation in the peak intensity is observed to be anomalous whereas decreasing trend in the crystallite size and residual stresses has been observed with increasing fluence. Micro hardness analysis reveals the increasing trend in surface hardness with increasing fluence. The tensile testing exhibits the increasing trend of yield stress (YS), decreasing trend of percentage elongation and anomalous behaviour of ultimate tensile strength with increasing fluence. (authors)

  6. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  7. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  8. Effect of Al{sub 2}Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Zhang, Ke; Yao, Chengwu [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Dong, Jie [National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Emmelmann, Claus [Institute of Laser and System Technologies, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2015-03-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al{sub 2}Gd led to further grain refining and elevated mechanical properties. • Al{sub 2}Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al{sub 2}Gd phase as well as suppressed the precipitation of eutectic Mg{sub 17}Al{sub 12} phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al{sub 2}Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  9. Effect of Al2Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    International Nuclear Information System (INIS)

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-01-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al 2 Gd led to further grain refining and elevated mechanical properties. • Al 2 Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al 2 Gd phase as well as suppressed the precipitation of eutectic Mg 17 Al 12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al 2 Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation

  10. Extension of thermophysical and thermodynamic property measurements by laser pulse heating up to 10,000 K. I. Under pressure

    Science.gov (United States)

    Ohse, R. W.

    1990-07-01

    The necessity for increased high-temperature data reliability and extension of thermophysical property measurements up to 5000 K and above are discussed. A new transient-type laser-autoclave technique (LAT) has been developed to extend density and heat capacity measurements of high-temperature multicomponent systems far beyond their melting and boiling points. Pulsed multibeam laser heating is performed in an autoclave under high inert gas pressure to eliminate evaporation. The spherical samples are positioned by containment-free acoustic levitation regardless of their conductive or magnetic properties. Temperature, spectral and total emittances are determined by a new microsecond six-wavelength pyrometer coupled to a fast digital data acquisition system. The density is determined by high resolution microfocus X-ray shadow technique. The heat capacity is obtained from the cooling rate. Further applications are a combination of the laser-autoclave with splat cooling techniques for metastable structure synthesis and amorphous metals research and an extension of the LAT for the study of critical phenomena and the measurement of critical-point temperatures.

  11. The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2017-12-01

    Full Text Available Wood-plastic composites (WPCs made by selective laser sintering (SLS approach of 3D printing offer many advantages over single polymer materials, such as low cost, sustainability, and better sintering accuracy. However, WPCs made via SLS are too weak to have widespread applications. In order to increase the mechanical properties of WPCs, a novel type of WPCs containing 0, 0.05, 0.1 and 0.15 wt % carbon nanotubes (CNT, 14 wt % wood fibers, 86 wt % polyether sulfone (PES was manufactured via SLS. The experimental results showed that the addition of small amount of CNTs can significantly increase the mechanical properties of the wood/PES composite material. The tensile strength, bending strength, and elasticity modulus were 76.3%, 227.9%, and 128.7% higher with 0.1 wt % CNTs than those without CNTs. The mechanical properties of specimens first increased and then decreased with the addition of CNTs. The SEM results of the specimens’ fracture morphology indicate that the preferable bonding interfaces between wood flour grains and PES grains were achieved by adding CNTs to the composites. There are two reasons why the composites possessed superior mechanical properties: CNTs facilitate the laser sintering process of WPCs due to their thermal conductivities, and CNTs directly reinforce WPCs.

  12. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing.

    Science.gov (United States)

    Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang

    2018-05-16

    Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.

  13. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microstructure and properties of high chrome steel roller after laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Li Meiyan, E-mail: lmy_102411@163.com [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China); Wang Yong; Han Bin; Zhao Weimin; Han Tao [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China)

    2009-06-15

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO{sub 2} laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M{sub 23}C{sub 6} carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  15. Microstructure and properties of high chrome steel roller after laser surface melting

    International Nuclear Information System (INIS)

    Li Meiyan; Wang Yong; Han Bin; Zhao Weimin; Han Tao

    2009-01-01

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO 2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M 23 C 6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  16. Statistical properties of laser hot spots produced by a random phase plate

    International Nuclear Information System (INIS)

    Rose, H.A.; DuBois, D.F.

    1993-01-01

    A quantitative theory of laser hot spots, which control plasma instabilities in real laser--plasma interactions, is presented in the case of random phase plate (RPP) optics. It is shown that the probability density of intense hot spots with intensity I, P hot (I), is given by P hot (I)∼(I/I 0 2 )exp(-I/I 0 ) where I 0 is the average intensity, and that the detailed amplitude and phase variation of the laser field in the vicinity of an intense hot spot is uniquely specified by the optics and is deterministic. These hot spots may be the source of below threshold stimulated Raman scattering (SRS) and its variation with I 0 is shown to be super exponential. A brief preview of a quantitative nonlinear theory of hot-spot-induced laser filamentation is presented

  17. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  18. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Science.gov (United States)

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  19. Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove

    International Nuclear Information System (INIS)

    Song, Zhihua; Nakata, Kazuhiro; Wu, Aiping; Liao, Jinsun

    2013-01-01

    Laser brazing of Ti6Al4V and A6061-T6 alloys with 2 mm thickness was conducted by focusing laser beam on aluminum alloy side, and the effect of laser offset distance on microstructure and mechanical properties of the dissimilar butt joint was investigated. Laser offset has a great influence on the thickness of interfacial intermetallic compound (IMC) layer and the mechanical property of joint. The thickness of interfacial IMC layer is less than 500 nm, and the average tensile strength of the joint reaches 64% of aluminum base material strength, when suitable welding conditions are used. The interfacial IMC is TiAl 3 . The formation of interfacial IMC layer and its effect on mechanical property of the joint are discussed in the present study.

  20. Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications

    International Nuclear Information System (INIS)

    Bensalah, A.; Ito, M.; Guyot, Y.; Goutaudier, C.; Jouini, A.; Brenier, A.; Sato, H.; Fukuda, T.; Boulon, G.

    2007-01-01

    Spectroscopic characterization is carried out to identify Stark's levels of Yb 3+ transitions in several fluoride crystals grown either by the Czochralski technique or by the laser-heated pedestal growth method. Yb 3+ concentration dependence of the decay time is analyzed in order to understand involved concentration quenching mechanisms. Laser tests under saphire:Ti pumping are presented for all our materials as well as under diode pumping for Yb:CaF 2

  1. Facial microcirculatory and biomechanical skin properties after single high energy (Er):YAG laser application.

    Science.gov (United States)

    Medved, Fabian; Wurm, Antonia; Held, Manuel

    2017-12-01

    Owing to skin aging and the growing demand for skin rejuvenation, minimal invasive aesthetic treatments such as laser procedures are increasingly coming into focus. However, until now, little has been known about the objective effects of these procedures with respect to skin microcirculation or changes in skin elasticity. Facial skin rejuvenation was performed on 32 volunteers using ablative Erbium: YAG laser. Skin microcirculation and skin elasticity have then been evaluated objectively. Microcirculation (flow, SO 2 , velocity, and rHB) has been analyzed before and directly after the laser session by using the O2C device. Skin elasticity has been evaluated by using the Cutometer device (Uf, Ua, Ur, and Ue) before and directly after the laser treatment, as well as 1 week and then 1, 3, and 6 months post treatment. Further, the outcome for the volunteers regarding their satisfactory level after laser treatment was evaluated. Twenty volunteers were available for a complete follow-up. Microcirculation displayed statistically significant increase in all values to 2 mm depth. The biomechanical skin parameter of firmness of skin displayed statistically significant improvement in superficial skin layer after 6 months. Concerning microcirculation and skin elasticity the ablative Erbium: YAG laser treatment revealed similar effects on the skin like a superficial burn injury. In contrast to the determined skin elasticity parameters, firmness of skin objectively revealed a skin tightening effect after 6 months. Along with the important epidermal effect, the suitability of ablative laser treatment for skin rejuvenation has been proved in a long-term follow-up. Lasers Surg. Med. 49:891-898, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Microstructure and mechanical properties of Al10SiMg fabricated by pulsed laser powder bed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Chou, R.; Ghosh, A.; Chou, S.C. [Aluminum Research Centre – REGAL, Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Paliwal, M. [Indian Institute of Technology Gandhinagar, Materials Science and Engineering, Gandhinagar, Gujarat (India); Brochu, M., E-mail: mathieu.brochu@mcgill.ca [Aluminum Research Centre – REGAL, Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada)

    2017-03-24

    A series of high-density Al10SiMg specimens were fabricated using a custom built pulsed laser powder bed fusion unit operating with a pulsed-laser source. The fabricated components were analyzed using optical microscopy, computerized tomography (CT), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) mapping, and X-ray diffraction (XRD). A significantly refined cellular microstructure was observed, where Al cell diameter refinement upto ~210 nm was obtained throughout the component. Age hardening T6 treatment was also performed to investigate the heat treatment response of this fine microstructure. The mechanical properties in the as-built condition were assessed by microhardness testing (136 HV) and compressive tests (true compressive yield strength of 380 MPa and true ultimate compressive strength of 485 MPa). On the other hand, the mechanical responses of T6 specimens displayed strength reduction while demonstrating enhanced ductility.

  3. Influence of laser alloyed layer of carbon steel with tantalum on the structure and surface layer properties

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.; Kac, S.

