WorldWideScience

Sample records for laser machined microwell

  1. Imaging micro-well proportional counters fabricated with masked UV laser ablation

    CERN Document Server

    Deines-Jones, P; Crawford, H; Hunter, S D

    2002-01-01

    The micro-well detector is a gas-proportional counter similar to the CAT (Bartol et al., J. Phys. III 6 (1996) 337) and WELL detectors (Bellazzini et al., Nucl. Instr. and Meth. A 423 (1999) 125). The micro-well is a cylindrical hole formed in the polymer substrate of commercially fabricated copper-clad flexible printed circuit board by UV laser ablation. The micro-wells are drilled at GSFC's UV laser-ablation facility. The cathode is a metal annulus that surrounds the opening of the well. The anode is a metal pad that fills the bottom of the well. Advantages of this topology include intrinsic two-dimensional sensing, thick robust electrodes, and large localized image charge on the cathodes. We have fabricated 5 cmx5 cm micro-well detectors with segmented anodes (1-d) and with both anodes and cathodes segmented (2-d), and have demonstrated: - stable, proportional operation at gas gains in excess of 30,000 in Ar- and Xe-based gases; - FWHM energy resolution of 20% at 6 keV in P-10; - preliminary 1-d spatial re...

  2. LASER CUTTING MACHINES FOR 3-D THIN SHEET PARTS

    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC

    2012-11-01

    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  3. Laser machining-- a status report

    Science.gov (United States)

    C. W. McMillin

    1972-01-01

    The laser (an acronym for Light Amplification by Stimulated Emission of Radiation) provides a source of intense optical radiation. This energy can be focused to a very small diameter. At even moderate power levels, therefore, the energy at the focal point is sufficient to vaporize most materials.

  4. Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters

    International Nuclear Information System (INIS)

    Kim, Jong Do; Lee, Su Jin; Suh, Jeong

    2011-01-01

    This paper describes the Laser Assisted Machining (LAM) that cuts and removes softened parts by locally heating the ceramic with laser. Silicon nitride ceramics can be machined with general machining tools as well, because YSiAlON, which was made up ceramics, is soften at about 1,000 .deg. C. In particular, the laser, which concentrates on highly dense energy, can locally heat materials and very effectively control the temperature of the heated part of specimen. Therefore, this paper intends to propose an efficient machining method of ceramic by deducing the machining governing factors of laser assisted machining and understanding its mechanism. While laser power is the machining factor that controls the temperature, the CBN cutting tool could cut the material more easily as the material gets deteriorated from the temperature increase by increasing the laser power, but excessive oxidation can negatively affect the quality of the material surface after machining. As the feed rate and cutting depth increase, the cutting force increases and tool lifespan decreases, but surface oxidation also decreases. In this experiment, the material can be cut to 3 mm of cutting depth. And based on the results of the experiment, the laser assisted machining mechanism is clarified

  5. Market for multiaxis laser machine tools

    Science.gov (United States)

    Ream, Stanley L.

    1991-03-01

    While it's true that this is an exciting topic, it niay be more exciting than profitable, but it certainly has captured the attention of a lot of us laser folks, and it keeps growing almost because it wants to. First of all let me comment briefly with a word from our sponsor that GE Fanuc is one of the several ways the Fanuc laser product gets into the United States. We market it, GM Fanuc also markets it, and of course it shows up on Japanese machine tool built products. The information in this little presentation came from discussions with you folks wherever possible. In some cases I was unable to make contact with the horse's mouth as it were, but we got roundabout information so it's not gospel, but it's close. We've also had some updated information at the show here updated rumors maybe that suggest that some of the numbers may be high or low. I think in the aggregate it's not too far off.

  6. Design of instrumentation and software for precise laser machining

    Science.gov (United States)

    Wyszyński, D.; Grabowski, Marcin; Lipiec, Piotr

    2017-10-01

    The paper concerns the design of instrumentation and software for precise laser machining. Application of advanced laser beam manipulation instrumentation enables noticeable improvement of cut quality and material loss. This factors have significant impact on process efficiency and cutting edge quality by means of machined part size and shape accuracy, wall taper, material loss reduction (e.g. diamond) and time effectiveness. The goal can be reached by integration of laser drive, observation and optical measurement system, beam manipulation system and five axis mechanical instrumentation with use of advanced tailored software enabling full laser cutting process control and monitoring.

