Sample records for laser materials final

  1. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. T. [Washington State University


    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  2. Exploratory development on laser and optical materials. Final report 1 Dec 1972-15 Aug 1974

    Energy Technology Data Exchange (ETDEWEB)

    O' Hare, J.M.; Detrio, J.A.; Petty, R.D.; Yaney, P.P.


    Topics include analytical solid state material studies--(Theoretical and experimental investigations of the optical Stark spectra of rare earth ions, Judd-Ofelt theory, Quantum efficiencies); Laser materials evaluation; Studies of rare-earth doped CdF/sub 2/, SrF/sub 2/, and BaF/sub 2/--(Electroluminescence of semiconducting CdF/sub 2/, Analyses of the optical spectra of Gd/sup 3 +/ and Ce/sup 3 +/).

  3. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I


    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  4. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid


    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  5. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos


    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  6. Ceramic Laser Materials (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar


    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  7. Ceramic laser materials (United States)

    Ikesue, Akio; Aung, Yan Lin


    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  8. Laser processing of materials

    Indian Academy of Sciences (India)

    J Dutta Majumdar; I Manna


    Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wavelength, energy/power and beam-modes/configurations. As a result, lasers find wide applications in the mundane to the most sophisticated devices, in commercial to purely scientific purposes, and in life-saving as well as life-threatening causes. In the present contribution, we provide an overview of the application of lasers for material processing. The processes covered are broadly divided into four major categories; namely, laser-assisted forming, joining, machining and surface engineering. Apart from briefly introducing the fundamentals of these operations, we present an updated review of the relevant literature to highlight the recent advances and open questions. We begin our discussion with the general applications of lasers, fundamentals of laser-matter interaction and classification of laser material processing. A major part of the discussion focuses on laser surface engineering that has attracted a good deal of attention from the scientific community for its technological significance and scientific challenges. In this regard, a special mention is made about laser surface vitrification or amorphization that remains a very attractive but unaccomplished proposition.

  9. Laser materials production (United States)

    Gianinoni, I.; Musci, M.


    The characteristics and the perspectives of the new photochemical laser techniques for materials production will be briefly analysed and some recent experimental results both on large area deposition of thin films and on synthesis of powders will be reported. As an example of an IR laser process, the cw CO 2 laser-induced deposition of hydrogenated amorphous silicon will be described in some detail. The results of some UV experiments for semiconductor, metal and insulating film depositions will also be discussed. The features of the process for laser-driven synthesis of powders and the characteristics of the produced particles will be evidenced, and some of their technological applications will be outlined. The requirements of the laser sources suitable for this kind of applications are in general the same as in gas-phase laser chemistry, however it will be pointed out how some parameters are more significant for this specific use.

  10. Laser Damage Inspection Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J T; Brase, J M; Bliss, E S; Carrano, C J; Kegelmeyer, L M; Miller, M G; Orth, C D; Sacks, R A


    Large, high-power laser systems are often designed as reimaging multipass cavities to maximize the extraction of energy from the amplifiers. These multipass cavities often have vacuum spatial filters that suppress the growth of beam instability via B-integral effects. These spatial filters also relay images of laser damage, often nearly superimposing these images in common planes. Also, the fluence damage threshold limits the minimum size of the optics. When used as vacuum barriers in the spatial filters, these large optics present a safety hazard from the risk of implosion if the laser damage were sufficiently large. The objective of the project was to develop algorithms and methods for optical detection and characterization of laser-induced damage of optics. The system should detect small defects (about 5% of the critical size), track their growth over multiple laser shots, and characterize the defects accurately so that the optic can be replaced (at 25% of the critical size) and, hence, minimize the risk of implosion. The depth of field must be short enough to isolate the damaged vacuum barrier from other damaged optics in the beamline, and the system should also be capable of inspecting other optics in the beamline, since damage on one optic can subsequently damage subsequent optics. Laser induced damage starts as a small (<<1mm) crater and grows as material is removed on subsequent laser shots. The highly fractured rough surface of the crater scatters light from the illuminating inspection beam. This scattered light is imaged by the inspection system. Other types of defects may occur as well including inclusions in the bulk glass, tooling marks, and surface contamination. This report will discuss the detection and characterization of crater-like surface defects although the general techniques may prove useful for other types of defects. The work described here covers the development of an image processing approach and specific algorithms for defect detection

  11. New laser materials for laser diode pumping (United States)

    Jenssen, H. P.


    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  12. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B


    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  13. Laser and nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    De Shazer, L.G.


    This book contains 21 papers. Some of the titles are: Frequency conversion materials from a device perspective; Recent developments in area; Recent developments in barium borate; Growth of laser crystals at Airtron; Crystal growth and the future of solid state lasers; Faraday rotator materials for laser systems; and Mechanical properties of single crystal ceramics.

  14. Laser scribe optimization study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wannamaker, A.L.


    The laser scribe characterization/optimization project was initiated to better understand what factors influence response variables of the laser marking process. The laser marking system is utilized to indelibly identify weapon system components. Many components have limited field life, and traceability to production origin is critical. In many cases, the reliability of the weapon system and the safety of the users can be attributed to individual and subassembly component fabrication processes. Laser beam penetration of the substrate material may affect product function. The design agency for the DOE had requested that Federal Manufacturing and Technologies characterize the laser marking process and implement controls on critical process parameters.

  15. Laser induced damage in optical materials: 1989 (United States)

    Bennett, H. E.; Chase, L. L.; Guenther, A. H.; Newnam, B. E.; Soileau, M. J.


    The 21st Annual Symposium on Optical Materials for High Power Lasers was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and, finally, Fundamental Mechanisms. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power apparatus. The wavelength range of the prime interest included surface characterization, thin film substrate boundaries, and advances in fundamental laser matter threshold interactions and mechanisms. The scalling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail.

  16. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.


    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  17. Novel materials for laser refrigeration (United States)

    Hehlen, Markus P.


    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which hωmax 100 ppb are believed to be the main reason for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF3-LiF are considered as alternatives to ZBLAN, and the crystalline system KPb2Cl5 :Dy3+ is identified as a prime candidate for high-efficiency laser cooling.

  18. Laser-Material Interactions (United States)


    from the spinner to the PL measurement setup, the time lapse before PL data collection being - 2-3 minutes. The deposition of sodium sulfide nano ...limitations of tsig u existing surface-emitting laser designs, particula .rly the I n this paper, we describe implementation of the novel i.diu; *high

  19. Possibilities of Laser Processing of Paper Materials (United States)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  20. Millisecond laser machining of transparent materials assisted by nanosecond laser. (United States)

    Pan, Yunxiang; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu


    A new form of double pulse composed of a nanosecond laser and a millisecond laser is proposed for laser machining transparent materials. To evaluate its advantages and disadvantages, experimental investigations are carried out and the corresponding results are compared with those of single millisecond laser. The mechanism is discussed from two aspects: material defects and effects of modifications induced by nanosecond laser on thermal stress field during millisecond laser irradiation. It is shown that the modifications of the sample generated by nanosecond laser improves the processing efficiency of subsequent millisecond laser, while limits the eventual size of modified region.

  1. Materials for high average power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Marion, J.E.; Pertica, A.J.


    Unique materials properties requirements for solid state high average power (HAP) lasers dictate a materials development research program. A review of the desirable laser, optical and thermo-mechanical properties for HAP lasers precedes an assessment of the development status for crystalline and glass hosts optimized for HAP lasers. 24 refs., 7 figs., 1 tab.

  2. Novel materials for laser refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory


    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  3. Laser And Nonlinear Optical Materials For Laser Remote Sensing (United States)

    Barnes, Norman P.


    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  4. Thermal lensing of laser materials (United States)

    Davis, Mark J.; Hayden, Joseph S.


    This paper focuses on the three main effects that can induce wave-front distortion due to thermal lensing in laser gain media: 1) thermo-optic (dn/dT); 2) stress-optic; and 3) surface deformation (e.g., "end-bulging" of a laser rod). Considering the simple case of a side-pumped cylindrical rod which is air- or water-cooled along its length, the internal temperature distribution has long been known to assume a simple parabolic profile. Resulting from this are two induced refractive index variations due to thermo-optic and stress-optic effects that also assume a parabolic profile, but generally not of the same magnitude, nor even of the same sign. Finally, a small deformation on the rod ends can induce a small additional lensing contribution. We had two goals in this study: a) use finite-element simulations to verify the existing analytical expressions due to Koechner1 and Foster and Osterink; and b) apply them to glasses from the SCHOTT laser glass portfolio. The first goal was a reaction to more recent work by Chenais et al. who claimed Koechner made an error in his analysis with regard to thermal stress, throwing into doubt conclusions within studies since 1970 which made use of his equations. However, our re-analysis of their derivations, coupled with our FE modeling, confirmed that the Koechner and Foster and Osterink treatments are correct, and that Chenais et al. made mistakes in their derivation of the thermally-induced strain. Finally, for a nominal laser rod geometry, we compared the thermally-induced optical distortions in LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2. While LG-750, -760, and -770 undergo considerable thermo-optic lensing, their stress-optic lensing is nearly of the same magnitude but of opposite sign, leading to a small total thermal lensing signature.

  5. Laser-assisted fabrication of materials

    CERN Document Server

    Manna, Indranil


    Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ´Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.

  6. Modeling of Laser Material Interactions (United States)

    Garrison, Barbara


    Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.

  7. Multiphysical Simulation of Laser Material Processing (United States)

    Otto, Andreas; Koch, Holger; Vazquez, Rodrigo Gomez

    Within this paper a multiphysical simulation model is presented that is capable for simulating a wide range of laser processes like e.g. laser beam welding, brazing, cutting, drilling or ablation. Some important aspects of the model are explained more in detail and results from test cases are compared with analytical solutions revealing the high accuracy of the model. Finally exemplary results from process simulations on laser beam remote cutting of steel and laser beam scribing of silicon wafers are given.

  8. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev


    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  9. Laser processing and analysis of materials

    CERN Document Server

    Duley, W W


    It has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo­ chemistry is undergo...

  10. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)


    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  11. GPC Light Shaper for energy efficient laser materials processing

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous...

  12. Femtosecond Laser Interaction with Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B


    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  13. Laser applications in machining slab materials (United States)

    Zhang, Xiaoping


    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  14. Spectroscopy of Nd-doped laser materials (United States)

    George, Simi A.; Hayden, Joseph S.


    Laser design codes utilize laser properties provided by materials manufacturers for performance modeling. Large scale manufacturing of materials during compositional developments for a particular laser design is not economically feasible. Nevertheless, the laser properties derived from the available sample volumes must be reliable and reproducible. In recent years, as a result of the renewed interest in novel glasses for ultrafast laser applications, SCHOTT has developed improved measurements and methodologies for providing the most accurate information possible to laser scientists. Even though the J-O method is robust and time tested for the spectroscopic characterization of Nd3+, the accuracy of the results requires reliable measurements. This paper outlines the J-O approximation for manifold to manifold transitions, measurements needed, and some of the pitfalls to watch for during the collection of data for Nd-doped materials.

  15. Metallurgical phenomena in laser finishing: Interdependences between solidification morphologies and hot cracking in laser welding of mostly austenitic materials. Final reportc; Metallkundliche Phaenomene der Laserstrahlmaterialbearbeitung. Teilvorhaben: Zusammenhaenge zwischen Erstarrungsmorphologien und Heissrissentstehung beim Laserschweissen von vornehmlich austenitischen Werkstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schobbert, H.


    Austentic stainless steels are widely used in safety relevant applications such as chemical plant industry or off-shore industry. Due to the rapid development of laser welding processes, the economical efficiency increases and leads to a growing interest in industry for the production of, for example, straight bead welded pipes. A specific problem of laser welding is the economically desirable high welding speed, which leads in austenitic stainless steels to a change of solidification mode and thus, to a restricted hot cracking resistance. Thus, the solidification morphologies of austenitic stainless steels near the eutectic trough during laser welding were investigated. Thereby, the main aspect was the evaluation of a short-term metallurgical kinetic effects under rapid solidification conditions. It was proven that three widely used stainless steels (1.4828, 1.4306, and 1.4404) show a transition of primary solidifcation mode from primary ferritic to primary austenitic solidification depending on the solidification rate. The approximate value of the critical soldification rate can be determined using a newly developed model by analyzing the geometric structures of solidification. The critical solidification rate for the transition of the solidification mode depends on the chemical composition of the base metal. It was shown that austenitic stainless steels have a critical solidification rate of approximately 1 m/min. As a main result, it was proven that a transition of the solidification mode to primary austenitic solidification promotes the predicted susceptibiliyy of hot cracking. For this, a hot cracking test assembly has been developed in order to determine the hot cracking behavior under laser beam conditions. In contrast to existing hot crack tests, a critical strain rate for hot crack initiation could be measured. A classification of the materials with respect to their hot cracking susceptibility under the solidification conditions during laser welding can

  16. Development of laser materials processing and laser metrology techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu


    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designedand fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs.

  17. Development of components for the high brightness laser. Final report May 77-Jun 80

    Energy Technology Data Exchange (ETDEWEB)

    Garmire, E.


    In 1979 DBR lasers were fabricated and their properties studied. Further investigations were undertaken of the beam expander, to determine its potential for the high brightness laser. From this data it was determined that a design change for the high brightness laser is required. This design change is described. In addition, measurements were made on laser amplification to compare this method of achieving higher power compared to the coupled diode arrays. Finally, as a spin-off of this research, a new design for a single mode laser was discovered, using the active/passive laser, a configuration which was fabricated as a first step toward fabrication of DBR lasers. Each of these research efforts are described in this report. Monolithic integration of the necessary components on one substrate for the high brightness laser has been hindered by problems in material and fabrication uniformity. This will be described, and projections for future development will be outlined.

  18. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR


    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  19. FY 2005 Laser Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Myers, Tanya L.; Taubman, Matthew S.


    The Laser Development Task of Pacific Northwest National Laboratory's (PNNL) Remote Spectroscopy project (PL211I) is focused on the development of novel laser technology for a new generation of standoff and in-situ chemical sensors for detecting the proliferation of nuclear weapons. These lasers will improve the sensitivity, flexibility, or range of active standoff sensors, enable ultra-trace in situ sensors with enhanced selectivity, as well as greatly improve calibration of passive standoff sensors. In particular, laser transmitters with minimal size, weight, and power consumption (SWAP) are needed to meet the requirements for a variety of in situ or short-range stand-off sensors and sensors for small UAVs or other platforms. These laser transmitters need to be rugged and free of requirements for consumables such as liquid nitrogen. Many sensing techniques also require lasers that produce a single narrow wavelength (single longitudinal mode). Lasers that provide high continuous-wave (CW) output power on a single line at operating temperatures accessible with thermoelectric (TE) cooling are therefore essential for sensor applications.

  20. Laser Materials Processing for NASA's Aerospace Structural Materials (United States)

    Nagarathnam, Karthik; Hunyady, Thomas A.


    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  1. Functionally graded materials produced by laser cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De


    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  2. Functionally graded materials with laser cladding

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Brebbia, CA


    Al-40 w/o Si functionally graded materials (FGMs) were produced by a onestep laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surro

  3. Functionally graded materials produced by laser cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De


    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  4. Functionally Graded Materials Produced by Laser Cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De


    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  5. Nonminimum Phase Behavior of Laser Material Processing

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Weerkamp, N.P.; Meijer, J.; Postma, S.


    Optical sensors are increasingly applied in laser material processing to monitor and control the lasermaterial interaction zone. Dynamic models, relating the sensor signals (e.g. as temperature or molten area) to the process inputs (e.g. laser power or beam velocity), provide the basis for the desig

  6. Evaluation of advanced materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Tucker, T.R.; Stropki, J.T.


    Cemented tungsten carbides with a binder level in the range of 5 to 6 percent exhibited the best resistance to erosion for this class of materials. Other practical cermet meterials were diamond - Si/SiC, Al/sub 2/O/sub 3/-B/sub 4/C-Cr, and B/sub 4/C-Co. SiAlON exhibited erosion resistance equivalent to the best WC-cermet. The only coating system to show promise of improved erosion resistance was CVD TiB/sub 2/ on cemented TiB/sub 2/-Ni. Cracking and/or spalling of a TiC coating and a proprietary TMT coating occurred in the standard slurry erosion test. Ranking of cemented tungsten carbide materials in the laboratory erosion test was the same as that found in service in the Wilsonville pilot plant. Specimens from the Fort Lewis pilot plant which performed well in service exhibited low erosion in the laboratory test. A substitute slurry, was found to be 2 to 4 times more erosive than the coal-derived slurry 8 wt% solids. Ranking of materials in the substitute slurry was nearly identical to that in the coal-derived slurry. Three modes of erosion were: ductile cutting; elastic-plastic indentation and fracture; and intergranular fracture. Erosion of a given material was closely related to its microstructure. In the substitute slurry, the angle-dependence of erosion of two forms of SiC, hot-pressed and sintered, were similar, but the sintered material eroded slower. Laser fusing of preplaced powder mixtures can produce cermet-like structures with potential for erosive and sliding wear resistance. TiC particles in Stellite 6 matrix proved less prone to cracking than WC particles in the same matrix. 74 figures, 14 tables.

  7. Trends In Materials Processing With Laser Radiation (United States)

    Herziger, G.; Kreutz, E. W.


    The objectives of reactive chemical and nonreactive thermal processing with laser radiation are outlined giving indication that processing with laser radiation is governed by a hierarchy of time constants originating from photon-matter interaction, phase transition dynamics, laser source excitation fluctuations,, and optical feedback in combination with the influence of beam delivery systems, processing/shielding gas flow configurations, robotics, production lines and environment. The minimization of losses by heat flow, reflection and transmission and the stringent need for quality assurance require as first approach the control of processing, which is mainly due to the capability of laser radiation source. The current status of laser radiation sources is reported giving information on the state of the art of processing with laser radiation in combination with subsequent demonstration of future trends and developments with respect to radiation sources, beam delivery, beam shaping, materials, processing and quality assurance.

  8. Trends in materials processsing with laser radiation (United States)

    Herziger, Gerd; Kreutz, Ernst W.


    The objectives of reactive chemical and nonreactive thermal processing with laser radiation are outlined giving indication that processing with laser radiation is governed by a hierarchy of time constants originating from photon-matter interaction, phase transition dynamics, laser source excitation fluctuations, and optical feedback in combination with the influence of beam delivery systems, processing/shielding gas flow configurations, robotics, production lines and environment. The minimization of losses by heat flow, reflection and transmission and the stringent need for quality assurance require as first approach the control of processing, which is mainly due to the capability of laser radiation source. The current status of laser radiation sources is reported giving information on the state of the art of processing with laser radiation in combination with subsequent demonstration of future trends and developments with respect to radiation sources, beam delivery, beam shaping, materials, processing and quality assurance.

  9. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Falco


    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  10. Laser Cutting of Materials of Various Thicknesses

    Directory of Open Access Journals (Sweden)

    Martin Grepl


    Full Text Available Thise paper deals with the application of laser technology and optimizing the parameters for cutting nickel alloy. The theoretical part of the paper describes various types of lasers, their principles and usage. The experimental part focuses on optimizing the section parameteres of Haynes 718 alloy using a CO2 gas laser. This alloy is employed in the production of components for the aircraft industry. The experiment was performed on the Wibro Delta laser system designed for sizable parts. The actual section is measured with respect to its quality and any accompanying side effects that occur during the process. In this case, laser output and cutting speed were the parameters with most influence on the final cut. The summary explains the results achieved in a metallographic laboratory.

  11. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, A


    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  12. Long pulse chemical laser. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R. [and others] [Boeing Aerospace Co., Seattle, WA (United States)


    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  13. Final Report: High Power Semiconductor Laser Sources, (United States)


    m(I mO (26a) Here a is a dimensionless quantity related to the ratio be- 2 tween pump and field intensities, and in our model, is 0, = bxo tanh (xo...and E. Kapon. "Application of the equivalent index bxo 6b method to DH diode lasers," Appl. Opt.. vol. 18. no. 22. pp. 3724- 3725. 1979. While 0,1

  14. Diamond: a material for laser spectroscopy (United States)

    Castex, M. C.; Riedel, D.; Museur, L.; Chardonnet, Christian; Gicquel, Alix; Foulon, Francois; Borel, C.; Bergonzo, P.; Jany, C.


    Diamond polycrystalline films synthesized by chemical vapor deposition techniques present interesting feature for laser spectroscopy due to several advantages arising from their optical, electronic, thermal and mechanical properties. Their wide transmission band from the far IR to the UV make them attractive as optical devices for high-power laser beam. Moreover, with a wide band gap, a short carrier lifetime and a high damage threshold, diamond is an ideal semiconductor material for the fabrication of fast and solar blind VUV detectors. We report here results of laser studies performed with tow different objectives. With use of a pulsed VUV laser at 125 nm we have determined the photoconductive response of polycrystalline diamond detectors. With a CO2 laser we have investigated the polarization properties of auto-supported films having thicknesses smaller than the wavelength.

  15. Laser photoacoustics for gas analysis and materials testing (United States)

    Sigrist, Markus W.


    The application of laser photoacoustics to two different areas is discussed. First, laser-induced spallation and interferometric detection of transient surface displacements is proposed as a powerful noncontact tool for the investigation of adhesion properties of solid surface coatings. Results for nickel and plasma-sprayed ceramic coatings are presented. Delamination processes at the interface between substrate and coating could be detected with excellent spatial and temporal resolution and adhesion strengths in the 0.2 to 2 GPa range be determined. Second, laser photoacoustic spectroscopy is applied to trace gas monitoring. An automated mobile CO2$ laser photoacoustic system is employed for in situ air monitoring with parts per billion sensitivity in industrial, urban, and rural environments. An improvement in detection selectivity for multicomponent gas mixtures is achieved with a continuously tunable high- pressure CO2 laser with a narrow linewidth of 0.017 cm-1. A CO laser photoacoustic system previously used for the analysis of motor vehicle exhausts is now employed for studying dimerization phenomena in fatty acid vapors. Finally, emphasis is put on the development of widely tunable, narrow-band, mid-IR laser sources based on optical parametric oscillation or difference frequency generation employing tunable diode lasers and AgGaSe2 as nonlinear material.

  16. Pulsed Laser Processing of Paper Materials (United States)

    Schechtel, Florian; Reg, Yvonne; Zimmermann, Maik; Stocker, Thomas; Knorr, Fabian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    At present the trends in paper and packaging industries are the personalization of products and the use of novel high-tech materials. Laser processes as non-contact and flexible techniques seem to be the obvious choice to address those developments. In this paper we present a basic understanding of the occurring mechanisms of laser based engraving of different paper and paperboard materials, using a picosecond laser source at 1064 nm. The influences on the beam-paper-interaction of grammage, the composition of the paper matrix, as well as the paper inherent cellulose fibers were investigated. Here the ablation threshold of commercially available paper was determined and a matrix ablation effect under the 1064 nm radiation observed. These results were characterized and qualified mainly by means of laser scanning microscope (LSM) micrographs in combination with color-space analytics.

  17. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)


    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  18. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful? (United States)

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Sonina, Svetlana V.; Meshcheryakov, Yuri P.


    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  19. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas


    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...... during the pulse itself. It will be described how the model allows for a self-consistent description of material excitation and light propagation. The model is used to predict ablation depths and the optical properties of the sample. A comparison between the calculation and experimentally determined...

  20. Laser induced forward transfer of soft materials (United States)

    Palla-Papavlu, A.; Dinca, V.; Luculescu, C.; Shaw-Stewart, J.; Nagel, M.; Lippert, T.; Dinescu, M.


    A strong research effort is presently aimed at patterning methodologies for obtaining controlled defined micrometric polymeric structures for a wide range of applications, including electronics, optoelectronics, sensors, medicine etc. Lasers have been identified as appropriate tools for processing of different materials, such as ceramics and metals, but also for soft, easily damageable materials (biological compounds and polymers). In this work we study the dynamics of laser induced forward transfer (LIFT) with a gap between the donor and the receiver substrates, which is the basis for possible applications that require multilayer depositions with high spatial resolution.

  1. Tetravalent chromium doped laser materials and NIR tunable lasers (United States)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)


    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0NIR laser applications.

  2. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: [CEA-CESTA, Le Barp (France); Regan, C., E-mail: [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: [CEA-CESTA, Le Barp (France)


    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  3. Laser ablation of a polysilane material (United States)

    Hansen, S. G.; Robitaille, T. E.


    The laser ablation properties of a (50%)-isopropyl methyl-(50%)-n-propyl methyl silane copolymer are examined. Both 193- and 248-nm-pulsed excimer laser radiation cleanly and completely remove this material in vacuum above certain energy thresholds (30 and 50 mJ/cm2, respectively). Under these conditions the ablation properties are quite similar to those reported for typical organic polymers. Below threshold, ablation is less efficient and becomes increasingly inefficient as irradiation continues due to spectral bleaching. In the presence of air, material removal is incomplete even for high-energy densities and long exposures. The ablation rate is shown to be independent of substrate material both above and below threshold.

  4. Mechanism of Spatiotemporal Distribution of Laser Ablated Materials

    Institute of Scientific and Technical Information of China (English)

    XU Rong-Qing; CUI Yi-Ping; LU Jian; NI Xiao-Wu


    Interaction between subsequent laser and ablated materials in laser processing changes the laser spatiotemporal distribution and has influences on the efficiency and quality of laser processing. The theoretical and experimental researches on transportation behayiour of ablated materials are provided. It is shown that the velocity distribution of ablated materials is determined by ablation mechanism. The transportation behaviour of ablated materials is controlled by diffusion mechanism and light field force during laser pulse duration while it is only determined by diffusion mechanism when the laser pulse terminates. In addition, the spatiotemporal distribution of ablated materials is presented.

  5. Final optics for laser-driven inertial fusion reactors (United States)

    Woodworth, J. G.; Chase, L. L.; Guinan, M. W.; Krupke, W. F.; Sooy, W. R.


    If Inertial Confinement Fusion (ICF) power plus utilizing laser drivers are to be considered for electrical power generation, a method for delivering the driver energy into the reactor must be developed. This driver-reactor interface will necessarily employ 'final optics,' which must survive in the face of fast neutrons, x rays, hot vapors and condensates, and high speed droplets. The most difficult to protect against is fast neutron damage since no optically transmissive shielding material for 14 MeV neutrons is available. Multilayer dielectric mirrors are judged to be unsuitable because radiation induced chemical change, diffusion, and thickness changes will destroy their reflectivity within a few months of plant operation. Recently, grazing incidence metal mirrors were proposed, but optical damage issues are unresolved for this approach. In this study, we considered the use of refractive optics. A baseline design consists of two wedges of fused silica, which put a dogleg into the beam and thus remove optics further upstream from direct sight of the reactor. If the closest optic were located 40 m from the center of a 3 GW sub t reactor it would be subject to an average 14 MeV neutron flux of approx. 5 x 10(exp 12) n/sq cm with a peak flux of approx. 6 x 10(exp 18) n/sq cm. A major question to be answered is: 'what duration of reactor operation can this optic withstand'. To answer this question we have reviewed the literature bearing on radiation induced optical damage in fused silica and assessed its implications for reactor operation with the baseline final optics scheme. It appears possible to continuously anneal the neutron damage in the silica by keeping the wedge at a modestly elevated temperature.

  6. Picosecond laser bonding of highly dissimilar materials (United States)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.


    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  7. Buried waste containment system materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, J.R.; Shaw, P.G.


    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  8. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)


    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  9. Absorption of some powder materials to YAG laser

    Institute of Scientific and Technical Information of China (English)



    Laser powder alloying is widely used for tribological applications. As one of the key pa-rameters , absorptivity of powder materials to laser plays an important role in the processing. Themeasurement of laser absorptivity is essential for absorptivity research. In present work, lumpedmethod based on heat transfer is established for laser absorptivity measurement. The absorptivityof some powder materials as Cu, Fe, Al, NiO, Al2O3, ZrO2, SiC, to YAG laser, are investigated.The results show that the absorptivity of powder materials to YAG laser is generally larger thanthat of bulk materials.

  10. Improved radiant burner material. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.V.; Shoultz, R.A.; Bourque, M.M.; Milewski, E.B. [and others


    Under DOE/ERIP funds were made available to Superkinetic, Inc. for the development of an improved radiant burner material. Three single crystal ceramic fibers were produced and two fiber materials were made into felt for testing as radiant burner screens. The materials were alpha alumina and alpha silicon nitride. These fibers were bonded with a high temperature ceramic and made into a structurally sound trusswork like screen composed of million psi fiber members. These screens were about 5% solid for 95 porosity as needed to permit the flow of combustable natural gas and air mixture. Combustion test proved that they performed very satisfactory and better than the current state of art screen and showed no visable degrade after testing. It is recommended that more time and money be put into expanding this technology and test these new materials for their maximum temperature and durability for production applications that require better burner material.

  11. Laser materials based on transition metal ions (United States)

    Moncorgé, Richard


    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  12. Energy Materials Center at Cornell: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Abruña, Héctor [Cornell Univ., Ithaca, NY (United States); Mutolo, Paul F [Cornell Univ., Ithaca, NY (United States)


    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  13. Structural engineering, mechanics and materials: Final report

    Energy Technology Data Exchange (ETDEWEB)


    This report on structural engineering, mechanics and materials is divided into three parts: a discussion on using Lanczos vectors and Ritz vectors for computing dynamic responses: solution of viscously damped linear systems using a finite element displacement formulation; and vibration analysis of fluid-solid systems using a finite element displacement formulation. (JF)

  14. Packaging Materials Outgassing Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. A. [Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)


    An outgassing study was conducted on two polyurethane packaging foams, two polymer bottles (polytetrafluoroethylene and polyethylene), and two polymer lids. The purpose was to measure the volume of gases that diffuse from these packaging materials at a maximum of 400-degrees F when stored in ambient air within sealed containers.

  15. Quantum Materials at the Nanoscale - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Stephen Lance [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics


    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the funding period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16

  16. Ultrafast lasers--reliable tools for advanced materials processing

    National Research Council Canada - National Science Library

    Koji Sugioka; Ya Cheng


      The unique characteristics of ultrafast lasers, such as picosecond and femtosecond lasers, have opened up new avenues in materials processing that employ ultrashort pulse widths and extremely high peak intensities...

  17. Laser Additive Manufacturing of Magnetic Materials (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.


    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  18. Modeling Laser Effects on the Final Optics in Simulated IFE Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nasr Ghoniem


    When laser light interacts with a material's surface, photons rapidly heat the electronic system, resulting in very fast energy transfer to the underlying atomic crystal structure. The intense rate of energy deposition in the shallow sub-surface layer creates atomic defects, which alter the optical characteristics of the surface itself. In addition, the small fraction of energy absorbed in the mirror leads to its global deformation by thermal and gravity loads (especially for large surface area mirrors). The aim of this research was to model the deformation of mirror surfaces at multiple length and time scales for applications in advanced Inertial Fusion Energy (IFE) systems. The goal is to control micro- and macro-deformations by material system and structural design. A parallel experimental program at UCSD has been set up to validate the modeling efforts. The main objective of the research program was to develop computer models and simulations for Laser-Induced Damage (LID) in reflective and transmissive final optical elements in IFE laser-based systems. A range of materials and material concepts were investigated and verified by experiments at UCSD. Four different classes of materials were considered: (1) High-reflectivity FCC metals (e.g. Cu, Au, Ag, and Al), (2) BCC metals (e.g. Mo, Ta and W), (3) Advanced material concepts (e.g. functionally graded material systems, amorphous coatings, and layered structures), and (4) Transmissive dielectrics (e.g. fused SiO2). In this report, we give a summary of the three-year project, followed by details in three areas: (1) Characterization of laser-induced damage; (2) Theory development for LIDT; and (3) Design of IFE reflective laser mirrors.