    1999-01-01

    The paper describes the microstructure and properties (chemical composition and microhardness) of the surface laser alloyed layer with tantalum. The surface alloyed zones varied in microstructure, zones depth and width, as well as Ta content according to the thickness of the coated layer, bonding paint type and process parameters (power and scanning velocity). The electron microprobe analysis of melts showed that higher tantalum content in the melted zone resulted from the thicker original Ta coating as well as slower scanning velocity. Scanning electron microscopy examinations show that dendritic structure of the melted zone becomes evident when carbon was used as one of the components of the binder, while structure is typically martensitic when silicon containing binder was used for powder deposition. Samples covered with Ta and carbon containing binder showed after laser alloying higher hardness than in case of using silicon containing binder. (author)

  4. Dosimetric Properties of Plasma Density Effects on Laser-Accelerated VHEE Beams Using a Sharp Density-Transition Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Hoon; Cho, Sungho; Kim, Eun Ho; Park, Jeong Hoon; Jung, Won-Gyun; Kim, Geun Beom; Kim, Kum Bae [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Min, Byung Jun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jaehoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeong, Hojin [Gyeongsang National University Hospital, Jinju (Korea, Republic of); Lee, Kitae [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Park, Sung Yong [Karmanos Cancer Institute, Michigan (United States)

    2017-01-15

    In this paper, the effects of the plasma density on laser-accelerated electron beams for radiation therapy with a sharp density transition are investigated. In the sharp density-transition scheme for electron injection, the crucial issue is finding the optimum density conditions under which electrons injected only during the first period of the laser wake wave are accelerated further. In this paper, we report particle-in-cell simulation results for the effects of both the scale length and the density transition ratio on the generation of a quasi-mono-energetic electron bunch. The effects of both the transverse parabolic channel and the plasma length on the electron-beam's quality are investigated. Also, we show the experimental results for the feasibility of a sharp density-transition structure. The dosimetric properties of these very high-energy electron beams are calculated using Monte Carlo simulations.

  5. Examination of structure and mechanical properties of hard-to-weld metal joints obtained with the laser method

    International Nuclear Information System (INIS)

    Czujko, T.; Przetakiewicz, W.; Jozwiak, S.; Hoffman, J.; Kalita, W.

    1995-01-01

    Metal joints of stainless of type X6CrNiMoTi1722 (according to DIN) and high conductivity (HC) copper, and joints of transformer steel containing about 3.5% of silicon were obtained using metal sheets 2 mm in thickness. The microstructure and the distribution of microhardness in the area of the joint, and the changes of the strength and elongation caused by the process of laser welding were examined with reference to the properties of the native metal; and, in the case of transformer steel-joints, the effects of welding by means of the TIG method were also analyzed. A probable mechanism of the formation of the steel-copper joint was presented, the strength of which is comparable with that of copper. The superiority of laser welding over TIG welding was also demonstrated. (author). 11 refs, 4 figs, 1 tab

  6. Effect of the ions energy in the physical properties of thin films of CNx deposited by laser ablation

    International Nuclear Information System (INIS)

    Arrieta C, A.; Escobar A, L.; Camps C, E.; Romero H, S.; Mejia H, J.A.; Gonzalez, P.R.; Camacho L, M.A.

    2004-01-01

    Thin films of carbon nitride were deposited using the laser ablation technique starting from a carbon target in atmosphere of N 2 , varying the fluence of the laser and maintaining fixed the distance target-substrate. It was diagnosed the formed plasma, being determined the average kinetic energy of the ions present in the plasma, as well as their density. The characterization of the deposited films includes composition, optical gap, chemical structure and microstructure. They were related the properties of the layers with the plasma parameters with the purpose of clarifying that paper plays in the growth of the layer. Additionally it was studied their thermoluminescent response to being excited with UV radiation. (Author)

  7. Analysis of laser ablation: Contribution of ionization energy to the plasma and shock wave properties

    International Nuclear Information System (INIS)

    Wen, S.-B.; Mao Xianglei; Greif, Ralph; Russo, Richard E.

    2007-01-01

    By fitting simulation results with experimentally measured trajectories of the shock wave and the vapor/background gas contact surface, we found that inclusion of ionization energy in the analysis leads to a change in the evolution of the pressure, mass density, electron number density, and temperature of the vapor plume. The contribution of ionization energy to both the plasma and shock wave has been neglected in most studies of laser ablation. Compared to previous simulations, the densities, pressures, and temperatures are lower shortly after the laser pulse ( 50 ns). The predicted laser energy conversion ratio also showed about a 20% increase (from 35% to 45%) when the ionization energy is considered. The changes in the evolution of the physical quantities result from the retention of the ionization energy in the vapor plume, which is then gradually transformed to kinetic and thermal energies. When ionization energy is included in the simulation, the vapor plume attains higher expansion speeds and temperatures for a longer time after the laser pulse. The better determination of the temperature history of the vapor plume not only improves the understanding of the expansion process of the laser induced vapor plume but also is important for chemical analysis. The accurate temperature history provides supplementary information which enhances the accuracy of chemical analysis based on spectral emission measurements (e.g., laser induced breakdown spectroscopy)

  8. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    Science.gov (United States)

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-12-01

    The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale.

  9. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    Science.gov (United States)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  10. Contribution to the study of physico-chemical properties of surfaces modified by laser treatment. Application to the enhancement of localized corrosion resistance of stainless steels

    International Nuclear Information System (INIS)

    Pacquentin, W.

    2011-01-01

    Metallic materials are more and more used in severe conditions with particularly strong request for improving their behavior in aggressive environment and especially over long periods. The objective of this PhD work is to estimate the potentiality of a laser surface melting treatment on the improvement of the stainless steel 304L corrosion resistance, surface treatments by laser can be revisited on the basis of a recent change in the laser technology. In the frame of this work, a nano-pulsed laser fiber was chosen: it allows the treated surface to be melted for few microns in depth, followed by an ultra-fast solidification occurring with cooling rates up to 1011 K/s. The combination of these processes leads to the elimination of the surface defects, the formation (trapping) of metastable phases, the segregation of chemical elements and the growth of a new oxide layer which properties are governed by the laser parameters. To correlate these latter to the electrochemical reactivity of the surface, the influence of two laser parameters on the physico-chemical properties of the surface was studied: the laser power and the overlap of the laser impacts. To support this approach, the pitting corrosion resistance of the samples was determined by standard electrochemical tests. For specific laser parameters, the pitting potential of a 304L stainless steel was increased by more than 500 mV corresponding to an important enhancement in localized corrosion resistance in chloride environment. The interdependence of the different phenomena resulting from the laser treatment lead to a quite complex prioritization of their role on the sensibility of the 304L. However, it was demonstrated that the nature of the thermal oxide formed during the laser surface melting and the induced defects are first-order parameters for the initiation of pits. (author) [fr

  11. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    Science.gov (United States)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  12. Electron dynamics and optical properties modulation of monolayer MoS{sub 2} by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoxing; Jiang, Lan [Beijing Institute of Technology, Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing (China); Wang, Feng [Beijing Institute of Technology, School of Physics, Beijing (China); Su, Gaoshi [Beijing Institute of Technology, School of Mechatronical Engineering, Beijing (China); Qu, Liangti [Beijing Institute of Technology, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing (China); Lu, Yongfeng [University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE (United States)

    2017-07-15

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS{sub 2} and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS{sub 2} under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS{sub 2} because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS{sub 2} and has potential applications in direction-dependent optoelectronic devices. (orig.)

  13. Improvement of the optical and morphological properties of microlens arrays fabricated by laser using a sol–gel coating

    International Nuclear Information System (INIS)

    Nieto, Daniel; Gómez-Varela, Ana Isabel; Martín, Yolanda Castro; O’Connor, Gerard M.; Flores-Arias, María Teresa

    2015-01-01

    Highlights: • Microlens arrays were fabricated on soda-lime glass using a Ti:Sapphire laser. • A SiO 2 coating prepared via sol–gel route was used to improve the microlens quality. • The sol–gel coating was deposited at the microlens top surface using a dip coating. • Optical properties of the microlenses were improved by the coating. - Abstract: We present a simple, repeatable and non-contaminant method to improve the optical and morphological properties of microlens arrays. It consists on depositing hybrid SiO 2 (TEOS, MTES) coatings via sol–gel route onto microlens arrays fabricated using a Ti:Sapphire Femtosecond Amplitude Systems S-pulse HP laser operating at 1030 nm. The deposited silica sol–gel layer reduces the surface roughness (quantified as the root mean square) and increases the quality of the interstices between the microlenses generated by the ablation process, thus improving the contrast and homogeneity of the foci of the microlens array. The proposed technique allows us to obtain microlenses with a diameter in the range of 15–20 μm and a depth of 1.5–15 μm. For the characterization of the micro-optical structures, the UV–visible spectroscopy, spectral ellipsometry, confocal microscopy and beam profilometry were used. The proof-of-principle presented in this paper can be used to improve the optical and morphological properties of micro-optical systems of different nature by tailoring the parameters involved in both the laser ablation and sol–gel processes comprising the starting materials, solvent and catalysts nature and concentration, hydrolysis ratio, aging time and/or deposition conditions

  14. Improvement of the optical and morphological properties of microlens arrays fabricated by laser using a sol–gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Daniel, E-mail: daniel.nieto@usc.es [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain); Gómez-Varela, Ana Isabel [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain); Martín, Yolanda Castro [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); O’Connor, Gerard M. [School of Physics, National Centre for Laser Applications, National University of Ireland, University Road, Galway (Ireland); Flores-Arias, María Teresa, E-mail: maite.flores@usc.es [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain)

    2015-10-01

    Highlights: • Microlens arrays were fabricated on soda-lime glass using a Ti:Sapphire laser. • A SiO{sub 2} coating prepared via sol–gel route was used to improve the microlens quality. • The sol–gel coating was deposited at the microlens top surface using a dip coating. • Optical properties of the microlenses were improved by the coating. - Abstract: We present a simple, repeatable and non-contaminant method to improve the optical and morphological properties of microlens arrays. It consists on depositing hybrid SiO{sub 2} (TEOS, MTES) coatings via sol–gel route onto microlens arrays fabricated using a Ti:Sapphire Femtosecond Amplitude Systems S-pulse HP laser operating at 1030 nm. The deposited silica sol–gel layer reduces the surface roughness (quantified as the root mean square) and increases the quality of the interstices between the microlenses generated by the ablation process, thus improving the contrast and homogeneity of the foci of the microlens array. The proposed technique allows us to obtain microlenses with a diameter in the range of 15–20 μm and a depth of 1.5–15 μm. For the characterization of the micro-optical structures, the UV–visible spectroscopy, spectral ellipsometry, confocal microscopy and beam profilometry were used. The proof-of-principle presented in this paper can be used to improve the optical and morphological properties of micro-optical systems of different nature by tailoring the parameters involved in both the laser ablation and sol–gel processes comprising the starting materials, solvent and catalysts nature and concentration, hydrolysis ratio, aging time and/or deposition conditions.