  7. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-01-01

    Fabrication of laser fusion targets requires a number of special techniques. We have developed both laser and spark erosion machining to produce minute parts of complex targets. A high repetition rate YAG laser at double frequency is used to etch various materials. For example, marks or patterns are often necessary on structured or advanced targets. The laser is also used to thin down plastic coated stalks. A spark erosion system has proved to be a versatile tool and we describe current fabrication processes like cutting, drilling, and ultra precise machining. Spark erosion has interesting features for target fabrication: it is a highly controllable and reproducible technique as well as relatively inexpensive

  8. A supervisor system for computer aided laser machining

    International Nuclear Information System (INIS)

    Mukherjee, J.K.

    1990-01-01

    Lasers achieve non divergent beam of short wavelength energy which can propagate through normal atmosphere with little divergence and can be focused on very fine points. The final high energy per unit area on target is highly localised and suitable for various types of machining at high speeds. The most notable factor is that this high energy spot can be located precisely using light-weight optical components. The laser-machining is very amenable to environmental conditions unlike electron beam and other techniques. Precision cutting and welding of nuclear materials in normal or non oxidising atmosphere can be done using this fairly easily. To achieve these objectives, development of a computer controlled laser machining system has been undertaken. The development project aims at building a computer aided machine with indegenous controller and medium power laser suitable for cutting, welding, and marking. This paper describes the integration of the various computer aided functions, spanning over the full range, from job-defining to final finished part-delivary, in computer aided laser machining. Various innovative features of the system that render it suitable for laser tool development as well as for special machining applications with user-friendliness have been covered. (author). 5 refs., 5 figs

  9. Present and future of laser welding machine; Laser yosetsuki no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Taniu, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-04-01

    This paper describes recent trends of laser welding machine. For CO2 laser welding machine, seam weld of large diameter weld pipes using a 25 kW-class machine, and plate weld of steel plate using a 45 kW-class machine are reported. For YAG laser welding machine, high-output 5.5 kW-class machines are commercialized. Machines with slab structure of plate-like YAG chrystal have been developed which show high-oscillation efficiency and can be applied to cutting. Machines have been developed in which YAG laser output with slab structure is transmitted through GI fiber. High-speed welding of aluminum alloys can be realized by improving the converging performance. Efficiency of YAG laser can be enhanced through the time-divided utilization by switching the beam transmission path using fiber change-over switch. In the automobile industry, CO2 laser is mainly used, and a system combining CO laser with articulate robot is realized. TIG and MIG welding is often used for welding of aluminum for railway vehicles. It is required to reduce the welding strain. In the iron and steel industry, the productivity has been improved by the laser welding. YAG laser is put into practice for nuclear reactors. 5 refs., 8 figs., 1 tab.

  10. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine , J.P.; Rouillard, R.

    1981-11-01

    Lasers and E.D.M. (electrical discharge machining) are both extremely useful tools for machining the small targets needed in inertial confinement studies. Lasers are currently used in a wide range of target problems and it appears that E.D.M. has a still wider range of applications for plane and spherical targets. The problems of material deformation and tool breaking are practically eliminated as the electrode and the machined part are not in mechanical contact. In comparison with laser micromachining E.D.M. offers: larger versatility with the possibility of new developments and applications; higher production speed for thin conducting materials; lower initial and operating costs; the processes are well controlled, reproducible and can be easily automated; the operation is safe without the dangers associted with lasers

  11. TEA CO2 laser machining of CFRP composite

    Science.gov (United States)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  12. Some aspects of precise laser machining - Part 1: Theory

    Science.gov (United States)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  13. Laser-induced gas plasma machining

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, Selim; Bass, Isaac Louis; Guss, Gabriel Mark; Matthews, Manyalibo J.

    2017-10-17

    Techniques for removing material from a substrate are provided. A laser beam is focused at a distance from the surface to be treated. A gas is provided at the focus point. The gas is dissociated using the laser energy to generate gas plasma. The substrate is then brought in contact with the gas plasma to enable material removal.

  14. [Research on the laser atomization treatment machine].