  19. Material for Point Design (final summary of DIME material)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  20. Parametric studies on the nanosecond laser micromachining of the materials (United States)

    Tański, M.; Mizeraczyk, J.


    In this paper the results of an experimental studies on nanosecond laser micromachining of selected materials are presented. Tested materials were thin plates made of aluminium, silicon, stainless steel (AISI 304) and copper. Micromachining of those materials was carried out using a solid state laser with second harmonic generation λ = 532 nm and a pulse width of τ = 45 ns. The effect of laser drilling using single laser pulse and a burst of laser pulses, as well as laser cutting was studied. The influence of laser fluence on the diameter and morphology of a post ablation holes drilled with a single laser pulse was investigated. The ablation fluence threshold (Fth) of tested materials was experimentally determined. Also the drilling rate (average depth per single laser pulse) of holes drilled with a burst of laser pulses was determined for all tested materials. The studies of laser cutting process revealed that a groove depth increases with increasing average laser power and decreasing cutting speed. It was also found that depth of the laser cut grooves is a linear function of number of repetition of a cut. The quantitative influence of those parameters on the groove depth was investigated.

  1. FY 1980 Report on Dye Laser Materials (United States)


    by block number) Dye Lasers Laser Dyes Tunable Lasers Photodegradation Rhodamine Dyes 20. ABSTRACT (Continue n resld* it necesiry and Identify by usefulness as a portable military device because of the photodegradation of the dye solution. Although there have been state-of-the-art reviews...on laser dyes , 1𔃼 the photodegradation of laser dyes ,3 and dye lasers, 4- 6 only authors from, or funded by, military organizations have given strict

  2. Materials for diode pumped solid state lasers (United States)

    Chase, L. L.; Davis, L. E.; Krupke, W. F.; Payne, S. A.


    The advantages of semiconductor diode lasers and laser arrays as pump sources for solid state lasers are reviewed. The properties that are desirable in solid state laser media for various diode pumping applications are discussed, and the characteristics of several promising media are summarized.

  3. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong


    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  4. Final Report - DOE Center for Laser Imaging and Cancer Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R.; Koutcher, Jason A.


    This Final Report summarizes the significant progress made by the researchers, students and staff of the Center for Laser Imaging and Cancer Diagnostics (CLICD) from January 1998 through May 2002. During this period, the Center supported several projects. Most projects were proposed initially, some were added subsequently as their relevance and importance to the DOE mission became evident. DOE support has been leveraged to obtain continuing funding for some projects. Leveraged funds come from various sources, including NIH, Army, NSF and the Air Force. The goal of the Center was to develop laser-based instruments for use in the detection and diagnosis of major diseases, with an emphasis on detection and diagnosis of various cancers. Each of the supported projects is a collaborative effort between physicists and laser scientists and the City College of New York and noted physicians, surgeons, pathologists, and biologists located at medical centers in the Metropolitan area. The participating institutions were: City College of New York Institute for Ultrafast Lasers and Spectroscopy, Hackensack University Medical Center, Lawrence Livermore National Laboratory, Memorial Sloan Kettering Cancer Center, and New York Eye and Ear Institute. Each of the projects funded by the Center is grouped into one of four research categories: a) Disease Detection, b) Non-Disease Applications, c) New Diagnostic Tools, and, d) Education, Training, Outreach and Dissemination. The progress achieved by the multidisciplinary teams was reported in 51 publications and 32 presentations at major national conferences. Also, one U.S. patent was obtained and six U.S. patent applications have been filed for innovations resulting from the projects sponsored by the Center.

  5. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Kumar, A; Chung, YW; Moore, JJ; Doll, GL; Yatsui, K; Misra, DS


    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo

  6. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Ocelik, V.; Pei, Y.T.; de Hosson, J.T.M.; Popoola, O; Dahotre, NB; Midea, SJ; Kopech, HM


    Two functionally graded coatings were prepared by different laser surface engineering techniques. Laser cladding of AlSi40 powder leads to the formation of functionally graded material (FGM) coating on AI-Si cast alloy substrate. Mapping of strain fields near the laser clad track using the digital i

  7. Energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove


    A device capable of drastically improving the energy efficiency of present mask based laser materials processing systems is presented. Good accordance between experiments and simulations for a TEA-CO2 laser system designed for laser marking has been demonstrated. The energy efficiency may...

  8. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove


    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  9. Synthesis Of Materials With Infrared And Ultraviolet Lasers (United States)

    Lyman, John L.


    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) Infrared (CO2) laser synthesis of silane (SiH4) from disilane (Si2H6); (2) Excimer (ArF) laser production of fine silicon powders from methyl-and chlorosubstituted silanes; and, (3) Excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application.


    Directory of Open Access Journals (Sweden)

    Davorin Kovačić


    Full Text Available The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay or geosynthetic (geomem¬brane. They are most often used in combination creating com¬posite liners. Recently alternative materials are also used like paper mill sludge or discarded swelling clay.

  11. Cr:ZnSe guided wave lasers and materials (United States)

    McDaniel, Sean; Lancaster, Adam; Stites, Ronald; Thorburn, Fiona; Kar, Ajoy; Cook, Gary


    We describe a variety of technological advances in the development of efficient, powerful, and continuously tunable Cr:ZnSe lasers operating in the 2.3-2.7 μm spectral region. This includes the development of compact "single chip" waveguide Cr:ZnSe lasers, waveguide mode-locked Cr:ZnSe lasers, and the creation of homogeneously broadened laser material.

  12. Vanderbilt free electron laser project in biomedical and materials research (United States)

    Haglund, Richard F.; Tolk, N. H.


    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the use of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.

  13. Wear behaviour of laser melted an ion implanted materials.

    NARCIS (Netherlands)

    Beurs, Hans de


    The emphasis in this thesis is on the development of wear resistant materials by laser melting. Furthermore, the principle aim is to search for the dislocation characteristics common to the wear process in heterogeneous materials. ... Zie: Summary

  14. Laser and nonlinear optical materials: SPIE volume 681

    Energy Technology Data Exchange (ETDEWEB)

    De Shazer, L.G.


    This book contains papers arranged under the following session headings: Nonlinear optical crystals; Laser host crystals; Electro-optic and magneto-optic materials; and Characterization of optical materials.

  15. Laser Processing of High-Tech Materials at High Irradiance. (United States)


    CHARGED PARTICLES (Electrons, Ions, Plasma) * "PHOTONS LASER IMPULSE VAPOR SPALLATION CRATER SHOCK WAVE THERMAL WAVE Fig. I - Interaction of a high...metals. 2ŗ𔃾 Shaping includes drilling , cutting, bending, laser assisted machining (turning and milling) and direct laser machining. Joining includes...induces a tensile stress which can be sufficient to exceed the material’s strength. This dynamic fracture of material is called spallation . Although

  16. Laser Processing of Materials Fundamentals, Applications and Developments

    CERN Document Server

    Schaaf, Peter


    Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.

  17. Liquid Contact Luminescence from Semiconductor Laser Materials (United States)


    Luminescence - Diagnostic As a diagnostic tool, LCL can provide much useful information about the quality of the epitaxial wafer prior to laser fabrication . In...diagnostic tool, LCL can provide a variety of useful information about the quality of the epitaxial wafer prior to laser fabrication . Temporal...the quality of the epitaxial laser wafer prior to laser fabrication . It is a quick, inexpensive, and non- destructive process that measures a variety

  18. State-of-the-art of laser materials processing; Saikin no laser kakono genjo

    Energy Technology Data Exchange (ETDEWEB)

    Kutsuna, M. [Nagoya University, Nagoya (Japan)


    The use of laser in the field of materials processing is stated. For the processing of materials, devices have been developed for CO2 laser, YAG (Yttrium Aluminum Garnet) laser, excimer laser, and semiconductor laser. A 45kW output CO2 laser device and a 10kW YAG laser device are already on the market, and research and development is in progress for processes still higher in efficiency. The welding of 30-40mm thick steel slabs is already in actual use, with the aid of a 45kW CO2 laser device. In the field of cutting, a 6kW device has come into use in ship building and bridge construction and in steel frame fabrication. The progress of YAG laser development is remarkable, and a flexible manufacturing system has been constructed using 0.6mm diameter optical fibers. The system is about to be utilized in the automobile industry etc. Diode laser devices capable of 2.5kW have been developed in Germany and America, which will be installed on robot arm tips for application to 3-dimensional laser processing. Kawasaki Heavy Industries, Ltd., has developed a 10kW chemical iodine laser, which is a YAG device excited by a laser diode. Described in the text are the characteristics of laser-aided processing, kinds of laser-aided processing, applications in industrial fields, etc. (NEDO)

  19. Material-analytical investigations on crack initiation and progression in notched laser beam welds. Final report; Makro- und mikrostrukturelle Eigenschaften laserstrahlgeschweisster Verbindungen. Teilprojekt: Werkstoffanalytische Untersuchungen zu Risseinleitung und -verlauf an gekerbten Laserstrahlschweissnaehten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Goede, M.; Schmid, C.; Bormann, A.; Haferkamp, H.


    Laser technology is a fast-growing market segment in particular for the German industry. While lasers with their economical and technical advantages are already widely used in the automotive industry, there are still quite some barriers in other fields of application for the use of lasers as a joining tool. The elaborated project results provide a possibility to prove the strength of laser-welded joints. The results of this innovative technology thus contribute, in conjunction with their description in the laser manual 'Laser Beam Welding', to an advanced use in a multitude of fields of application in industrial manufacturing. Especially within the legally defined area, the modified tensile and bend test specimen offer geometries which are easy and consistently to produce and which do not only stress the weld but also the heat-affected zone up to an initiation of cracks. This allows for a an evaluation of the laser beam weld. (orig.) [German] Die Lasertechnik stellt insbesondere fuer die deutsche Industrie ein Marktsegment mit grossem Wachstumspotential dar. Waehrend die wirtschaftlichen und technischen Vorteile des Lasereinsatzes im Automobilbau bereits stark genutzt werden, bestehen in anderen Anwendungsbereichen eine Reihe von Barrieren, den Laser als Fuegewerkzeug zu verwenden. Die erarbeiteten Projektergebnisse zeigen eine Moeglichkeit zum Nachweis der Festigkeit lasergeschweisster Verbindungen auf und leisten in Verbindung mit der Darstellung im Handbuch 'Laserstrahlschweissen' einen wichtigen Schritt zum Einsatz dieser innovativen Technologie in weiten Anwendungsbereichen der industriellen Fertigung. Insbesondere fuer den gesetzlich geregelten Bereich bieten die modifizierten Zug- und Biegeproben einfach und reproduzierbar zu fertigende Geometrien, die sowohl die Schweissnaht als auch die Waermeeinflusszone bis zur Risseinleitung belasten und damit eine Bewertung der Laserstrahlschweissnaht ermoeglichen. (orig.)

  20. Study of mechanism of strengthening materials with laser shock processing

    Institute of Scientific and Technical Information of China (English)

    郭大浩; 吴鸿兴; 王声波; 洪昕; 王劼; 戴宇生; 夏小平; 张永康; 张宏; 唐亚新; 余承业


    The material of surface layer absorbs the energy of laser and produces plasma, when the high power laser radiates the surface of material. The plasma blows up and produces an intense shock wave. When the surface of material is covered with a confining medium and an absorptive coating layer, the shock wave can be strengthened greatly. There-fore a huge momentum is exerted on the surface of material. There is a plastic deformation layer in the material when the shock stress exceeds the dynamic yield strength of material. Due to the residual compressive stress, the high density of dislocation in the plastic layer, the anti-fatigue life of material is prolonged.

  1. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed


    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  2. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej


    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  3. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials (United States)

    Marynowicz, Andrzej


    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  4. Material Processing Laser Systems For Manufacturing (United States)

    Taeusch, David R.; Ruselowski, John M.


    Raycon Corporation is a builder of quality machine tools. Combining this with applications expertise to produce high technology production machinery systems using EDM, lasers and other processing methods to solve our customers' production problems is our product. The company has several standard laser machine systems which can be constructed from standard building blocks. The number of axes and travel, the controller requirements, and the required laser type, size and manufacturer are discussed with our customers, and the system to meet their needs is decided upon. These requirements are then built into a processing system for manufacturing use. Several of these systems which are in the field are described, and their purposes and how they accomplish their task are explained. Also, types of YAG and C02 lasers available are described and their optimum use explained. Some specific examples of type versus applications are: YAG low-divergence lasers for trepanning heat-resistant alloys for jet engine turbines; YAG oscillator-amplifier lasers for percussion drilling of cooling holes in jet engine turbine blades; and several special laser machine systems for processing automotive parts are discussed. A few words on laser safety are included to allay some common fears concerning the use of laser technology in the factory environment.

  5. Effect of Moisture Content of Paper Material on Laser Cutting (United States)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  6. High Power Lasers And Their Application In Materials Processing (United States)

    Bohn, W. L.


    The idea of using a laser for materials processing is more than 20 years old. Although the concept of a non-contact method for processing with a beam of light has been pursued with great interest and enthusiasm, the practical use of laser beam processing was slow to develop. The lasers available in the 1960's were fragile and of relatively low power. In the 1970's lasers in the multi-kilowatt range were developed but the problem of laser acceptance by the customer had to be overcome. Today, reliable Nd-Yag and CO2-lasers are available and laser processing is a fast growing market. An additional boost is expected with the development of the next generation of lasers and with increased knowledge of the physical phenomena that underlie laser material processing. This paper will review latest developments in laser technology and laser-workpiece interaction with special emphasis on the impact of high speed photography on the research work in these areas.

  7. Laser processing for manufacturing nanocarbon materials (United States)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  8. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U


    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  9. Development of Ceramic Solid-State Laser Host Material (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra


    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  10. Laser -Based Joining of Metallic and Non-metallic Materials (United States)

    Padmanabham, G.; Shanmugarajan, B.

    Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc., have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

  11. Ultrafast Laser Dynamics and Interactions in Complex Materials (United States)

    Patz, Aaron Edward

    The work described in this thesis underscores specific examples of using an ultrafast laser as a materials research tool for studying condensed matter physics in complex materials. The majority of materials studied fall into the iron-pnictide class of unconventional superconductors, which exhibit a multitude of phases that appear to be dependent on each other, or the magnetic semiconductor, GaMnAs. In my work I show various ultrafast laser techniques for studying these complex materials in order to decouple the different properties in the time-domain and gain information about the underlying physics governing the material properties.

  12. Hazardous material minimization for radar assembly. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, P.M.


    The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

  13. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, JTM; Ocelík, Vašek; Chandra, T; Torralba, JM; Sakai, T


    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  14. Techniques to control and position laser targets. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.B.


    The purpose of the work was to investigate the potential role of various electrohydrodynamic phenomena in the fabrication of small spherical particles and shells for laser target applications. A number of topics were considered. These included charged droplet levitation, specifically the combined effects of the Rayleigh limit and droplet elongation in the presence of electric fields. Two new levitation schemes for uncharged dielectric particles were studied. A dynamic dielectrophoretic levitation scheme was proposed and unsuccessful attempts were made to observe levitation with it. Another static dielectrophoretic levitation scheme was studied and used extensively. A theory was developed for this type of levitation, and a dielectric constant measurement scheme proposed. A charged droplet generator for the production of single droplets (< 1 mm dia of insulating liquids was developed. The synchronous DEP pumping of bubbles and spheres has been considered. Finally, some preliminary experiments with SiH/sub 4//O/sub 2/ bubbles in Viscasil silicone fluid were conducted to learn about the possibility of using silane to form SiO/sub 2/ microballons from bubbles.

  15. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    Graaf, de R.F.; Meijer, J.


    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of homo

  16. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.


    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of

  17. Charged particle and laser irradiation of selected materials

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, W.E.


    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N{sub 2}), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs.

  18. Laser irradiation of carbon-tungsten materials (United States)

    Marcu, A.; Avotina, L.; Marin, A.; Lungu, C. P.; Grigorescu, C. E. A.; Demitri, N.; Ursescu, D.; Porosnicu, C.; Osiceanu, P.; Kizane, G.; Grigoriu, C.


    Carbon-tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp2-sp3 transitions with the number of laser pulses just for nanometric layer thicknesses.

  19. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng


    The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been...... solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  20. Morphology Characterization of Uranium Particles From Laser Ablated Uranium Materials

    Institute of Scientific and Technical Information of China (English)


    In the study, metallic uranium and uranium dioxide material were ablated by laser beam in order to simulate the process of forming the uranium particles in pyrochemical process. The morphology characteristic of uranium particles and the surface of

  1. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays. (United States)

    Pan, Yunxiang; Lv, Xueming; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu


    A millisecond laser combined with a nanosecond laser was applied to machining transparent materials. The influences of delay between the two laser pulses on processing efficiencies and modified sizes were studied. In addition, a laser-supported combustion wave (LSCW) was captured during laser irradiation. An optimal delay corresponding to the highest processing efficiency was found for cone-shaped cavities. The modified size as well as the lifetime and intensity of the LSCW increased with the delay decreasing. Thermal cooperation effects of defects, overlapping effects of small modified sites, and thermal radiation from LSCW result in all the phenomena.

  2. Laser Spectroscopy Investigations of Materials for Solid State Laser Systems. (United States)


    Experimental geometry for anisotropic self-diffraction expert. Permanent address: Departamento de Optics y Estructura de Is Materia, mints. e refers to the...the helium-neon laser and PMT is the photo- "Permanent address: Departamento de Optics y Estructura de Ia Materia, multiplier tube. The results are sent

  3. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials


    Marynowicz Andrzej


    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera du...

  4. Laser spectroscopy of gas confined in nanoporous materials

    CERN Document Server

    Svensson, Tomas


    We show that high-resolution laser spectroscopy can probe surface interactions of gas confined in nano-cavities of porous materials. We report on strong line broadening and unfamiliar lineshapes due to tight confinement, as well as signal enhancement due to multiple photon scattering. This new domain of laser spectroscopy constitute a challenge for the theory of collisions and spectroscopic lineshapes, and open for new ways of analyzing porous materials and processes taking place therein.

  5. DOE Center of Excellence in Medical Laser Applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Oregon Medical Laser Center, Portland, OR (United States))


    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland, OR, Houston, TX, and Galveston, TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulation of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  6. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS


    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  7. Crystal-Field Engineering of Solid-State Laser Materials (United States)

    Henderson, Brian; Bartram, Ralph H.


    This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

  8. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces (United States)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul


    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  9. Femtosecond laser pulse train interaction with dielectric materials

    CERN Document Server

    Caulier, O Dematteo; Chimier, B; Skupin, S; Bourgeade, A; Léger, C Javaux; Kling, R; Hönninger, C; Lopez, J; Tikhonchuk, V; Duchateau, G


    We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.

  10. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B C; Wynne, A


    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  11. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill


    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  12. Material measurement method based on femtosecond laser plasma shock wave (United States)

    Zhong, Dong; Li, Zhongming


    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  13. Picosecond and femtosecond lasers for industrial material processing (United States)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.


    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  14. Interaction of pulsed CO2 laser radiation with optical materials (United States)

    Schmitt, Ruediger; Hugenschmidt, Manfred; Geiss, L.; Stechele, E.


    Pulsed high power CO2-laser irradiation can cause damage to optical materials. Some results obtained at ISL with a repetitively pulsed CO2-laser with pulse energies up to 24 J are presented in this paper. In production facilities with CO2-lasers, optics transmitting in the visible spectral range like glass or PMMA are used as protection windows against scattered light. These materials have small skin depths for electromagnetic waves at 10,6 micrometers , typically in the order of some micrometers , so the interaction takes place in thin surface layers. Under high power laser radiation the transparency of the optics is lowered. On the other hand infrared transmitting optics like KCl or ZnSe show a low intrinsic absorption for CO2-laser radiation. Theoretical estimations matching with the experimental observations showed, however, that strong heating occurs, if a thin layer of inhomogeneities, typically some micrometers thick, is included in the surrounding material with slightly higher absorption than the surrounding lowless material. Under these assumptions the thermally induced stress inside the materials can explain the experimentally observed mechanical damage. Besides these thermal damage effects mechanical momenta are transferred by pulsed laser radiation to the optics. Experimental results as obtained by a ballistic pendulum are reported.


    Institute of Scientific and Technical Information of China (English)

    Y.S.Shi; S.C.Chen; X.L.Lu; S.H.Huang


    How to directly fabricate metallic functional parts with selective laser sintering (SLS) process is a potential technique that scientists are researching. Existent problems during directly fabricating metal part by use of SLS are analyzed. For the sake of solving the problems, a new idea of adding self-propagating high-temperature synthesis (SHS) material into metallic powder material to form new type of SLS metallic powder material is put forward. This powder material can release controllable amount of heat during its interaction with the laser beam energy to reduce the requirement to laser power during directly sintering metallic part, to prolong the time of metallic liquid phase existing, and to improve the intensity and accuracy of SLS part. For this reason, SHS material's interaction with the C02 laser beam energy is researched, which proves that CO2 laser beam energy may instantly ignite SHS reaction. On the basis of the above-mentioned researches, the effect of sintering the metal powder material mixing SHS material with CO2 laser is also researched,which shows: there is an optimal blending ratio of various material in the new metallic powder material. Under the optimal blending ratio and SLS process parameters, this new metallic powder material can indeed release amount of heat and SHS reaction may be controlled within the laser sintering. This research result makes it possible that the metallic part is directly sintered with small C02 laser (less than 50W), which may greatly reduce the volume, cost and running expenditure of SLS machine, be propitious to application.

  16. Mathematical Modelling of Laser/Material Interactions. (United States)


    translated to the model input. Even an experimental mode print can also be digitalised for the model. In trying to describe high order modes matliematically...4. Mazumder J. Steen W.M. "Welding of Ti 6al - 4V by continuous wave CO2 laser". Metal construction Sept. 1980 pp423 - 427. 5. Kogelnik H, Li.T Proc

  17. Final recommendations for reference materials in black carbon analysis (United States)

    Schmidt, Michael W. I.; Masiello, Caroline A.; Skjemstad, Jan O.

    Last summer, a symposium was held to discuss aspects of global biogeochemical cycles, including organic matter cycling in soils, rivers, and marine environments; black carbon particle fluxes and the biological pump; dissolved organic matter; and organic matter preservation. Seventy scientists from various disciplines, including oceanography, soil science, geology, and chemistry attended the 3-day meeting at the Friday Harbor Laboratories, a research station of the University of Washington.“New Approaches in Marine Organic Biogeochemistry” commemorated the life and science of a colleague and friend, John I. Hedges, who was also involved in several groups developing chemical reference materials. Part of this symposium included a workshop on chemical reference materials, where final recommendations of the Steering Committee for Black Carbon Reference Materials were presented.

  18. Solid state laser employing diamond having color centers as a laser active material

    Energy Technology Data Exchange (ETDEWEB)

    Rand, S.C.; De Shazer, L.G.


    A laser is described comprising: resonant cavity means for supporting coherent radiation; a diamond containing color centers as a laser active material; means for exciting the color centers to emit coherent radiation; and optical path means for providing an exit path for the radiation from the resonant cavity means.

  19. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail:; Liu, Z. H., E-mail:; Zhang, D. Q., E-mail:; Loh, L. E., E-mail:; Sing, S. L., E-mail: [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)


    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  20. Review of selective laser melting: Materials and applications (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.


    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  1. Laser micro-structuring of surfaces for applications in materials and biomedical science (United States)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta


    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  2. Laser Propagation in Nanostructured Ultra-Low-Density Materials

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colvin, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yogo, A [Osaka Univ. (Japan). Inst. of Laser Engineering; Kemp, G. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matsukuma, H. [Osaka Univ. (Japan). Inst. of Laser Engineering; Tanaka, N. [Osaka Univ. (Japan). Inst. of Laser Engineering; Zhang, Z. [Osaka Univ. (Japan). Inst. of Laser Engineering; Koga, K. [Osaka Univ. (Japan). Inst. of Laser Engineering; Tosaki, S. [Osaka Univ. (Japan). Inst. of Laser Engineering; Nishimura, H. [Osaka Univ. (Japan). Inst. of Laser Engineering


    The nanostructure of very-low-density aerogels (< 10 mg/cm3) affects the laser heating and propagation of the subsequent heat front. Simulations treat these materials as an atomistic medium without any structure differentiating between near-solid-density material and voids. Thus, simulations fail to predict the effects of the aerogel’s physical micro or nanostructure on the laser-matter interaction. We have designed an experiment using the GEKKO XII laser and ILE diagnostics to characterize the ionization-wave propagation and x-ray yield from aerogel and mass-matched gaseous targets as the laser passes through each. By design, the gas and aerogel targets will have identical densities and identical effective ionization states.

  3. Methods and apparatus for removal and control of material in laser drilling of a borehole

    Energy Technology Data Exchange (ETDEWEB)

    Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.; Moxley, Joel F.


    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  4. Methods and apparatus for removal and control of material in laser drilling of a borehole

    Energy Technology Data Exchange (ETDEWEB)

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F


    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  5. Picosecond laser welding of similar and dissimilar materials. (United States)

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P


    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.

  6. Laser-assisted machining of difficult-to-machine materials

    Energy Technology Data Exchange (ETDEWEB)

    Incropera, F.P.; Rozzi, J.C.; Pfefferkorn, F.E.; Lei, S.; Shin, Y.C.


    Laser-assisted machining (LAM) is a hybrid process for which a difficult-to-machine material, such as a ceramic or super alloy, is irradiated by a laser source prior to material removal by a cutting tool. The process has the potential to significantly increase material removal rates, as well as to improve the geometry and properties of the finished work piece. Features and limitations of theoretical and experimental procedures for determining the transient thermal response of a work piece during LAM are described, and representative results are presented for laser-assisted turning of sintered silicon nitride. Significant physical trends are revealed by the calculations, as are guidelines for the selection of appropriate operating conditions.

  7. Ultrafast laser inscribed integrated photonics: material science to device development

    Directory of Open Access Journals (Sweden)

    Gross S.


    Full Text Available Detailed studies of intense light – material interactions has led to new insights into fs laser induced refractive index change in a range of glass types. This body of knowledge enables the development of advanced processing methodologies, resulting in novel planar and 3D guided wave devices. We will review the chemistry and morphology associated with fs laser induced refractive index change in multi-component glasses such as ZBLAN, phosphates and silicates, and discuss how these material changes inform our research programs developing a range of active and passive lightwave systems.

  8. Analysis of fabric materials cut using ultraviolet laser ablation (United States)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.


    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  9. Ultrafast laser ablation of transparent materials (United States)

    Bauer, Lara; Russ, Simone; Kaiser, Myriam; Kumkar, Malte; Faißt, Birgit; Weber, Rudolf; Graf, Thomas


    The present work investigates the influence of the pulse duration and the temporal spacing between pulses on the ablation of aluminosilicate glass by comparing the results obtained with pulse durations of 0.4 ps and 6 ps. We found that surface modifications occur already at fluences below the single pulse ablation threshold and that laser-induced periodic surface structures (LIPSS) emerge as a result of those surface modifications. For 0.4 ps the ablation threshold fluences is lower than for 6 ps. Scanning electron micrographs of LIPSS generated with 0.4 ps exhibit a more periodic and less coarse structure as compared to structures generated with 6 ps. Furthermore we report on the influence of temporal spacing between the pulses on the occurrence of LIPSS and the impact on the quality of the cutting edge. Keywords: LIPSS,

  10. Thin layer laser bonding using spin-on-glass materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joohan [Department of Mechanical Engineering, Seoul National University of Technology, Seoul, Zip: 139-743 (Korea, Republic of)], E-mail:; Kim, Hyangtae [Department of Mechanical Engineering, Seoul National University of Technology, Seoul, Zip: 139-743 (Korea, Republic of); Lee, Jae-Hoon [Korea Institute of Machinery and Materials, Daejun, Zip: 305-343 (Korea, Republic of)


    We developed and characterized a new laser bonding process with a nano adhesive layer for transparent materials. The adhesive is spin-coated on a glass substrate and cured locally with a focused laser beam. The minimum viscosity of the adhesive is very low, so that a thin layer only a few hundred nanometers thick can be coated on a cover substrate. Laser irradiation from a Nd:YAG laser system with a wavelength of 1064 nm is employed as the curing source for the localized nano layer bonding process. The measured thickness of the bonding layer is in the range of 400 nm to 3 {mu}m. This process can be applied to the nano or micro bonding of various transparent systems such as flat panel displays, biochips, and heat-sensitive microelectronics. We present experimental results and discuss the process characteristics.

  11. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge....... This work has considered the role of the combined ultrafast gain and absorption dynamics in MLLs as a main factor limiting laser performance. An independent optimization of MLL amplifier and saturable absorber active materials was performed. Two promising approaches were considered: quantum dot (QD...... application in MLLs. Improved QW laser performance was demonstrated using the asymmetric barrier layer approach. The analysis of the gain characteristics showed that the high population inversion beneficial for noise reduction cannot be achieved for 10 GHz QW MLLs and would have required lowering the modal...

  12. Surface Modification of Ceramic Materials Using Excimer Laser

    Institute of Scientific and Technical Information of China (English)


    Changes of surface morphology following XeCl excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and Al2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastable γ-Al2O3 was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); Al2O3, 40% (max.); Si3N4, 12% (max.).

  13. Laser formation of Bragg gratings in polymer nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)


    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)

  14. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, M A [Lawrence Berkeley Lab., CA (United States)


    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  15. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)


    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  16. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M


    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  17. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.


    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  18. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M


    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM (fi

  19. Numerical simulation of laser ablation for photovoltaic materials (United States)

    Stein, P.; García, O.; Morales, M.; Huber, H. P.; Molpeceres, C.


    The objective of this work is to help understanding the impacts of short laser pulses on materials of interest for photovoltaic applications, namely aluminum and silver. One of the traditional advantages of using shorter laser pulses has been the attempt to reduce the characteristic heat affected zone generated in the interaction process, however the complex physical problem involved limitates the integration of simplified physical models in standard tools for numerical simulation. Here the interaction between short laser pulses and matter is modeled in the commercial finite-element software Abaqus. To describe ps and fs laser pulses properly, the two-temperature model (TTM) is applied considering electrons and lattice as different thermal transport subsystems. The Material has been modeled as two equally sized and meshed but geometrically independent parts, representing each the electron and the lattice domain. That means, both domains match in number and position of the respective elements as well as in their shape and their size. The laser pulse only affects the electron domain so that the lattice domain remains at ambient temperature. The thermal connection is only given by the electron-phonon coupling, depending on the temperature difference between both domains. It will be shown, that melting and heat affected zones getting smaller with decreasing pulse durations.

  20. Femtosecond laser micromachining of dielectric materials for biomedical applications (United States)

    Farson, Dave F.; Choi, Hae Woon; Zimmerman, Burr; Steach, Jeremy K.; Chalmers, Jeffery J.; Olesik, Susan V.; Lee, L. James


    Techniques for microfluidic channel fabrication in soda-lime glass and fused quartz using femtosecond laser ablation and ablation in conjunction with polymer coating for surface roughness improvement were tested. Systematic experiments were done to characterize how process variables (laser fluence, scanning speed and focus spot overlap, and material properties) affect the machining feature size and quality. Laser fluence and focus spot overlap showed the strongest influence on channel depth and roughness. At high fluence, the surface roughness was measured to be between 395 nm and 731 nm RMS. At low fluence, roughness decreased to 100 nm-350 nm RMS and showed a greater dependence on overlap. The surface roughness of laser ablation was also dependent on the material properties. For the same laser ablation parameters, soda-lime glass surfaces were smoother than fused quartz. For some applications, especially those using quartz, smoother channels are desired. A hydroxyethyl methacrylate (HEMA) polymer coating was applied and the roughness of the coated channels was improved to 10-50 nm RMS.