  15. Study on the propagation properties of laser in aerosol based on Monte Carlo simulation

    Science.gov (United States)

    Leng, Kun; Wu, Wenyuan; Zhang, Xi; Gong, Yanchun; Yang, Yuntao

    2018-02-01

    When laser propagate in the atmosphere, due to aerosol scattering and absorption, laser energy will continue to decline, affecting the effectiveness of the laser effect. Based on the Monte Carlo method, the relationship between the photon spatial energy distributions of the laser wavelengths of 10.6μm in marine, sand-type, water-soluble and soot aerosols ,and the propagation distance, visibility and the divergence angle were studied. The results show that for 10.6μm laser, the maximum number of attenuation of photons arriving at the receiving plane is sand-type aerosol, the minimal attenuation is water soluble aerosol; as the propagation distance increases, the number of photons arriving at the receiving plane decreases; as the visibility increases, the number of photons arriving at the receiving plane increases rapidly and then stabilizes; in the above cases, the photon energy distribution does not deviated from the Gaussian distribution; as the divergence angle increases, the number of photons arriving at the receiving plane is almost unchanged, but the photon energy distribution gradually deviates from the Gaussian distribution.

  16. Optical properties of Germanium nanoparticles synthesized by pulsed laser ablation in acetone

    Directory of Open Access Journals (Sweden)

    Saikiran eVadavalli

    2014-10-01

    Full Text Available Germanium (Ge nanoparticles (NPs are synthesized by means of pulsed laser ablation of bulk germanium target immersed in acetone with ns laser pulses at different pulse energies. The fabricated NPs are characterized by employing different techniques such as UV-visible absorption spectroscopy, photoluminescence, micro-Raman spectroscopy, transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM. The mean size of the Ge NPs is found to vary from few nm to 40 nm with the increase in laser pulse energy. Shift in the position of the absorption spectra is observed and also the photoluminescence peak shift is observed due to quantum confinement effects. High resolution TEM combined with micro-Raman spectroscopy confirms the crystalline nature of the generated germanium nanoparticles. The formation of various sizes of germanium NPs at different laser pulse energies is evident from the asymmetry in the Raman spectra and the shift in its peak position towards the lower wavenumber side. The FESEM micrographs confirm the formation of germanium micro/nanostructures at the laser ablated position of the bulk germanium. In particular, the measured NP sizes from the micro-Raman phonon quantum confinement model are found in good agreement with TEM measurements of Ge NPs.

  17. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Science.gov (United States)

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  18. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    Science.gov (United States)

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  19. Growth, spectral properties, and laser demonstration of Nd:GYSO crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Cong, Z. H.; Zhang, J.; Tang, D. Y.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.

    2011-07-01

    An Nd:GYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room-temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:GYSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 4.06, 4.65, and 3.63×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak-emission cross section is 3.8×10-20 cm2 at 1074 nm with a FWHM of 8.8 nm. Pumped by a laser diode, a maximum 1.54 W continuous-wave (CW) laser output has been obtained with a slope efficiency of 27.4%. All the results show that Nd:GYSO crystal is a promising laser material.

  20. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  1. Structural and optical properties of pulse laser deposited Ag2O thin films

    Science.gov (United States)

    Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban

    2018-05-01

    We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.

  2. Scattering properties of ultrafast laser-induced refractive index shaping lenticular structures in hydrogels

    Science.gov (United States)

    Wozniak, Kaitlin T.; Germer, Thomas A.; Butler, Sam C.; Brooks, Daniel R.; Huxlin, Krystel R.; Ellis, Jonathan D.

    2018-02-01

    We present measurements of light scatter induced by a new ultrafast laser technique being developed for laser refractive correction in transparent ophthalmic materials such as cornea, contact lenses, and/or intraocular lenses. In this new technique, called intra-tissue refractive index shaping (IRIS), a 405 nm femtosecond laser is focused and scanned below the corneal surface, inducing a spatially-varying refractive index change that corrects vision errors. In contrast with traditional laser correction techniques, such as laser in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), IRIS does not operate via photoablation, but rather changes the refractive index of transparent materials such as cornea and hydrogels. A concern with any laser eye correction technique is additional scatter induced by the process, which can adversely affect vision, especially at night. The goal of this investigation is to identify sources of scatter induced by IRIS and to mitigate possible effects on visual performance in ophthalmic applications. Preliminary light scattering measurements on patterns written into hydrogel showed four sources of scatter, differentiated by distinct behaviors: (1) scattering from scanned lines; (2) scattering from stitching errors, resulting from adjacent scanning fields not being aligned to one another; (3) diffraction from Fresnel zone discontinuities; and (4) long-period variations in the scans that created distinct diffraction peaks, likely due to inconsistent line spacing in the writing instrument. By knowing the nature of these different scattering errors, it will now be possible to modify and optimize the design of IRIS structures to mitigate potential deficits in visual performance in human clinical trials.

  3. Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Lin, Z. F.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Gao, C. Q.; Gao, M. W.; Xu, J.

    2009-11-01

    Tm:Lu3Al5O12 (Tm:LuAG) crystal was grown by the Czochralski method. The segregation coefficient was measured by Inductively Coupled Plasma Atomic Emission Spectrometer. The cell parameters were analyzed with X-ray powder diffraction experiments. The absorption and fluorescence spectra of Tm:LuAG crystal at room temperature were investigated. With a 20 W fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Tm:LuAG crystal was demonstrated. The maximum output power at 2020 nm was obtained to be 3.04 W, and the slope efficiency was 25.3%.

  4. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori [Laser Research Center, Institute for Molecular Science, Okazaki, Aichi (Japan); Ikesue, Akio [Japan Fine Ceramics Center, Nagoya, Aichi (Japan); Yoshida, Kunio [Institute of Laser Engineering, Osaka Institute of Technology, Osaka (Japan)

    2000-03-01

    Diode-pumped microchip laser oscillation of highly Nd{sup 3+}-doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  5. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    International Nuclear Information System (INIS)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori; Ikesue, Akio; Yoshida, Kunio

    2000-01-01

    Diode-pumped microchip laser oscillation of highly Nd 3+ -doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  6. YCOB lasers

    International Nuclear Information System (INIS)

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  7. Evolution of size distribution, optical properties, and structure of Si nanoparticles obtained by laser-assisted fragmentation

    Science.gov (United States)

    Plautz, G. L.; Graff, I. L.; Schreiner, W. H.; Bezerra, A. G.

    2017-05-01

    We investigate the physical properties of Si-based nanoparticles produced by an environment-friendly three-step method relying on: (1) laser ablation of a solid target immersed in water, (2) centrifugation and separation, and (3) laser-assisted fragmentation. The evolution of size distribution is followed after each step by means of dynamic light scattering (DLS) measurements and crosschecked by transmission electron microscopy (TEM). The as-ablated colloidal suspension of Si nanoparticles presents a large size distribution, ranging from a few to hundreds of nanometers. Centrifugation drives the very large particles to the bottom eliminating them from the remaining suspension. Subsequent irradiation of height-separated suspensions with a second high-fluence (40 mJ/pulse) Nd:YAG laser operating at the fourth harmonic (λ =266 nm) leads to size reduction and ultra-small nanoparticles are obtainable depending on the starting size. Si nanoparticles as small as 1.5 nm with low dispersion (± 0.7 nm) are observed for the uppermost part after irradiation. These nanoparticles present a strong blue photoluminescence that remains stable for at least 8 weeks. Optical absorption (UV-Vis) measurements demonstrate an optical gap widening as a consequence of size decrease. Raman spectra present features related to pure silicon and silicon oxides for the irradiated sample. Interestingly, a defect band associated with silicon oxide is also identified, indicating the possible formation of defect states, which, in turn, supports the idea that the blue photoluminescence has its origin in defects.

  8. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  9. Fibre laser nitriding of titanium and its alloy in open atmosphere for orthopaedic implant applications: Investigations on surface quality, microstructure and tribological properties

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham C.