    Science.gov (United States)

    Jiang, Bei-sheng; Tian, Rong-zhe; Zhang, Liang

    2005-07-01

    This text has introduces a new-type laser treatment device. It utilizes the ultrasound atomized gas passage as its optics and makes the laser beams together with the atomized medicine to be transmitted to the patient's respiratory track and lungs for treatment.

  15. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  16. TEA CO2 laser machining of CFRP composite

    OpenAIRE

    Salama, Adel; Li, Lin; Mativenga, Paul; Whitehead, David

    2016-01-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO...

  17. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    Science.gov (United States)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  18. High speed laser cutting machine. Kosoku reza kakoki

    Energy Technology Data Exchange (ETDEWEB)

    Shinno, N. (Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan))

    1993-11-01

    The carbon dioxide gas laser cutting machine is being used widely for from cutting soft steel and stainless steel, etc. to intermetallic welding and in the field of cutting in particular, concerning sheet cutting, it has been changing the existing monopoly of the turret punch press, and as for medium and thick plate cutting, that of the gas plasma fusing device. This article is the general description of high speed laser cutting machine. Concerning the laser cutting (sheet cutting in particular), as the essential items for securing severe cutting accuracy and, at the same time, improving the cutting speed, the following matters are picked up for respective explanation; improvement of stationary machine accuracy, improvement of dynamic machine accuracy, improvement of quality of laser beam as well as optimization of cutting conditions, and shortening of piercing time. Also explanation is given to the respective items, namely speeding-up of medium and thick plate cutting, and reduction of load onto the operator by improved operation. Finally, feeding and removing of a sheet only, and feeding and removing with a pallet are mentioned as the efforts for automation and energy saving. 3 figs., 1 tab.

  19. Ultrashort pulse laser machining of metals and alloys

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.

    2003-09-16

    The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.

  20. Laser startup optics for Baseball II and future mirror machines

    International Nuclear Information System (INIS)

    Frank, A.M.; Chargin, A.K.; Brown, N.J.

    1975-01-01

    The laser startup system for Baseball II-T uses a 300-J CO 2 laser to hit a 100-μ diameter pellet with a laser power density on the order of 10 13 W/cm 2 . The laser is a 20-cm diameter unstable resonator transversely excited (TEA) oscillator. The beam is split and then focused using off-axis parabolas. The symmetric configuration and central obscuration of the CO 2 beam allow coaxial alignment and pellet detection optics. This experiment primarily uses commercially available systems and components. Optical elements were fabricated both by direct machining and standard polishing techniques. The laser and optical systems are directly scalable to reactor requirements using demonstrated technologies

  1. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser

    Science.gov (United States)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang

    2018-02-01

    Micro-structure surface on diamond material is widely used in a series of industrial and scientific applications, such as micro-electromechanical systems (MEMS), nanoelectromechanical systems (NEMS), microelectronics, textured or micro-structured diamond machining tools. The efficient machining of micro-structure on diamond surface is urgently demanded in engineering. In this paper, laser machining square micro-structure on diamond surface was studied with a sub-nanosecond pulsed laser. The influences of laser machining parameters, including the laser power, scanning speed, defocusing quantity and scanning pitch, were researched in view of the ablation depth, material removal rate and machined surface topography. Both the ablation depth and material removal rate increased with average laser power. A reduction of the growth rate of the two parameters was induced by the absorption of the laser plasma plume at high laser power. The ablation depth non-linearly decreased with the increasing of the scanning speed while the material removal rate showed an opposite tendency. The increasing of the defocusing quantity induced complex variation of the ablation depth and the material removal rate. The maximum ablation depth and material removal rate were achieved at a defocusing position. The ablation depth and material removal rate oppositely varied about the scanning pitch. A high overlap ratio was meaningful for achieving a smooth micro-structure surface topography. Laser machining with a large defocusing quantity, high laser power and small scanning pitch was helpful for acquiring the desired micro-structure which had a large depth and smooth micro-structure surface topography.