  1. XeF pump laser. Final technical report

    Energy Technology Data Exchange (ETDEWEB)


    The goal of this program was to demonstrate operation of an XeF laser of adequate energy, efficiency and beam quality at high repetition rates. The specific design goals were: PRF greater than or equal to 10 kHz, energy output greater than or equal to 50 mJ/pulse, efficiency greater than or equal to 0.3%, and beam divergence angle less than or equal to 20x diffraction limited. In the following sections of this report we will discuss how these goals have been met.

  2. Powder Flux Regulation in the Laser Material Deposition Process (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  3. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)


    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  4. A simple methodology for predicting laser-weld properties from material and laser parameters (United States)

    Hann, D. B.; Iammi, J.; Folkes, J.


    In laser material processing, understanding the laser interaction and the effect of processing parameters on this interaction is fundamental to any process if the system is to be optimized. Expanding this to different materials or other laser systems with different beam characteristics makes this interaction more complex and difficult to resolve. This work presents a relatively simple physical model to understand these interactions in terms of mean surface enthalpy values derived from both material parameters and laser parameters. From these fundamental properties the melt depth and width for any material can be predicted using a simple theory. By considering the mean enthalpy of the surface, the transition from conduction limited melting to keyholing can also be accurately predicted. The theory is compared to experimental results and the predicted and observed data are shown to correspond well for these experimental results as well as for published results for stainless steel and for a range of metals. The results suggest that it is important to keep the Fourier number of the weld much smaller than one to make it efficient. It is also discussed that the surface enthalpy could be used to prodict other effects in the weld such as porosity and material expulsion.

  5. 10 CFR 51.97 - Final environmental impact statement-materials license. (United States)


    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Final Environmental Impact Statements-Materials Licenses § 51.97 Final environmental impact statement—materials license. (a) Independent spent fuel storage installation (ISFSI...

  6. Laser photopolymerization of dental materials with potential endodontic applications. (United States)

    Potts, T V; Petrou, A


    Photopolymerizing resins were exposed to three different wavelengths of light emanating from the argon laser. It was determined that the most efficient wavelengths for photopolymerization of camphorquinone-activated resins were at 477 and 488 nm. The 514.5-nm wavelength was relatively ineffective in activating polymerization. Four camphorquinone-activated resins were placed in the root canals of teeth and tested for polymerization depth using a 488-nm wavelength laser beam coupled to an optical fiber 200 microns in diameter. In regard to polymerization depth, these materials ranked as follows: Genesis greater than Prisma-Fil greater than Prisma Microfine greater than Prisma VLC Dycal. Alterations in the positions of the optical fiber and the surface of the resin in the canal made only minor differences in polymerization depth of the samples. The results indicate that an argon laser coupled to an optical fiber could become a useful modality in endodontic therapy.

  7. Capillary Waves And Energy Coupling In Laser Materials Processing (United States)

    Gasser, A.; Herziger, G.; Holtgen, B.; Kreutz, E. W.; Treusch, H. G.


    Static and dynamic measurements of the incident laser power, of the diffuse and specular reflected power have been performed in order to determine the absorption behavior of various metals and semiconductors during the interaction with powerful CO2-and Nd:YAG-laser-radiation. The absorptivity of the vapor and laser-induced plasma was probed by high-speed photography and measurements of conductivity transients as a function of intensity, composition, and pressure of the ambient atmosphere. For IIB the intensity-dependent energy coupling is governed by the generation of photon-induced plasma in the surface region in combination with the dynamics of the molten and vaporized material within the interaction zone giving in addition indication for capillary waves.

  8. Experimental Analysis of Microscale Laser Shock Processing on Metallic Material Using Excimer Laser

    Institute of Scientific and Technical Information of China (English)

    Zhigang Che; Liangcai Xiong; Tielin Shi; Huayang Cheng; Likun Yang


    Microscale laser shock processing (μLSP), also known as laser shock processing in microscale, is a technique that uses microscale focused laser beam to induce high pressure plasma and generates plastic deformation and compressive residual stress in target materials, thus improves fatigue or stress corrosion cracking resistance of MEMS (Micro Electromechanical Systems) devices made of such a material. Many works have been reported about the research and experiment for μLSP. But the diameters of 50-200 μm were used at the first time for this field, which was useful for treating micro-device components with larger area and curved surface. The excimer laser was used firstly on μLSP for shorter wavelength than that of used in previous researches. The determination method of laser spot size at micro-level spatial resolution was presented. Under these conditions, plastic deformation, the stress analysis and microhardness with different pulse number, pulse energy and pulse spacing were investigated. Especially the residual stress distribution with depth treated by μLSP, was first investigated. Experiment results showed that the material performance was improved remarkably after μLSP.

  9. Femtosecond laser ablation properties of transparent materials: impact of the laser process parameters on the machining throughput (United States)

    Matylitsky, V. V.; Hendricks, F.; Aus der Au, J.


    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for bio-medical and material processing applications. With the introduction of femtosecond laser systems such as the SpiritTM platform developed by High Q Lasers and Spectra-Physics, micro-processing of solid targets with femtosecond laser pulses have obtained new perspectives for industrial applications [1]. The unique advantage of material processing with subpicosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. The study on the impact of the laser processing parameters on the removal rate for transparent substrate using femtosecond laser pulses will be presented. In particular, examples of micro-processing of poly-L-lactic acid (PLLA) - bio-degradable polyester and XensationTM glass (Schott) machined with SpiritTM ultrafast laser will be shown.

  10. Influence of laser power on tensile properties and material characteristics of laser-sintered UHMWPE

    Directory of Open Access Journals (Sweden)

    Khalil Yas


    Full Text Available Ultra High Molecular Weight Polyethylene (UHMWPE has excellent properties, such as high mechanical performance, low friction, high wear and chemical resistance but so far there has been limited use in additive manufacturing (AM. Laser sintering of polymers is one of the most promising AM technologies due to its ability to produce complex geometries with accurate dimensions and good mechanical properties. Consequently, this study investigates the influence of laser power on physical and mechanical properties of UHMWPE parts produced by laser sintering. In particular mechanical properties, such as Ultimate Tensile Strength (UTS, Young’s Modulus and elongation at break were evaluated alongside relative density, dilation and shrinkage. Finally, the fracture surface of the tensile test specimens was examined by electron microscopy. Results show that within a laser power range of 6–12 W there appears to be an optimum where tensile strength and relative density reach a maximum, dilation is minimised and where elongation increases with laser power. UTS up to 2.42 MPa, modulus up to 72.6 MPa and elongation at break up to 51.4% were observed. Relative density and part dimensions are also influenced by laser power.

  11. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens


    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  12. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D


    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  13. Radiation damage of laser materials. Citations from the NTIS data base (United States)

    Carrigan, B.


    Laser beam damage to laser materials such as optical glass, glass fibers, alkali metal halides, metals, mirrors, optical coatings, dielectrics, semiconductors, and matrix materials is studied. The majority of these citations concern infrared laser damage to infrared optical materials. This updated bibliography contains 217 abstracts, 10 of which are new entries to the previous edition.

  14. Ultrashort laser pulse cell manipulation using nano- and micro- materials (United States)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander


    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  15. Materials Development and Evaluation of Selective Laser Sintering Manufacturing Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Peter F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mitchell, Russell R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report summarizes the FY96 accomplishments for CRADA No. LA95C10254, "Materials Development and Evaluation of Laser Sintering Manufacturing Applications". To research the potential for processing additional materials using DTM Corporations Selective Laser Sintering rapid prototyping technology and evaluate the capability for rapid manufacturing applications, the following materials were processed experimentally using the Sinterstation 2000 platform; Linear Low Density Polyethylene thermoplastic; Polypropylene thermoplastic; Polysulfone thermoplastic; Polymethylpentene (TPX) thermoplastic; Carbon microsphere filled nylon 11; "APO-BMI" Apocure bismaleimide thermoset polyimide glass m.icrosphere filled and carbon microsphere filled formulations; and 900-24 physical properties mock for plastic bonded TATB high explosive These materials have been successfully processed to a "proof of concept" level or better (with the exception of No. 7). While none of these materials have been introduced as a standard product as of this date, the potential to do so is viable. Present status of materials processing efforts is presented in Section A 2.0. Some recent efforts in manufacturing applications is discussed in Section A 4.0.

  16. Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, Darcie; Jilek, Brook Anton; Kohl, Ian Thomas; Kearney, Sean Patrick


    We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

  17. Laser shocking of materials: Toward the national ignition facility (United States)

    Meyers, M. A.; Remington, B. A.; Maddox, B.; Bringa, E. M.


    In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. This technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 107-108 s-1 and resolving details of the kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.

  18. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88 (United States)

    Wang, Zhijiang; Zhang, Zhiming


    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  19. Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film

    DEFF Research Database (Denmark)

    Schou, Jørgen


    The physical processes of pulsed laser deposition (PLD) change strongly from the initial light absorption in a target to the final deposition and growth of a film. One of the primary advantages of PLD is the stoichiometric transfer of material from target to a film on a substrate. Even for a stoi...

  20. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj


    A pulse Nd: YAG laser with pulse duration 5–10 ns, beam radius at focal point 0·2–0·4 mm, wavelengths 1064 nm, 532 nm and 238 nm with linearly polarized radiation and Gaussian beam profile, was impacted on a thin foil of titanium metal for generating plasma plume. Numerically, the above parameters were linked with average kinetic energy of the electrons and ions in the laser-induced plasma. In the present model, electrons having higher velocities are assumed to escape from plasma, that forms a negatively charged sheath around the plasma. It is seen from present computations that the forward directed nature of the laser evaporation process results from the anisotropic expansion velocities associated with different species. These velocities are mainly controlled by the initial dimension of the expanding plasma. An attempt was undertaken to estimate the length of the plume at different ambient gas pressures using an adiabatic expansion model. The rate of the plasma expansion for various Ar+ ion energies was derived from numerical calculations. A numerical definition of this plasma includes events like collisional/radiative, excitation/de-excitation and ionization/recombination processes involving multiples of energy levels with several ionization stages. Finally, based on a kinetic model, the plasma expansion rate across the laser beam axis was investigated.

  1. An improved approach for process monitoring in laser material processing (United States)

    König, Hans-Georg; Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter


    Process monitoring is used in many different laser material processes due to the demand for reliable and stable processes. Among different methods, on-axis process monitoring offers multiple advantages. To observe a laser material process it is unavoidable to choose a wavelength for observation that is different to the one used for material processing, otherwise the light of the processing laser would outshine the picture of the process. By choosing a different wavelength, lateral chromatic aberration occurs in not chromatically corrected optical systems with optical scanning units and f-Theta lenses. These aberrations lead to a truncated image of the process on the camera or the pyrometer, respectively. This is the reason for adulterated measurements and non-satisfying images of the process. A new approach for solving the problem of field dependent lateral chromatic aberration in process monitoring is presented. Therefore, the scanner-based optical system is reproduced in a simulation environment, to predict the occurring lateral chromatic aberrations. In addition, a second deflecting system is integrated into the system. By using simulation, a predictive control is designed that uses the additional deflecting system to introduce reverse lateral deviations in order to compensate the lateral effect of chromatic aberration. This paper illustrates the concept and the implementation of the predictive control, which is used to eliminate lateral chromatic aberrations in process monitoring, the simulation on which the system is based the optical system as well as the control concept.

  2. Finite element modeling of dental restoration through multi-material laser densification (United States)

    Dai, Kun

    To provide guidance for intelligent selection of various parameters in the Multi-Material Laser Densification (MMLD) process for dental restorations, finite element modeling (FEM) has been carried out to investigate the MMLD process. These modeling investigations include the thermal analysis of the nominal surface temperature that should be adopted during experiments in order to achieve the desired microstructure; the effects of the volume shrinkage due to transformation from a powder compact to dense liquid on the temperature distribution and the size of the transformation zone; the evolution of transient temperature, transient stresses, residual stresses and distortions; and the effects of laser processing conditions, such as fabrication sequences, laser scanning patterns, component sizes, preheating temperatures, laser scanning rates, initial porosities, and thicknesses of each powder layer, on the final quality of the component fabricated via the MMLD process. The simulation results are compared with the experiments. It is found that the predicted temperature distribution matches the experiments very well. The nominal surface temperature applied on the dental porcelain body should be below 1273 K to prevent the forming of the un-desired microstructure (i.e., a leucite-free glassy phase). The simplified models that do not include the volume shrinkage effect provide good estimations of the temperature field and the size of the laser-densified body, although the shape of the laser-densified body predicted is different from that obtained in the experiment. It is also fount that warping and residual thermal stresses of the laser-densified component are more sensitive to the chamber preheating temperature and the thickness of each powder layer than to the laser scanning rate and the initial porosity of the powder layer. The major mechanism responsible for these phenomena is identified to be related to the change of the temperature gradient induced by these laser

  3. Low-power photolytically pumped lasers: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Messing, I.; Lorents, D.C.; Eckstrom, D.J.


    We have carried out an extensive series of measurements of the time-resolved Xe/sub 2/* emission spectra following optical pumping by a short-pulse F/sub 2/ laser at 157.6 nm. Most measurements were performed using a gated Optical Multichannel Analyzer detector; we also made measurements using a scanning monochromator fitted with a photomultiplier and using a boxcar integrator for time resolution. The two sets of results agree well and show that both the singlet and triplet emission bands are broader than expected and have center wavelengths closer together than expected. Measurements were performed both at room temperature and at elevated (140/sup 0/C) and reduced (-27/sup 0/C) temperatures. The broad bandwidth of the individual spectral bands was unexpected and conflicted with a previous spectral measurement using optical pumping by the Xe* resonance line from a microwave discharge lamp. Therefore, we also performed a series of spectral measurements using this type of optical pumping. We achieved good agreement with some previous results in the literature, but not with the result in question. We conclude that the present results are reliable. The results presented in this report provide the first definitive measurement of the individual excimer emissions from each of the Xe/sub 2/(0/sub u//sup +/) and Xe/sub 2/(1/sub u/) states. From these measurements and the known ground state potential, we derived a 1/sub u/ potential that reproduces the emission band very well. However, the 1/sub u/ potential is in substantial disagreement with the recent 1/sub u/ potential derived by the Toronto group. 13 refs., 32 figs., 3 tabs.

  4. Direct Imaging of Anisotropic Material Properties using Photorefractive Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall


    Anisotropic properties of materials can be determined by measuring the propagation of elastic waves in different directions. A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb or flexural traveling wave mode displacement and phase. Continuous excitation is employed and the data is recorded and displayed in all directions simultaneously at video camera frame rates. Fourier transform of the data produces an image of the wave slowness in all planar directions. The results demonstrate imaging of microstructural isotropy and anisotropy and stress induced ansiotropy in plates.

  5. Direct Imaging of Anisotropic Material Properties using Photorefractive Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Telschow; R.S. Schley; S.M. Watson; V.A. Deason


    Anisotropic properties of materials can be determined by measuring the propagation of elastic waves in different directions. A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb or flexural traveling wave mode displacement and phase. Continuous excitation is employed and the data is recorded and displayed in all directions simultaneously at video camera frame rates. Fourier transform of the data produces an image of the wave slowness in all planar directions. The results demonstrate imaging of microstructural isotropy and anisotropy and stress induced ansiotropy in plates.

  6. Visualization of the laser treatment processes of materials by a brightness amplifier based on a copper laser (United States)

    Prokoshev, Valerii G.; Klimovskii, Ivan I.; Galkin, Arkadii F.; Abramov, Dmitrii V.; Arakelian, Sergei M.


    Reported is the observation of laser treatment processes of materials by the brightness amplifier based upon the copper laser. Provided is an experimental investigation of melting stainless steel under the laser radiation. Real time monitored is the process of surface heating, melting, spreading a melting boundary and the progress of turbulent movement in the melting container.

  7. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D


    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  8. Femtosecond Laser Micromachining Photonic and Microfluidic Devices in Transparent Materials

    CERN Document Server

    Cerullo, Giulio; Ramponi, Roberta


    Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.

  9. Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, R P; Latkowski, J F


    Left unprotected, both transmissive and reflective final optics in a laser inertial fusion power plant would quickly fail from melting, pulsed thermal stresses, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed into a robust energy dump. In this paper we detail integrated studies that have been carried out to asses the viability of this approach for protecting final optics.

  10. Laser Stabilization and Material Studies for the Laser Interferometer Space Antenna (LISA) (United States)

    Cordes, Amanda; Mueller, G.; Tanner, D. B.; Arsenovic, P.; Livas, J.; Preston, A.; Sanjuan, J.; Reza, S. A.; Mitryk, S.; Eichholz, J.; Spector, A.; Donelan, D.; Spannagel, R.; Korytov, D.


    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA project designed to detect gravitational waves. The University of Florida (UF) LISA laboratory is currently implementing and testing much of the instrumentation of the LISA interferometer measurement system to ensure the success of the upcoming LISA mission. LISA will consist of three spacecraft (SC) orbiting the sun in an equilateral triangular formation with an arm length of 5 Gm. Each SC will house two free floating proof-masses, two laser interferometer benches and two telescopes to transmit the laser light between SC. The constellation will trail the earth by 20° and be tilted by 60° with respect to the ecliptic. LISA is designed to detect low frequency gravitational waves (GWs) in the frequency band of .1mHz to 1 Hz with optimal strain sensitivity of 10^-21/sqrt(Hz) at 3 mHz corresponding to sources such as galactic binaries and black hole mergers. The dimensional stability of all optical paths within each interferometer arm is imperative for the success of LISA. Changes larger than a pm/sqrt(Hz) in the distance between optical components in the interferometer would limit the sensitivity of LISA. The UF LISA lab is testing materials with low thermal expansion coefficients which could be used as spacer materials for the telescopes or as the base material for the optical benches. Together with the LISA group at Goddard Space Flight Center we currently also test the dimensional stability of a silicon carbide telescope structure for LISA. The most demanding requirement on material stability is the requirement for the optical reference cavity which is used as the frequency reference for the lasers. We currently test different sensing schemes for the laser frequency stabilization system of LISA and will also report about these experiments. This work is supported by NASA Contract #00078244 and NASA Grant NNX08AG75G.

  11. Laser-Induced Damage Initiation and Growth of Optical Materials

    Directory of Open Access Journals (Sweden)

    Jingxia Yu


    Full Text Available The lifetime of optical components is determined by the combination of laser-induced damage initiation probability and damage propagation rate during subsequent laser shots. This paper reviews both theoretical and experimental investigations on laser-induced damage initiation and growth at the surface of optics. The damage mechanism is generally considered as thermal absorption and electron avalanche, which play dominant roles for the different laser pulse durations. The typical damage morphology in the surface of components observed in experiments is also closely related to the damage mechanism. The damage crater in thermal absorption process, which can be estimated by thermal diffusion model, is typical distortion, melting, and ablation debris often with an elevated rim caused by melted material flow and resolidification. However, damage initiated by electron avalanche is often accompanied by generation of plasma, crush, and fracture, which can be explained by thermal explosion model. Damage growth at rear surface of components is extremely severe which can be explained by several models, such as fireball growth, impact crater, brittle fracture, and electric field enhancement. All the physical effects are not independent but mutually coupling. Developing theoretical models of multiphysics coupling are an important trend for future theoretical research. Meanwhile, more attention should be paid to integrated analysis both in theory and experiment.

  12. Growth of Carbon Nanostructure Materials Using Laser Vaporization (United States)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.


    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  13. Electroceramic functional gradient materials. Final report 1995 - 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toft Soerensen, O. [ed.


    In this programme the research and development is focused on electroceramic materials, which are of direct interest for the Danish producers of electronic components (AMP Danmark) and ceramic gas sensors (PBI-Dansensor) as well as companies involved in development of fuel cells (Haldor Topsoee). The R and D work has been focused on strategic materials research, both application oriented and more basic research, and on development of new techniques for fabrication of EFGM (Electroceramic Functional Gradient Materials) of three types: LC circuit materials (electronic noise filters), oxides for electrochemical reactors and solid oxide fuel cell applications (SOFC) and materials (semiconductors, oxygen ion conductors) for oxygen sensors. This work has been carried out in five projects: 1) Integrated filter components; 2) Electrochemical reactor materials; 3) Oxygen sensors based on semiconductors and oxygen ion conductors; 4) Interface models - synthesis and characterisation; 5) Suppression of cracking in multilayered ceramic materials. (EHS)

  14. Perovskite Materials for Light-Emitting Diodes and Lasers. (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G


    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices.

  15. Materials Research with the Vanderbilt Free-Electron Laser (United States)

    Tolk, Norman


    The Vanderbilt Free-Electron Laser's (FEL) tunability (2-10=B5m), high intensity (15 MW) and short pulse structure (1 ps) make it ideal for studying (a) the electronic and vibrational structure of small and wide band gap semiconductors, and (b) non-thermal wavelength-selective materials alteration (``Free-Electron Laser Wavelength-Selective Materials Alteration and Photoexcitation Spectroscopy,'' N.H. Tolk, R.G. Albridge, A.V. Barnes, B.M. Barnes, J.L. Davidson, V.D. Gordon, G. Margaritondo, J.T. McKinley, G.A. Mensing, and J. Sturmann, Appl. Surf. Sci. 106, 205-210 (1996).). Two-photon absorption measurements in Ge were the first verification of a two-decades old predictionby Bassani and Hassan that the indirect two-photon absorption in Ge would be an LO-phonon assisted process. The FEL has greatly facilitated internal photoemission (IPE) heterojunction band discontinuity measurements. This technique is a photocurrent excitation spectroscopy that provides a direct measurement of the discontinuity without resorting to complex modeling. Another important area of materials research at the FEL concerns identification of wavelength-selective mechanisms for materials alteration. We have used the FEL to demonstrate strongly wavelength-selective ablation near the C-H stretch vibrational mode in chemical vapor deposited (CVD) diamond.

  16. Laser-assisted manufacturing of super-insulation materials (United States)

    Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David


    Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.

  17. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger


    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  18. Qualification of diode foil materials for excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.G.; Shurter, R.P.; Rose, E.A.


    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor. 6 refs., 6 figs., 1 tab.

  19. Qualification of diode foil materials for excimer lasers (United States)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  20. Secondary emissions during fiber laser cutting of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A., E-mail: [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Assunção, E. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal); Pires, I. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Quintino, L. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal)


    The laser process has been studied for dismantling work for more than 10 years, however there is almost no data available concerning secondary emissions generated during the process. These emissions are inevitable during the laser cutting process and can have detrimental effects in human health and in the equipment. In terms of safety, for nuclear decommissioning, is crucial to point out ways of controlling the emissions of the process. This paper gives indications about the parameters to be used in order to reduce these secondary emissions and about the influence of these parameters on the particles size distribution. In general, for producing minimal dross and fume emissions the beam focus should be placed on the surface of the material. The higher percentage of secondary emissions which present higher diameter, increases approximately linearly with the stand-off distance and with the use of low air pressure.

  1. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse


    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...... in a self-consistent manner and changing optical properties described in a Drude picture. The model can be used to calculate the electronic excitation as a function of time and depth, and from these quantities the time-dependent optical parameters as well as the ablation depth can be derived....... The simulations provide insight into the excitation and propagation dynamics of short-pulse excitation and show that at increasing fluence the excitation becomes localized near the material surface and gives rise to strongmodifications of the optical properties of the material....

  2. Material decomposition mechanisms in femtosecond laser interactions with metals

    CERN Document Server

    Povarnitsyn, M E; Sentis, M; Khishchenko, K V; Levashov, P R


    A numerical hydrodynamic study of femtosecond laser ablation is presented. A detailed analysis of material decomposition is performed using a thermodynamically complete equation of state with separate stable and metastable phase states and phase boundaries. The lifetime of the metastable liquid state is estimated based on the classical theory of homogeneous nucleation. In addition, mechanical fragmentation of the target material is controlled based on available criteria. As a result, several ablation mechanisms are observed. A major fraction of the ablated material, however, is found to originate from the metastable liquid region, which is decomposed either thermally in the vicinity of the critical point into a liquid-gas mixture, or mechanically at high strain rate and negative pressure into liquid droplets and chunks. The calculation results explain available experimental findings.

  3. Laser annealing and defect study of chalcogenide photovoltaic materials (United States)

    Bhatia, Ashish

    Cu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4(CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ≈ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215+/-10 meV for the reference sample, to 330+/-10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215+/-10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an

  4. Organic materials for second harmonic generation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Twieg, R.J. (comp.)


    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  5. Laser desorption postionization for imaging MS of biological material. (United States)

    Akhmetov, Artem; Moore, Jerry F; Gasper, Gerald L; Koin, Peter J; Hanley, Luke


    Vacuum ultraviolet single photon ionization (VUV SPI) is a soft ionization technique that has the potential to address many of the limitations of matrix-assisted laser desorption/ionization (MALDI) for imaging MS. Laser desorption postionization (LDPI) uses VUV SPI for postionization and is experimentally analogous to a MALDI instrument with the addition of a pulsed VUV light source. This review discusses progress in LDPI-MS over the last decade, with an emphasis on imaging MS of bacterial biofilms, analytes whose high salt environment make them particularly resistant to imaging by MALDI-MS. This review first considers fundamental aspects of VUV SPI including ionization mechanisms, cross sections, quantum yields of ionization, dissociation and potential mass limits. The most common sources of pulsed VUV radiation are then described along with a newly constructed LDPI-MS instrument with imaging capabilities. Next, the detection and imaging of small molecules within intact biofilms is demonstrated by LDPI-MS using 7.87 eV (157.6 nm) VUV photons from a molecular fluorine excimer laser, followed by the use of aromatic tags for detection of selected species within the biofilm. The final section considers the future prospects for imaging intact biological samples by LDPI-MS. Copyright 2010 John Wiley & Sons, Ltd.

  6. Armed Services Materials Conversion. A Documentation. Final Report. (United States)

    Organization and Human Resources Development Associates, Inc., Austin, TX.

    This report discusses Phase 1 of a project to convert armed services dental and medical curriculum materials into separate curricula for dental and physician assistant for civilian education use. The first two sections focus on project tasks and acquisition of existing military materials in dental and physician assistant training. Samples of…

  7. Development of a high-power blue laser (445  nm) for material processing. (United States)

    Wang, Hongze; Kawahito, Yosuke; Yoshida, Ryohei; Nakashima, Yuya; Shiokawa, Kunio


    A blue diode laser has a higher absorption rate than a traditional laser, while the maximum power is limited. We report the structure and laser beam profile of a 250 W high-power blue laser (445 nm) for material processing. The absorption rate of the blue laser system for the steel was 2.75 times that of a single-mode fiber laser system (1070 nm). The characteristics of the steel after laser irradiation were determined, validating the potential of this high-power blue laser for material processing, such as heat treatment and cladding. The cost of the developed laser system was lower than that of the existing one. To the best of our knowledge, this is the first blue laser with a power as high as 250 W.

  8. Functionally Graded Materials by Laser Metal Deposition (PREPRINT) (United States)


    A similar work carried out by Domack et al [14] showed macroscopic cracking in powder blends containing 40-60 percent Inconel 718 on Ti6Al4V...composition of Fe-82 wt% V (powder-1) and Inconel -625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel -625 deposits showed macro-cracks

  9. Materials processing with a tightly focused femtosecond laser vortex pulse. (United States)

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V


    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

  10. Laser enhanced microwave plasma isotope separation. Final report, September 30, 1992--September 29, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brake, M.L.; Gilgenbach, R.M.


    The experimental research was to focus on laser excitation of a low abundance isotope and then ionize and separate the isotope of low abundance using a microwave/ECR discharge at 2.45 GHz. A small compact electron cyclotron resonance ion source, which uses permanent magnets, was constructed during this project. The dye laser was purchased and later an excimer laser had to also be purchased because it turned out that the dye laser could not be pumped by our copper laser. It was intended that the dye laser be tuned to a wavelength of 670.8 nm, which would excite {sup 6}Li which would then be preferentially ionized by the ECR source and collected with a charged grid. The degree of enrichment was to be determined using thermal ionization mass spectrometry. The final objective of this project was to assess the feasibility of this system to large-scale production of stable isotopes. However the funding of this project was interrupted and we were not able to achieve all of our goals.

  11. Characterization of polymer materials and powders for selective laser melting (United States)

    Wudy, K.; Drummer, D.; Drexler, M.


    Concerning individualization, the requirements to products have increased. The trend towards individualized serial products faces manufacturing techniques with demands of increasing flexibility. Additive manufacturing techniques generate components directly out of a CAD data set while requiring no specific tool or form. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. With a variety of available additive manufacturing techniques, some of them have a high potential to generate series products with reproducible properties. Selective laser melting (SLM) of powder materials shows the highest potential for this application. If components made by SLM are desired to be applied in technical series products, their achievable properties play a major part. These properties are mainly determined by the processed materials. The range of present commercially available materials for SLM of polymer powders is limited. This paper shows interrelations of various material properties to create a basic understanding of sintering processes and additional qualifying new materials. Main properties of polymer materials, with regard to their consolidation are viscosity and surface energy. On the one hand the difference of the surface energy between powder and melt influences, the wetting behavior, and thus the penetration depth. On the other hand, a high surface tension is fundamental for good coalescence of bordering particles. To fulfill these requirements limits of the surface tension will be determined on the basis of a reference material. For these reason methods for determining surface tension of solids, powders and melts are analyzed, to carry out a possible process-related material characterization. Not only an insight into observed SLM phenomena is provided but also hints concerning suitable material selection.

  12. Nanostructured materials: A novel approach to enhanced performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Korth, G.E.; Froes, F.H.; Suryanarayana, C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others


    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.

  13. Microfabrication of transparent materials using filamented femtosecond laser beams (United States)

    Butkus, S.; Paipulas, D.; Gaižauskas, Eugenijus; KaškelytÄ--, D.; Sirutkaitis, V.


    Glass drilling realized with the help of femtosecond lasers attract industrial attention, however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length. This article demonstrates the application of a femtosecond (280fs) laser towards rapid cutting of different transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime, hardened glasses and sapphire. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated.

  14. Materials Technology Support for Radioisotope Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Kramer; Chadwick D. Barklay


    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

  15. Laser-optical treatment for toothbrush bristles (nylon, synthetic, and polymeric materials, etc.) (United States)

    Ma, Yangwu


    On the basis of the principle of laser radiation and materials interaction, a laser-optical treatment method for toothbrush bristles (nylon et al., synthetic and polymeric materials) is provided. In this process, laser irradiation is stopped during melting and followed by cooling, so the free end of each bristle of toothbrush is formed for a smooth globe. The toothbrush with laser-optical end-globed bristles have many remarkable functions.

  16. The advances and characteristics of high-power diode laser materials processing (United States)

    Li, Lin


    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  17. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter


    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...... is verified by comparison with recent experimental measurements of the transient optical properties in combination with ablation-depth determinations. The excitation process from the first creation of conduction-band electrons at low intensities to the formation of a highly-excited plasma and associated...... material fragmentation is explained by the model. For quartz samples, the optical properties are strongly influenced by self-trapped excitons, and the associated additions to the model are described....

  18. Laser (cooling) refrigeration in erbium based solid state materials (United States)

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature

  19. Terminal-level relaxation in ND-doped laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Bibeau, C.; Payne, S.A.


    During the energy extraction of a 1-{mu}m pulse in a Nd-doped laser material, the Nd-ion population is transferred from the metastable {sup 4}F{sub 3/2} level into the terminal {sup 4}I{sub 11/2} level. The terminal-level lifetime, {tau}{sub 11/2}, is defined in this case as the time it takes the Nd-ion population to decay from the {sup 4}I{sub 11/2} level into the {sup 4}I{sub 9/2} ground state. Several experimental and theoretical approaches over the last three decades have been made to measure the terminal-level lifetime. However, an agreement in the results among the different approaches for a large sampling of laser materials has never been demonstrated. This article presents three independent methods (pump-probe, emission, and energy extraction) for measuring the terminal-level lifetime in Nd:phosphate glass LG-750. The authors find remarkable agreement among the data and determine the {tau}{sub 11/2} lifetime to be 253{+-}50 ps. They extend their studies to show that the results of the pump-probe and emission methods agree to within a factor of two for additional Nd-doped glases and crystals investigated, thus offering validation for the emission method, which is a simpler, indirect approach.