    2017-01-01

    surfaces, such as the tapered surfacein a femoral stemor the ball-shaped surface in a femoral head. To tackle this problem, a direct laser nitridingprocess in open atmosphere was performed on commercially pure titanium (grade 2, TiG2) and Ti6Al4V alloy(grade 5, TiG5) using a continuous-wave (CW) fibre...... distribution of wear debris, were carefully characterized and compared. The experimental resultsshowed that TiG2 and TiG5 reacted differently with the laser radiation at 1.06 μm wavelength in laser nitridingas evidenced by substantial differences in the microstructure, and surface colour and morphology....... Furthermore,both friction andwear properties were strongly affected by the hardness and microstructure of titaniumsamplesand direct laser nitriding led to substantial improvements in their wear resistant properties. Between the twotypes of titanium samples, bare TiG2 showed higher friction forces and wear...

  10. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  11. Nd: YAG laser treatment of aluminium-TiB2 coated: optimization of corrosion properties

    CSIR Research Space (South Africa)

    Popoola, PAI

    2011-06-01

    Full Text Available . Eutectics of TiB2/Al and TiB2/Ti were observed. The results of the tests indicate that TiB2 reinforcement does not give significant increase in microhardness of aluminium. The corrosion resistance of a single laser trackline MMC in a 3.65 % NaCl solution...

  12. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  13. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, S [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, M A [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan, Toluca Edo. de Mexico, 50110 (Mexico); Sanchez-Perez, C [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico); Esparza-GarcIa, A [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico)

    2007-04-15

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO{sub 3} phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm.

  14. Dental implants coated with laser deposited hydroxyapatite films - physical properties and in-vivo study

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Himmlová, L.; Grivas, Ch.; Fotakis, C.

    2002-01-01

    Roč. 374, - (2002), s. 599-604 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * thin films * implants * hydroxyapatite * in-vivo tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  15. Photo-Machining of Semiconductor Related Materials with Femtosecond Laser Ablation and Characterization of Its Properties

    Science.gov (United States)

    Yokotani, Atushi; Mizuno, Toshio; Mukumoto, Toru; Kawahara, Kousuke; Ninomiya, Takahumi; Sawada, Hiroshi; Kurosawa, Kou

    We have analyzed the drilling process with femtosecond laser on the silicon surface in order to investigate a degree of thermal effect during the dicing process of the very thin silicon substrate. A regenerative amplified Ti:Al2O3 laser (E= 30˜500 μJ/pulse, τ= 200 fs, λ= 780 nm, f= 10 Hz) was used and focused onto a 50 μm-thick silicon sample. ICCD (Intensified Charge coupled Device) camera with a high-speed gate of 5 ns was utilized to take images of processing hole. First, we investigated the dependence of laser energy on the speed of the formation of the drilled hole. As a result, it was found that the lager the energy, the slower the speed of the formation under the minimum hole was obtained. Consequently, in the case of defocused condition, even when the smaller the energy density was used, the very slow speed of formation and the much lager thermal effects are simultaneously observed. So we can say that the degree of the thermal effects is not simply related to energy density of the laser but strongly related to the speed of the formation, which can be measured by the ICCD camera. The similar tendency was also obtained for other materials, which are important for the fabrication of ICs (Al, Cu, SiO2 and acrylic resin).

  16. Enhanced Wear Properties of Steel : A Combination of Ion Implantation Metallurgy and Laser Metallurgy

    NARCIS (Netherlands)

    Beurs, H. de; Hosson, J.Th.M. De

    1988-01-01

    Laser surface melting of a chromium steel results in tensile stresses, which have deleterious effects on its wear behaviour. Implantations at 360 K with neon and nitrogen have been carried out in order to convert these stresses into compressive ones. Herewith an additional increase in hardness has

  17. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals

    Science.gov (United States)

    Chen, Chien-Yu; Chung, Chung-Jen; Wu, Bo-Hsiung; Li, Wang-Long; Chien, Chih-Wei; Wu, Ping-Han; Cheng, Chung-Wei

    2012-05-01

    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications.

  18. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Yu.; Li, Wang-Long [National Cheng Kung University, Department of Materials Science and Engineering, Tainan, Taiwan (China); Chung, Chung-Jen; Wu, Bo-Hsiung [National Cheng Kung University, Center for Micro/Nano Science and Technology, Tainan, Taiwan (China); Chien, Chih-Wei; Wu, Ping-Han; Cheng, Chung-Wei [ITRI South, Industrial Technology, Research Institute, Laser Application Technology Center, Tainan, Taiwan (China)

    2012-05-15

    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications. (orig.)

  19. uv laser induced molecular multiphoton ionization and fragmentation. [Intensity dependence, ion properties and yield

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S; Reilly, J P; Hohla, K; Kompa, K L

    1979-02-01

    It has been demonstrated that the output from a discharge pumped KrF laser (249 nm) is capable of ionizing a variety of molecules. The nature and yield of ions generated in this process, which were identified by time-of-flight mass spectrometry, exhibit a striking intensity dependence. 12 references, 3 figures.

  20. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    International Nuclear Information System (INIS)

    Evans, R; Camacho-Lopez, S; Camacho-Lopez, M A; Sanchez-Perez, C; Esparza-GarcIa, A

    2007-01-01

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO 3 phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm

  1. Enhanced Mechanical Properties of Laser Treated Al-Cu Alloys : A Microstructural Analysis

    NARCIS (Netherlands)

    Mol van Otterloo, J.L.de; Bagnoli, D.; de Hosson, J.T.M.

    Both mechanical Vickers hardness and electron microscopic studies have been carried out on laser treated aluminium copper alloys with a copper concentration in the range 0-40 wt%. It is found that a Vickers hardness of 470 kgf/mm(2) can be attained, which is high compared to a value of 120 kgf/mm(2)

  2. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  3. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    Science.gov (United States)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene

  4. Comparison of radiative and structural properties of 1.3 µm InxGa(1-x)As quantum-dot laser structures grown by metalorganic chemical vapor deposition and molecular-beam epitaxy: Effect on the lasing properties

    NARCIS (Netherlands)

    Passaseo, A.; Vittorio, de M.; Todaro, M.T.; Tarantini, I.; Giorgi, de M.; Cingolani, R.; Taurino, A.; Catalano, M.; Fiore, A.; Markus, A.; Chen, J.X.; Paranthoën, C.; Oesterle, U.; Ilegems, M.

    2003-01-01

    The authors have studied the radiative and structural properties of identical InxGa(1-x)As quantum dot laser structures grown by metalorg. CVD (MOCVD) and MBE. Despite the comparable emission properties found in the two devices by photoluminescence, electroluminescence, and photocurrent

  5. Growth and properties of SrBi2TaNbO9 ferroelectric thin films using pulsed laser deposition

    International Nuclear Information System (INIS)

    Yang Pingxiong; Deng Hongmei; Shi Meirong; Tong Ziyang; Qin Sumei

    2007-01-01

    High quality SrBi 2 TaNbO 9 (SBTN) ferroelectric thin films were fabricated on platinized silicon by pulsed laser deposition. Microstructure and ferroelectric properties of the films were characterized. Optical fatigue (light/bias) for the thin films was studied and the average remanent polarization dropped by nearly 55% due to the bias/illumination treatment. Optical properties of the thin films were studied by spectroscopic ellipsometry (SE) from the ultraviolet to the infrared region. Optical constants, n ∼ 0.16 in the infrared region and n ∼ 2.12 in the visible spectral region, were determined through refractive index functions. The band gap energy is estimated to be 3.93 eV

  6. Structure and Mechanical Properties of the AlSi10Mg Alloy Samples Manufactured by Selective Laser Melting

    Science.gov (United States)

    Li, Xiaodan; Ni, Jiaqiang; Zhu, Qingfeng; Su, Hang; Cui, Jianzhong; Zhang, Yifei; Li, Jianzhong

    2017-11-01

    The AlSi10Mg alloy samples with the size of 14×14×91mm were produced by the selective laser melting (SLM) method in different building direction. The structures and the properties at -70°C of the sample in different direction were investigated. The results show that the structure in different building direction shows different morphology. The fish scale structures distribute on the side along the building direction, and the oval structures distribute on the side vertical to the building direction. Some pores in with the maximum size of 100 μm exist of the structure. And there is no major influence for the build orientation on the tensile properties. The tensile strength and the elongation of the sample in the building direction are 340 Mpa and 11.2 % respectively. And the tensile strength and the elongation of the sample vertical to building direction are 350 Mpa and 13.4 % respectively

  7. Effects of ZrB{sub 2} on substructure and wear properties of laser melted in situ ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chao, Yuhjin [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Luo, Zhen, E-mail: lz@tju.edu.cn [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Cai, Yangchuan [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-01

    Graphical abstract: - Highlights: • Laser beam partly disperses ZrB{sub 2} particle clusters and showing dispersed particles state after matrix solidification. • Laser melting process narrower cellular spacing in composites than AA6061 matrix. • Compared with matrix alloy, crystal orientation near melted layer edge of the composites is almost random duo to heterogeneous nucleation in melt and pinning effect of laser dispersed ZrB{sub 2} nanoparticles at solidification front. • Laser melted layer shows better wear properties than matrix and composite without laser melting. - Abstract: Aluminum matrix composites reinforced by in situ ZrB{sub 2} particles were successfully fabricated from an Al-KBF{sub 4}-K{sub 2}ZrF{sub 6} system via a direct melt reaction. A laser surface melting strategy is used to improve the surface strength of the in situ ZrB{sub 2p}/6061Al composite, which includes a series of laser-melted composites with different laser power processed by a 2 kW YAG laser generator. XRD and EDS results demonstrated the existence of ZrB{sub 2} nanoparticles in the composite. After laser melting, the penetration depth of the molten pool increases with increasing power density. OM and SEM analysis indicate that the laser melting process yields narrower cellular spacing of the matrix and partly disperses the ZrB{sub 2} particle clusters. Compared with laser-melted matrix alloys, the crystal orientations near the melted layers edge of the composite are almost random due to heterogeneous nucleation in the melt and the pinning effect of laser-dispersed ZrB{sub 2} nanoparticles at the solidification front. Wear test results show that the laser melted layer performs better at wear resistance than both the substrate and the matrix AA6061 by measuring wear mass loss. Compared with composite samples prepared without laser melting, the wear mass loss of the laser melted composites decreased from 61 to 56 mg under a load of 98 N for 60 min.