  2. Thermal and thermo-mechanical simulation of laser assisted machining

    International Nuclear Information System (INIS)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-01-01

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece

  3. Fabrication of Random Microwell Arrays as Pseudo-Thermal Speckle Light Source

    Directory of Open Access Journals (Sweden)

    Axiu Cao

    2018-05-01

    Full Text Available Quantum correlated imaging using the intensity fluctuations of thermal light possesses advantages of high resolution and strong anti-interference ability. The common method to produce pseudo-thermal light source is using a rotary ground glass and transmission of laser beam. In the present work, we propose a method for the fabrication of microwell arrays with randomly varied diameters, which could be used as a new structural element for pseudo-thermal speckle light source. If these are etched with random sizes then they may also have random and complex varying curvatures (diffusion limited etching leading to random destructive interference of the coherent beam which could be a good thing. The microwell arrays, with diameters randomly varying from 5 μm to 40 μm, height varying from 200 nm to 20 μm, were fabricated by photolithography combined with acid etching. The experimental conditions are simple and can be scaled up to for large structures. The produced microwell arrays can transform the laser beam to a pseudo-thermal light source with a certain divergent angle by rational designing of mask and adjustable process parameters.

  4. Study on the effect of thermal property of metals in ultrasonic-assisted laser machining

    International Nuclear Information System (INIS)

    Lee, Hu Seung; Kim, Gun Woo; Park, Jong Eun; Cho, Sung Hak; Yang, Min Yang; Park, Jong Kweon

    2015-01-01

    The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity

  5. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. Investigation of diffractive optical element femtosecond laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Chabrol, Grégoire R., E-mail: g.chabrol@ecam-strasbourg.eu [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Ciceron, Adline [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Twardowski, Patrice; Pfeiffer, Pierre [Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Télécom Physique Strasbourg – Pôle API – 300 Bd Sébastien Brant – CS 10413, Illkirch Graffenstaden F 67400 (France); and others

    2016-06-30

    Highlights: • A method for rapid manufacturing of optical diffractive element in BK7 is proposed. • A binary grating in BK7 was successfully machined by femtosecond laser pulses. • Process relying on nonlinear absorption in the dielectric due to photoionization. • The binary grating was analysed by SEM and interferometric microscopy. • Simulations by Fourier modal method supported the measured diffractive efficiency. - Abstract: This paper presents an explorative study on the machining of diffractive optical elements (DOEs) in transparent materials using a femtosecond laser source. A simple form of DOE, a binary phase grating with a period of 20.85 μm (σ = 0.5 μm), a groove depth and width of 0.7 μm (σ = 0.2 μm) and 8.8 μm (σ = 0.5 μm) respectively, was successfully machined in BK7. The topographic characteristics were measured by white light interferometry and scanning electron microscopy (SEM). The processing was carried out on high precision stages with an ultrafast fibre laser (350 fs) emitting a 343 nm pulse focused onto the sample with a stationary microscope objective. A diffracted efficiency of 27%, obtained with a spectro goniometer, was corroborated by the theoretical results obtained by the Fourier modal method (FMM), taking into account the measured topographic values. These encouraging results demonstrate that high-speed femtosecond laser manufacturing of DOE in bulk glasses can be achieved, opening the way to rapid prototyping of multi-layered-DOEs.

  7. Laser Beam Machining (LBM), State of the Art and New Opportunities

    NARCIS (Netherlands)

    Meijer, J.

    2004-01-01

    An overview is given of the state of the art of laser beam machining in general with special emphasis on applications of short and ultrashort lasers. In laser welding the trend is to apply optical sensors for process control. Laser surface treatment is mostly used to apply corrosion and wear

  8. Arraycount, an algorithm for automatic cell counting in microwell arrays

    OpenAIRE

    Kachouie, Nezamoddin N.; Kang, Lifeng; Khademhosseini, Ali

    2009-01-01

    Microscale technologies have emerged as a powerful tool for studying and manipulating biological systems and miniaturizing experiments. However, the lack of software complementing these techniques has made it difficult to apply them for many high-throughput experiments. This work establishes Arraycount, an approach to automatically count cells in microwell arrays. The procedure consists of fluorescent microscope imaging of cells that are seeded in microwells of a microarray system and then an...

  9. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  10. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    Science.gov (United States)

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  11. Researches Regarding The Circular Interpolation Algorithms At CNC Laser Cutting Machines

    Science.gov (United States)

    Tîrnovean, Mircea Sorin

    2015-09-01

    This paper presents an integrated simulation approach for studying the circular interpolation regime of CNC laser cutting machines. The circular interpolation algorithm is studied, taking into consideration the numerical character of the system. A simulation diagram, which is able to generate the kinematic inputs for the feed drives of the CNC laser cutting machine is also presented.