  20. Materials Degradation and Detection (MD2): Deep Dive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.


    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

  1. Relationships between fracture toughness and other material properties. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Perra, M.; Finnie, I.


    The key experimental and analytical studies which have led to our present understanding of the mechanisms of ductile fracture are reviewed. It is concluded that insufficient progress has been made in the quantitative description of ductile separation mechanisms on a microscale to allow the realistic prediction of fracture toughness from material properties and microstructure. An experimental study of ductile fracture is underway which has the aim of determining the growth rate of voids in known plastic deformation fields as a function of triaxiality of stress and material work-hardening. Novel specimens of particularly well characterized microstructure are utilized.

  2. Simulation study on thermal effect of long pulse laser interaction with CFRP material (United States)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi


    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  3. Textbooks and Learning Materials Program: Zambia. Final Report (United States)

    US Agency for International Development, 2009


    The Mississippi Consortium for International Development's (MCID's) intervention involved the development, publication and distribution of an Integrated Foundations of Learning Kit, focused on numeracy. This intervention was aligned with Zambia's priorities and strategies and matched the requirements of the Textbooks and Learning Materials Program…

  4. Glazing materials for solar and architectural applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [ed.


    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  5. Material Processing Opportunites Utilizing a Free Electron Laser (United States)

    Todd, Alan


    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  6. Material removal during double-pulsed (ms and ns) laser drilling (United States)

    Wang, Zicheng; Qin, Yuan; Yang, Sen; Shi, Bang; Wang, Heming; Chen, Hanyu


    Laser drilling is one of the processing approaches in aerospace industry. However, drilling with ms laser is unstable since the drilled hole is easy to be blocked by re-solidified molten material. To solve this problem, two different pulsed lasers (millisecond and nanosecond) are used in our experiments. The shock wave produced by the ns laser is introduced to increase the migration mass. With the help of shock wave, the depth and quality of the hole get higher. The influences of the interval time, the ms laser energy and the laser pulse duration time on the quality of drilled holes are also discussed. The results show that the hole is deep and clean if the ns laser is added shortly after the beginning of ms laser. The ms laser energy and the laser duration time determine the depth of the hole.

  7. Laser vibrometry for investigation of tympanic membrane implant materials (United States)

    Zahnert, Thomas; Kuster, Manfred; Vogel, Uwe; Hofmann, Gert; Huettenbrink, Karl-Bernd


    The human tympanic membrane has reasonably good sound sensing properties. A destroyed tympanic membrane due to middle ear diseases or traumata may be repaired by different types of grafts. Middle ear surgery mostly uses autologous temporal fascia, cartilage, or cartilage perichondrium transplants. We have investigated the acoustical and mechanical properties of these materials and compared them with human tympanic membrane by constructing an ear canal model completed by an artificial tympanic membrane. Circular stretched human fascia, perichondrium, and cartilage preparations were exposed to static pressures up to 4 kPa and white noise sound pressure levels of 70 dB. The vibrational amplitudes and displacements due to static pressure of the graft material were measured by laser Doppler vibrometry and compared. The thin materials temporal fascia and perichondrium show similar amplitude frequency responses compared to the tympanic membrane for dynamic excitation. The displacement of these materials at static pressures above 4 kPA yields a higher compliance than tympanic membrane. The acoustical and mechanical properties of cartilage transplants change with the thickness of the slices. However, the thinner the cartilage slice combined with lower stability, the more similar is the frequency response with the intact tympanic membrane. The vibration amplitudes decrease more and more for layer thicknesses above 500 micrometers. Cartilage acts as an excellent transplant material which provides a better prognosis than different materials in cases of ventilation disorders with long-term middle ear pressure changes. Large cartilage slice transplants should not exceed layer thicknesses of 500 micrometer in order to prevent drawbacks to the transfer characteristics of the tympanic membrane.

  8. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt


    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  9. Influence of soft bonding layer material viscoplasticity on thermal lens and aspherical aberration of high-power thin disk laser (United States)

    Wang, Mu; Zhu, Guangzhi; Zhu, Xiao; Feng, Yufan; Gao, Jiapeng


    An numerical model considering solder viscoplasticity is developed to analyze the thermal deformation of laser disk with indium bonded. The characteristic of soft bonding material is described using Anand viscoplasticity model. The Finite Element Method analytical results show that the back surface of laser disk with pumping will deform more significantly with time and finally be steady. Correspondingly the refraction power increase gradually and diffraction loss induced by aspherical aberration decrease gradually. Futhermore when pump spot is larger the refraction power and aspherical aberration will change more due to solder viscoplasticity.

  10. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)


    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  11. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research (United States)

    Sun, Sam


    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  12. Anodic materials for the electrolysis of water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fiori, G.; Mari, C.M.; Perra, B.; Vago, L.; Vitali, P.


    Research was conducted in two areas: preparation and characterization of various catalytic materials, similar to NiLa/sub 2/O/sub 4/, in order to verify the possibility of improving the catalytic activity; and optimization of the catalytic film deposition conditions on a cheap substrate and tests at high temperature (110 to 120/sup 0/C) and high current densities (1 A/cm/sup 2/). The modified catalytic materials can be classified in three different groups: NiLa/sub 2/O/sub 4/ mixed oxides doped with different low quantities of cations of various valencies (Li/sup +/, Mg/sup 2 +/, Fe/sup 3 +/); mixed oxides in which Ni has been replaced totally or partially with Co; and NiLa/sub 2/O/sub 3/ mixed oxides in which some sulfur has been substituted for reticular oxygen. The best electrode tested is the mixed Ni-Co non-stoichiometric oxide deposited on Ni. This electrode at 110/sup 0/C and 1 A/cm/sup 2/ shows an E/sub rhe/ potential lower than 1.45 v after more than 400 hr of uninterrupted work as anode in the water decomposition reaction.

  13. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)


    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  14. SiCp/Ti6Al4V functionally graded materials produced by laser melt injection

    NARCIS (Netherlands)

    Pei, Y.T.; Ocelik, V.; Hosson, J.Th.M. De


    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo

  15. Self-Channeling of Femtosecond Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials (United States)


    Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials Matthieu Baudelet, Martin Richardson, Townes laser Institute, CREOL...2007 [3] D.A. Cremers and L.J. Radziemski, Handbook of laser-induced breakdown spectroscopy, Wiley, 2006 [4] A.W. Miziolek, V. Palleschi and I

  16. Electronic processes in thin-film PV materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.C.; Chen, D.; Chen, S.L. [and others


    The electronic and optical processes in an important class of thin-film PV materials, hydrogenated amorphous silicon (a-Si:H) and related alloys, have been investigated using several experimental techniques designed for thin-film geometries. The experimental techniques include various magnetic resonance and optical spectroscopies and combinations of these two spectroscopies. Two-step optical excitation processes through the manifold of silicon dangling bond states have been identifies as important at low excitation energies. Local hydrogen motion has been studied using nuclear magnetic resonance techniques and found to be much more rapid than long range diffusion as measured by secondary ion mass spectroscopy. A new metastable effect has been found in a-Si:H films alloyed with sulfur. Spin-one optically excited states have been unambiguously identified using optically detected electron spin resonance. Local hydrogen bonding in microcrystalline silicon films has been studied using NMR.

  17. Radiation effects on organic materials in nuclear plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M B; Davis, M V


    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  18. Progress in Mechanics of Materials by Using Laser Speckle Method (United States)

    Lagattu, F.; Brillaud, J.; Lafarie-Frenot, M. C.

    The aim of this paper is to present some examples of the use of laser speckle method for the study of composite and polymer mechanical behaviour. A specific mechanical device has been designed in order to realise in-situ singly exposed speckle photographs. It is thus possible to obtain quite rapidly and easily " in-situ " displacement measurements, that is to say on the tensile testing machine, and with a good accuracy. This method has been applied to check and improve mechanical constitutive laws of structural composite materials. It has also been applied to validate new mechanical tests, for example shear tests, by verifying the uniformity of strain fields in the specimens. Moreover, this method allowed us to characterise strain fields around crack tips in polymers.

  19. Group III-nitride lasers: a materials perspective

    Directory of Open Access Journals (Sweden)

    Matthew T. Hardy


    Full Text Available An overview of III-Nitride based laser diodes (LDs is presented focusing on the materials challenges in each phase of device development. We discuss early breakthroughs leading to the first commercial GaN LDs, covering crystal growth, p-type doping, and defect reduction. Additional device issues, such as polarization effects, strain, and index dispersion are addressed as they apply to the development of blue and green LDs for pico-projector applications. State of the art device results are highlighted. Devices grown on non-polar and semi-polar GaN substrates address many polarization related problems present in c-plane GaN growth. Device results, advantages, and limitations of various non-polar and semi-polar systems are discussed in terms of polarization properties, Indium incorporation, extended defect formation, and critical thickness. A brief description of challenges and progress in UV LDs is also presented.

  20. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry (United States)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.


    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  1. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries (United States)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.


    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  2. Final disposal of low- and medium-level radioactive materials; Endlagerung von schwach- und mittelradioaktiven Stoffen

    Energy Technology Data Exchange (ETDEWEB)



    The contribution on the final disposal of low- and medium-level radioactive materials describes the responsibilities according to the atomic law and the mining law, the licensing requirements and the licensing procedures. The costs for the final disposal have to be financed by the waste producer, 40% are publicly owned institutions. The licensed final repository Konrad for low- and medium-level radioactive materials is described in detail. The research mine Asse is obviously not appropriate for final disposal, the stored containers with low- and medium-level radioactive materials have to be retrieved, supposedly after 2033. The final repository for low- and medium-level radioactive materials was installed by the former DDR, in 1998 the repository was closed.Germany has decided to dispose the radioactive waste in deep geological facilities, other countries have near-surface repositories.

  3. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity (United States)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.


    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  4. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others


    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  5. Alternate electrode materials for the SP100 reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Randich, E.


    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB{sub 2} (C) CVD coating on SiMo substrates, (2) development of a ZrB{sub 2} (C) CVD coating on SiGe substrates, (3) development of CVI W for porous graphite electrodes, and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB{sub 2} coatings on SiGe and graphite substrates, and later into developing ZrB{sub 2} coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB{sub 2} during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.

  6. Optoelectronic materials for subwavelength imaging and laser beam maniupulation (United States)

    Krishnamurthi, Mahesh


    Metamaterials are artificially engineered materials for providing properties which are not readily available in nature. In the last decade, research activity in the field of metamaterials has led to diverse applications including remote sensing, lithography, communication, and biological imaging. For instance, researchers have shown that a class of metamaterials exhibit negative refraction and have also utilized this phenomenon to enable a super lens for beating the diffraction limit of light. Other fascinating developments include optical cloaking devices which involves bending of the electromagnetic waves completely around the objects. Therefore, metamaterials have become an important subject for study. The central focus of this thesis is primarily on two applications of metamaterials: sub-wavelength imaging and laser beam manipulation. The proof-ofconcept of sub-wavelength imaging has been demonstrated in the mid-infrared regime. A tapered array of step-index cylindrical waveguides is the basis for the magnifying infrared fiberscope. Optimized designs have been presented for the proposed infrared fiberscope by numerical modeling. The fabrication of the fiberscope is based on a high pressure chemical fluid deposition technique to deposit precisely defined periodic arrays of semiconductor waveguides within the holes of a microstructured optical fiber made of silica. The optical properties of various waveguides (germanium, silicon, zinc selenide, silicon nitride) fabricated by this method have been characterized in the infrared regime. The basic essential features of an imaging fiber bundle such as isolation between adjacent pixels, magnification, optical throughput and near-field image transfer characteristics have been investigated. The imaging concept is demonstrated at 1.55 mum, 3.39 mum and 10.64 mum using appropriate materials for fabricating the tapered array of waveguides to maximize the optical throughput. Manipulation of the laser beam has been

  7. The effect of process variables on microstructure in laser-deposited materials (United States)

    Bontha, Srikanth

    Laser deposition of titanium alloys is under consideration for aerospace applications, which require the consistent control of microstructure and resulting mechanical properties. To date, only limited experimental data exists to link deposition process variables (e.g., laser power and velocity) to resulting microstructure (e.g., grain size and morphology) in laser-deposited materials, and suitable microstructures have typically been obtained only by trial and error. In addition, it is unclear whether knowledge based on small-scale laser deposition processes (e.g., LENS(TM)) can be applied to large-scale (higher power) processes currently under development for commercial applications. Therefore, simulation-based methods are needed to predict the effects of process variables and size-scale on microstructure in laser-deposited titanium and other aerospace materials. The ability to predict and control microstructure in laser deposition processes requires an understanding of the thermal conditions at the onset of solidification. The focus of this work is the development of thermal process maps relating solidification cooling rate and thermal gradient (the key parameters controlling microstructure) to laser deposition process variables (laser power and velocity). The approach employs the well-known Rosenthal solution for a moving point heat source traversing an infinite substrate. Cooling rates and thermal gradients at the onset of solidification are numerically extracted from the Rosenthal solution throughout the depth of the melt pool, and dimensionless process maps are presented for both 2-D thin-wall and bulky 3-D geometries. Results for both small-scale (LENS(TM)) and large-scale (higher power) processes are plotted on solidification maps for predicting trends in grain morphology in laser-deposited Ti-6Al-4V. Although the Rosenthal predictions neglect the nonlinear effects of temperature-dependent properties and latent heat of transformation, a comparison with 2-D

  8. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser (United States)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang


    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  9. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.


    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  10. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aymond, F. [Univ. of Texas at Austin, TX (United States); Bridgewater, Jon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deppert, O. [Technische Universitat Darmstadt (Germany); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Falk, Katerina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Manuel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison Victoria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, Nevzat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hamilton, Christopher Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hegelich, Bjorn Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jung, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kleinschmidt, Annika [Technische Universitat Darmstadt (Germany); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pomerantz, Ishay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory; Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCary, E. [Univ. of Texas at Austin, TX (United States)


    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  11. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials (United States)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.


    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data.

  12. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; Baca, Georgina [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; O' Connor, Michael [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company


    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  13. High-speed cutting of thin materials with a Q-switched laser in a water-jet versus conventional laser cutting with a free running laser (United States)

    Wagner, Frank R.; Boillat, Christophe; Buchilly, Jean-Marie; Spiegel, Akos; Vago, Nandor; Richerzhagen, Bernold


    Cutting of thin material, c.f. stencils, stents and thin wafers, is an important market for laser machining. Traditionally this task is performed using flash-lamp pumped, free-running Nd:YAG lasers. Using the water-jet guided laser technology, we experienced that the use of Q-switched lasers leads to superior results while cutting a variety of thin materials. In this technique, the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. Utilizing this system, we obtain burr-free, slightly tapered cuts at the same speed as the classical laser cutting and without distinguishable heat affected zone. The main difference is, except the water-jet usage, the pulse duration which is approximately 400 ns instead of 20 to 200 μs in the case of free running lasers. Up to 40'000 high quality apertures per hour can be achieved in stencil mask cutting with the new system. We will compare qualitatively the two possibilities: conventional laser cutting with free-running lasers and water-jet guided laser cutting with Q-switched lasers. The results will be discussed in terms of the different physical effects involved in the material removal upon both methods. In particular the importance of molten material expulsion by the water-jet will be pointed out and compared to the action of the assist-gas. The mentioned effects show that the combination of short pulse laser and water-jet will be beneficial for the production of a wide range of precision parts.

  14. Laser material characteristics of Ti:Al/sub 2/O/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, M.; Pertica, A.J.


    Quasi-cw operation of Ti:sapphire crystals pumped by a chopped cw argon-ion laser was used to determine gain and loss coefficients of this material. A considerable variation in the material loss coefficients was observed as a function of the coordinates of the pumped volume in the laser crystal, indicating crystal inhomogeneity.

  15. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.


    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  16. Experimental Study on 308nm Laser Interaction with Materials

    Institute of Scientific and Technical Information of China (English)


    A 10 J, 40 ns XeC1 laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition threshold and plasma plume expansion velocity are obtained. Also, Laser induced pulse on irradiated targets are given.

  17. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael


    -15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use

  18. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G


    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  19. Efficient production by laser materials processing integrated into metal cutting machines (United States)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut


    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  20. Sub-nanosecond optical diagnostics of laser-material interaction and dynamic microstructure of materials

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, D.L.; Stahl, D.B.


    Several optical diagnostic techniques are used to evaluate the dynamic response of materials to intense dynamic loading and unloading, high stress and strain, and pressure. Velocity interferometry and electronic streak photography, each with sub-nanosecond time resolution, are used to record dynamic material response. Laser-launched flat plates are accelerated to 10{sup 12} m/s{sup 2} with terminal velocities >5 km/s. By impacting these plates into target samples, high strain rates (10{sup 8} sec{sup {minus}1}) and pressures >100 GPa have been generated for a duration of 0.8--5 nanoseconds. The efficacy and limitations of each technique are detailed and applications to other fields discussed.

  1. Sub-nanosecond optical diagnostics of laser-material interaction and dynamic microstructure of materials

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, D.L.; Stahl, D.B.


    Several optical diagnostic techniques are used to evaluate the dynamic response of materials to intense dynamic loading and unloading, high stress and strain, and pressure. Velocity interferometry and electronic streak photography, each with sub-nanosecond time resolution, are used to record dynamic material response. Laser-launched flat plates are accelerated to 10[sup 12] m/s[sup 2] with terminal velocities >5 km/s. By impacting these plates into target samples, high strain rates (10[sup 8] sec[sup [minus]1]) and pressures >100 GPa have been generated for a duration of 0.8--5 nanoseconds. The efficacy and limitations of each technique are detailed and applications to other fields discussed.

  2. Selective laser sintering of calcium phosphate materials for orthopedic implants (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  3. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India (United States)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.


    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  4. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    Energy Technology Data Exchange (ETDEWEB)



    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.


    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu


    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  6. Diode Laser Diagnostics for Gas Species and Soot in Large Fires: LDRD Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Christopher R. Shaddix; Sarah W. Allendorf; Gary L. Hubbard; David K. Ottesen; Louis A. Gritzo


    The thermal hazard posed by a fire to a weapon or other engineered system is a consequence of combined radiation and convection from high-temperature soot and gases. The development of advanced, predictive models of this hazard requires detailed knowledge of the transient chemical structure and soot distributions within real-scale fires. At present, there are no measurements, and hence limited understanding, of transient gaseous species generation and transport in large, fully turbulent fires. As part of a Laboratory Directed Research and Development (LDRD) project to develop such an experimental capability, near-infrared tunable diode laser absorption spectroscopy (TDLAS) has been identified as the most promising diagnostic technique for making these measurements. In order to develop this capability, significant efforts were applied to choosing optimal species and transitions for detection, to developing an effective multiplexing strategy for several lasers undergoing wavelength modulation spectroscopy with fast laser ramp scans, to developing a methodology for multipassing the TDL beams across a small probe volume, and finally, to designing a water-cooled, fiber-coupled probe for performing these measurements locally within large pool fires. All of these challenges were surmounted during the course of this project, and in the end a preliminary, unique dataset of combined water vapor, acetylene, and soot concentrations was obtained from a 1-m diameter JP-8 pool fire.

  7. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)


    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  8. Refractive beam shapers for material processing with high power single mode and multimode lasers (United States)

    Laskin, Alexander; Laskin, Vadim


    The high power multimode fiber-coupled laser sources, like solid state lasers or laser diodes as well as single mode and multimode fiber lasers, are now widely used in various industrial laser material processing technologies like metal or plastics welding, cladding, hardening, brazing, annealing. Performance of these technologies can be essentially improved by varying the irradiance profile of a laser beam with using beam shaping optics, for example, the field mapping refractive beam shapers like piShaper. Operational principle of these devices presumes transformation of laser beam irradiance distribution from Gaussian to flattop, super-Gauss, or inverse-Gauss profile with high flatness of output wave front, conserving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field. Important feature of piShaper is in capability to operate with TEM00 and multimode lasers, the beam shapers can be implemented not only as telescopic optics but also as collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation. This paper will describe some features of beam shaping of high-power laser sources, including multimode fiber coupled lasers, and ways of adaptation of beam shaping optical systems design to meet requirements of modern laser technologies. Examples of real implementations will be presented as well.

  9. Effect of EndoActivator and Er,Cr:YSGG laser activation of Qmix, as final endodontic irrigant, on sealer penetration: A Confocal microscopic study (United States)

    Yadav, Sudha; Talwar, Sangeeta; Verma, Mahesh


    Background Through chemomechanical debridement of the root canal is a primary requisite for successful endodontic therapy. Thus the aim of this study was to evaluate the effects of using QmiX alone, QmiX with EndoActivator and QmiX with Er,Cr:YSGG laser for final irrigation on sealer penetration into the dentinal tubules. Material and Methods 75 extracted human mandibular premolar teeth were treated with sodium hypochlorite (NaOCl) irrigation. The samples were divided into 5 groups according to the final irrigation solution used: (1) 17% EDTA and 2.5% NaOCl, (2) QmiX (3) QmiX with Er,Cr:YSGG laser and (4) QmiX with EndoActivator (5) 2.5%NaOCl. All teeth were obturated using cold lateral condensation technique with gutta percha and AH 26 sealer (Dentsply; DeTrey,Konstanz, Germany) labeled with Rhodamine B dye. The teeth were sectioned at distances of 2 and 5 from root apex. Total percentage and maximum depth of sealer penetration were measured using confocal laser scanning microscopy. Results Results of one way Anova analysis showed that there was a significant difference in the percentage and depth of sealer penetration among all groups at 3 and 5 mm level sections (P < .05). Within the groups maximum sealer penetration was recorded for Er,Cr:YSGG laser activated group. Greater depth of sealer penetration was recorded at 5mm as compared to 3mm in all the groups. Conclusions Activation of QMix using EndoActivator and Er,Cr:YSGG laser enhanced the sealer penetration at apical and middle third. Thus Er,Cr:YSGG laser and EndoActivator may act as an appropriate adjunct during chemomechanical preparation of the root canal. Key words:EndoActivator, Er,Cr:YSGG laser, Qmix, confocal microscopy, sealer penetration. PMID:28210439

  10. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles (United States)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.


    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites.

  11. Analysis of Nickel Based Hardfacing Materials Manufactured by Laser Cladding for Sodium Fast Reactor (United States)

    Aubry, P.; Blanc, C.; Demirci, I.; Dal, M.; Malot, T.; Maskrot, H.

    For improving the operational capacity, the maintenance and the decommissioning of the future French Sodium Fast Reactor ASTRID which is under study, it is asked to find or develop a cobalt free hardfacing alloy and the associated manufacturing process that will give satisfying wear performances. This article presents recent results obtained on some selected nickel-based hardfacing alloys manufactured by laser cladding, particularly on Tribaloy 700 alloy. A process parameter search is made and associated the microstructural analysis of the resulting clads. A particular attention is made on the solidification of the main precipitates (chromium carbides, boron carbides, Laves phases,…) that will mainly contribute to the wear properties of the material. Finally, the wear resistance of some samples is evaluated in simple wear conditions evidencing promising results on tribology behavior of Tribaloy 700.

  12. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report? (United States)


    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What additional materials must I submit with the final narrative report? 1206.86 Section 1206.86 Parks, Forests, and Public... narrative report? You must submit the materials determined by the Commission as found in the NHPRC...

  13. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)


    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  14. Laser Beam Welding with High-Frequency Beam Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers (United States)

    Kraetzsch, Mathias; Standfuss, Jens; Klotzbach, Annett; Kaspar, Joerg; Brenner, Berndt; Beyer, Eckhard

    Brilliant laser beam sources in connection with a high frequent beam oscillation make it now possible to join metallic material combinations, which have been conventionally non-laser weldable up to now. It concerns especially such combinations like Al- Cu, where brittle intermetallic phases occur. Extreme small weld seam with high aspect ratio leads to very short meld pool life time. These allow an extensive reduction of the heat input. On the other side the melting behavior at metallic mixed joint, seam geometry, meld pool turbulence and solidification behavior can be influenced by a high frequent time-, position- and powercontrolled laser beam oscillation.

  15. Surface engineering with lasers of Co-base materials

    NARCIS (Netherlands)

    de Hosson, J.T.M.; de Mol van Otterloo, J.L.; Aliabadi, MH; Brebbia, CA


    This paper deals with the wear properties of five different laser cladded Cobalt-base Stellite alloys. It is shown that fusing hardfacing powders onto a stainless steel substrate by means of a high power laser beam results in novel microstructures. As such, wear testing of these coatings becomes


    NARCIS (Netherlands)

    De Hasson, J. T. M.; van Otterloo, L. De Mol


    Electron microscopy, mechanical hardness measurements, and wear experiments have been carried out on 316 stainless steel laser coated with Co based Stellite alloys. It has been found that with optimum laser parameters a pore less coating with a hardness of 11-3 GPa can be attained. Detailed analysis

  17. Laser materials for the 0.67-microns to 2.5-microns range (United States)

    Toda, Minoru; Zamerowski, Thomas J.; Ladany, Ivan; Martinelli, Ramon U.


    Basic requirements for obtaining injection laser action in III-V semiconductors are discussed briefly. A detailed review is presented of materials suitable for lasers emitting at 0.67, 1.44, 1.93, and 2.5 microns. A general approach to the problem is presented, based on curves of materials properties published by Sasaki et al. It is also shown that these curves, although useful, may need correction in certain ranges. It is deduced that certain materials combinations, either proposed in the literature or actually tried, are not appropriate for double heterostructure lasers, because the refractive index of the cladding material is higher than the index of the active material, thus resulting in no waveguiding, and high threshold currents. Recommendations are made about the most promising approach to the achievement of laser action in the four wavelengths mentioned above.

  18. Parametric investigation in co2 laser cutting Quality of hardox-400 materials

    Directory of Open Access Journals (Sweden)



    Full Text Available Laser cutting of hardox-400 materials is a popular process in several manufacturing industries This article presents a preliminary study to evaluate the effect of the processing parameters (laser power, Gas pressure, Nozzle diameter and cutting velocity under the quality of the cut for several hardox-400materials. A plan of experiments was established considering CO2 laser cutting with prefixed processing parameters in several hardox-400 materials with same thickness. The objective was to evaluate the quality of the cut (presence of burr.

  19. Pulsed Nd: YAG laser drilling of aerospace materials (Ti-6Al-4V) (United States)

    Bahar, N. D.; Marimuthu, S.; Yahya, W. J.


    This paper studies the influence of Nd:YAG (neodymium-doped yttrium aluminium garnet) laser process parameters on laser drilled hole quality. Ti-6Al-4V of 1 mm and 3 mm thickness were used as the workpiece substrate. The principal findings are mainly based on minimising the taper angle in laser drilled holes, reducing the heat affected zone and reducing the production of spatter. Identification of key process variables associated with laser drilling process is accomplished by trial experimentation. Using the identified key process variables, further experiments were then performed with the assistance of statistical design of experiment (DOE) to find the interaction and individual effects of various laser process parameters on laser drilled hole quality. The lowest taper angle of 1.8 degrees was achieved with use of nitrogen as the assist gas. Furthermore, from the laser process observations, it was found that laser power significantly affects the quality of the laser drilled hole. Increase in laser power would increase the hole size and result in more spatter on the entry hole surfaces. The nozzle focus position substantially influenced the laser drilled hole size. The amount of spatter deposits increased with decrease in the nozzle offset. Increase in laser frequency significantly increased the exit diameter, which resulted in smaller taper angle. Number of pulse required to drill through a workpiece depends on the material properties and physical properties of the material. For 1mm Ti-6Al-4V, a minimum of two pulses was required to successfully removed the material during drilling and a minimum of 4 pulses was required to drill through the same material with 3mm thickness.

  20. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing (United States)

    Rothgeb, Matthew J; McLaughlin, Russell L.


    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a

  1. Effect of the lasers used in periodontal therapy on the surfaces of restorative materials. (United States)

    Hatipoğlu, Mükerrem; Barutcigil, Çağatay; Harorlı, Osman Tolga; Ulug, Bülent


    The present study aimed to reveal potential damage of the lasers, which are used as an alternative to manual instruments in periodontal therapy, might cause to the surface of restorative materials. Four different restorative materials were used: a glass-ionomer cement (GIC), a flowable composite (FC), a universal composite (UC) and an amalgam. Ten cylindrical samples (8 mm × 2 mm) were prepared for each restorative material. Two laser systems were used in subgingival curettage mode; an 940 nm diode laser (Epic Biolase, Irvine, CA) and an Er,Cr:YSGG laser (Waterlase iPlus, Biolase, Irvine, CA). After laser irradiation, roughness of the sample surfaces was measured using a profilometer. Additionally, atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses were performed to evaluate the morphology and surface deformations of the restorative materials and surfaces. The laser irradiation did not affect the surface roughness of any restorative materials relative to that of the control group (p > 0.05) except for the Er,Cr:YSGG treatment on GIC (p surface roughness tests. Within the limitations of the present study, it was demonstrated that Er,Cr:YSGG and diode lasers, aside from the Er;Cr:YSGG treatment on GIC, caused no harmful surface effects on adjacent restorative materials. SCANNING 38:227-233, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts. (United States)

    Santos, Vanessa G; Fasciotti, Maíra; Pudenzi, Marcos A; Klitzke, Clécio F; Nascimento, Heliara L; Pereira, Rosana C L; Bastos, Wagner L; Eberlin, Marcos N


    The presence of fullerenes as natural constituents of carbonaceous materials or their formation as laser artifacts during laser desorption ionization (LDI) mass spectrometry (MS) analysis is reinvestigated and reviewed. The results using asphaltene samples with varying composition as well as standard polycyclic aromatic hydrocarbons (PAH) and fullerene samples as models have demonstrated that indeed Cn ring fullerenes are not natural constituents but they are formed as common and often as predominant artifacts upon laser radiation, and a series of incorrect assignments based on LDI-MS data of several carbonaceous materials seems unfortunately to have been made. When the present results are evaluated also in the light of the vast literature on LDI-MS of carbonaceous materials, the formation of fullerene artifacts seems particularly common for LDI-MS analysis of asphaltenes and other carbonaceous samples with considerably high levels of PAH and varies according to the type of laser used, and the intensity of the laser beam.

  3. Prototype of an energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove


    In general mask based laser material processing (MBLMP) is a process which suffers from a low energy efficiency, because the majority of the laser light is absorbed in or reflected by the mask. We have developed a device called an energy enhancer which is capable of improving the energy efficiency...

  4. FY96 materials and processes technology area plan (TAP). Final report

    Energy Technology Data Exchange (ETDEWEB)



    The Materials and Processes Technology Area Plan (MP TAP) describes the research and development activities performed by the Wright-Laboratory`s Materials Directorate (WL/XL) at WPAFB, OH. WL/ML is responsible for developing MP technologies for all Air Force aircraft, spacecraft, and missiles systems. MP for Structures, Propulsion, and Subsystems thrust of the MP TAP describes the development of technologies utilizing advanced composite materials, lightweight - aluminum and titanium alloys, high temperature intermetallics, and improved fluids, lubricants, and coatings. Applications include airframe and engine retrofits, high speed aircraft, spacelift, missiles and satellites. The MP for Electronics, Optics, and Survivability thrust of the MP TAP describes the development of materials for high temperature semiconductors and superconductors, advanced infrared detectors, non-linear optical devices, and laser hardening. Applications include high power radar and avionic systems, infrared countermeasures, and sensor and aircrew laser protection. The MP for Systems and Operational Support thrust of the MP TAP describes the development of nondestructive inspection (NDI) techniques and repair of composite and LO materials. It also describes ML`s interface with all Air Force fielded systems through logistic centers and system project offices (SPOs) and by conducting electronic and structural failure analysis.