  8. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  9. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Saleh, Tawfik A.; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  10. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  11. Optical properties of highly crystalline Y2O3:Er,Yb nanoparticles prepared by laser ablation in water

    International Nuclear Information System (INIS)

    Nunokawa, Takashi; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    Y 2 O 3 :Er,Yb nanoparticles were prepared by laser ablation in water. We investigated crystallinity, distribution of dopant, and optical properties of the prepared nanoparticles. The full-width half-maximum (FWHD) of the crystalline peak of nanoparticles measured by an x-ray diffractometer (XRD) barely changed. Further, using scanning transmission electron microscopy–energy dispersive x-ray spectroscopy (STEM–EDX), we confirmed the peaks of Y, Er, Yb, and O. Moreover, on the basis of the optical properties of the nanoparticles, the emission of red ( 2 F 9/2  →  4 I 15/2 ) and green ( 2 H 11/2 , 4 S 3/2  →  4 I 15/2 ) was confirmed. We also investigated the emission intensity as a function of the excitation power of 980 nm LD in the prepared nanoparticles. The photon avalanche effect was observed at the excitation power of 100 mW. These results confirmed that uniformly Er-Yb-doped Y 2 O 3 nanoparticles were successfully prepared by laser ablation in water. (paper)

  12. Microstructure and mechanical properties of newly developed aluminum–lithium alloy 2A97 welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Banglong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Guoliang, E-mail: glqin@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Meng, Xiangmeng; Ji, Yang; Zou, Yong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Lei, Zhen [Harbin Welding Institute, Harbin 150028 (China)

    2014-11-03

    The newly developed aluminum–lithium alloy 2A97 was for the first time joined by laser beam welding in order to meet the ever-increased long-term requirements of aerospace, aviation and armament industries. The weld appearance, microstructure, solute segregation, precipitate behavior, and their relationships with mechanical properties of welded joints were investigated. Sound joints with no crack and a few small porosities are obtained under appropriate heat inputs. As a result of heterogeneous nucleation involving the effect of Zr and Li, a non-dendritic equiaxed zone forms between partially melted zone and fusion zone. The crystal morphologies in fusion zone vary from columnar dendrite to equiaxed dendrite, with the increase of constitutional supercooling. Solute segregation leads to the variations of Cu content in grain interior and boundary, as well as the weak ability of re-precipitation of fusion zone. Most precipitates in the base metal dissolve during welding, and fusion zone contains a decreased quantity of δ′, β′, θ′, and T{sub 1}. The ultimate tensile strength of laser welded joints is 83.4% of that of the base metal, and can meet the application requirements from related industries, but the ductility still needs to be improved. Welding defects and loss of solid solution/precipitation hardened structure lead to the degradation of mechanical properties. Tensile fracture occurs in weld with the brittle intergranular dominated mode and premature failure occurs and extends in the equiaxed zone.

  13. Sol-gel deposition and electrical properties of laser irradiated Cu doped TiO2 multilayer thin films

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available Multilayer thin films (3, 5 and 7 of 20% copper doped titanium dioxide (Cu:TiO2 have been deposited on glass substrates by sol-gel spin coating method. After deposition, films have been irradiated by a beam of continuous wave diode laser (532 nm for two minutes at the angle of 45°. Structural, surface morphology and electrical properties of films have been investigated by X-rays diffraction (XRD, scanning electron microscope (SEM and four point probe technique respectively. XRD shows the formation of titanium copper oxide. Surface morphology of thin films indicated that the average grain size is increased by increasing the number of layers. The average sheet resistivity of 3, 5 and 7 layers of thin films measured by four point probe technique is 2.2 × 104, 1.2 × 104 and 1.0 × 104 (Ohm-cm respectively. The present study will facilitate a cost effective and environmental friendly study for several properties of materials. Keywords: Cu:TiO2, Multilayer thin films, Diode laser

  14. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications.

    Science.gov (United States)

    Takaichi, Atsushi; Suyalatu; Nakamoto, Takayuki; Joko, Natsuka; Nomura, Naoyuki; Tsutsumi, Yusuke; Migita, Satoshi; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Wakabayashi, Noriyuki; Igarashi, Yoshimasa; Hanawa, Takao

    2013-05-01

    The selective laser melting (SLM) process was applied to a Co-29Cr-6Mo alloy, and its microstructure, mechanical properties, and metal elution were investigated to determine whether the fabrication process is suitable for dental applications. The microstructure was evaluated using scanning electron microscopy with energy-dispersed X-ray spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test. Dense builds were obtained when the input energy of the laser scan was higher than 400 J mm⁻³, whereas porous builds were formed when the input energy was lower than 150 J mm⁻³. The microstructure obtained was unique with fine cellular dendrites in the elongated grains parallel to the building direction. The γ phase was dominant in the build and its preferential orientation was confirmed along the building direction, which was clearly observed for the builds fabricated at lower input energy. Although the mechanical anisotropy was confirmed in the SLM builds due to the unique microstructure, the yield strength, UTS, and elongation were higher than those of the as-cast alloy and satisfied the type 5 criteria in ISO22764. Metal elution from the SLM build was smaller than that of the as-cast alloy, and thus, the SLM process for the Co-29Cr-6Mo alloy is a promising candidate for fabricating dental devices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Analytical and laser scanning techniques to determine shape properties of mineral aggregates

    CSIR Research Space (South Africa)

    Komba, Julius J

    2013-01-01

    Full Text Available processed to reconstruct 3-D models of the aggregate particles. The models were further analyzed to determine the form properties. In this paper, two analysis approaches, based on aggregate physical properties and spherical harmonic analysis, were employed...

  16. Influence of sputtering conditions on the optical and electrical properties of laser-annealed and wet-etched room temperature sputtered ZnO:Al thin films

    Energy Technology Data Exchange (ETDEWEB)

    Boukhicha, Rym, E-mail: rym.boukhicha@polytechnique.edu [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Charpentier, Coralie [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Total S and M — New Energies Division, R and D Division, Department of Solar Energies EN/BO/RD/SOL, Tour Michelet, 24 cours Michelet, La Défense 10, 92069 Paris La Défense Cedex (France); Prod' Homme, Patricia [Total S and M — New Energies Division, R and D Division, Department of Solar Energies EN/BO/RD/SOL, Tour Michelet, 24 cours Michelet, La Défense 10, 92069 Paris La Défense Cedex (France); Roca i Cabarrocas, Pere [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Lerat, Jean-François; Emeraud, Thierry [Photovoltaic Business Unit, Excico Group NV, Kempische Steenweg 305/2, B-3500 Hasselt (Belgium); Johnson, Erik [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-31

    We explore the influence of the sputtering deposition conditions on the outcome of an excimer laser anneal and chemical etching process with the goal of producing highly textured substrates for thin film silicon solar cells. Aluminum-doped zinc oxide (ZnO:Al) thin films were prepared on glass substrates by radio frequency magnetron sputtering from a ceramic target at room temperature. The effects of the process pressure (0.11–1.2 Pa) and oxygen flow (0–2 sccm) on the optical and electrical properties of ZnO:Al thin films have been studied both before and after an excimer laser annealing treatment followed by a dilute HCl chemical etch. The as-deposited films varied from completely opaque to yellowish. Thin film laser annealing dramatically improves the optical properties of the most opaque thin films. After laser annealing at the optimum fluence, the average transmittance in the visible wavelength range was around 80% for most films, and reasonable electrical performance was obtained for the films deposited at lower pressures and without oxygen flux (7 Ω/□ for films of 1 μm). After etching, all films displayed a dramatic improvement in haze, but only the low pressure, low oxygen films retained acceptable electrical properties (< 11 Ω/□). - Highlights: • Al:ZnO thin films were deposited at room temperature. • The ZnO:Al films were excimer laser annealed and then wet-etched. • The optical and electrical properties were studied in details.

  17. Microstructures evolution and physical properties of laser induced NbC modified nanocrystalline composites

    Science.gov (United States)

    Li, Jianing; Liu, Kegao; Yuan, Xingdong; Shan, Feihu; Zhang, Bolun; Wang, Zhe; Xu, Wenzhuo; Zhang, Zheng; An, Xiangchen

    2017-10-01

    The nanoscale quasicrystals (NQs), amorphous and ultrafine nanocrystals (UNs) modified hard composites are produced by laser cladding (LC) of the Ni60A-TiC-NbC-Sb mixed powders on the additive manufacturing (AM) TA1 titanium alloy. The LC technique is favorable to formations of icosahedral quasicrystals (I-phase) with five-fold symmetry due to its rapid cooling and solidification characteristics. The formation mechanism of this I-phase is explained here. Under the actions of NQs, amorphous and UNs, such LC composites exhibited an extremely high micro-hardness. UNs may also intertwin with amorphous, forming yarn-shape materials. This research provides essential theoretical basis to improve the quality of laser-treated composites.