  12. The Evaluation of Surface Integrity During Machining of Inconel 718 with Various Laser Assistance Strategies

    Directory of Open Access Journals (Sweden)

    Wojciechowski Szymon

    2017-01-01

    Full Text Available The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM.

  13. Investigation into the accuracy of a proposed laser diode based multilateration machine tool calibration system

    International Nuclear Information System (INIS)

    Fletcher, S; Longstaff, A P; Myers, A

    2005-01-01

    Geometric and thermal calibration of CNC machine tools is required in modern machine shops with volumetric accuracy assessment becoming the standard machine tool qualification in many industries. Laser interferometry is a popular method of measuring the errors but this, and other alternatives, tend to be expensive, time consuming or both. This paper investigates the feasibility of using a laser diode based system that capitalises on the low cost nature of the diode to provide multiple laser sources for fast error measurement using multilateration. Laser diode module technology enables improved wavelength stability and spectral linewidth which are important factors for laser interferometry. With more than three laser sources, the set-up process can be greatly simplified while providing flexibility in the location of the laser sources improving the accuracy of the system

  14. Analysis and prediction of dimensions and cost of laser micro-machining internal channel fabrication process

    Directory of Open Access Journals (Sweden)

    Brabazon D.

    2010-06-01

    Full Text Available This paper presents the utilisation of Response Surface Methodology (RSM as the prediction tool for the laser micro-machining process. Laser internal microchannels machined using pulsed Nd:YVO4 laser in polycarbonate were investigated. The experiments were carried out according to 33 factorial Design of Experiment (DoE. In this work the three input process set as control parameters were laser power, P; pulse repetition frequency, PRF; and sample translation speed, U. Measured responses were the channel width and the micro-machining operating cost per metre of produced microchannels. The responses were sufficiently predicted within the set micro-machining parameters limits. Two factorial interaction (2FI and quadratic polynomial regression equations for both responses were constructed. It is proposed that the developed prediction equations can be used to find locally optimal micro-machining process parameters under experimental and operational conditions.

  15. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    Science.gov (United States)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  16. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  17. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    Science.gov (United States)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  18. pH-triggered drug release from biodegradable microwells for oral drug delivery

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Gordon, Sarah

    2015-01-01

    of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastroresistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system...

  19. Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers

    International Nuclear Information System (INIS)

    Amer, M.S.; El-Ashry, M.A.; Dosser, L.R.; Hix, K.E.; Maguire, J.F.; Irwin, Bryan

    2005-01-01

    Laser micromachining has proven to be a very successful tool for precision machining and microfabrication with applications in microelectronics, MEMS, medical device, aerospace, biomedical, and defense applications. Femtosecond (FS) laser micromachining is usually thought to be of minimal heat-affected zone (HAZ) local to the micromachined feature. The assumption of reduced HAZ is attributed to the absence of direct coupling of the laser energy into the thermal modes of the material during irradiation. However, a substantial HAZ is thought to exist when machining with lasers having pulse durations in the nanosecond (NS) regime. In this paper, we compare the results of micromachining a single crystal silicon wafer using a 150-femtosecond and a 30-nanosecond lasers. Induced stress and amorphization of the silicon single crystal were monitored using micro-Raman spectroscopy as a function of the fluence and pulse duration of the incident laser. The onset of average induced stress occurs at lower fluence when machining with the femtosecond pulse laser. Induced stresses were found to maximize at fluence of 44 J cm -2 and 8 J cm -2 for nanosecond and femtosecond pulsed lasers, respectively. In both laser pulse regimes, a maximum induced stress is observed at which point the induced stress begins to decrease as the fluence is increased. The maximum induced stress was comparable at 2.0 GPa and 1.5 GPa for the two lasers. For the nanosecond pulse laser, the induced amorphization reached a plateau of approximately 20% for fluence exceeding 22 J cm -2 . For the femtosecond pulse laser, however, induced amorphization was approximately 17% independent of the laser fluence within the experimental range. These two values can be considered nominally the same within experimental error. For femtosecond laser machining, some effect of the laser polarization on the amount of induced stress and amorphization was also observed

  20. Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining

    Science.gov (United States)

    Stuart, Brent C.; Nguyen, Hoang T.; Perry, Michael D.