  5. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Bradley [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hauch, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  6. Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials. (United States)

    Samek; Liska, M; Kaiser, J; Beddows, D C; Telle, H H; Kukhlevsky, S V


    The luminous plasma generated during laser ablation of dental tissue and dental materials has been analyzed to determine qualitative and quantitative elemental composition. The use of pulsed lasers for controlled material ablation now is frequently suggested as an alternative to mechanical drilling for the removal of caries and in tooth modification. Spectral analysis of the ablated plasma can be exploited to monitor precisely the laser drilling process in vivo and in real time. Teeth samples and dental materials were ablated using pulses from a Nd:YAG laser. The line positions and intensities in the spectra, recorded in real time, were used to identify elements and to determine their relative concentrations. From the spectra of horizontally and vertically cut tooth slices, profiles of elemental distribution were determined; these were used in a range of monitoring applications. We showed that the transition from caries to healthy tooth material could be identified through the decrease in calcium (Ca) and phosphorus (P) concentrations, whereas nonmineralizing elements and organic materials increased in concentration. We also could relate the spatial distribution of elements to their migration or accumulation over time, for example, the migration of aluminium (Al) from dental restorative materials to the tooth matrix. The plasma existing during laser ablation (in vitro/in vivo) can be analyzed spectrally in real time. From the spectra, one can pinpoint high/low levels of element concentrations within the tooth matrix. Thus, this analysis could be used to monitor the ablation of material during laser dental treatment.

  7. Aluminum thin film enhanced IR nanosecond laser-induced frontside etching of transparent materials (United States)

    Nieto, Daniel; Cambronero, Ferran; Flores-Arias, María Teresa; Farid, Nazar; O'Connor, Gerard M.


    Laser processing of glass is of significant commercial interest for microfabrication of precision optical engineering devices. In this work, a laser ablation enhancement mechanism for microstructuring of glass materials is presented. The method consists of depositing a thin film of aluminum on the front surface of the glass material to be etched. The laser beam modifies the glass material by being incident on this front-side. The influence of ablation fluence in the nanosecond regime, in combination with the deposition of the aluminum layer of various thicknesses, is investigated by determining the ablation threshold for different glass materials including soda-lime, borosilicate, fused silica and sapphire. Experiments are performed using single laser pulse per shot in an air environment. The best enhancement in terms of threshold fluence reduction is obtained for a 16 nm thick aluminum layer where a reduction of two orders of magnitude in the ablation threshold fluence is observed for all the glass samples investigated in this work.

  8. New Polymer Materials for the Laser Sintering Process: Polypropylene and Others (United States)

    Wegner, Andreas

    Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.

  9. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project (United States)

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  10. Novel high peak current pulsed diode laser sources for direct material processing (United States)

    Traub, M.; Bock, M.; Hoffmann, H.-D.; Bartram, M.


    Diode laser systems are well established for applications which demand high continuous wave (cw) power. These applications are material processing like cutting and welding of metals as well as polymers where diode laser systems are less expensive and more compact than solid state lasers. Even though the optical output power and the beam quality of diode lasers are increasing steadily, the use of these sources is generally limited to cw applications. For processes during which ablating of material is demanded, however, conventional diode lasers are inferior compared to pulsed solid state lasers as diode lasers suffer from the absence of optical intracavity q-switching. Some examples of these applications are coating removal and marking. To overcome this drawback, we have developed several diode laser systems that use high peak-current drivers and thereby allow to operate the diode lasers at currents up to 500 A. The pulse source was tested with fiber coupled single emitters, conventional diode lasers and customized AR-coated diode laser bars. With the new diode laser driver, a peak output power of 250 W can be achieved with pulse durations of approx. 100 ns. Polarization coupling of two bars increases the power by a factor of two. Thereby an output power of 500 W can be demonstrated. These systems reach an intensity of 27 MW/cm2 per diode laser bar which is sufficient for ablating processes. We will demonstrate the design of the prototype system as well as results of marking and coating removal experiments with the system.

  11. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials (United States)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.


    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  12. Laser-induced synthesis of metal-carbon materials for implementing surface-enhanced Raman scattering (United States)

    Kucherik, A.; Arakelian, S.; Vartanyan, T.; Kutrovskaya, S.; Osipov, A.; Povolotskaya, A.; Povolotskii, A.; Man'shina, A.


    Metal-carbon materials exhibiting surface-enhanced Raman scattering have been synthesized by laser irradiation of colloidal systems consisting of carbon and noble metal nanoparticles. The dependence of the Raman scattering intensity on the material composition and laser irradiation conditions has been investigated. The possibility of recording the Raman spectrum of organic dye rhodamine 6G, deposited in amount of 10-6 M on the substrate obtained from a colloidal solution is demonstrated.

  13. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser (United States)


    AFRL-RD-PS- AFRL-RD-PS- TR-2016-0055 TR-2016-0055 NON-LINEAR OPTICAL STUDIES OF IR MATERIALS WITH INFRARED FEMTOSECOND LASER Enam...ANDREAS SCHMITT-SODY, DR-III ERIN PETTYJOHN, DR-III Program Manager Deputy Chief, High Power Electromagnetics Division This...TITLE AND SUBTITLE Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9451-14-1

  14. Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials (United States)


    Technical Report ARWSB-TR-15003 Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials Mark E. Todaro...SUBTITLE Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...thermomechanical effects that occur at the bore of large and medium caliber guns during firing. Hence, PLH has been used not only to gain insight into the erosion

  15. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process (United States)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan


    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  16. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Barabash, V.; Bachmann, C.; Chappuis, P.; Choi, C.H.; Cordier, J-J.; Giraud, B.; Gribov, Y. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Heitzenroeder, Ph. [PPPL MS41, Princeton University, PO Box 451, Princeton, NJ 08543 (United States); Her, N.; Johnson, G. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Jun, C. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Loesser, D. [PPPL MS41, Princeton University, PO Box 451, Princeton, NJ 08543 (United States); Martin, A.; Merola, M. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Pathak, H. [IPR, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India); Readman, P. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France)


    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  17. The use of laser scanning confocal microscopy (LSCM) in materials science. (United States)

    Hovis, D B; Heuer, A H


    Laser scanning confocal microscopes are essential and ubiquitous tools in the biological, biochemical and biomedical sciences, and play a similar role to scanning electron microscopes in materials science. However, modern laser scanning confocal microscopes have a number of advantages for the study of materials, in addition to their obvious uses for high resolution reflected and transmitted light optical microscopy. In this paper, we provide several examples that exploit the laser scanning confocal microscope's capabilities of pseudo-infinite depth of field imaging, topographic imaging, photo-stimulated luminescence imaging and Raman spectroscopic imaging. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  18. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues (United States)

    Ocaña, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.


    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  19. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)


    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  20. 77 FR 23713 - Pesticides; Final Guidance on Material Safety Data Sheets as Pesticide Labeling; Request for... (United States)


    ... relationship between EPA-approved labels for pesticides registered under the Federal Insecticide, Fungicide... AGENCY Pesticides; Final Guidance on Material Safety Data Sheets as Pesticide Labeling; Request for.... SUMMARY: The Agency is announcing the availability of a Pesticide Registration Notice (PR Notice)...

  1. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Willie [Boston College, Chestnut Hill, MA (United States)


    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  2. Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James W. Allen


    This document is the final report of research performed under U.S. DOE Award Number DE-FG02-07ER46379, entitled Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials. It covers the full period of the award, from June 1, 2007 through May 31, 2011.

  3. Laser-induced growth of nanocrystals embedded in porous materials (United States)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed


    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  4. Shadowgraphic imaging of material removal during laser drilling with a long pulse eximer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.


    After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process

  5. Laser ceramics with rare-earth-doped anisotropic materials. (United States)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori


    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).

  6. Laser processes and analytics for high power 3D battery materials (United States)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.


    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  7. Direct diode lasers and their advantages for materials processing and other applications (United States)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael


    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.

  8. An experimental study of temperature and moisture content of wet porous materials under short-pulsed laser heating

    Institute of Scientific and Technical Information of China (English)

    Renxi Jin; Xiulan Huai


    The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed laser with high power. It firstly revealed that the moisture content of wet porous material rapidly rises twice in one laser irradiation. The influences of laser parameters, the thickness and initial moisture content of the wet porous material on its temperature and moisture content were investigated.

  9. Pump and probe damage testing for investigation of transient material modifications associated with laser damage in optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Negres, R A; Feit, M D; DeMange, P; Bude, J D; Demos, S G


    Laser-induced breakdown in the bulk of transparent dielectric materials is associated with the generation of extreme localized conditions of temperatures and pressures. In this work, we perform pump and probe damage testing experiments to investigate the evolution of transient absorption by the host material arising from modifications following confined laser energy deposition in fused silica and DKDP materials. Specifically, we measure the size of the damage sites observed in the region of spatial overlap between the pump and probe pulses versus probe time delay and energy. Results of this proof-of-principle experimental work confirm that material modifications under extreme conditions created during a damage event include transient optical absorption. In addition, we found that the relaxation times of the induced absorption are very distinct for DKDP and SiO{sub 2} even under identical excitation conditions, on the order of 100 ns and 100 {micro}s, respectively.

  10. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann


    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  11. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj


    In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes present in the turbulent pool are linked to diffusivity and Prandtl number variation. It was shown that below a critical value of Rayleigh number, the conduction mode of melt transfer signifying beam absorption becomes dominant. Above this value, convective heat transfer indicates melting and evaporation occurring in the weld pool during laser welding. The evaporative recoil pressure expels the liquid while surface tension and hydrostatic pressure help to retain the melt in the keyhole cavity in this high power laser beam welding. The understanding of several hydrodynamic phenomena occuring in the weld pool is valuable not only for understanding basic mechanistic aspects but also for process optimization involved in laser beam welding.

  12. Wavelength Variation of a Random Laser with Concentration of a Gain Material

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu-Jing; SHI Jin-Wei; ZHAI Tian-Rui; WANG Zhao-Na; LIU Da-He; CHEN Xiao


    The wavelength variation of a laser-dye-type random laser is observed experimentally. It is found that the emitting wavelength of a random laser changes with the change of concentration of tie gain material. Also, the actual radiation wavelength is influenced by the pumping rate of the source, the cavity competition and the concentration of scatterers.%The wavelength variation of a laser-dye-type random laser is observed experimentally.It is found that the emitting wavelength of a random laser changes with the change of concentration of the gain material Also,the actual radiation wavelength is influenced by the pumping rate of the source,the cavity competition and the concentration of scatterers.Since the pioneering work of Ambartsumyan et al.,[1,2] random lasers have attracted much attention both theoretically and experimentally owing to their potential applications.Many systems have shown lasing behavior,such as neodymium-glass powders,[3]dye-TiO2 solutions,[4] nanoclusters of ZnO,[5] conjugated polymer films,[6] dye infiltrated opals,[7] dyeTiO2 polymer films,[8] and laser dye within liquid crystals.[9

  13. CVD grown diamond: A new material for high power CO{sub 2}-lasers

    Energy Technology Data Exchange (ETDEWEB)

    Massart, M.; Union, P.; Muys, P. [Radius Engineering N.V., Gent (Belgium)] [and others


    In CO{sub 2} laser engineering, combining high output power with low distortion of the laser beam is an ongoing challenge, leading to a search for optics with low absorption and high thermal conductivity. As CVD diamond has recently become available in larger sizes and with better surface quality, this material can now be assessed for use in high power CO{sub 2} laser optics. This paper presents the systematic study of diamond as a substrate material for optics at 10.6 microns. CO{sub 2}-laser calorimetry has been used for the measurement of absorption of laser power in uncoated and antireflection coated diamond optics. The bulk absorption coefficient of natural and CVD diamond is more than a magnitude higher than that of ZnSe, however, a laser window needs to be antireflection coated, and this (together with the ability to use thinner windows of diamond because of its greater strength) reduces the increase in overall absorption for the window to about a factor of three (or {approximately} 0.7%). In high power applications this is more than compensated for by the substantially higher thermal conductivity of diamond. Laser induced damage threshold (LIDT) measurements have been made on antireflection coated diamond optics. These measurements have been performed using a TEA CO{sub 2}-laser with a peak pulse width of 150 ns at 10.6 microns, and the results are reported here.

  14. Fast spatial-resolved beam diagnostics for material processing by industrial CO2 lasers (United States)

    Martinen, Dirk; Decker, Ingo; Wohlfahrt, Helmut


    Due to the increasing range of high-speed and high-accuracy applications in material processing, especially in laser beam welding and cutting, the temporal stability of the laser beam parameters becomes more and more important. In this paper a laser beam diagnostic device is presented, that allows the determination of the intensity-profiles of high- power CO2 lasers with high time-resolution. The detector of this device consists of two linear arrays of room- temperature HgCdTe-detectors, arranged perpendicularly to each other across the center of the beam. The data of the 70 detector elements is acquired simultaneously at rates up to 15 kS/sec for single shot events and several 100 kS/sec for repetitive laser pulses. Due to the use of a digital signal processor (DSP) and an especially adapted software, it is possible to analyze the fluctuations of the intensity distribution on-line. By help of a partially transmitting mirror in the beam delivery system, measurements can be performed during material processing. Therefore, the interaction of the laser beam source itself with the material processing due to beam reflection as well as influences of the industrial environment to the laser can be detected. The calculation of the local variance and mean values enables the dependence of the laser's short- and long-term stability to be investigated due to changes in the resonator alignment, the stability of the power supply, the gas composition etc., as well as to the influence of the processing. For the pulse-mode of a laser, its transient behavior like changes of the intensity distribution can be determined with high time-resolution. For the improvement of drilling processes, the calculation of further statistical functions by the DSP makes it possible to estimate the uniformity of the laser pulses on-line as well.

  15. Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Daniel S. Correa


    Full Text Available The current demand for fabricating optical and photonic devices displaying high performance, using low-cost and time-saving methods, prompts femtosecond (fs-laser processing as a promising methodology. High and low repetition femtosecond lasers enable surface and/or bulk modification of distinct materials, which can be used for applications ranging from optical waveguides to superhydrophobic surfaces. Herein, some fundamental aspects of fs-laser processing of materials, as well as the basics of their most common experimental apparatuses, are introduced. A survey of results on polymer fs-laser processing, resulting in 3D waveguides, electroluminescent structures and active hybrid-microstructures for luminescence or biological microenvironments is presented. Similarly, results of fs-laser processing on glasses, gold and silicon to produce waveguides containing metallic nanoparticles, analytical chemical sensors and surface with modified features, respectively, are also described. The complexity of fs-laser micromachining involves precise control of material properties, pushing ultrafast laser processing as an advanced technique for micro/nano devices.

  16. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail:


    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  17. Innovation Study for Laser Cutting of Complex Geometries with Paper Materials (United States)

    Happonen, A.; Stepanov, A.; Piili, H.; Salminen, A.

    Even though technology for laser cutting of paper materials has existed for over 30 years, it seems that results of applications of this technology and possibilities of laser cutting systems are not easily available. The aim of this study was to analyze the feasibility of the complex geometry laser cutting of paper materials and to analyze the innovation challenges and potential of current laser cutting technologies offer. This research studied the potential and possible challenges in applying CO2 laser cutting technology for cutting of paper materials in current supply chains trying to fulfil the changing needs of customer in respect of shape, fast response during rapid delivery cycle. The study is focused on examining and analyzing the different possibilities of laser cutting of paper material in application area of complex low volume geometry cutting. The goal of this case was to analyze the feasibility of the laser cutting from technical, quality and implementation points of view and to discuss availability of new business opportunities. It was noticed that there are new business models still available within laser technology applications in complex geometry cutting. Application of laser technology, in business-to-consume markets, in synergy with Internet service platforms can widen the customer base and offer new value streams for technology and service companies. Because of this, existing markets and competition has to be identified, and appropriate new and innovative business model needs to be developed. And to be competitive in the markets, models like these need to include the earning logic and the stages from production to delivery as discussed in the paper.

  18. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles. (United States)

    Görgl, R.; Brandstätter, E.


    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  19. A novel laser-based method for controlled crystallization in dental prosthesis materials (United States)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph


    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  20. Pectina: da matéria-prima ao produto final Pectin: from raw material to the final product

    Directory of Open Access Journals (Sweden)

    Maria H. G. Canteri


    Full Text Available A pectina, provavelmente a mais complexa macromolécula natural, é um heteropolissacarídeo contendo predominantemente resíduos de ácido galacturônico. Este polímero, do grupo das fibras dietéticas, é amplamente utilizado como geleificante e estabilizante na indústria de alimentos. O principal processo industrial para obtenção de pectina está baseado na solubilização da protopectina do bagaço de maçã e casca de frutos cítricos, realizada em condições levemente ácidas sob aquecimento. Estudos recentes têm reportado a extração de pectina de novas matérias-primas sob diferentes condições, com influência sobre a qualidade e sobre o rendimento do produto final, para aumentar sua qualidade reológica. Esta revisão descreve a estrutura, as fontes, as aplicações, o processo de extração industrial assim como as principais técnicas de caracterização da pectina.Pectin, probably the most complex macromolecule in nature is a hetero-polysaccharide containing predominantly residues of galacturonic acid (GalA. This polymer, which belongs to a group of dietary fibers, is widely used as a gelling agent and stabilizer in the food industry. The main industrial processing to obtain pectin is based on the solubilization of protopectin from apple pomace and citrus peels, which is done under low acidity and heated conditions. Recent studies have reported the extraction of pectin from new raw materials and using different extraction conditions, which influence the yield and quality of the final product, and may improve the rheological properties. This review describes the structure, sources, applications and industrial extraction processes, as well as the analysis methods of physicochemical characterization of pectin.

  1. Laser diagnostics and modeling of plasma assisted CVD. Final technical report

    Energy Technology Data Exchange (ETDEWEB)



    Plasma assisted chemical vapor deposition (PACVD) represents a novel approach for utilizing the nonequilibrium effects of reactive plasmas for depositing a wide range of protective hardface coatings that have both wear and erosion application. The nonequilibrium plasma is the heart of this complex system and has the function of generating the reactive molecular fragments (radicals) and atomic species at concentration levels unattainable by other competing processes. It is now widely accepted that such advanced protective hardface coatings materials will play a vital role in the energy technologies of the coming decades, with major applications in diverse areas ranging from aerospace and commercial propulsion systems (jet engines) to automotive components and internal combustion engines, (ceramic heat engines), cutting and machining tools, electronic packaging, thermal management, and possibly room-temperature superconductors. Wear and associated erosion aspects are responsible for an enormous expenditure of energy and fiscal resources in almost all DOE applications. Many of the results from this investigation arc also applicable to other materials processing reactors such as electron beam, PVD, CVD, laser ablation, microwave, high energy cathodic arc, thermal plasma (rf or dc) and combustion spray. These also include the various hybrid systems such as the rf/dc arc as used in Japan for diamond deposition and e-beam PVD deposition of advanced titanium alloy coatings as used at the Paton Institute in Kiev, Ukraine.

  2. Characterizaticr of Solid State Laser and Nonlinear Optical Materials. (United States)


    materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated

  3. Eye/Sensor Protection against Laser Irradiation Organic Nonlinear Optical Materials (United States)


    Recent developments in organic nonlinear optical materials for application to eye and sensor protection are reviewed. This compendium includes a...noteworthy organic third-order nonlinear optical materials is included as an appendix. Lasers are playing an important and increasing role in modern

  4. Progress in the material development of LiCaAlF(6):Cr(3+) laser crystals (United States)

    Shinn, M. D.; Chase, L. L.; Caird, J. A.; Payne, S. A.; Atherton, L. J.; Kway, W. L.


    High Cr(3+) doping levels, up to 8 mole percent, and low losses were obtained with the tunable solid-state laser material LiCaAlF(6):Cr(3+) (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material.

  5. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures. (United States)

    Kuriakose, Maju; Raetz, Samuel; Chigarev, Nikolay; Nikitin, Sergey M; Bulou, Alain; Gasteau, Damien; Tournat, Vincent; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E


    Picosecond laser ultrasonics is an all-optical experimental technique based on ultrafast high repetition rate lasers applied for the generation and detection of nanometric in length coherent acoustic pulses. In optically transparent materials these pulses can be detected not only on their arrival at the sample surfaces but also all along their propagation path inside the sample providing opportunity for imaging of the sample material spatial inhomogeneities traversed by the acoustic pulse. Application of this imaging technique to polycrystalline elastically anisotropic transparent materials subject to high pressures in a diamond anvil cell reveals their significant texturing/structuring at the spatial scales exceeding dimensions of the individual crystallites.

  6. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    Energy Technology Data Exchange (ETDEWEB)

    Gottfried, Jennifer L. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail:; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)


    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  7. Direct Slicing Based on Material Performance and Process Parameters for Selective Laser Sintering

    Institute of Scientific and Technical Information of China (English)


    Direct slicing from CAD models to generate sectional contours of thepart to be sintered for Selective Laser Sintering (SLS) may overcome inherent disadvantages of using a Stereo Lithography ( STL ) format. In this paper, a direct slicing procedure is proposed for Selective Laser Sintering based on material performance and process parameters. Slicing thickness depends on the 3 D geometric model,material performance and process parameters. The relationship among material performance, process parameters and the largest slicing thickness is established using analysis of a sintering temperature field. A dynamic linked library is developed to realize direct slicing from a CAD model.

  8. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Institute of Scientific and Technical Information of China (English)

    Youhua Jia; Biao Zhong; Jianping Yin


    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  9. Laser Desorption Postionization for Imaging MS of Biological Material


    Akhmetov, Artem; Moore, Jerry F.; Gasper, Gerald L.; Koin, Peter J.; Hanley, Luke


    Vacuum ultraviolet single photon ionization (VUV SPI) is a soft ionization technique that has the potential to address many of the limitations of MALDI for imaging MS. Laser desorption postionization (LDPI) employs VUV SPI for postionization and is experimentally analogous to a MALDI instrument with the addition of a pulsed VUV light source. This review discusses progress in LDPI-MS over the last decade, with an emphasis on imaging MS of bacterial biofilms, analytes whose high salt environmen...

  10. Study on laser welding of stainless steel/copper dissimilar materials (United States)

    Besnea, D.; Dontu, O.; Avram, M.; Spânu, A.; Rizescu, C.; Pascu, T.


    In this paper stainless steel/copper laser welding was investigated by controlling the processing parameters like welding speed and laser power. Welding the dissimilar materials of stainless steel and copper presents a series of problems. Differences in the physical properties of the two metals, including the melting point, thermal conductivity and thermal dilatation are the main reasons for obtaining an inappropriate laser welding bead. Particularly, the laser welding process of copper is complex because of the very high reflectivity of cooper and in almost situations it requires a specific surface pre-treatment. The main objective of the study conducted in this work was to laser weld a structure used in pressure measuring and control equipments. In order to satisfy the conditions imposed by the sensor manufacturer, the difficulty of obtaining flawless joints was represented by the very small dimensions of the parts to be welded especially of the elastic spiral thickness made of steel.

  11. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    CERN Document Server

    Barilleau, L; Chimier, B; Geoffroy, G; Tikhonchuk, V


    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW/cm$^2$, lo...

  12. Final report on supplementary comparison EURAMET.L-S20: Comparison of laser distance measuring instruments (United States)

    Wisniewski, Mariusz; Ramotowski, Zbigniew; Pollinger, Florian; Wedde, Martin; Matus, Michael; Banhidi-Bergendorf, Zita; Stalder, Oliver; Thalmann, Rudolf; Lassila, Antti; Unkuri, Jarkko; Balling, Petr; Hynek, Jaromír; Astrua, Milena; Pisani, Marco; Prieto, Emilio; Karlsson, Helge; Hansrud Kjær, Peter; Flys, Olena; Lillepea, Lauri; Odrats, Indrek; Fíra, Roman; Fodrekova, Anna; Harnosova, Eva; Duta, Alexandru; Teoderescu, Dragos


    The results of the supplementary comparison EURAMET.L-S20 of laser distance measuring instruments (EDMs) are reported. It was the first comparison of EDMs. Four EDMs were circulated among 13 European NMIs. Each EDM was calibrated at a distance of 0.3 m and at regularly spaced intervals every 5 m for a range up to 50 m. The measurements were conducted between 2011 and 2012. The test of the stability of the EDMs showed significant changes in the mean results over timescales of months or even days. The uncertainty of the results mainly comes from the uncertainty due to the reproducibility, and it is difficult to distinguish the part relevant to the laboratories' calibration and measurement capabilities. For the analysis both the deviations from the reference value and the En numbers were calculated. For the evaluation of the reference value, the weighted mean approach has been chosen, although the consistency check failed in many cases. A more complicated procedure for the evaluation of the reference value was proposed, which slightly changes the uncertainty of the reference value. Most results agreed within the claimed uncertainties. Some 4.7% of the results showed some larger deviations. Some participants may have a high percentage of values that are not compliant with their CMC claims due to the influence of the artifact and the estimation of its uncertainty. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Generalized Sub-Schawlow-Townes Laser Linewidths Via Material Dispersion

    CERN Document Server

    Pillay, Jason Cornelius; Stone, A Douglas; Chong, Y D


    A recent S matrix-based theory of the quantum-limited linewidth, which is applicable to general laser cavities, including spatially non-uniform lasers operating above threshold, is analyzed in various limits. For broadband gain a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric relations between the zeros and poles of the S matrix. When there is substantial dispersion on the frequency scale of the cavity lifetime a bad-cavity linewidth reduction effect is derived, showing the possibility of sub-Schawlow-Townes line width, and generalizing previous results for spatially uniform one-dimensional laser cavities. The S-matrix formula for the linewidth in terms of the residue of the lasing pole is transformed to an expression for the linewidth solely in terms of the lasing mode functions, which is found to have comparable accuracy. Both formulas are valid even when the linewidth cannot be factorized in terms of the standard Petermann and bad-cavity correction factors....

  14. High power laser heating of low absorption materials

    Energy Technology Data Exchange (ETDEWEB)

    Olson, K.; Talghader, J., E-mail: [Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Ogloza, A. [Naval Postgraduate School, 1 University Cir, Monterey, California 93943 (United States); Thomas, J. [Electro Optics Center, Pennsylvania State University, 222 Northpointe Blvd., Freeport, Pennsylvania 16229 (United States)


    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO₂ and SiO₂were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m∙ tan⁻¹(√(t)/m) in the transition region between the two.

  15. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing (United States)

    Rothgeb, Matthew J.; McLaughlin, Russell L.


    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided

  16. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    Energy Technology Data Exchange (ETDEWEB)



    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  17. Research on ultrasonic vibration aided femtosecond laser machining process of transparent materials (United States)

    Dai, Yutang; Liu, Bin; Yin, Guanglin; Li, Tao; Karanja, Joseph M.


    A new process of femtosecond laser micromachining with ultrasonic vibration aided is proposed. An ultrasonic aided device has been designed, and the laser micromachining experiments of transparent materials have been carried out. The effects of the ultrasonic vibration with different power on surface quality and the drilling depth have been investigated, and the mechanism of the ultrasonic vibration aided laser machining has been analyzed. After introducing the ultrasonic vibration device, the residue debris on surface of the ablated trench is significantly reduced, and the drilling depth is increased. These results show that, ultrasonic vibration can effectively improve the surface quality of material processing, increase the depth of the drilling hole and promote the processing efficiency of the femtosecond laser.

  18. Laser-shocked energetic materials with metal additives: evaluation of detonation performance (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  19. Laser welding of dissimilar materials for lightweight construction and special applications (United States)

    Schimek, Mitja; Springer, André; Pfeifer, Ronny; Kaierle, Stefan


    Against the background of climate objectives and the desired reduction of CO2-emissions, optimization of existing industrial products is needed. To counter rising raw material costs, currently used materials are substituted. This will places new requirements on joining technologies for dissimilar material classes. The main difficulty lies in joining these materials cohesively without changing the properties of the base materials. Current research work at the LZH on joining dissimilar materials is being carried out for the automotive sector and for solar absorbers. For the automotive industry, a laser welding process for joining steel and aluminum without using additives is being investigated, equipped with a spectroscopic welding depth control to increase tensile strength. With a specially constructed laser processing head, it is possible to regulate welding penetration depth in the aluminum sheet, reducing the formation of intermetallic phases. Flat plate solar collectors are favorable devices for generating heat from solar energy. The solar absorber is the central part of a collector, consisting of an aluminum sheet and a copper tube which is attached to the aluminum sheet. Research on new laser welding processes aims at reducing the amount of energy required for production of these solar absorbers. In the field of joining dissimilar materials, laser joining processes, especially for special applications, will complement established joining techniques.

  20. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies (United States)


    AM2A.2, 27 October - 01 November 2013, Paris Marriott Rive Gauche Hotel and Convention Center, Paris, France. 2) “ Development on advanced functional...DISTRIBUTION/AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT We have successfully developed a new...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  1. Particularities of interaction of CO sub 2 -laser radiation with oxide materials

    CERN Document Server

    Salikhov, T P


    The results of experimental investigation of vapor phase influence on the interaction parameters of the infrared laser radiation with oxide materials (Al sub 2 O sub 3 , ZrO sub 2 , CeO sub 2) have been presented. A phenomenon of laser radiation by the samples investigated under laser heating has been experimentally discovered for the first time. This phenomenon connected with forming of the stable vapor shell above the irradiated samples was expressed as a sharp drop in temperature on the heating curve and called as an absorption flash. (author)



  3. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    Directory of Open Access Journals (Sweden)

    Afaf M. Abd El-Hameed


    Full Text Available The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si, and gallium arsenide (GaAs. These materials are used for receivers’ manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  4. Ultrafast laser processing of transparent materials supported by in-situ diagnostics (United States)

    Kumkar, M.; Kaiser, M.; Kleiner, J.; Grossmann, D.; Flamm, D.; Bergner, K.; Nolte, S.


    For the development of industrial NIR ultrafast laser processing of transparent materials, the absorption inside the bulk material has to be controlled. Applications we aim for are front and rear side ablation, drilling and inscription of modifications for cleaving and selective laser etching of glass and sapphire in sheet geometry. We applied pump probe technology and in situ stress birefringence microscopy for fundamental studies on the influence of energy and duration (100 fs - 20 ps), temporal and spatial spacing, focusing and beam shaping of the laser pulses. Applying pump probe technique we are able to visualize differences of spatio-temporal build up of absorption, self focusing, shock wave generation for standard, multispot and beam shaped focusing. Incubation effects and disturbance of beam propagation due to modifications or ablation can be observed. In-situ imaging of stress birefringence gained insight in transient build up of stress with and without translation. The results achieved so far, demonstrate that transient stress has to be taken into account in scaling the laser machining throughput of brittle materials. Furthermore it points out that transient stress birefringence is a good indicator for accumulation effects, supporting tailored processing strategies. Cutting results achieved for selective laser etching by single pass laser modification exemplifies the benefits of process development supported by in situ diagnostics.

  5. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites (United States)

    Abd El-Hameed, Afaf M.


    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  6. Time-dependent 3-D modelling of laser surface heating for the hardening of metallic materials (United States)

    Colombo, V.; Mentrelli, A.; Trombetti, T.


    A numerical code for the time-dependent three-dimensional modelling of the laser surface heating for the hardening of metallic materials has been developed by the authors. The temperature-dependence of the thermal properties of the material (stainless steel) is taken into account in the frame of a heating process that doesn’t lead to material melting or evaporation. Calculations have been carried out for various dimensions of the parallelepiped-shaped and of the square-shaped spot of the laser beam, as well as for different scanning velocity and for different levels of the laser source power. Various patterns of the laser spot path have also been studied, including a single-pass hardening pattern, a double-pass hardening pattern with and without overlapping, multiple discontinuous and continuous hardening patterns and spiral hardening patterns. The presented results show how the proposed model can be usefully employed in the prediction of the time-evolution of temperature distribution which arises in the workpiece as a consequence of the laser-workpiece interaction under operating conditions typically encountered in industrial applications of the laser hardening process.