  18. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    International Nuclear Information System (INIS)

    Xu, X D; Meng, J Q; Cheng, Y; Li, D Z; Cheng, S S; Wu, F; Zhao, Z W; Wang, X D; Xu, J

    2009-01-01

    Nd:LuAG (Nd:Lu 3 Al 5 O 12 ) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm 3 . The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%

  19. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Meng, J. Q.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Xu, J.

    2009-09-01

    Nd:LuAG (Nd:Lu3Al5O12) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm3. The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%.

  20. Spectral properties and laser performance of Tm, Ho: LuLF4 crystal

    Science.gov (United States)

    Peng, Haiyan; Zhang, Kun; Zhang, Lianhan; Hang, Yin; Xu, Jianqiu; Tang, Yulong; Cheng, Yan; Xiong, Jing

    2008-12-01

    LuLiF4 single crystals co-doped with thulium (5%) and holmium (0.5%), which had large size, intact shape and high optical quality, were successfully grown by the medium frequency induction heating Czochralski Technique. The absorption spectrum of the crystals showed that the main absorption peak located at 686 nm and 792nm. At room temperature, LuLiF4 single crystals co-doped with thulium (5%) and holmium (0.5%) were end-pumped by a fiber-coupled laser diode system with pumping wavelength of 795 nm. We achieved power of 50 mw continuous laser output at 2.05 μm wavelength.

  1. Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Petford, N. [Kingston Univ., Centre for Earth and Environmental Science Research, Kingston (United Kingdom); Davidson, G. [University Coll., Dept. of Electronic and Electrical Engineering, London (United Kingdom); Miller, J.A. [Cambridge Univ., Dept. of Earth Sciences, Cambridge (United Kingdom)

    2001-05-01

    Confocal scanning laser microscopy (CSLM) is used to produce images of the two- and three-dimensional distribution and geometry of pore space in a reservoir sandstone and measure the 2D distribution of pore throat radii. Non-destructive serial sectioning of the rock using laser light at 100% illumination, combined with image thresholding and histogram equalization techniques allow the pore volume structure of the uppermost 100 {mu}m of the sample to be reconstructed. Negative imaging of the pore volume gave superior depth and feature resolution compared to positive (reflection) imaging. Artefacts encountered in applying classical Medial Axial Transforms to CSLM images include branch networks dominated by coordination numbers of 3. Skeletonization using Euclidean distance maps gives increased accuracy in the description of the pore network. Measured pore throat size distribution in the rock is strongly exponential and described by the expression y 219e{sup -0.25x} where y is the number of pore throats. (Author)

  2. Microstructures and Microhardness Properties of CMSX-4® Additively Fabricated Through Scanning Laser Epitaxy (SLE)

    Science.gov (United States)

    Basak, Amrita; Holenarasipura Raghu, Shashank; Das, Suman

    2017-12-01

    Epitaxial CMSX-4® deposition is achieved on CMSX-4® substrates through the scanning laser epitaxy (SLE) process. A thorough analysis is performed using various advanced material characterization techniques, namely high-resolution optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and Vickers microhardness measurements, to characterize and compare the quality of the SLE-fabricated CMSX-4® deposits to the CMSX-4® substrates. The results show that the CMSX-4® deposits have smaller primary dendritic arm spacing, finer γ/ γ' size, weaker elemental segregation, and higher microhardness compared to the investment cast CMSX-4® substrates. The results presented here demonstrate that CMSX-4® is an attractive material for laser-based AM processing and, therefore, can be used in the fabrication of gas turbine hot-section components through AM processing.

  3. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  4. Emission properties of diode laser bars during pulsed high-power operation

    International Nuclear Information System (INIS)

    Hempel, Martin; Tomm, Jens W; Elsaesser, Thomas; Hennig, Petra

    2011-01-01

    High-power diode laser bars (cm-bars) are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behaviour are monitored for pulse widths in the 10–100 µs range with streak- and thermo-cameras, respectively. Thresholds of catastrophic optical damage are determined, and their dependence on the length of the injected current pulses is explained qualitatively. This approach permits testing the hardness of facet coatings of cm-bars with or without consideration of accidental single pre-damaged emitter failure effects and thermal crosstalk between the emitters. This allows for the optimization of pulsed operation parameters, helps limiting sudden degradation and provides insight into the mechanisms governing the device emission behaviour at ultimate output powers. (fast track communication)

  5. Analysis of laser printer and photocopier toners by spectral properties and chemometrics

    Science.gov (United States)

    Verma, Neha; Kumar, Raj; Sharma, Vishal

    2018-05-01

    The use of printers to generate falsified documents has become a common practice in today's world. The examination and identification of the printed matter in the suspected documents (civil or criminal cases) may provide important information about the authenticity of the document. In the present study, a total number of 100 black toner samples both from laser printers and photocopiers were examined using diffuse reflectance UV-Vis Spectroscopy. The present research is divided into two parts; visual discrimination and discrimination by using multivariate analysis. A comparison between qualitative and quantitative analysis showed that multivariate analysis (Principal component analysis) provides 99.59%pair-wise discriminating power for laser printer toners while 99.84% pair-wise discriminating power for photocopier toners. The overall results obtained confirm the applicability of UV-Vis spectroscopy and chemometrics, in the nondestructive analysis of toner printed documents while enhancing their evidential value for forensic applications.

  6. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  7. Structure, stability properties, and nonlinear dynamics of lateral modes of a broad area semiconductor laser

    DEFF Research Database (Denmark)

    Blaaberg, Søren

    2007-01-01

    Bred-areal halvlederlasere er kompakte lasere designet til at levere høj udgangseffekt (>1 Watt). Den høje effekt opnås ved at gøre laserens aktive område bredt (>100 mikrometer) samt laserspejlene endnu bredere. I det aktive område pumpes laseren elektrisk. Langs laserens ene tværstillede akse l...

  8. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  9. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matei, A., E-mail: andreeapurice@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Laser techniques MAPLE and PLD can successfully be used to produce LDHs thin films. Black-Right-Pointing-Pointer Hydration treatments of the PLD and MAPLE deposited films lead to the LDH reconstruction effect. Black-Right-Pointing-Pointer The Ni retention from aqueous solution occurs in the films via a dissolution-reconstruction mechanism. Black-Right-Pointing-Pointer The films are suitable for applications in remediation of contaminated drinking water or waste waters. - Abstract: Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO{sub 3}){sub 2} aqueous solutions with Ni concentrations of 10{sup -3}% (w/w) (1 g/L) and 10{sup -4}% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  10. Determination of aggregate morphological properties using laser and their effects on rutting of asphalt mixes

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2013-11-01

    Full Text Available Andesite grading with andesite fines; 2Dolerite grading with andesite fines 3Chrome slag grading with slag fines FIGURE 2 Example of aggregate particles scanned for this study. Sampling for Scanning Wet sieve analysis tests were conducted... analyses. The mathematical details of the use of spherical harmonic analysis techniques to analyse laser scanning of aggregates are presented by (14). Figure 5 shows shape indices results plotted against the aggregate sieve sizes for the three...

  11. Properties of ZnO whiskers under CO2-laser irradiation

    International Nuclear Information System (INIS)

    Shkumbatyuk, P. S.

    2010-01-01

    Needlelike ZnO single crystals (whiskers) 0.3-0.8 mm long and 1-10 μm in diameter with a resistivity from 3 x 10 2 to 1 Ω cm have been grown under cw CO 2 -laser irradiation. The whiskers exhibit weak electroluminescence caused by injection from contacts with participation of intrinsic defects, which affect the electric field distribution.

  12. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    Science.gov (United States)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  13. Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding

    Science.gov (United States)

    Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2018-04-01

    The characteristics of an Fe2+:ZnSe laser at room temperature and its active elements with undoped faces were studied. Polycrystalline elements with one or two diffusion-doped internal layers were obtained by the solid-state diffusion bonding technique applied to chemical vapor deposition grown ZnSe plates preliminary doped with Fe2+ ions in the process of hot isostatic pressing. A non-chain electric-discharge HF laser was used to pump the crystals. It was demonstrated that increasing the number of doped layers allows increasing the maximum diameter of the pump radiation spot and the pump energy without the appearance of transversal parasitic oscillation. For the two-layer-doped active element with a diameter of 20 mm an output energy of 480 mJ was achieved with 37% total efficiency with respect to the absorbed energy. The obtained results demonstrate the potential of the developed technology for fabrication of active elements by the solid-state diffusion bonding technique combined with the hot isostatic pressing treatment for efficient IR lasers based on chalcogenides doped with transition metal ions.

  14. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  15. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Batha, S.H.

    1998-01-01

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 microm), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities

  16. Appearance property and mechanism of plume produced by pulsed ultraviolet laser ablating copper

    International Nuclear Information System (INIS)

    Huang Qingju; Li Fuquan; Wang Honghua

    2008-01-01

    Time-resolved measurements of plume emission spectra by pulsed ultraviolet laser ablating copper in neon were analyzed, and the photographs of plume from laser ablating copper were taken. The experimental results show that plume has different colours in different ranges. At low pressure the centre layer and middle layer colours of plume are mixed colour, and the outer layer colours of plume are yellow and green. At middle pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is pea green. At high pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is faintness green. The plume range is pressed with the rising of ambient gas pressure, and the range colour gets thin with the rising of ambient gas pressure. The plume excitation radiation mechanism in pulsed ultraviolet laser ablating copper was discussed. The primary excitation radiation mechanism in plume is electron collision energy transfer and atom collision energy transfer at low pressure and middle pressure, and it is electrons Bremsstrahlung and recombination excitation radiation of electron and ion at high pressure. The model can be used to explain the experimental result qualitatively. (authors)

  17. Preparation, characterization and optical properties of Gadolinium doped ceria thin films by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Nagaraju, P.; Vijaya Kumar, Y.; Vishnuvardhan Reddy, C.; Ramana Reddy, M.V.; Phase, D.M; Raghavendra Reddy, V.