  7. Laser material purification of neodymium. Hikari reiki seiseiho ni yoru neodymium no kojundoka

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y.; Ozaki, T.; Yoshimatsu, S. (National Research Institute for Metals, Tokyo (Japan)); Chiba, K.; Umeda, H.; Saeki, M. (Nippon Steel Corp., Tokyo (Japan))


    Selective photoexcitation and photoionization of neodymium atoms were studied basically by using laser. Also, using their properties, feasibility of laser material purification (LPM) technology in gaseous phase was presented. In the selective 3-step ionization, laser beam with two kinds of proper wave length causes resonance exitation of the target element, which goes up to the excitation level of the first step, and the element is ionized by the second laser beam and the third laser beam. The 3-step ionization scheme by a single wave length laser beam of 577.612nm was used for the ionization of Nd. Nd ionized selectively by laser beam was recovered as thin layer at the negative potential side of plane electrodes placed at both sides of the laser irradiation area. In the layer formed by the TPD technology with this scheme, it is possible to decrease impuritis such as Pr by 1/16 and to form highly purified thin layer. 13 refs., 12 figs., 1 tab.

  8. Application of a low intensity repetitive laser for modification of material properties

    Energy Technology Data Exchange (ETDEWEB)

    Wolowski, J.; Czarnecka, A.; Gasior, P.; Kubkowska, M.; Parys, P.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw (Poland)


    This paper describes optimizations of laser ion source for applications in ion implantation and for ablative removal of fuel trapped in co-deposited layers on a surface of in vessel tokamak components. In the Institute of Plasma Physics and Laser Microfusion (IPPLM) have been performed extensive studies of implantation of laser-produced Ge ions into a layer of semiconductor materials. The stream of Ge ions was controlled with the use of ion diagnostics. These investigations have demonstrated essential changes of properties of implanted semiconductor (e.g. formation of Ge nano-crystals in a surface layer of SiO{sub 2}). This same repetitive laser system has been applied in IPPLM also for removal of co-deposited layer from surface of in-vessel components taken from in-vessel tokamak components containing deuterium. The key effort was made for the characterization of ionic species emitted from the laser-ablated co-deposits from the sample surface. The main parameters of laser-produced co-deposit plasma were measured in dependences on number of laser shots using ion diagnostics and optical spectrometry. The optical spectroscopy was confirmed as a convenient diagnostics method for the ablative laser removal of the co-deposit layer from the in-vessel tokamak components. The spectroscopy results were fully consistent with results of ion diagnostic measurements and post-mortem analyses of modified samples

  9. DOE Center of Excellence in Medical Laser Applications. Final report, December 1, 1994--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L.


    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  10. Investigations into the Feasibility of High Power Laser Window Materials (United States)


    1, 1 ,4 ) l r i gtVII Ir nIf t:trl;l (:l w illi the. ,.,l .q. ,I 1h. el,.1i , ’l lay 4 ,,, t r,11 I itll the htod r in 1,i.* shape of a nuY.z.le, with...K/J. On substituting this result in (B7) we find that for short, flat topped laser pulses, = a E T Jp/Zd S for 2r < d r 1 E T J /8) -- r Zr > d ( B10

  11. Electrical and optical study of semiconductor laser diodes and materials (United States)

    Albin, Sacharia


    The characterization of a 2-D diode laser array from McDonald Douglas has been completed. The array consisted of 8 linear arrays of approximately 11 mm x 0.18 mm. Each array has between 7 and 8 diodes per mm. The threshold current is approximately 15 amps. The power output vs drive current (above threshold) of the array was measured. A peak power of 50 W was obtained at a drive current of 26 amps. Its far field pattern has a double lobe.

  12. A Diode-Laser-System for Laser-Assisted Bending of Brittle Materials

    Directory of Open Access Journals (Sweden)

    F. Bammer


    Full Text Available We developed a small and compact system of diode lasers, which can be inserted into the lower tools of a bending press. The parts of the system allow easy plug and play operation and can be installed for any bending length. The diode laser, which is based on 200 W laser bars on microchannel cooler, allows the heating of sheet metals in the forming zone shortly before and during the bending process. There is no unnecessary heating of other parts of the bending equipment, no wear of the tool, and, if properly done, no damage of the surface of the metal. The power per bending length is 16 kW/m.

  13. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen


    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...... at 355 nm at a fluence of 2.5-12 J/cm(2). Even at this high fluence, Fourier transform infrared spectroscopy (FTIR) indicates a chemical structure of the deposit close to that of the un-irradiated PEG. Matrix assisted laser desorption and ionization (MALDI) and gel permeation chromatography (GPC) show...... that the mass distribution of the deposited PEG is similar to that of the starting material. Optical pictures of the films show particle structures of PEG of a size up to 5-10 mu m. The deposition rate measured with a quartz crystal microbalance is typically of the order of 1 ng/ (cm(2) shot). (c) 2005 Elsevier...

  14. Dimensional and material characteristics of direct deposited tool steel by CO II laser (United States)

    Choi, J.


    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  15. Nd:YAG Laser Cleaning of Red Stone Materials: Evaluation of the Damage (United States)

    Colombo, C.; Martoni, E.; Realini, M.; Sansonetti, A.; Valentini, G.

    Lasers have been tested, during the recent past, as a useful cleaning method in conservation treatments: this is due to selectivity and precision of its performance. Nevertheless some colour changes have been detected using Nd:YAG laser sources, especially on white and red coloured substrates. Colour changes on white marble and other white architectural materials have already been widely surveyed. This chapter focuses on the interaction of laser radiation with two kinds of red materials: red Verona limestone and terracotta. These materials have been chosen because of their large use in northern Italian architecture and in statuary. Red Verona limestone is not homogenous in hue, owing to the presence of calcareous nodules (lighter in colour) and clay veins (dark reddish colour).

  16. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.


    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.

  17. Plume splitting in pico-second laser-material interaction under the influence of shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Gacek, Sobieslaw [Department of Mechanical Engineering, 2010 H. M. Black Engineering Building Iowa State University, Ames, IA 50011-2161 (United States); Wang Xinwei, E-mail: xwang3@iastate.ed [Department of Mechanical Engineering, 2010 H. M. Black Engineering Building Iowa State University, Ames, IA 50011-2161 (United States)


    In this work, molecular dynamics simulations are conducted to study the physics of plume splitting in pico-second laser material interaction in background gas. The velocity distribution shows a clear split into two distinctive components. Detailed atom trajectory track reveals the behavior of atoms within the peaks and uncovers the mechanisms of peak formation. The observed plume velocity splitting emerges from two distinguished parts of the plume. The front peak of the plume is from the faster moving atoms and smaller particles during laser-material ablation. This region experiences strong constraint from the ambient gas and has substantial velocity attenuation. The second (rear) peak of the plume velocity originates from the larger and slower clusters in laser-material ablation. These larger clusters/particles experience very little constraint from the background, but are affected by the relaxation dynamics of plume and appear almost as a standing wave during the evolution. Density splitting only appears at the beginning of laser-material ablation and quickly disappears due to spread-out of the slower moving clusters. It is found that higher ambient pressure and stronger laser fluence favor earlier plume splitting.

  18. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers. For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.

  19. Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Shwartz, J; Kulkarny, V A; Ausherman, D A; Legner, H H; Sturtevant, B


    Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional, low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.

  20. High precision, rapid laser hole drilling (United States)

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.


    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  1. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.


    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  2. A Theory of Interaction Mechanism between Laser Beam and Paper Material (United States)

    Piili, Heidi

    Paper making and converting industry in Europe is suffering from transfer of basic manufacturing to fast-growing economies, such as China and Brazil. Pulp and paper production volume in Finland, Sweden and France was the same in 2011 as it was in 2000. Meanwhile China has tripled its volume and Brazil doubled. This is a situation where innovative solutions for papermaking and converting industry are needed. Laser can be solution for this, as it is fast, flexible, accurate and reliable. Before industrial application, characteristics of laser beam and paper material interaction has to be understood. When this fundamental knowledge is known, new innovations can be created. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. This study was executed by treating dried kraft pulp (grammage 67 g m-2) with different laser power levels, focal point settings and interaction time. Laser equipment was TRUMPF TLF HQ2700 CO2 laser (wavelength 10.6 μm). Interaction between laser beam and dried kraft pulp was detected with multi-monitoring system (MMS), which consisted of spectrometer, pyrometer and active illumination imaging system. There is two different dominating mechanisms in interaction between laser beam and paper material. Furthermore, it was noticed that there is different interaction phases within these two interaction mechanisms. These interaction phases appear as function of time and as function of peak intensity of laser beam. Limit peak intensity divides interaction mechanism from one-phase interaction into dual-phase interaction.

  3. Injection-locked composite lasers for mm-wave modulation : LDRD 117819 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Joel Robert; Vawter, Gregory Allen; Raring, James; Tauke-Pedretti, Anna; Alford, Charles Fred (Sandia Staffing Alliance, LLC, Albuquerque, NM); Skogen, Erik J.; Chow, Weng Wah; Cajas, Florante G. (LMATA Government Services, LLC, Albuquerque, NM); Overberg, Mark E.; Torres, David L. (LMATA Government Services, LLC, Albuquerque, NM); Peake, Gregory Merwin


    This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.

  4. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory


    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  5. Laser cleaning experiences on sculptures' materials: terracotta, plaster, wood, and wax (United States)

    Pelosi, Claudia; Fodaro, D.; Sforzini, Livia; Lo Monaco, Angela


    The focus of this paper is to show the work experiences with laser cleaning on sculptures made of terracotta, plaster, wood and wax. These materials exhibit peculiar features that often prevent the use of traditional cleaning procedures to remove the surface dirt, soot or carbonaceous deposits and other materials coming from environment or ancient conservative interventions. To overcome the difficulties in the cleaning of the above mentioned materials, laser technology was tested. The laser irradiation and cleaning tests were carried out with a Q-switched Nd:YAG system under the following conditions: wavelength 1064 nm and 532 nm; energy 4-28 mJ; pulse duration 10 ns; spot diameter 2-8 mm; frequency 5 Hz. The irradiated surfaces were analyzed before and after the laser tests, with the aid of a video microscope and a reflectance spectrophotometer, in order to evaluate the morphology and colour changes of the surfaces. Before starting with the cleaning intervention, some diagnostic analysis was performed on the sculptures in order to obtain the identification of the original materials and of the surface deposits. Concerning this, Fourier Transform Infrared spectroscopy, X-ray fluorescence spectroscopy, and internal micro stratigraphic analysis were performed. This research demonstrated that the laser cleaning is an effective method to remove the surface deposits preserving the original patina of the sculptures and the opacity of the wax. The results gathered in this work encourage to continue the research in order to better understand the interactions between the laser beam and the surfaces and to find the most appropriate laser conditions to clean the sculptures.

  6. Laser angle-resolved photoemission as a probe of initial state kz dispersion, final-state band gaps, and spin texture of Dirac states in the Bi2Te3 topological insulator (United States)

    Ä; rrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; Wu, Yun; Jiang, Rui; Riedemann, Trevor; Lograsso, Thomas A.; Barbiellini, Bernardo; Kaminski, Adam; Bansil, Arun; Lindroos, Matti


    We have obtained angle-resolved photoemission spectroscopy (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using a tunable laser spectrometer. The spectra were collected for 11 different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photointensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. A reasonable overall accord between theory and experiment is used to gain insight into how properties of the initial- and final-state band structures as well as those of the topological surface states and their spin textures are reflected in the laser-ARPES spectra. Our analysis reveals that laser-ARPES is sensitive to both the initial-state kz dispersion and the presence of delicate gaps in the final-state electronic spectrum.

  7. Subpicosecond vacuum ultraviolet laser system for advanced materials processing (United States)

    Kubodera, Shoichi; Taniguchi, Yuta; Hosotani, Akira; Katto, Masahito; Yokotani, Atsushi; Miyanaga, Noriaki; Mima, Kunioki


    We have been developing the vacuum ultraviolet (VUV) light sources and novel applications using such short wavelength emission sources. High quality amorphous Si thin films were successfully produced at room temperature as a result of photo-dissociation of SiH 4 gas by using an Ar II* excimer lamp irradiation at 126 nm. To enhance such novel VUV processing applications, a compact VUV amplifier at 126 nm was developed by use of the optical-field-ionization (OFI) electrons. The gain-length product around 5 was obtained as a result of the optical feedback by using a VUV mirror. This amplifier was operated in a table-top size with a high repetition rate up to several kHz, which should be appropriate for any process applications. We also describe the schematic concept of the ultrashort pulse high-intensity VUV laser system at 126 nm with a pulse width of 100 fs.

  8. Development of slurry erosion resistant materials by laser-based direct metal deposition process (United States)

    Yarrapareddy, Eswar

    The current research deals with the development of slurry erosion resistant materials by the laser-based direct metal deposition (LBDMD) process for different industrial applications. The work started with the development of functionally graded materials using nickel-tungsten carbide (Ni-Tung) powders and finally produced a better erosion resistant materials system by reinforcing nano-tungsten carbide particles with nickel-tungsten carbide powders. Functionally graded materials (FGMs) consisting of Ni-Tung) powders with different concentrations of tungsten carbide particles are successfully deposited by the LBDMD process on 4140 Steel substrates. The slurry erosion behavior of the Ni-Tung FGMs is studied at different impingement angles. The slurry erosion tests are performed at Southern Methodist University's Center for Laser Aided Manufacturing using a centrifugal force driven erosion testing machine. For the purpose of comparison, Ni-Tung 40 depositions and 4140 steel samples are also tested. The results indicate that the LBDMD process is able to deposit defect-free Ni-Tung FGMs with a uniform distribution of tungsten carbide particles in a nickel-based matrix. The slurry erosion resistance of Ni-Tung FGMs is observed to be much better than that of the Ni-Tung 40 and 4140 steels. The superior slurry erosion resistance of Ni-Tung FGMs is attributed to the presence of large amounts of very hard tungsten carbide particles. The material removal rate (MRR) from erosion decreases with a decrease in the impingement angle, except at a 45 degree impingement angle on 4140 steel. The relationship among the material removal rates, the craters depth of penetration, the areas of the craters formed, the average surface roughness values, and the impingement angles is established for Ni-Tung FGMs, Ni-Tung 40, and 4140 steels. The surface profiles of the eroded samples are analyzed by measuring the depth of penetration of the craters formed by the slurry jet using a needle

  9. Coupled photo-thermal and time resolved reflectivity methods to original investigation of laser/material nanosecond interaction (United States)

    Semmar, N.; Martan, J.; Cibulka, O.; Le Menn, E.; Boulmer-Leborgne, C.


    A high number of papers were published on the simulation of laser/surface interaction at the level of nanosecond scale. Several assumptions on thermal properties data, laser spot homogeneity, were assumed for describing as well as possible the boundary conditions, the mathematical writing and finally the numerical or the analytical results. A few tentative of surface temperature monitoring during laser processing were proposed for the numerical validation. Also, simulation of the melting kinetics is rarely directly compared to in situ experiments. It is very hard to determine the time duration of a melting pool by in situ experiments. It should be the same for the surface temperature. A new method to plot the thermal history of the surface by using a combination of the Time Resolved Reflectivity (TRR) and the Pulsed Photo-Thermal (PPT) or Infrared Radiometry (IR) methods is proposed in this paper. Surface temperature, melting kinetics, threshold of melting and threshold of plasma formation are determined in the case of KrF laser spot in interaction with several materials. In the first step, the experimental setup including fast detectors (IR, UV, Vis.) and related optical devices is described. In the second step, typical results (TRR and IR spectra) for monocrystaline silicon are presented and discussed. Namely, phase change transitions (melting and resolidification) are detected versus fluence change and number of laser shots change. TRR and IR spectra of metallic surfaces (Cu, Mo, Ni, Stainless steel 15330 and 17246, Sn, Ti), are measured. For each sample the surface temperature during heating, the threshold of melting, melting duration and the threshold of plasma formation are directly deduced.

  10. Thermal dynamics-based mechanism for intense laser-induced material surface vaporization

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj


    Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase. Such interaction involving high brightness radiative flux causes multitude of non-linear events involving thermal phase transition at soild–liquid–gas interfaces. A theoretical perspective involving thermal dynamics of the vaporization process and consequent non-linear multiple thermal phase transitions under the action of laser plasma is the subject matter of the present work. The computational calculations were carried out where titanium (Ti) was treated as a condensed medium. The solution to the partial differential equations governing the thermal dynamics and the underlying phase transition event in the multiphase system is based on non-stationary Eulerian variables. The Mach number depicts significant fluctuations due to thermal instabilities associated with the laser beam flux and intensity. A conclusive amalgamation has been established which relates material surface temperature profile to laser intensity, laser flux and the pressure in the plasma cloud.

  11. Study of transport of laser-driven relativistic electrons in solid materials (United States)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  12. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches (United States)

    Qi, Huan

    Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties. For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched. Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing. Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an

  13. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields (United States)

    Rosinski, M.; Badziak, B.; Parys, P.; Wołowski, J.; Pisarek, M.


    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:˜0.5 J, power density: 10 10 W/cm 2) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  14. Multi-material laser densification (MMLD) of dental restorations: Process optimization and properties evaluation (United States)

    Li, Xiaoxuan

    This Ph.D. thesis proposes to investigate the feasibility of laser-assisted dental restoration and to develop a fundamental understanding of the interaction between laser beam and dental materials. Traditional dental restorations are produced by the porcelain-fused-to-metal (PFM) process, in which a dental restoration is cast from a metallic alloy and then coated with dental porcelains by multiple furnace-firing processes. PFM method is labor-intensive and hence very expensive. In order to fabricate dental restoration units faster and more cost-effectively, the Solid Freeform Fabrication (SFF) technique has been employed in this study. In particular, a Multi-Material Laser Densification (MMLD) process has been investigated for its potential to fabricate artificial teeth automatically from 3-D computer dental tooth files. Based on the principle of SFF, the MMLD process utilizes a micro-extruder system to deliver commercial dental alloy and porcelain slurry in a computer-controlled pattern line by line and layer by layer. Instead of firing the artificial tooth/teeth in a furnace, the extruded dental materials are laser scanned to convert the loose powder to a fully dense body. Different laser densification parameters including the densification temperature, laser output power, laser beam size, line dimension, ratio of the beam size to line width, beam scanning rate, processing atmosphere and pressure, dental powder state (powder bed or slurry), powder particle size, etc. have been used to evaluate their effects on the microstructures and properties of the laser densified dental body, and hence to optimize MMLD conditions. Furthermore, laser-scanning induced phase transformations in dental porcelains have been studied because the transformations have great impact on coefficient of thermal expansion (CTE) of dental porcelains, which should match that of dental alloy substrate. Since a single dental material line delivered by the MMLD system functions as a "construction

  15. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.


    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  16. The theory of laser materials processing heat and mass transfer in modern technology

    CERN Document Server

    Schulz, Wolfgang


    The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the ...

  17. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenqian; Shin, Yung C.; King, Galen [Purdue University, Center for Laser-based Manufacturing, School of Mechanical Engineering, West Lafayette, IN (United States)


    This paper deals with the unique phenomena occurring during the multi-burst mode picosecond (ps) laser ablation of metals through modeling and experimental studies. The two-temperature model (TTM) is used and expanded to calculate the ablation depth in the multi-burst mode. A nonlinear increment of ablation volume is found during the multi-burst laser ablation. The deactivation of ablated material and the application of temperature-dependent electron-phonon coupling are demonstrated to be important to provide reliable results. The simulation results based on this expanded laser ablation model are experimentally validated. A significant increase of ablation rate is found in the multi-burst mode, compared with the single-pulse mode under the same total fluence. This numerical model provides a physical perspective into the energy transport process during multi-burst laser ablation and can be used to study the pulse-to-pulse separation time effect on the ablation rate. (orig.)

  18. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate (United States)

    Hu, Wenqian; Shin, Yung C.; King, Galen


    This paper deals with the unique phenomena occurring during the multi-burst mode picosecond (ps) laser ablation of metals through modeling and experimental studies. The two-temperature model (TTM) is used and expanded to calculate the ablation depth in the multi-burst mode. A nonlinear increment of ablation volume is found during the multi-burst laser ablation. The deactivation of ablated material and the application of temperature-dependent electron-phonon coupling are demonstrated to be important to provide reliable results. The simulation results based on this expanded laser ablation model are experimentally validated. A significant increase of ablation rate is found in the multi-burst mode, compared with the single-pulse mode under the same total fluence. This numerical model provides a physical perspective into the energy transport process during multi-burst laser ablation and can be used to study the pulse-to-pulse separation time effect on the ablation rate.

  19. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials (United States)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.


    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  20. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques. (United States)

    Kuehne, Alexander J C; Gather, Malte C


    Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today's organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.

  1. Indirect ignition of energetic materials with laser-driven flyer plates. (United States)

    Dean, Steven W; De Lucia, Frank C; Gottfried, Jennifer L


    The impact of laser-driven flyer plates on energetic materials CL-20, PETN, and TATB has been investigated. Flyer plates composed of 25 μm thick Al were impacted into the energetic materials at velocities up to 1.3 km/s. The flyer plates were accelerated by means of an Nd:YAG laser pulse. The laser pulse generates rapidly expanding plasma between the flyer plate foil and the substrate to which it is adhered. As the plasma grows, a section of the metal foil is ejected at high speed, forming the flyer plate. The velocity of the flyer plate was determined using VISAR, time of flight, and high-speed video. The response of the energetic material to impact was determined by light emission recorded by an infrared-sensitive photodiode. Following post-impact analysis of the impacted energetic material, it was hypothesized that the light emitted by the material after impact is not due to the impact of the flyer itself but rather is caused by the decomposition of energetic material ejected (via the shock of flyer plate impact) into a cloud of hot products generated during the launch of the flyer plate. This hypothesis was confirmed through schlieren imaging of a flyer plate launch, clearly showing the ejection of hot gases and particles from the region surrounding the flyer plate launch and the burning of the ejected energetic material particles.

  2. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles (United States)

    Görgl, Richard; Brandstätter, Elmar


    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  3. The application of Maxwell’s equations for numerical simulation of processes during laser treatment of materials (United States)

    Kovalev, О B.; Galjov, R. V.


    A number of problems on the laser radiation propagation and absorption are stated on the Maxwell’s equation base for the simulation of laser treatment of materials, namely cutting, welding, drilling of metals, selective laser melting and sintering of powders. The algorithm of numerical solution of the Maxwell’s equations by the finite difference time domain method is employed with parallelizing elements; the peculiarities of setting of some boundary conditions for the problems of laser interaction for isotropic media are analyzed.

  4. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing (United States)

    Liang, D.; Almeida, J.


    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  5. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu


    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  6. Effect of the Freshness of Starting Material on the Final Product Quality of Dried Salted Shark

    Directory of Open Access Journals (Sweden)

    Ponnerassery Sukumaran Sudheesh


    Full Text Available This study describes the relationship between the freshness of the starting raw material (fish and the final product quality in experimentally dried shark fish. Sharks were stored at room temperature (25ºC for 0, 24 and 48 h and then salted, processed and sun dried at ambient temperatures ranging from 35 to 42ºC. There was marked difference in sensory and microbiological quality of fresh fish stored to different time periods, but, after drying, the quality difference was negligible. The results of this study show that storage of fish up to 48 h under experimental conditions at room temperature does not affect major microbiological quality and proximate composition of the final dried product.

  7. Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Bueckers, Christina; Kuehn, Eckhard; Schlichenmaier, Christoph; Koch, Stephan W. [Department of Physics and Material Sciences Center, Philipps-University Marburg (Germany); Imhof, Sebastian; Thraenhardt, Angela [Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz (Germany); Hader, Joerg; Moloney, Jerome V. [Nonlinear Control Strategies, Inc., Tucson, AZ (United States); College of Optical Sciences, University of Arizona, Tucson, AZ (United States); Rubel, Oleg [Thunder Bay Regional Research Institute, Thunder Bay, ON (Canada); Department of Physics, Lakehead University, Thunder Bay, ON (Canada); Zhang, Wei [Centre for Biophotonics, SIPBS, University of Strathclyde, Glasgow, Scotland (United Kingdom); Ackemann, Thorsten [SUPA and Department of Physics, University of Strathclyde, Glasgow, Scotland (United Kingdom)


    This article gives an overview of the microscopic theory used to quantitatively model a wide range of semiconductor laser gain materials. As a snapshot of the current state of research, applications to a variety of actual quantum-well systems are presented. Detailed theory-experiment comparisons are shown and it is analyzed how the theory can be used to extract poorly known material parameters. The intrinsic laser loss processes due to radiative and nonradiative Auger recombination are evaluated microscopically. The results are used for realistic simulations of vertical-external-cavity surface-emitting laser systems. To account for nonequilibrium effects, a simplified model is presented using pre-computed microscopic scattering and dephasing rates. Prominent deviations from quasi-equilibrium carrier distributions are obtained under strong in-well pumping conditions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 105 s-1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity

  9. Estimation of particle size variations for laser speckle rheology of materials. (United States)

    Hajjarian, Zeinab; Nadkarni, Seemantini K


    Laser speckle rheology (LSR) is an optical technique for assessing the viscoelastic properties of materials with several industrial, biological, and medical applications. In LSR, the viscoelastic modulus, G*(ω), of a material is quantified by analyzing the temporal fluctuations of speckle patterns. However, the size of scattering particles within the material also influences the rate of speckle fluctuations, independent of sample mechanical properties, and complicates the accurate estimation of G*(ω). Here, we demonstrate that the average particle size may be retrieved from the azimuth-angle dependence of time-averaged speckle intensities, permitting the accurate quantification of the viscoelastic moduli of materials with unknown particle size distribution using LSR.

  10. [Application progress of laser-induced breakdown spectroscopy for surface analysis in materials science field]. (United States)

    Zhang, Yong; Jia, Yun-Hai; Chen, Ji-Wen; Liu, Ying; Shen, Xue-Jing; Zhao, Lei; Wang, Shu-Ming; Yu, Hong; Han, Peng-Cheng; Qu, Hua-Yang; Liu, Shao-Zun


    As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it's applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it's pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.

  11. Systems and Methods of Laser Texturing of Material Surfaces and Their Applications (United States)

    Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)


    The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.

  12. Analysis and removal of ITER relevant materials and deposits by laser ablation (United States)

    Xiao, Qingmei; Huber, Alexander; Philipps, Volker; Sergienko, Gennady; Gierse, Niels; Mertens, Philippe; Hai, Ran; Ding, Hongbin


    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1-27 J/cm2, power density 0.3-3.9 GW/cm2). The mixed deposits consisted of W-Al-C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated.

  13. High-power diode laser marking and engraving of building materials (United States)

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.


    A Diomed 60W-cw high power diode laser (HPDL) has been used for the marking and engraving of various building materials, including; marble, granite, clay tiles, ceramic tiles, roof tiles, ordinary Portland cement (OPC) and clay bricks. Morphological and microstructural characteristics have been investigated. The basic mechanism of marking/engraving and the characteristics of the beam absorption are discussed. The effects of material texture, color and laser processing parameters are reported. The work shows that engraving depths of over 2 mm (0.75 mm for a single pass) can be achieved on marble substrates by thermal disintegration of CaCO3 into loose CaO powder and CO2 gas. Uniform amorphous glazed lines (1 - 3 mm line width) of a color different from the untreated materials can be generated on clay tiles, ceramic tiles, roof tiles, clay bricks and OPC by solidification phase formation after laser melting of these materials. Effects of atmospheric conditions, for instance using O2 and Ar gas shrouds, have been examined, with different colored marks being observed when different shroud gases are used. To demonstrate the practical worth of the process a UMIST crest has been marked on a ceramic tile using the system. Laser beam reflectivity is found to depend not only on material composition but also its color. Reflectivity has been found to range between 12% to 18% for the various construction materials used in the experiment, except for marble (grey) which showed over 27% reflectivity. Since the HPDL is a portable device, on-site application of these processing techniques can be realized, which would be either impossible or difficult when using other types of lasers.

  14. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system (United States)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian


    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  15. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yalin, Azer [Seaforth, LLC


    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  16. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser (United States)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers

  17. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wei; Rovore, Thomas; Weerawarne, Darshana; Osterhoudt, Gavin; Kang, Ning; Joseph, Pharrah; Luo, Jin; Shim, Bonggu; Poliks, Mark; Zhong, Chuan-Jian


    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal such as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple “nanoalloy printing 'laser sintering' nanostructure printing” process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.

  18. Features of light propagation in insulating materials of electronics under laser processing

    Directory of Open Access Journals (Sweden)

    S.D. Tochilin


    Full Text Available The study of light propagation in insulating materials of electronics is carried out under evaporating mode of laser influence. As a result of experimental data analysis the rate of through hole formation is determined and the temporal features of the absorption coefficient in investigated samples are established.

  19. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios


    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...

  20. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    NARCIS (Netherlands)

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.


    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like' struc

  1. Five-Fold Branched Si Particles in Laser Clad AlSi Functionally Graded Materials

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De


    Many five-fold branched Si particles (Sip) were observed in Al–40 wt% Si functionally graded materials produced by a single-step laser cladding process on cast Al-alloy substrate. In this paper the five-fold twinning and growth features of Sip are scrutinized with orientation imaging microscopy and

  2. Effect of Thermal and Diffusion Processes on Formation of the Structure of Weld Metal in Laser Welding of Dissimilar Materials (United States)

    Turichin, G. A.; Klimova, O. G.; Babkin, K. D.; Pevzner, Ya. B.


    The thermal and diffusion processes in laser welding of dissimilar materials are simulated. The active LaserCAD model for welding of dissimilar materials is amended. The developed model is verified for the Fe - Cu system. The microstructure of a weld of tin bronze and low-carbon steel is studied and the elements in the diffusion zone are analyzed. The computed and experimental data for laser and electron-beam welding are shown to agree well.

  3. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nostrand, M


    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond {approx} 4 {micro}m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm{sup -1} and 500 cm{sup -1}, respectively. These phonons can effectively quench radiation above 2 and 4 {micro}m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 {micro}m) operation. In this report, laser action is demonstrated in two such hosts, CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}. The CaGa{sub 2}S{sub 4}:Dy{sup 3+} laser operating at 4.3 {micro}m represents the first sulfide laser operating beyond 2 {micro}m. The KPb{sub 2}Cl{sub 5}:Dy{sup 3+} laser operating at 2.4 {micro}m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 2.4 {micro}m, CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 1.4 {micro}m, and KPb{sub 2}Cl{sub 5}:Nd{sup 3+} at 1.06 {micro}m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}, direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In

  4. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Directory of Open Access Journals (Sweden)

    Anton A. Smirnov


    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  5. High power lasers: Sources, laser-material interactions, high excitations, and fast dynamics in laser processing and industrial applications; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 3, 1987 (United States)

    Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)


    The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.

  6. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology. (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi


    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  7. New therapeutic modalities of retinal laser injury. Final report, 1 Mar 89-1 Mar 92

    Energy Technology Data Exchange (ETDEWEB)

    Lam, T.T.; Tso, M.O.