    2013-01-01

    The growth of Gadolinium doped ceria thin films with controlled surface structure for device quality applications presents a significant problem for experimental investigation. In the present study gadolinium doped cerium oxide thin films were prepared by pulsed laser deposition (PLD) and were studied for their surface structure evaluation in relation to the optimized operating conditions during the stage of film preparation. The deposition was made with gadolinium concentration of 10 mole% to ceria pellets. The films were deposited on quartz substrate in the presence of oxygen partial pressure of 1.5 x 10 -3 torr using KrF Excimer laser with laser energy 220 mJ at a substrate temperature 700℃. The effect of annealing temperature on 10 mole% GDC thin film was investigated. The film thickness was measured by using AMBIOS make XP-l stylus profiler. As prepared and annealed thin films were characterized for crystallinity, particle size and orientation by using G.I.XRD. The films were characterized using atomic force microscopy (AFM). The AFM results gave a consistent picture of the evolution of GDC film surface morphologies and microstructures in terms of surface roughness, grain distribution and mean grain size. The optical transmittance spectra was used to determine the optical constants such as optical band gap, refractive index, extinction coefficient of as prepared and annealed thin films. (author)

  18. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    Science.gov (United States)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  19. Growth, thermal and laser properties of Yb:YxLu1−xVO4 mixed crystal

    International Nuclear Information System (INIS)

    Zhong, Degao; Teng, Bing; Kong, Weijin; Li, Jianhong; Zhang, Shiming; Li, Yuyi; Cao, Lifeng; Yang, Liting; He, Linxiang; Huang, Wanxia

    2015-01-01

    New mixed crystal of Yb: Y 0.78 Lu 0.22 VO 4 with Yb ion concentration of 0.3 at% was grown by Czochralski method. Transmission synchrotron X-ray topography implies that this mixed crystal follows a rotational growth pattern. Crystal structure of this crystal was determined by X-ray diffraction. It showed that this crystal possesses a tetragonal zircon structure (ZrSiO 4 , space group I41/amd), as YVO 4 and LuVO 4 do. Thermal properties of this crystal were characterized by measuring its specific heat, thermal expansion coefficients and thermal conductivities. The specific heat was determined to be 0.500 J g −1 K −1 at 293 K. The average linear thermal expansion coefficients were calculated to be α 11 = 1.73 × 10 −6 K −1 and α 33 = 9.43 × 10 −6 K −1 , over the temperature range of 300–777 K. The thermal conductivities were calculated to be κ 11 = 5.47 W m −1 K −1 and κ 33 = 6.64 W m −1 K −1 at 303 K. Continuous-wave (cw) laser test on Yb: Y 0.78 Lu 0.22 VO 4 was conducted at room temperature in the wavelength range of 1035.7–1048.3 nm, and a 13.5% optical-to-optical efficiency was achieved. The good thermal properties of Yb:Y 0.78 Lu 0.22 VO 4 mixed crystal and its attractive cw laser performance make it very suitable for practical applications. - Highlights: • New Yb:Y 0.78 Lu 0.22 VO 4 mixed laser crystals were grown. • The thermal expansion, thermal diffusivity and specific heat were measured. • Cw laser operation was realized at room temperature in the range of 1035.7–1048.3 nm

  20. Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO: Ga thin films

    Science.gov (United States)

    Hassan, Ali; Jin, Yuhua; Chao, Feng; Irfan, Muhammad; Jiang, Yijian

    2018-04-01

    Theoretically and experimentally evaluated optoelectronic properties of GZO (Ga-doped zinc oxide) were correlated in the present article. Density functional theory and Hubbard U (DFT + Ud + Up) first-principle calculations were used for the theoretical study. The pulsed laser deposition technique was used to fabricate GZO thin films on p-GaN, Al2O3, and p-Si substrates. X-ray diffraction graphs show single crystal growth of GZO thin films with (002) preferred crystallographic orientation. The chemical composition was studied via energy dispersive X-ray spectroscopy, and no other unwanted impurity-related peaks were found, which indicated the impurity-free thin film growth of GZO. Field emission scanning electron microscopic micrographs revealed noodle-, seed-, and granular-like structures of GZO/GaN, GZO/Al2O3, and GZO/Si, respectively. Uniform growth of GZO/GaN was found due to fewer mismatches between ZnO and GaN (0.09%). Hall effect measurements in the van der Pauw configuration were used to check electrical properties. The highest mobility (53 cm2/Vs) with a high carrier concentration was found with low laser shots (1800). A 5-fold photoluminescence enhancement in the noodle-like structure of GZO/GaN compared with GZO/Al2O3 and GZO/Si was detected. This points toward shape-driven optical properties because the noodle-like structure is more favorable for optical enhancements in GZO thin films. Theoretical (3.539 eV) and experimental (3.54 eV) values of the band-gap were also found to be comparable. Moreover, the lowest resistivity (3.5 × 10-4 Ωcm) with 80% transmittance is evidence that GZO is a successful alternate of ITO.

  1. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  2. Influence of laser sputtering parameters on orientation of cerium oxide buffer layer on sapphire and properties of YBa2Cu3Ox superconducting film

    International Nuclear Information System (INIS)

    Mozhaev, P.B.; Ovsyannikov, G.A.; Skov, J.L.

    1999-01-01

    Effect of laser sputtering parameters on crystalline properties of CeO 2 buffer layers grown on (1102) orientation sapphire substrate and on properties of YBa 2 Cu 3 O x superconducting thin films was studied. It was shown that depending on the sputtering conditions one might observe growth of CeO 2 (100) and (111) orientations. Varying heater temperature, chamber pressure and density of laser ray energy on the target one managed to obtain mono-oriented buffer layer of the desired orientation [ru

  3. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Vrancken, Bey; Thijs, Lore; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2012-01-01

    Highlights: ► Responses of SLM-produced and wrought Ti6Al4V to heat treatment are compared. ► Temperature is found to be the controlling parameter for treatments in the α + β range. ► Ductility could be improved by a factor of 85%, from 7.27% to 13.59%. ► An optimal heat treatment for SLM produced Ti6Al4V is proposed. - Abstract: The present work shows that optimization of mechanical properties via heat treatment of parts produced by Selective Laser Melting (SLM) is profoundly different compared to conventionally processed Ti6Al4V. In order to obtain optimal mechanical properties, specific treatments are necessary due to the specific microstructure resulting from the SLM process. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V processed by SLM is studied. A comparison is made with the effect of these treatments on hot forged and subsequently mill annealed Ti6Al4V with an original equiaxed microstructure. For SLM produced parts, the original martensite α′ phase is converted to a lamellar mixture of α and β for heat treating temperatures below the β-transus (995 °C), but features of the original microstructure are maintained. Treated above the β-transus, extensive grain growth occurs and large β grains are formed which transform to lamellar α + β upon cooling. Post treating at 850 °C for 2 h, followed by furnace cooling increased the ductility of SLM parts to 12.84 ± 1.36%, compared to 7.36 ± 1.32% for as-built parts.

  4. Laser safety and practice

    International Nuclear Information System (INIS)

    Low, K.S.

    1995-01-01

    Lasers are finding increasing routine applications in many areas of science, medicine and industry. Though laser radiation is non-ionizing in nature, the usage of high power lasers requires specific safety procedures. This paper briefly outlines the properties of laser beams and various safety procedures necessary in their handling and usage. (author)

  5. Laser heating and oxygen partial pressure effects on the dynamic magnetic properties of perpendicular CoFeAlO films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Wei [State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China); Tang, Minghong [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Zhang, Zongzhi, E-mail: zzzhang@fudan.edu.cn [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Lou, Shitao [State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China); Jin, Q.Y. [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China)

    2016-07-01

    The impact of oxidation and laser heating on the dynamic magnetic properties of perpendicularly magnetized Co{sub 50}Fe{sub 25}Al{sub 25}O films has been studied by time-resolved magneto-optical Kerr effect in a fs-laser pump-probe setup. We find that pump laser fluence F{sub p} can affect the effective magnetic anisotropy field and thus the precession frequency f seriously, leading to an increased dependence of effective magnetic damping factor α{sub eff} on the external field at higher fluences. Moreover, the α{sub eff} increases with increasing the oxygen partial pressure P{sub O2} while the uniaxial anisotropy energy K{sub u} and Landau factor g decrease, owing to the increased proportion of superparamagnetic CoFe oxides formed by over-oxidation. By optimizing both the F{sub p} and P{sub O2}, the intrinsic damping factor is determined to be lower than 0.028 for the perpendicular film showing a uniaxial anisotropy energy as high as 4.3×10{sup 6} erg/cm{sup 3}. The results in this study provide a promising approach to manipulate the magnetic parameters for possible applications in spintronic devices. - Highlights: • A new kind of perpendicular thin film material, oxidized CoFeAl, has been fabricated. • The precession frequency and effective damping are strongly affected by higher fluence. • The effective damping factor increases with oxygen partial pressure. • The intrinsic damping factor is below 0.028 for the CFAO film with K{sub u}=4.3×10{sup 6} erg/cm{sup 3}.

  6. Influence of solution properties in the laser forward transfer of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dinca, V. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); National Institute for Lasers, Plasma and Radiation Physics Atomistilor No.409, P O. Box MG 16, 077125 Bucharest (Romania); Patrascioiu, A.; Fernandez-Pradas, J.M.; Morenza, J.L. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Influence of viscosity on the LIFT dynamics in the case of a Newtonian liquid. Black-Right-Pointing-Pointer A very broad range of viscosities (1.9-850 mPa s) can be LIFT printed. Black-Right-Pointing-Pointer Printing uniformity correlates well with the stability of the ejection process. - Abstract: The influence of the viscosity of the printed solution on the laser-induced forward transfer (LIFT) of liquids is investigated. A set of water and glycerol mixtures with different glycerol content are prepared with the aim of having a collection of solutions covering a wide range of viscosities, from 1.9 to 850 mPa s. Arrays of micrometric droplets of those solutions are spotted through LIFT and characterized by means of optical microscopy, revealing that for all the analyzed solutions there always exists a range of laser fluences leading to the formation of regular circular droplets, with that range increasing and widening with viscosity. The dynamics of liquid ejection is investigated through time-resolved imaging with the aim of understanding the role of viscosity in the process, and its influence on the morphology of the deposited droplets. The acquired stop-action movies reveal that liquid transfer proceeds mainly through jetting, with the exception of LIFT at low viscosities and high laser fluences, in which bursting develops. From this study it is concluded that viscosity plays an important role in the stabilization of liquid ejection and transport, which contributes to the uniformity of the deposited droplets.

  7. Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study

    International Nuclear Information System (INIS)

    Han Zhenhui; Lu Changyuan; Wang Wenfeng; Lin Weizhen; Yao Side; Lin Nianyun

    2000-01-01

    Direct excitation of riboflavin with 248 nm laser gives rise to a transient absorption spectrum with contributions from (1) oxidized radical, (2) hydrated electron, (3) triplet state and reduced radical, and distinction between the transient species below 360 nm is difficult for the absorption overlapped. The RF ·+ or RF(-H) · has been clearly produced via direct photoionization by 248 nm laser in aqueous solution, which has been unambiguously identified by SO 4 ·- radical oxidation, although its transient absorption can not be observed clearly for both lower absorption coefficient (ε = 2000 dm 3 mol -1 cm -1 at 640 nm at pH 7.1) and overlap from others. In the present paper, electron transfer from purine and pyrimidine nucleotides to one-electron oxidized radical of riboflavin were observed for the first time in aqueous solution, and the reaction rate constants were determined respectively, which would obviously be of considerable significance in vivo and in vitro. The results clearly demonstrate the importance of oxidized radical of riboflavin in flavin photochemistry and photobiology. These reaction paths are important for the elucidation of the interaction between riboflavin and DNA nucleotides under photoexcitation. When riboflavin was excited, triplet state and oxidized radical can be formed directly or by sequence reactions of triplet state. In the presence of DNA, electron transfer can take place to form a base radical cation, then hole migration to GG step along base-stacking of DNA leads to DNA strand scission, which has been verified by many steady product analysis. This selective cleavage of DNA shows the potential application of riboflavin as a site-specify photonuclease, which has become a highlight' in the currently photochemistry, photomedicine and photobiology areas. The mechanism implies that riboflavin can be applied potentially to photosensitization of oxygen deficient or under high intensity pulsed laser irradiation. (author)

  8. An experimental investigation on the properties of laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    Tang Xiaoshuan; Li Chunyan; Ji Xuehan; Feng Eryin; Cui Zhifeng

    2004-01-01

    The authors have measured the time-resolved emission spectra produced by Nd: YAG laser induced Al plasma with different kinds of buffer gas (He, Ar, N 2 and Air). The dependence of emission spectra line intensity and Stark broadening on the time delay, kinds and pressure of buffer gas are studied. The results show that the atomic emission line intensity reaches maximum at 3 μs time delay, the Stark broadening increases with increasing the pressure of buffer gas, and decreases with increasing time delay. The Stark broadening in Ar buffer gas is largest among the four different kinds of buffer gas. (author)

  9. Influence of nanomodification additives on the properties of multilayer composite coating obtained in laser surfacing

    Science.gov (United States)

    Cherepanov, A. N.; Orishich, A. M.; Ovcharenko, V. E.; Malikov, A. G.; Drozdov, V. O.; Pshenichnikov, A. P.

    2017-10-01

    The paper presents the results of numerical and experimental studies of the process of obtaining a permanent joint of two plates of heterogeneous metals that cannot be welded in the usual way: alloy Grade 4 and steel AISI 321 using a laser beam and an intermediate composite insert. The composite insert was obtained by explosion welding of four thin plates of titanium (Grade 4), niobium, copper, and steel (AISI 321). The insert was placed between the welded plates of titanium and steel, and the steel plate was welded with the steel part of the insert, and the titanium plate was welded with the titanium part of the insert. The plates were welded using a CO2 laser. The connection of metals with the help of explosion is carried out without their melting, so the formation of the brittle intermetallics does not occur in most cases. This ensures the greatest strength of the joints as compared to the joints obtained by other welding methods. To analyze the distribution of thermal fields in the composite insert and welded plates, a numerical study was conducted of the laser welding of steel and titanium plates with the corresponding parts of the insert. The purpose of the study was to determine the rational parameters of welding (laser beam power, speed of its movement, size and position of the focal spot), at which there was no complete melting of the steel and titanium parts of the insert during through penetration of the welded plates. The experimental part of the work is devoted to analysis of formation of the internal boundaries and microstructure of the composite insert and the strength of the permanent joint. It is shown that as a result of the explosion welding, weld seams of different wavelike configuration are formed. The most pronounced wavelike boundary is observed in the steel-copper connection, since these materials have a face-centered cubic lattice and are easily subjected to plastic deformation. At the contact boundaries of the plates, transition diffusion

  10. Nd:YAG laser irradiation effects on electrical properties of polycrystalline Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Maheshkumar L., E-mail: mane.maheshkumar@hotmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India); Dhage, V.N.; Shirsath, Sagar E. [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India); Sundar, R.; Ranganathan, K.; Oak, S.M. [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (M.P.) (India); Jadhav, K.M. [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India)

    2012-01-15

    Highlights: > Standard double sintering ceramic method. > Infrared and electrical properties of spinel ferrite. > Laser irradiation study. > Conduction mechanism. > Temperature dependence dielectric properties. - Abstract: The polycrystalline spinel structured Li{sub 0.5}Fe{sub 2.5}O{sub 4} ferrite have been prepared by conventional double sintering ceramic method. The samples were palletized and irradiated by Nd:YAG laser with different laser fluencies and characterized by infrared spectroscopy and DC electrical resistivity in order to obtain phase, crystal structure and conduction mechanism in pristine and irradiated samples. The infrared spectroscopy is employed to study the local symmetry and conduction mechanism in crystalline solids before and after irradiation. The DC electrical resistivity measured by two-probe technique from room temperature to beyond Curie temperature with steps of 10 K increases after laser irradiation. Variation of dielectric properties like dielectric constant and dielectric loss tangent is also measured as a function of temperature. A significant reduction in the values of dielectric constant and dielectric loss tangent has been observed with the increase of laser dose.

  11. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    Science.gov (United States)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  12. Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser

    Science.gov (United States)

    Tang, Jing; Liu, Li; Li, Song-zhan

    2008-12-01

    A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.

  13. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    Science.gov (United States)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  14. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    Science.gov (United States)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  15. Structural and optical properties of {beta}-FeSi{sub 2}/Si(100) prepared by laser ablation method

    Energy Technology Data Exchange (ETDEWEB)

    Kakemoto, H; Makita, Y; Obara, A; Tsai, Y; Sakuragi, S; Ando, S; Tsukamoto, T

    1997-07-01

    {beta}-FeSi{sub 2} is a promising material for the application of various electronic, optoelectronic and energy devices. The authors present here the semiconducting properties of {beta}-FeSi{sub 2} films on Si(100) substrate prepared by laser ablation method. Samples were grown using poly-crystalline bulk {beta}-FeSi{sub 2} prepared by horizontal gradient freeze method. For the monitoring of growth, in-situ observation of ablation plume was made through fluorescence spectroscopy. Reflection of high-energy electron beam diffraction (RHEED) was also made in-situ to see the surface morphology. Characterization of the films by X-ray diffraction presented purely {beta}(220) orientation. Raman scattering measurements at room temperature also indicated that the grown films are semiconducting {beta}-FeSi{sub 2}. Optical absorption spectra at room temperature showed absorption coefficient higher than 10{sup 5} cm{sup {minus}1} above the band-gap ({approximately}1.2 eV). It was revealed that high quality semiconducting {beta}-FeSi{sub 2} films can be fabricated by laser ablation method without post-annealing.

  16. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    Science.gov (United States)

    Gujba, Abdullahi K.; Medraj, Mamoun

    2014-01-01

    The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284

  17. Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios

    Science.gov (United States)

    Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.

    2018-03-01

    The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.

  18. Structural and electrical transport properties of La2Mo2O9 thin films prepared by pulsed laser deposition

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2017-04-01

    We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.

  19. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Gao, Peng; Gao, Juntao; Wu, Ze

    2018-04-01

    Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.

  20. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.