    Efficacies of three different regimens of high dose of methylprednisolone (MP) treatment on laser-induced non-hemorrhage retinal injury and tissue plasminogen activator (t-PA) in sub-retinal hemorrhage laser injury were evaluated in a sub-human primate model and a rat model respectively. Clinical, histopathological, and morphometric criteria were employed for evaluating the efficacy of MP. High dose and prolonged treatment (4 days) was the most effective regimen while high dose for 8 hours showed limited effect in non-hemorrhagic retinal injury. Intravitreal t-PA showed no apparent beneficial effect in sub-retinal hemorrhage after laser injury. Hence, patients with laser retinal injury may benefit from high dose MP treatment for an appropriate period of time.

  8. Dynamic symmetrical pattern projection based laser triangulation sensor for precise surface position measurement of various material types. (United States)

    Žbontar, Klemen; Mihelj, Matjaž; Podobnik, Boštjan; Povše, Franc; Munih, Marko


    This paper describes a custom, material-type-independent laser-triangulation-based measurement system that utilizes a high-quality ultraviolet laser beam. Laser structuring applications demand material surface alignment regarding the laser focus position, where fabrication conditions are optimal. Robust alignment of various material types was solved by introducing dynamic symmetrical pattern projection, and a "double curve fitting" centroid detection algorithm with subsurface scattering compensation. Experimental results have shown that the measurement system proves robust to laser intensity variation, with measurement bias lower than 50 μm and standard deviation lower than ±6.3 μm for all materials. The developed probe has been integrated into a PCB prototyping system for material referencing purposes.

  9. Examination of material manufactured by direct metal laser sintering (DMLS

    Directory of Open Access Journals (Sweden)

    J. Dobránsky


    Full Text Available This article is concerned with assessing microstructural properties of metal component manufactured by additive DMLS technology. Two series of samples were assessed. The first one was manufactured without heat treatment. Samples in the second series were treated with heat in order to assess increase in hardness and influence on modification of microstructure. Subsequently, values of hardness were measured by Vickers Hardness Test and modification of microstructure was observed by optical microscope. Evaluations were carried out in three planes in order to assess the differences in layering of material during its processing. Differences in values of hardness and microstructural components were discovered by examination of changes in three planes.

  10. Material morphological characteristics in laser ablation of alpha case from titanium alloy (United States)

    Yue, Liyang; Wang, Zengbo; Li, Lin


    Alpha case (an oxygen enriched alloy layer) is commonly formed in forged titanium alloys during the manufacturing process and it reduces the service life of the materials. This layer is normally removed mechanically or chemically. This paper reports the feasibility and characteristics of using a short pulsed laser to remove oxygen-enriched alpha case layer from a titanium alloy (Ti6Al4V) substrate. The material removal rate, i.e., ablation rate, and ablation threshold of the alpha case titanium were experimentally determined, and compared with those for the removal of bulk Ti6Al4V. Surface morphologies of laser processed alpha case titanium layer, especially that of cracks at different ablated depths, were carefully examined, and also compared with those for Ti6Al4V. It has been shown that in the alpha case layer, laser ablation has always resulted in crack formation while for laser ablation of alpha case free Ti6Al4V layers, cracking was not present. In addition, the surface is rougher within the alpha case layer and becomes smoother (Ra - 110 nm) once the substrate Ti-alloy is reached. The work has demonstrated that laser is a feasible processing tool for removing alpha case titanium, and could also be used for the rapid detection of the presence of alpha case titanium on Ti6Al4V surfaces in aerospace applications.

  11. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance. (United States)

    Gottfried, Jennifer L; Bukowski, Eric J


    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  12. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Aleksei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolken, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vignes, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  13. Extinction characterization of soot produced by laser ablating carbon fiber composite materials in air flow (United States)

    Liu, Weiping; Ma, Zhiliang; Zhang, Zhenrong; Zhou, Menglian; Wei, Chenghua


    In order to research the dynamic process of energy coupling between an incident laser and a carbon fiber/epoxy resin composite material, an extinction characterization analysis of soot, which is produced by laser ablating and located in an air flow that is tangential to the surface of the composite material, is carried out. By the theory analyses, a relationship of mass extinction coefficient and extinction cross section of the soot is derived. It is obtained that the mass extinction coefficients of soot aggregates are the same as those of the primary particles when they contain only a few primary particles. This conclusion is significant when the soot is located in an air flow field, where the generations of the big soot aggregates are suppressed. A verification experiment is designed. The experiment employs Laser Induced Incandescence technology and laser extinction method for the soot synchronization diagnosis. It can derive a temporal curve of the mass extinction coefficient from the soot concentration and laser transmittance. The experiment results show that the mass extinction coefficient becomes smaller when the air flow velocity is higher. The reason is due to the decrease of the scatter effects of the soot particles. The experiment results agree with the theory analysis conclusion.

  14. Laser-driven flyer application in thin film dissimilar materials welding and spalling (United States)

    Wang, Huimin; Wang, Yuliang


    This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.

  15. Management of heat in laser tissue welding using NIR cover window material. (United States)

    Sriramoju, Vidyasagar; Savage, Howard; Katz, Alvin; Muthukattil, Ronex; Alfano, Robert R


    Laser tissue welding (LTW) is a novel method of surgical wound closure by the use of laser radiation to induce fusion of the biological tissues. Molecular dynamics associated with LTW is a result of thermal and non-thermal mechanisms. This research focuses exclusively on better heat management to reduce thermal damage of tissues in LTW using a near infrared laser radiation. An infrared continuous-wave (CW) laser radiation at 1,450 nm wavelength corresponding to the absorption band from combination vibrational modes of water is used to weld together ex vivo porcine aorta. In these studies we measured the optimal laser power and scan speed, for better tensile strength of the weld and lesser tissue dehydration. Significant amount of water loss from the welded tissue results in cellular death and tissue buckling. Various thermally conductive optical cover windows were used as heat sinks to reduce thermal effects during LTW for the dissipation of the heat. The optimal use of the method prevents tissue buckling and minimizes the water loss. Diamond, sapphire, BK7, fused silica, and IR quartz transparent optical cover windows were tested. The data from this study suggests that IR-quartz as the material with optimal thermal conductivity is ideal for laser welding of the porcine aorta. Copyright © 2011 Wiley Periodicals, Inc.

  16. Nondestructive material characterization with laser ultrasound. Laser choonpa ni yoru hihakai zaishitsu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Takamatsu, H.; Arai, A.; Yanai, S.; Ogawa, T.; Akamatsu, M. (Kobe Steel Ltd., Kobe (Japan). Electronics Research Lab.)


    From the requirement of shortening time for delivery of goods, an equipment of evaluating the characteristics of steel plates in on-line is expected. Concerning this problem, development of an equipment for measuring the lankford value (r-value) of the cold rolled steel plates at outlet in the continuous annealing line by using the Electro Magnetic Acoustic Transducer (EMAT) was reported. However, since measurement is performed by using the electromagnetic force in this equipment sensor is necessary to be put near a steel plate, so that its application is limited. In this paper, the multiple reflecting echos of laser ultrasound to the thin steel plates were measured by using the Fabry-Perot interferometer that is suitable to be applied in the wide-band measurement of ultrasound. Application to measurement of crystal grain size of steel plates by using this method was clarified. In evaluating the measurement of crystal grain size, the necessaries were described concerning which bottom echos would be selected for reducing the errors caused by widening range of echos due to the irradiating diameter of excitation laser. Components of low frequencies occurred among multiple reflects would be removed by a filter. 11 refs., 13 figs., 1 tab.

  17. Carbon dioxide laser and bonding materials reduce enamel demineralization around orthodontic brackets. (United States)

    de Souza-e-Silva, Cíntia Maria; Parisotto, Thaís Manzano; Steiner-Oliveira, Carolina; Kamiya, Regianne Umeko; Rodrigues, Lidiany Karla Azevedo; Nobre-dos-Santos, Marinês


    Altering the structure of the enamel surface around the orthodontic bracket by reducing its content of carbonate and phosphate resulting from application of CO(2) laser may represent a more effective strategy in preventing caries in this region. This study aimed at determining whether irradiation with a CO(2) laser combined with fluoride-releasing bonding material could reduce enamel demineralization around orthodontic brackets subjected to cariogenic challenge. Ninety bovine enamel slabs were divided into five groups (n = 18): non-inoculated brain-heart infusion broth group, non-fluoride-releasing composite resin (NFRCR--control group), resin-modified glass ionomer cement (RMGIC), CO(2) laser + Transbond (L+NFRCR) and CO(2) laser + Fuji (L+RMGIC). Slabs were submitted to a 5-day microbiological caries model. The Streptococcus mutans biofilm formed on the slabs was biochemically and microbiologically analysed, and the enamel Knoop hardness number (KHN) around the brackets was determined. The data were analysed by ANOVA and Tukey tests (α = 0.05). Biochemical and microbiological analyses of the biofilm revealed no statistically significant differences among the groups. Lased groups presented the highest KHN means, which statistically differed from NFRCR; however, no difference was found between these lased groups. RMGIC did not differ from NFRCR which presented the lowest KHN mean. The CO(2) laser (λ = 10.6 μm; 10.0 J/cm(2) per pulse) use with or without F-bonding materials was effective in inhibiting demineralization around orthodontic brackets. However, no additional effect was found when the enamel was treated with the combination of CO(2) laser and an F-releasing material.

  18. Laser-assisted metal spinning for an efficient and flexible processing of challenging materials (United States)

    Brummer, C.; Eck, S.; Marsoner, S.; Arntz, K.; Klocke, F.


    The demand for components made from high performance materials like titanium or nickel-based alloys as well as strain-hardening stainless steel is steadily increasing. However, conventional forming operations conducted on these materials are generally very laborious and time-consuming. This is where the limitations of metal spinning also become apparent. Using a laser to apply heat localized to the forming zone during metal spinning facilitates to enhance the formability of a material. In order to analyse the potential of the new manufacturing process, experimental investigations on laser-assisted shear forming and multi-pass metal spinning have been performed with austenitic stainless steel X5CrNi18-10, nickel-based alloy Inconel 718 and titanium grade 2. It could be demonstrated that the formability of these materials can be enhanced by laser-assistance. Besides the resulting enhancement of forming limits for metal spinning of challenging materials, the forming forces were reduced and the product quality was improved significantly.

  19. Picosecond pulsed laser processing of polycrystalline diamond and cubic boron nitride composite materials (United States)

    Warhanek, Maximilian G.; Pfaff, Josquin; Meier, Linus; Walter, Christian; Wegener, Konrad


    Capabilities and advantages of laser ablation processes utilizing ultrashort pulses have been demonstrated in various applications of scientific and industrial nature. Of particular interest are applications that require high geometrical accuracy, excellent surface integrity and thus tolerate only a negligible heat-affected zone in the processed area. In this context, this work presents a detailed study of the ablation characteristics of common ultrahard composite materials utilized in the cutting tool industry, namely polycrystalline diamond (PCD) and polycrystalline cubic boron nitride composite (PCBN). Due to the high hardness of these materials, conventional mechanical processing is time consuming and costly. Herein, laser ablation is an appealing solution, since no process forces and no wear have to be taken into consideration. However, an industrially viable process requires a detailed understanding of the ablation characteristics of each material. Therefore, the influence of various process parameters on material removal and processing quality at 10 ps pulse duration are investigated for several PCD and PCBN grades. The main focus of this study examines the effect of different laser energy input distributions, such as pulse frequency and burst pulses, on the processing conditions in deep cutting kerfs and the resulting processing speed. Based on these results, recommendations for efficient processing of such materials are derived.

  20. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency. (United States)

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato


    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.

  1. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, S [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, M A [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan, Toluca Edo. de Mexico, 50110 (Mexico); Sanchez-Perez, C [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico); Esparza-GarcIa, A [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico)


    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO{sub 3} phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm.

  2. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency (United States)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato


    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  3. The importance of material structure in the laser cutting of glass fiber reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G. (Univ. di Napoli (Italy). Dipt. di Ingegneria dei Materiali e della Produzione); Tagliaferri, V. (Univ. di Salerno (Italy). Istituto di Ingegneria Meccanica); Covelli, L. (IMU-Consiglio Nazionale delle Ricerche, Milano (Italy))


    A previously proposed micromechanical formula, aiming to predict the vaporization energy Q[sub v] of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO[sub 2] cw laser, were treated according to a procedure previously suggested, in order to evaluate Q[sub v]. An excellent agreement was found between experimental and theoretical Q[sub v] values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.

  4. Parametric Integral Equations Systems Method In Solving Unsteady Heat Transfer Problems For Laser Heated Materials

    Directory of Open Access Journals (Sweden)

    Sawicki Dominik


    Full Text Available One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change its properties. Numerical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular numerical methods FEM and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity of discretization of the boundary or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems (PIES, which do not require classical discretization of the boundary and the domain while being numerically solved. PIES method was previously used with success to solve steady-state problems, as well as transient heat transfer problems. The purpose of this paper is to test the efficacy of the PIES method with time discretization in solving problem of laser heating of a material, with different pulse shape approximation functions.

  5. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging (United States)

    Barty, C. P. J.


    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  6. Effect of High Z material on the performance of an air-breathing laser ablation thruster (United States)

    Shimamura, Kohei; Kiyono, Inoru; Yokota, Ippei; Ozaki, Naoto; Yokota, Shigeru


    A Laser propulsion, such as a Lightcraft, is a candidate for the low cost transportation system between the ground to space instead of the chemical rocket. Using the shock wave induced by focusing laser beam on the ablator in air, the huge fuel is unnecessary to generate the thrust. In this study, the high-Z material was doped into the polystyrene to emphasize the ionization effect in air. We evaluate the intensity of the bremsstrahlung radiation, the plasma parameter, and the thrust performance.

  7. Plasma-based X-ray laser speckle and its application on ferroelectric material

    Institute of Scientific and Technical Information of China (English)

    TAI Ren-Zhong; NAMIKAWA Kazumichi


    A new type of soft X-ray source, i.e. a plasma-based X-ray laser, is found to be promising to conduct transient measurement. By means of picosecond X-ray laser speckles, the dynamic microscopic polarization clusters within cubic (paraelectric) BaTiO3 was directly observed and characterized in a microscopic scale for the first time.This opens a way to study this type of clusters, which usually manifest large external-field response for ferroelectric materials.

  8. In-situ laser material process monitoring using a cladding power detection technique (United States)

    Su, Daoning; Norris, Ian; Peters, Chris; Hall, Denis R.; Jones, Julian D. C.

    Progress in laser material processing may require real-time monitoring and process control for consistent quality and productivity. We report a method of in-situ monitoring of laser metal cutting and drilling using cladding power monitoring of an optical fibre beam delivery system—a technique which detects the light reflected or scattered from the workpiece. The light signal carries information about the quality of the process. Experiments involving drilling and cutting of two samples, a thin aluminum foil and a 2-mm thick stainless steel plate, confirmed the effectiveness of this method.

  9. Standoff detection of hazardous materials using a novel dual-laser pulse technique: theory and experiments (United States)

    Ford, Alan; Waterbury, Robert D.; Rose, Jeremy; Dottery, Edwin L.


    The present work focuses on a new variant of double pulse laser induced breakdown spectroscopy (DP-LIBS) called Townsend effect plasma spectroscopy (TEPS) for standoff applications. In the TEPS technique, the atomic and molecular emission lines are enhanced by a factor on the order of 25 to 300 times over LIBS, depending upon the emission lines observed. As a result, it is possible to extend the range of laser induced plasma techniques beyond LIBS and DP-LIBS for the detection of CBRNE materials at distances of several meters.

  10. Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Gouri Radhakrishnan


    Full Text Available Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder, and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation, the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

  11. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.


    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  12. Mesoscopic modelling of the interaction of infrared lasers with composite materials: an application to human dental enamel (United States)

    Vila Verde, A.; Ramos, Marta M. D.; Stoneham, Marshall; Mendes Ribeiro, R.


    The mesostructure and composition of composite materials determine their mechanical, optical and thermal properties and, consequently, their response to incident radiation. We have developed general finite element models of porous composite materials under infrared radiation to examine the influence of pore size on one of the determining parameters of the stress distribution in the material: the temperature distribution. We apply them to the specific case of human dental enamel, a material which has nanometer scale pores containing water/organic, and predict the maximum temperature reached after a single 0.35 μs laser pulse of sub-ablative fluence by two lasers: Er:YAG (2.9 μm) and CO2 (10.6 μm). For the Er:YAG laser, the results imply a strong dependence of the maximum temperature reached at the pore on the area-to-volume ratio of the pore, whereas there is little such dependence for CO2 lasers. Thus, CO2 lasers may produce more reproducible results than Er:YAG lasers when it comes to enamel ablation, which may be of significant interest during clinical practice. More generally, when ablating composite materials by infrared lasers researchers should account for the material's microstructure and composition when designing experiments or interpreting results, since a more simplistic continuum approach may not be sufficient to explain differences observed during ablation of materials with similar optical properties or of the same material but using different wavelengths.

  13. Evaluation of laser welding techniques for hydrogen transmission. Final report, September 1977-November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, J


    This program was established to determine the feasibility of laser beam welding as a fabrication method for hydrogen transmission and is a precursor in the effort to systematically provide the technological base necessary for large-scale, economic pipeline transmission of fuel for a hydrogen energy system. The study contributes to the technology base by establishing the effect of conventional weld processes and laser beam welding on the mechanical properties of two classes of steels in an air and high pressure gaseous hydrogen environment. Screening evaluation of the tensile, low-cycle fatigue and fracture toughness properties and metallurgical analyses provide the basis for concluding that laser beam welding of AISI 304L stainless steel and ASTM A106B carbon steel can produce weldments of comparable quality to those produced by gas-tungsten arc and electron beam welding and is at least equally compatible with 13.8 MPa (2000 psig) gaseous hydrogen environment.


    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Manish; Baer, Douglas


    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  15. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola


    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  16. Laser photolysis and thermolysis of organic selenides and tellurides for chemical gas-phase deposition of nanostructured materials. (United States)

    Pola, Josef; Ouchi, Akihiko


    Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn) element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  17. Research of seal materials adhesion to walls of cavity in enamel and dentin formation by Er laser radiation (United States)

    Altshuler, Gregory B.; Belikov, Andrei V.; Vlasova, Svetlana N.; Erofeev, Andrew V.


    The present work represents the results of research of mechanical strength formed by submillisecond pulses of Er-laser at the border of enamel-seal and dentine-seal in a cavity. Comparative research of an adhesion of three of the most widespread types of modern seal materials (cement, amalgam, polymer) to walls of the laser cavity are conducted. The comparison of `laser adhesion' with adhesion of these materials to the walls of the cavity has been made by the usual mechanical tools. The dependence of free adhesion energy from the geometry of the cavity and energy density of laser radiation is considered. This work informs the reader about the results of research removal efficiency of some modern seal materials. The influence of water-spray on the efficiency of seal materials laser treatment process is considered.

  18. Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses. (United States)

    Jiang, Xiao-Fang; Polavarapu, Lakshminarayana; Neo, Shu Ting; Venkatesan, T; Xu, Qing-Hua


    Graphene oxide (GO) thin films on glass and plastic substrates were found to display interesting broadband nonlinear optical properties. We have investigated their optical limiting activity for femtosecond laser pulses at 800 and 400 nm, which could be tuned by controlling the extent of reduction. The as-prepared GO films were found to exhibit excellent broadband optical limiting behaviors, which were significantly enhanced upon partial reduction by using laser irradiation or chemical reduction methods. The laser-induced reduction of GO resulted in enhancement of effective two-photon absorption coefficient at 400 nm by up to ∼19 times and enhancement of effective two- and three-photon absorption coefficients at 800 nm by ∼12 and ∼14.5 times, respectively. The optical limiting thresholds of partially reduced GO films are much lower than those of various previously reported materials. Highly reduced GO films prepared by using the chemical method displayed strong saturable absorption behavior.

  19. Experimental investigations of the laser cladding of protective coatings on preheated base material (United States)

    Jendrzejewski, Rafal; Sliwinski, Gerard; Conde, Ana; Navas, Carmen; de Damborenea, Juan J.


    The laser cladding technique was applied to obtain Co-based stellite SF6 coatings on the chromium steel base. The coatings were prepared by means of a direct cladding of metal powder using a 1.2 kW cw CO2 laser stand with a controlled preheating of the substrate material. Results of the metallographic tests revealed a fine-grained, dendritic microstructure and proper metallic bonding between substrate and coating. A nearly constant concentration of mian elements at different areas of the coating cross-section indicated on homogeneous chemical composition of the laser-cladded SF6 alloy samples. A significant decrease of the micro-crack number with increasing temperature of the base preheating was observed. This was accompanied by a drop of the wear and corrosion resistance.

  20. Investigation of cell proliferative activity on the surface of the nanocomposite material produced by laser radiation (United States)

    Zhurbina, N. N.; Kurilova, U. E.; Ickitidze, L. P.; Podgaetsky, V. M.; Selishchev, S. V.; Suetina, I. A.; Mezentseva, M. V.; Eganova, E. M.; Pavlov, A. A.; Gerasimenko, A. Y.


    A new method for the formation of composite nanomaterials based on multi-walled and single-walled carbon nanotubes (CNT) on a silicon substrate has been developed. Formation is carried out by ultrasound coating of a silicon substrate by homogenous dispersion of CNTs in the albumin matrix and further irradiation with the continuous laser beam with a wavelength of 810 nm and power of 5.5 watts. The high electrical conductivity of CNTs provides its structuring under the influence of the laser radiation electric field. The result is a scaffold that provides high mechanical strength of nanocomposite material (250 MPa). For in vitro studies of materials biocompatibility a method of cell growth microscopic analysis was developed. Human embryonic fibroblasts (EPP) were used as biological cells. Investigation of the interaction between nanocomposite material and cells was carried out by optical and atomic force microscopy depending on the time of cells incubation. The study showed that after 3 hours incubation EPP were fixed on the substrate surface, avoiding the surface of the composite material. However, after 24 hours of incubation EPP fix on the sample surface and then begin to grow and divide. After 72 hours of incubation, the cells completely fill the sample surface of nanocomposite material. Thus, a nanocomposite material based on CNTs in albumin matrix does not inhibit cell growth on its surface, and favours their growth. The nanocomposite material can be used for creating soft tissue implants

  1. Repetitively pulsed electric laser acoustic studies. Volume 1. Final technical report, Jun 80-Jun 83

    Energy Technology Data Exchange (ETDEWEB)

    Ingard, K.U.; McMillan, C.F.


    This report summarizes a study of the acoustical characteristics of a closed loop duct system for pulsed lasers with emphasis on acoustic suppression technology. Several topics are considered involving wave propagation reflection and attenuation in a shock tube, in which pulse waves are generated, simulating those in a pulsed laser system. A detailed analysis of the design of parallel-baffle attenuators for suppression of acoustic waves is given, allowing for the contributions of the reflection transmitted and reverberant contributions to the sound pressure field in the optical cavity.

  2. Material processing with ultra-short pulse lasers working in 2μm wavelength range (United States)

    Voisiat, B.; Gaponov, D.; Gečys, P.; Lavoute, L.; Silva, M.; Hideur, A.; Ducros, N.; Račiukaitis, G.


    New wavelengths of laser radiation are of interest for material processing. Results of application of the all-fiber ultrashort pulsed laser emitting in 2 µm range, manufactured by Novae, are presented. Average output power was 4.35 W in a single-spatial-mode beam centered at the 1950 nm wavelength. Pulses duration was 40 ps, and laser operated at 4.2 MHz pulse repetition rate. This performance corresponded to 25 kW of pulse peak power and almost 1 µJ in pulse energy. Material processing was performed using three different focusing lenses (100, 30 and 18 mm) and mechanical stages for the workpiece translation. 2 µm laser radiation is strongly absorbed by some polymers. Swelling of PMMA surface was observed for scanning speed above 5 mm/s using the average power of 3.45 W focused with the 30 mm lens. When scanning speed was reduced below 4 mm/s, ablation of PMMA took place. The swelling of PMMA is a consequence of its melting due to absorbed laser power. Therefore, experiments on butt welding of PMMA and overlapping welding of PMMA with other polymers were performed. Stable joint was achieved for the butt welding of two PMMA blocks with thickness of 5 mm. The laser was used to cut a Kapton film on a paper carrier with the same set-up as previous. The cut width depended on the cutting speed and focusing optics. A perfect cut with a width of 11 µm was achieved at the translation speed of 60 mm/s.

  3. Laser annealing of textured thin film cathode material for lithium ion batteries (United States)

    Kohler, R.; Bruns, M.; Smyrek, P.; Ulrich, S.; Przybylski, M.; Pfleging, W.


    The material development for advanced lithium ion batteries plays an important role in future mobile applications and energy storage systems. It is assumed that electrode materials made of nano-composited materials will improve battery lifetime and will lead to an enhancement of lithium diffusion and thus improve battery capacity and cyclability. Lithium cobalt oxide (LiCoO2) is commonly used as a cathode material. Thin films of this electrode material were synthesized by non-reactive r.f. magnetron sputtering of LiCoO2 targets on silicon or stainless steel substrates. For the formation of the high temperature phase of LiCoO2 (HT-LiCoO2), which exhibits good electrochemical performance with a specific capacity of 140 mAh/g and high capacity retention, a subsequent annealing treatment is necessary. For this purpose laser annealing of thin film LiCoO2 was investigated in detail and compared to conventional furnace annealing. A high power diode laser system operating at a wavelength of 940 nm with an integrated pyrometer for temperature control was used. Different temperatures (between 200°C and 700°C) for the laser structured and unstructured thin films were applied. The effects of laser treatment on the LiCoO2 thin films studied with Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction to determine their stoichiometry and crystallinity. The development of HT-LiCoO2 and also the formation of a Co3O4 phase were discussed. The electrochemical properties of the manufactured films were investigated via electrochemical cycling against a lithium anode.

  4. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

    Directory of Open Access Journals (Sweden)

    Christoph Rehbock


    Full Text Available Due to the abundance of nanomaterials in medical devices and everyday products, toxicological effects related to nanoparticles released from these materials, e.g., by mechanical wear, are a growing matter of concern. Unfortunately, appropriate nanoparticles required for systematic toxicological evaluation of these materials are still lacking. Here, the ubiquitous presence of surface ligands, remaining from chemical synthesis are a major drawback as these organic residues may cause cross-contaminations in toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on laser post irradiation, delayed bioconjugation and in situ size quenching by low salinity electrolytes. Subsequent or parallel applications of these methods enable precise tuning of the particle diameters in a regime from 4–400 nm without utilization of any artificial surface ligands. The second paragraph of this article highlights the recent progress concerning the synthesis of composition controlled alloy nanoparticles by laser ablation in liquids. Here, binary and ternary alloy nanoparticles with totally homogeneous elemental distribution could be fabricated and the composition of these particles closely resembled bulk implant material. Finally, the model AuAg was used to systematically evaluate composition related toxicological effects of alloy nanoparticles. Here Ag+ ion release is identified as the most probable mechanism of toxicity when recent toxicological studies with gametes, mammalian cells and bacteria are considered.

  5. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging (United States)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.


    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 105 w/cm2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  6. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, Hery Street 23, 00-908 Warsaw (Poland)], E-mail:; Badziak, B.; Parys, P.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, Hery Street 23, 00-908 Warsaw (Poland); Pisarek, M. [Warsaw University of Technology, Material Science and Engineering Faculty, Warsaw (Poland)


    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:{approx}0.5 J, power density: 10{sup 10} W/cm{sup 2}) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  7. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B


    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  8. Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials (United States)

    Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, R.; Yerci, S.

    This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP `SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 μ m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of `time-of-flight' ion diagnostics simultaneously with other diagnostic methods in dependence on laser pulse parameters, illumination geometry and target material. The properties of laser-implanted and modified SiO2 layers on sample surface were characterised with the use of different methods (XPS + ASD, Raman spectroscopy, PL spectroscopy) at the Middle East Technological University in Ankara and at the Warsaw University of Technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.

  9. Formation dynamics of femtosecond laser-induced phase objects in transparent materials (United States)

    Mermillod-Blondin, A.; Rosenfeld, A.; Stoian, R.; Audouard, E.


    Ultrashort pulse lasers offer the possibility to structure the bulk of transparent materials on a microscale. As a result, the optical properties of the irradiated material are locally modified in a permanent fashion. Depending on the irradiation parameters, different types of laser-induced phase objects can be expected, from uniform voxels (that can exhibit higher or lower refractive index than the bulk) to self-organized nanoplanes. We study the physical mechanisms that lead to material restructuring, with a particular emphasis on events taking place on a sub picosecond to a microsecond timescale following laser excitation. Those timescales are particularly interesting as they correspond to the temporal distances between two consecutive laser pulses when performing multiple pulse irradiation: burst microprocessing usually involves picosecond separation times and high repetition rate systems operate in the MHz range. We employ a time-resolved microscopy technique based on a phase-contrast microscope setup extended into a pump-probe scheme. This methods enables a dynamic observation of the complex refractive index in the interaction region with a time resolution better than 300 fs. In optical transmission mode, the transient absorption coefficient can be measured for different illumination wavelengths (400 nm and 800 nm). The phase-contrast mode provides qualitative information about the real part of the transient refractive index. Based on the study of those transient optical properties, we observe the onset and relaxation of the laser-generated plasma into different channels such as defect creation, sample heating, and shockwave generation. The majority of our experiments were carried out with amorphous silica, but our method can be applied to the study of all transparent media.

  10. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J


    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  11. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Nozomi, E-mail:; Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)


    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  12. Laser etching of transparent materials at a backside surface adsorbed layer

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, R. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Hirsch, D. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Zimmer, K. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany)]. E-mail:


    The laser etching using a surface adsorbed layer (LESAL) is a new method for precise etching of transparent materials with pulsed UV-laser beams. The influence of the processing parameters to the etch rate and the surface roughness for etching of fused silica, quartz, sapphire, and magnesium fluoride (MgF{sub 2}) is investigated. Low etch rates of 1 nm/pulse and low roughness of about 1 nm rms were found for fused silica and quartz. This is an indication that different structural modifications of the material do not affect the etching significantly as long as the physical properties are not changed. MgF{sub 2} and sapphire feature a principal different etch behavior with a higher etch rate and a higher roughness. Both incubation effects as well as the temperature dependence of the etch rate can be interpreted by the formation of a modified near surface region due to the laser irradiation. At repetition rates up to 100 Hz, no changes of the etch rate have been observed at moderate laser fluences.

  13. Remote monostatic detection of radioactive material by laser-induced breakdown (United States)

    Isaacs, Joshua; Miao, Chenlong; Sprangle, Phillip


    This paper analyzes and evaluates a concept for remotely detecting the presence of radioactivity using electromagnetic signatures. The detection concept is based on the use of laser beams and the resulting electromagnetic signatures near the radioactive material. Free electrons, generated from ionizing radiation associated with the radioactive material, cascade down to low energies and attach to molecular oxygen. The resulting ion density depends on the level of radioactivity and can be readily photo-ionized by a low-intensity laser beam. This process provides a controllable source of seed electrons for the further collisional ionization (breakdown) of the air using a high-power, focused, CO2 laser pulse. When the air breakdown process saturates, the ionizing CO2 radiation reflects off the plasma region and can be detected. The time required for this to occur is a function of the level of radioactivity. This monostatic detection arrangement has the advantage that both the photo-ionizing and avalanche laser beams and the detector can be co-located.

  14. A contribution to the development of wide band-gap nonlinear optical laser materials (United States)

    Stone-Sundberg, Jennifer Leigh

    The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potential of structurally characterized noncentrosymmetric materials is introduced. This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly, the contributions of symmetric tetrahedral and triangular anionic groups are inspected. It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals. In this study, several known materials are included as well as several new materials. The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO 4, NaAlO2, LaCa4O(BO3)3, and tourmaline; the new compounds La0.8Y0.2Sc3 (BO3)4 and Ba2B10O 17; and the laser host Sr3Y0.75Yb0.25(BO 3)3 are described.

  15. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems (United States)


    decreases for LS5 to CS5 as seen in Fig. I, A parameters since a simple model is being used to describe must decrease from LS5 to CSS . Therefore, the...materials such as quire incorporation of multiple trapping levels in describ- Bi12SiO𔃺 , 2’ BaTiO 3,𔄀’ 7 GaAs, 22 and CdTe . 23 In the pi- ing the

  16. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report (United States)

    Dwenger, Richard Dale


    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  17. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K


    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  18. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department


    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  19. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    Directory of Open Access Journals (Sweden)

    Robert Cep


    Full Text Available The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then they was compared on the basis of the measured roughness parameters Ra a Rz by using a portable touch roughness Hommel-Etamic W5 and dates was processed according to ČSN EN ISO 4287. Cutting of samples was realized at the Department of Machining, Assembly and Engineering Metrology, VŠB-TUO.

  20. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire) (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen


    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  1. Material Property Measurement of Metallic Parts using the INEEL Laser Ultrasonic Camera

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Telschow; R. S. Schley; S. M. Watson; V. A. Deason


    Ultrasonic waves form a useful nondestructive evaluation (NDE) probe for determining physical, microstructural, and mechanical properties of materials and parts. Noncontacting laser ultrasonic methods are desired for remote measurements and on-line manufacture process monitoring. Researchers at the Idaho National Engineering & Environmental Laboratory (INEEL) have developed a versatile new method for detection of ultrasonic motion at surfaces. This method directly images, without the need for scanning, the surface distribution of subnanometer ultrasonic motion. By eliminating the need for scanning over large areas or complex parts, the inspection process can be greatly speeded up. Examples include measurements on parts with complex geometries through resonant ultrasound spectroscopy and of the properties of sheet materials determined through anisotropic elastic Lamb wave propagation. The operation and capabilities of the INEEL Laser Ultrasonic Camera are described along with measurement results.

  2. Material Property Measurement of Metallic Parts using the INEEL Laser Ultrasonic Camera

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall


    Ultrasonic waves form a useful nondestructive evaluation (NDE) probe for determining physical, microstructural, and mechanical properties of materials and parts. Noncontacting laser ultrasonic methods are desired for remote measurements and on-line manufacture process monitoring. Researchers at the Idaho National Engineering & Environmental Laboratory (INEEL) have developed a versatile new method for detection of ultrasonic motion at surfaces. This method directly images, without the need for scanning, the surface distribution of subnanometer ultrasonic motion. By eliminating the need for scanning over large areas or complex parts, the inspection process can be greatly speeded up. Examples include measurements on parts with complex geometries through resonant ultrasound spectroscopy and of the properties of sheet materials determined through anisotropic elastic Lamb wave propagation. The operation and capabilities of the INEEL Laser Ultrasonic Camera are described along with measurement results.

  3. Laser ablation of the lysozyme protein: a model system for soft materials

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    ionization) in contrast to many other organic materials. Also the thermal properties, including the heat-induced decomposition behavior are comparatively well-known. For laser-irradiation at wavelengths above 310 nm, no photochemical processes occur initially, but the material is ejected via photothermal......Lysozyme is a well-known protein which is used in food processing and is also an important constituent of human secretions such as sweat and saliva. It has a well-defined mass (14307 u) and can easily be detected by mass spectrometric methods such as MALDI (Matrix-assisted laser desorption...... on the results of molecular-level modeling. In particular, the effect of the possible presence of trapped water pockets in the lysozyme targets is investigated in the simulations and the minimum amount of water required for the lift off of the intact molecules is established....

  4. PMMA microstructure as KrF excimer-laser LIGA material (United States)

    Yang, Chii-Rong; Chou, Bruce C. S.; Chou, Hsiao-Yu; Lin, Frank H. S.; Kuo, Wen-Kai; Luo, Roger G. S.; Chang, Jer-Wei; Wei, Z. J.


    PMMA (polymethyl methacrylate) has been widely used as x-ray LIGA material for its good features of electrical acid plating of all common metals to industrial applications. Unlike the tough characteristics of polyimide in almost all alkaline and acid solutions, PMMA is easily removed in chemical etchants after electroplating process. For this reason, ablation- etching characteristics of PMMA material for 3D microstructures fabrication using a 248 nm KrF excimer laser were investigated. Moreover, the uses of the laminated dry film were also studied in this work. Experimental results show that PMMA microstructures can produce the near-vertical side- wall profile as the laser fluence up to 2.5 J/cm2. PMMA templates with high aspect ratio of around 25 were demonstrated, and the sequential electroplating processes have realized the metallic microstructures. Moreover, the microstructures fabricated in dry film show the perfect side- wall quality, and no residues of debris were found.

  5. Influence of coating material on laser damage threshold of TiO2 films

    Institute of Scientific and Technical Information of China (English)

    Jianke Yao; Zhengxiu Fan; Hongbo He; Jianda Shao


    @@ The optical property, structure, surface properties (roughness and defect density) and laser-induced damage threshold (LIDT) of TiO2 films deposited by electronic beam (EB) evaporation of TiO2 (rutile), TiO2 (anatase) and TiO2 + Ta2O5 composite materials are comparatively studied. All films show the polycrystalline anatase TiO2 structure. The loose sintering state and phase transformation during evaporating TiO2 anatase slice lead to the high surface defect density, roughness and extinction coefficient, and low LIDT of films. The TiO2 + Ta2O5 composite films have the lowest extinction coefficient and the highest LIDT among all samples investigated. Guidance of selecting materials for high LIDT laser mirrors is given.OCIS codes: 310.3840, 140.3330.

  6. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich


    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  7. Influence of various herbal irrigants as a final rinse on the adherence of Enterococcus faecalis by fluorescence confocal laser scanning microscope

    Directory of Open Access Journals (Sweden)

    Hannah Rosaline


    Full Text Available Aim: The aim of this study was to assess the antibacterial efficacy of three different herbal irrigants against Enterococcus faecalis. Materials and Methods: Single rooted teeth were extracted due to orthodontic and periodontal reasons. The teeth were then inoculated with E. faecalis. The teeth were randomly divided into three experimental groups and two control groups of six samples each. Group 1 specimens were treated with 5.2% sodium hypochlorite (NaOCL for 30 min followed by 5 mmol/L Ethylenediaminetetraacetic acid (EDTA for 5 min and saline as final irrigant. Group 2 specimens were treated with and 5.2% NaOCl for 30 min as final irrigant. Group 3 were treated with Morinda citrifolia (MC for 30 min as final irrigant. Group 4 were treated with Azadiracta indica (AI as final irrigant. Group 5 were treated with green tea (GT for 30 min as final irrigant. The dentin specimens were carefully spread onto a microscope slide and stained with BacLight and examined in a confocal laser scanning microscope set to monitor fluorescein isothiocyanate and propidium iodide. A total of nine fields were examined for each treatment and the bacteria presented were counted. Statistical Analysis: Using the one-way ANOVA with multiple comparison, significantly less bacteria were found adhering to the samples treated with Neem followed by NaOCL, GT, MC, Saline. Results: AI treatment produced the maximum reduction in adherence of E. faecalis to dentin (9.30% followed by NaOCl (12.50%, GT (27.30%, MC (44.20% and saline (86.70%. Conclusion: Neem is effective in preventing adhesion of E. faecalis to dentin.

  8. An investigation of the effects of material anisotropy and heterogeneity on pulsed, laser-generated acoustic signals. (United States)

    Hurley, D H; Spicer, J B


    Point-source and line-source models for the laser ultrasonic source in materials exhibiting transverse isotropy are applied to the specific problem of laser generation and ultrasonic propagation in unidirectional, polymer matrix composite materials. Comparing experiment and theory, it is shown that these composite materials exhibit homogeneous behavior, at the frequencies investigated, for ultrasonic wave propagation perpendicular to the fiber direction. For ultrasonic propagation in the fiber direction, ultrasonic dispersion, resulting from the inhomogeneous nature of the composite, affects the laser ultrasonic signal.

  9. Semiconductor nanowire lasers (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong


    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  10. Real-time measurement of materials properties at high temperatures by laser produced plasmas (United States)

    Kim, Yong W.


    Determination of elemental composition and thermophysical properties of materials at high temperatures, as visualized in the context of containerless materials processing in a microgravity environment, presents a variety of unusual requirements owing to the thermal hazards and interferences from electromagnetic control fields. In addition, such information is intended for process control applications and thus the measurements must be real time in nature. A new technique is described which was developed for real time, in-situ determination of the elemental composition of molten metallic alloys such as specialty steel. The technique is based on time-resolved spectroscopy of a laser produced plasma (LPP) plume resulting from the interaction of a giant laser pulse with a material target. The sensitivity and precision were demonstrated to be comparable to, or better than, the conventional methods of analysis which are applicable only to post-mortem specimens sampled from a molten metal pool. The LPP technique can be applied widely to other materials composition analysis applications. The LPP technique is extremely information rich and therefore provides opportunities for extracting other physical properties in addition to the materials composition. The case in point is that it is possible to determine thermophysical properties of the target materials at high temperatures by monitoring generation and transport of acoustic pulses as well as a number of other fluid-dynamic processes triggered by the LPP event. By manipulation of the scaling properties of the laser-matter interaction, many different kinds of flow events, ranging from shock waves to surface waves to flow induced instabilities, can be generated in a controllable manner. Time-resolved detection of these events can lead to such thermophysical quantities as volume and shear viscosities, thermal conductivity, specific heat, mass density, and others.

  11. Mesostructured materials for optical applications: from low-k dielectrics to sensors and lasers (United States)

    Wirnsberger, Gernot; Yang, Peidong; Scott, Brian J.; Chmelka, Bradley F.; Stucky, Galen D.


    Recent advances on the use of mesoporous and mesostructured materials for electronic and optical applications are reported. The focus is on materials which are processed by block-copolymer templating of silica under weakly acidic conditions and by employing dip- and spin-coating as well as soft lithographic methods to bring them into a well-defined macroscopic shape. Several chemical strategies allow the mesostructure architecture to be used for electronic/optical applications: Removal of the block-copolymers results in highly porous, mechanically and thermally robust materials which are promising candidates for low dielectric constant materials. Since the pores are easily accessible, these structures are also ideal hosts for optical sensors, when suitable are incorporated during synthesis. For example, a fast response optical pH sensor was implemented on this principle. As-synthesized mesostructured silica/block-copolymer composites, on the other hand, are excellently suited as host systems for laser dyes and photochromic molecules. Laser dyes like rhodamine 6G can be incorporated during synthesis in high concentrations with reduced dimerization. This leads to very-low-threshold laser materials which also show a good photostability of the occluded dye. In the case of photochromic molecules, the inorganic-organic nanoseparation enables a fast switching between the colorless and colored form of a spirooxazine molecule, attributed to a partitioning of the dye between the block-copolymer chains. The spectroscopic properties of these dye-doped nanocomposite materials suggest a silica/block-copolymer/dye co-assembly process, whereby the block-copolymers help to highly disperse the organic dye molecules.

  12. Experimental study of porosity reduction in high deposition-rate Laser Material Deposition (United States)

    Zhong, Chongliang; Gasser, Andres; Schopphoven, Thomas; Poprawe, Reinhart


    For several years, the interest in Additive Manufacturing (AM) is continuously expanding, owing to the paradigm shift that new production processes, such as Laser Material Deposition (LMD), provide over conventional manufacturing technologies. With LMD, three-dimensional, complex components out of a wide range of materials can be manufactured consecutively layer-by-layer. Despite the technological advantages of the LMD process, currently achieved deposition-rates of approx. 0.5 kg/h for Inconel 718 (IN 718) remain a major concern in regards to processing times and economic feasibility. Moreover, processing conditions need to be chosen carefully or else material defects can be systematically formed either at the interface separating two adjacent clad layers, at the bonding zone or within the bulk of the layer. In this respect, the effects of powder humidity, laser power, nominal powder particle size, powder morphology and shielding gas flow rate on the porosity in laser deposited single tracks at an increased deposition-rate of approx. 2 kg/h was investigated through experiments. Based on experimental results, several approaches of reducing porosity in high deposition-rate LMD are proposed in this paper.

  13. Laser-Based Dynamic Compression of Geological Materials to Ultrahigh Pressures (United States)

    Duffy, T. S.


    Laser-based dynamic compression provides new opportunities to study the structures and properties of geological materials to ultrahigh pressure conditions reaching 1 terapascal and beyond. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Samples can be compressed for ~10s of nanoseconds on spatial scales of ~1 millimeter. Diagnostics include velocity interferometry from which the stress-density response of the material can be determined and X-ray diffraction from which lattice-level structural information is obtained. Our experiments are being carried out at a suite of facilities including the Omega Laser (U. of Rochester), Linear Coherent Light Source (LCLS), and National Ignition Facility (Livermore). Using ramp compression we have constrained pressure-density states in a variety of materials including iron, magnesium oxide, and carbon. X-ray diffraction has been used as a diagnostic to probe the B1-B2 phase transition in MgO under both ramp and shock loading to multi-megabar pressures. We have also examined this same phase transition at more modest pressures on sodium chloride at the LCLS, observing both the B1-B2 transition upon compression and its back transformation upon release. X-ray diffraction measurements have also been used to study the melting curves and high-pressure phase stability of transition metals and alloys, including compositions relevant to the cores of Earth and super-Earth planets.

  14. A multiplexed two-wave mixing interferometer for laser ultrasonic measurements of material anisotropy (United States)

    Zhou, Yi; Murray, Todd W.; Krishnaswamy, Sridhar


    A method to optically measure ultrasonic displacements simultaneously over an array of detection points has been developed. Optical phase gratings are used to create a detection-array of laser beams that are directed to the specimen. The detection array can be arranged in several ways on the test object. The scattered beams from the detection-array are collected and combined with a single reference beam in a photorefractive crystal to from a multiplexed two-wave mixing (MTWM) configuration. Each of the output beams from the photorefractive crystal is imaged on to a separate element of a photodetector array. The resulting MTWM system is capable of providing simultaneous optical detection (with high spatial resolution and sub-nanometer displacement sensitivities) at several points on a test object. The MTWM system can be used in several modes for laser ultrasonic NDE of flaws and materials characterization. In this paper, the MTWM is used to characterize material anisotropy. Surface acoustic waves (SAWs) are generated using a pulsed laser focused to a point on a test object. The resulting SAW propagation is monitored optically simultaneously at 8 points arranged circularly around the generating spot. The scattered beams from the eight detection points are processed simultaneously in the MTWM setup. The group velocity slowness curve is obtained directly from the measured signals from the MTWM array. Results are shown for silicon and quartz. It is shown that the MTWM enables rapid experimental determination of material anisotropy.

  15. High Strain-Rate Material Model Validation for Laser Peening Simulation

    Directory of Open Access Journals (Sweden)

    Kristina Langer


    Full Text Available Finite element modeling can be a powerful tool for predicting residual stresses induced by laser peening; however the sign and magnitude of the stress predictions depend strongly on how the material model captures the high strain rate response. Although a Johnson-Cook formulation is often employed, its suitability for modeling phenomena at very high strain rates has not been rigorously evaluated. In this paper, we address the effectiveness of the Johnson-Cook model, with parameters developed from lower strain rate material data (∼10^3 s^–1, to capture the higher strain rate response (∼10^5–10^6 s^–1 encountered during the laser peening process. Published Johnson-Cook parameters extracted from split Hopkinson bar testing were used to predict the shock response of aluminum samples during high-impact flyer plate tests. Additional quasi-static and split Hopkinson bar tests were also conducted to study the model response in the lower strain rate regime. The overall objective of the research was to ascertain whether a material model based on conventional test data (quasi-static compression testing and split Hopkinson bar measurements can credibly be used in FE simulations to predict laser peen-induced stresses.

  16. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji


    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  17. Multifunctional Material Structures Based on Laser-Etched Carbon Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Aline Emplit


    Full Text Available High-power electronics in the transportation and aerospace sectors need size and weight reduction. Multifunctional and multistructured materials are currently being developed to couple electromagnetic (EM and thermal properties, i.e., shielding against electromagnetic impulsions, and thermal management across the thermal interface material (TIM. In this work, we investigate laser-machined patterned carbon nanotube (CNT micro-brushes as an alternative to metallic structures for driving simultaneously EM and heat propagation. The thermal and electromagnetic response of the CNT array is expected to be sensitive to the micro-structured pattern etched in the CNT brush.

  18. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    Institute of Scientific and Technical Information of China (English)

    JIA You-Hua; ZHONG Biao; JI Xian-Ming; YIN Jian-Ping


    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ultrafine particles, which can be achieved by the enhancement of local field around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material.

  19. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu


    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  20. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles (United States)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.


    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  1. Focused laser lithographic system with sub-wavelength resolution based on vortex laser induced opacity of photochromic material. (United States)

    Wei, Zhen; Bai, Jian; Xu, Jianfeng; Wang, Chen; Yao, Yuan; Hu, Neibin; Liang, Yiyong; Wang, Kaiwei; Yang, Guoguang


    A focused laser lithographic system combines with vortex laser induced opacity of photochromic layer to write patterns with linewidth below wavelength. A photochromic layer is formed by coating the mixture of metanil yellow and aqueous PVA solution on the photoresist layer. In our system, the center of a lithographic laser with a 405 nm wavelength coincides with the center of vortex laser with a 532 nm wavelength. When a photochromic layer is illuminated by both lasers simultaneously, the absorbance for the lithographic laser decreases at the hollow region of the vortex laser but increases at its annular region, so that a transparent aperture for the lithographic laser is created and its size could be tuned by changing the power of vortex laser; therefore, the linewidth of written patterns is variable. Experimentally, using a 20× lens (NA = 0.4), this system condenses the linewidth of written patterns from 6614 to 350 nm.

  2. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  3. Seam tracking with texture based image processing for laser materials processing (United States)

    Krämer, S.; Fiedler, W.; Drenker, A.; Abels, P.


    This presentation deals with a camera based seam tracking system for laser materials processing. The digital high speed camera records interaction point and illuminated work piece surface. The camera system is coaxially integrated into the laser beam path. The aim is to observe interaction point and joint gap in one image for a closed loop control of the welding process. Especially for the joint gap observation a new image processing method is used. Basic idea is to detect a difference between the textures of the surface of the two work pieces to be welded together instead of looking for a nearly invisible narrow line imaged by the joint gap. The texture based analysis of the work piece surface is more robust and less affected by varying illumination conditions than conventional grey scale image processing. This technique of image processing gives in some cases the opportunity for real zero gap seam tracking. In a condensed view economic benefits are simultaneous laser and seam tracking for self-calibrating laser welding applications without special seam pre preparation for seam tracking.

  4. An Automated Laboratory Laser Heating Arrangement for Materials Synthesis at High Temperatures and High Pressures

    CERN Document Server

    Subramanian, N; Bindu, R; Kumar, N R Sanjay; Sekar, M; Shekar, N V Chandra; Sahu, P Ch


    This paper describes the automation of a laser heating arrangement for synthesizing and studying materials at high pressures (up to ~ 1 Mbar) and high temperatures (up to ~ 5000 K). In this arrangement, a diamond anvil high-pressure cell (DAC) containing a microscopic sample of typical diameter ~50-100 micrometer, is mounted on a precision X-Y nanomotor stage that forms part of an IR laser heating optical assembly. Automation of this stage has been accomplished using a LabVIEW virtual instrument program to manipulate the X and Y stages using nanopositioning systems. This has a major feature of enabling a rastered heating of the sample over a user-defined circular area, without any operator intervention in addition to a virtual joystick to position the sample with respect to the laser spot. This auto-rastering feature has the advantage of offering uniform exposure of a circular area of the sample to the incident heating laser beam apart from drastic reduction in scan time compared to a manual scan. The diamete...

  5. Laser-induced breakdown spectroscopy: A versatile tool for monitoring traces in materials

    Indian Academy of Sciences (India)

    Shiwani Pandhija; A K Rai


    Laser-induced breakdown spectroscopy (LIBS) is an emerging technique for simultaneous multi-elemental analysis of solids, liquids and gases with minute or no sample preparation and thus revolutionized the area of on-line analysis technologies. The foundation for LIBS is a solid state, short-pulsed laser that is focused on a sample to generate a high-temperature plasma, and the emitted radiation from the excited atomic and ionic fragments produced within the plasma is characteristic of the elemental composition of the sample that can be detected and analyzed using a suitable optical spectrograph. In the present paper, the applicability of LIBS for different solid samples having homogeneous (silver ornament, aluminum plate) or heterogeneous composition (soil) using nanosecond laser pulses is discussed. Nanosecond pulse laser makes plasma at the sample surface even at very low pulse energies and also allows for precise ablation of the substrate material with little damage to the surrounding area. We have also studied the penetration of different heavy metals inside the soil surface.


    Directory of Open Access Journals (Sweden)

    Mihail Stoyanov Mihalev


    Full Text Available The product information plays an important role in the improvement of the manufacturing, allowing the tracking of the part through the full life cycle. Laser marking is one of the most versatile techniques for this purpose. In this paper, a modification of the powder bed selective laser melting for additive laser marking of stainless steel parts is presented. This modification is based on the use of only one transition metal oxide chemically bonded to the stainless steel substrate, without using any additional materials and cleaning substances. The resulting additive coatings, produced from initial MoO3 and WO3 powders, show strong adhesion, high hardness, long durability and a high optical contrast. For estimation of the chemical and structural properties, the Raman and X-Ray Diffraction (XRD spectroscopy have been implemented. A computer model of the process of the laser melting and re-solidification has been developed as well. A comparative analysis of the properties of both (MoO3 and WO3 additive coatings has been performed. An attempt for a qualitative explanation of the thermo-chemical phenomena during the marking process has been undertaken.

  7. Applications of laser produced ion beams to nuclear analysis of materials (United States)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.


    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ˜ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv,

  8. Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties (United States)

    Hochholdinger, Bernd; Hora, Pavel; Grass, Hannes; Lipp, Arnulf


    Press hardening is a well-established production process in the automotive industry today. The actual trend of this process technology points towards the manufacturing of parts with tailored properties. Since the knowledge of the mechanical properties of a structural part after forming and quenching is essential for the evaluation of for example the crash performance, an accurate as possible virtual assessment of the production process is more than ever necessary. In order to achieve this, the definition of reliable input parameters and boundary conditions for the thermo-mechanically coupled simulation of the process steps is required. One of the most important input parameters, especially regarding the final properties of the quenched material, is the contact heat transfer coefficient (IHTC). The CHTC depends on the effective pressure or the gap distance between part and tool. The CHTC at different contact pressures and gap distances is determined through inverse parameter identification. Furthermore a simulation strategy for the subsequent steps of the press hardening process as well as adequate modeling approaches for part and tools are discussed. For the prediction of the yield curves of the material after press hardening a phenomenological model is presented. This model requires the knowledge of the microstructure within the part. By post processing the nodal temperature history with a CCT diagram the quantitative distribution of the phase fractions martensite, bainite, ferrite and pearlite after press hardening is determined. The model itself is based on a Hockett-Sherby approach with the Hockett-Sherby parameters being defined in function of the phase fractions and a characteristic cooling rate.

  9. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.


    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  10. Geoscience Laser Altimeter System (GLAS): Final Test Report of DM LHP TV Testing. Revised (United States)

    Baker, Charles


    The Demonstration Model (DM) Loop Heat Pipe (LHP) was tested at Goddard Space Flight Center (GSFC) during September and October, 1999. The LHP system was placed in the Dynavac 36 in. chamber in Building 4. The test lasted for about 6 weeks. The LHP was built, designed, and manufactured at Dynatherm Corporation, Inc. In Hunt Valley, MD according to GSFC specifications. The purpose of the test was to evaluate the performance of a propylene LHP for the Geoscience Laser Altimetry System (GLAS) instrument application.

  11. [Infrared tunable difference frequency laser source]. Final technical report, September 15, 1990--September 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.


    Purpose of grant was to purchase equipment necessary to construct an infrared laser source based on difference frequency generation in AgGaS{sub 2}. This continuous wave, single frequency, tunable infrared source has been assembled and is being used for infrared kinetic spectroscopy of small free radicals important in combustion. Infrared spectra are given for the Q-branch of a combination band (11{sup 1}1) of N{sub 2}O, and for the transient in CO produced by flash photolysis of acetone in various vibrational states.

  12. [Infrared tunable difference frequency laser source]. Final technical report, September 15, 1990--September 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.


    Purpose of grant was to purchase equipment necessary to construct an infrared laser source based on difference frequency generation in AgGaS[sub 2]. This continuous wave, single frequency, tunable infrared source has been assembled and is being used for infrared kinetic spectroscopy of small free radicals important in combustion. Infrared spectra are given for the Q-branch of a combination band (11[sup 1]1) of N[sub 2]O, and for the transient in CO produced by flash photolysis of acetone in various vibrational states.

  13. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay


    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  14. Dynamic Material Property Measurement of Steel Thin Sheets using Laser-Based Ultrasonics (United States)

    Nagata, Y.; Yamada, H.; Hashiguchi, S.; Lim, C. S.; Park, H. C.; Huh, H. J.; Kang, M. K.; Oh, K. J.


    A material property measurement system for steel sheets using laser-based ultrasonics was developed. The system consists of a pulsed Nd:YAG laser for ultrasonic generation and multi-channel interferometer coupled with a CW single frequency laser for ultrasonic detection. The system can measure the frequency of the S1 Lamb wave mode of zero group velocity (S1f) as well as the longitudinal resonance frequencies without ablative damage to the steel surface. It was confirmed that Poisson's ratio could be directly obtained by combining the measured S1f value and the longitudinal resonance frequencies. To evaluate the applicability of this system in an actual steel production setting, the system was installed in hot rolling pilot plant that produces steel samples. As a result, it was demonstrated that the system can measure dynamic changes in Poisson's ratio values within steel sheets, even in the hot rolling pilot plant environment. Material property data, such as Poisson's ratio, during the thin sheet production process will be very useful for manufacturing high value-added steel, such as sheets with uniform quality.

  15. Leaf-like nanotips synthesized on femtosecond laser-irradiated dielectric material

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Amirkianoosh, E-mail: [Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada); Patel, Nikunj B.; Tan, Bo [Department of Aerospace Engineering, Ryerson University, Toronto, Ontario, M5B 2K3 (Canada); Venkatakrishnan, Krishnan [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, M5B 2K3 (Canada)


    Nanotips are the key nanostructures for the improvement of field emission, flat panel displays, force microscopy, and biosensor applications. We propose a single-step, rapid synthesis method to generate nanotips using femtosecond laser irradiation at megahertz frequency with a background flow of nitrogen gas at ambient conditions. Two different types of leaf-like nanotips can be grown on the target surface: randomly oriented multiple tips growing from a single large droplet and single tips growing from small droplets. In this report, we explain the mechanism accountable for the formation of such nanotips using known concepts of laser breakdown of dielectric materials, plasma plume generation, plasma interactions with incoming laser pulses and surrounding gas, as well as known thermal properties of target material. Nitrogen gas plays an interesting role for the resultant structural changes on the target surface and thus it is given special attention in our discussion. Our unique fabrication technique has enabled us to produce tips with nanoscale apexes with a stem and length ranging from few hundred nanometers to few micrometers.

  16. Numerical modelling of thermal effects on biological tissue during laser-material interaction (United States)

    Latinovic, Z.; Sreckovic, M.; Janicijevic, M.; Ilic, J.; Radovanovic, J.


    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode.

  17. Activation analysis and materials choice in the laser fusion reactor KOYO (United States)

    Perlado, J. M.; Mima, K.; Nakai, S.; Alonso, E.; Mun˜oz, E.; Sanz, J.


    The laser fusion conceptual reactor KOYO, developed by the ILE Osaka, is presented and analyzed from the activation perspective. The reactor is driven by a laser diode pumped solid state laser which dramatically increases the efficiency of the system, and uses liquid LiPb film protection flowing through ceramic SiC porous tubes in the blanket. Neutron fluxes have been computed using 2/3D models and compared with spherical approaches. Two blanket areas with different packing fractions are considered, and we show the availability of a large fraction of the SiC with impurities to be considered as shallow land burial (SLB). We propose a more complete solution for SLB through the use of porous woven graphite (C) fabric tubes. A graphite reflector is included with important effect in the activation of the chamber wall. Ferritic HT-9 is considered as the structural material for the chamber wall, allowing its SLB and different recycling options. Releases of 1 kg of target-emissions-facing SiC tubes and HT-9 materials have also been simulated with optimum performances.

  18. Comparison of the sealing ability of two root-end filling materials (MTA and CEM cement following retropreparation with ultrasonic or Er,Cr:YSGG laser

    Directory of Open Access Journals (Sweden)

    Razmi H


    Full Text Available "nBackground and Aims: Considering advantages and disadvantages of mineral trioxide aggregate (MTA, Calcium Enriched Mixture (CEM cement has been developed recently. The purpose of this study was to compare the apical microleakage of the root-end cavities prepared by ultrasonic or Er,Cr:YSGG laser and filled with MTA or CEM cement. "nMaterials and Methods: Eighty single-rooted, extracted human teeth were instrumented and obturated. Root-end resection was made by removing 3 mm of the apex. The teeth were randomly divided into two experimental (n=30 and two positive and negative control (n=10 groups. After that, the retrograde cavities were prepared using ultrasonic or Er,Cr: YSGG Laser. According to the root-end filling materials (MTA or CEM cement, each group was then divided into two subgroups. Finally, specimens were cleared for assessing the amount of apical dye (Indian ink penetration. The data were analyzed using Kruskall-Wallis and Dunn tests. "nResults: Laser/CEM cement group showed significantly the lowest mean apical dye penetration. There were no statistically significant differences between Laser/MTA, ultrasonic/MTA and ultrasonic/CEM cement groups. "nConclusion: Based on the findings of this study, CEM cement demonstrated lower rate of apical leakage compared with MTA, when the root-end cavities prepared with Er,Cr:YSGG Laser. The sealing ability of MTA was not different following root-end preparation by ultrasonic or Er,Cr:YSGG Laser.

  19. Use of scanning LIMM (Laser Intensity Modulation Method) to characterise polarisation variability in dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark; Cain, Markys, E-mail: [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)


    The Laser Intensity Modulation Method (LIMM) has traditionally been used to characterise the depth dependence of polarisation of piezoelectric materials{sup 1}. Although the technique is simple, it is difficult to extract the polarisation / depth data from the measured pyroelectric current because of the complex mathematics pertaining to the physics of the technique. However, the laser probe may still be used as a comparative or qualitative tool in mapping out the polarisation across the surface of a material. A novel scanning LIMM system has been developed to map the variation in piezoelectric activity across a range of samples. The system has been upgraded with a galvanometer mirror scanner to increase speed and reduce sensitivity to acoustic noise. The improvements are discussed and tested on a range of case studies. The technique can be used to show differences in piezoelectric activity caused by features such as inhomogeneous material composition, porosity and mechanical damage. The method has application as a quality control tool for materials and device manufacturers.

  20. Absorption measurement of acoustic materials using a scanning laser Doppler vibrometer (United States)

    Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick; de Sitter, Gert


    In this article a method is proposed to estimate the normal incidence reflection ratio and absorption coefficient of acoustical materials using measurements in a transparent tube excited with a loudspeaker and terminated with the material under investigation. The waveforms are measured at different locations in the tube using a scanning laser Doppler vibrometer. Because the measurement probe (i.e., the laser beam) does not interfere with the wave in the tube, narrow tubes can be used. This means that-in contrast to the standardized wide tube tests using microphones-the proposed experiment could be used for high frequencies (in the paper an 8 mm tube was used, resulting in a 25 kHz upper frequency limit). It is shown based on theoretically known scenarios (i.e., an open tube and a rigid termination) that the absorption coefficient can be obtained with an error of about three percent. In addition, the absorption coefficient of two commonly used absorption materials-glass fiber wool and carpet-were determined and found to be in good agreement with material databases. .