    2001-01-01

    A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.

  1. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    Science.gov (United States)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  2. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  3. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  4. Controlling major cellular processes of human mesenchymal stem cells using microwell structures.

    Science.gov (United States)

    Xu, Xun; Wang, Weiwei; Kratz, Karl; Fang, Liang; Li, Zhengdong; Kurtz, Andreas; Ma, Nan; Lendlein, Andreas

    2014-12-01

    Directing stem cells towards a desired location and function by utilizing the structural cues of biomaterials is a promising approach for inducing effective tissue regeneration. Here, the cellular response of human adipose-derived mesenchymal stem cells (hADSCs) to structural signals from microstructured substrates comprising arrays of square-shaped or round-shaped microwells is explored as a transitional model between 2D and 3D systems. Microwells with a side length/diameter of 50 μm show advantages over 10 μm and 25 μm microwells for accommodating hADSCs within single microwells rather than in the inter-microwell area. The cell morphologies are three-dimensionally modulated by the microwell structure due to differences in focal adhesion and consequent alterations of the cytoskeleton. In contrast to the substrate with 50 μm round-shaped microwells, the substrate with 50 μm square-shaped microwells promotes the proliferation and osteogenic differentiation potential of hADSCs but reduces the cell migration velocity and distance. Such microwell shape-dependent modulatory effects are highly associated with Rho/ROCK signaling. Following ROCK inhibition, the differences in migration, proliferation, and osteogenesis between cells on different substrates are diminished. These results highlight the possibility to control stem cell functions through the use of structured microwells combined with the manipulation of Rho/ROCK signaling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reliability Centred Maintenance (RCM) Analysis of Laser Machine in Filling Lithos at PT X

    Science.gov (United States)

    Suryono, M. A. E.; Rosyidi, C. N.

    2018-03-01

    PT. X used automated machines which work for sixteen hours per day. Therefore, the machines should be maintained to keep the availability of the machines. The aim of this research is to determine maintenance tasks according to the cause of component’s failure using Reliability Centred Maintenance (RCM) and determine the amount of optimal inspection frequency which must be performed to the machine at filling lithos process. In this research, RCM is used as an analysis tool to determine the critical component and find optimal inspection frequencies to maximize machine’s reliability. From the analysis, we found that the critical machine in filling lithos process is laser machine in Line 2. Then we proceed to determine the cause of machine’s failure. Lastube component has the highest Risk Priority Number (RPN) among other components such as power supply, lens, chiller, laser siren, encoder, conveyor, and mirror galvo. Most of the components have operational consequences and the others have hidden failure consequences and safety consequences. Time-directed life-renewal task, failure finding task, and servicing task can be used to overcome these consequences. The results of data analysis show that the inspection must be performed once a month for laser machine in the form of preventive maintenance to lowering the downtime.

  6. KrF excimer laser precision machining of hard and brittle ceramic biomaterials

    International Nuclear Information System (INIS)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-01-01

    KrF excimer laser precision machining of porous hard–brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse ⋅ J cm −2 ) and 0.048 µm/(pulse ⋅ J cm −2 ), while their threshold fluences are individually 0.72 and 1.5 J cm −2 . The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard–brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. (paper)

  7. An improved brine shrimp larvae lethality microwell test method.

    Science.gov (United States)

    Zhang, Yi; Mu, Jun; Han, Jinyuan; Gu, Xiaojie

    2012-01-01

    This article described an improved brine shrimp larvae lethality microwell test method. A simply designed connecting vessel with alternative photoperiod was used to culture and collect high yield of active Artemia parthenogenetica nauplii for brine shrimp larvae lethality microwell test. Using this method, pure A. parthenogenetica nauplii suspension was easily cultured and harvested with high density about 100-150 larvae per milliliter and the natural mortality was reduced to near zero by elimination of unnecessary artificial disturbance. And its sensitivity was validated by determination of LC(50)-24 h of different reference toxicants including five antitumor agents, two pesticides, three organic pollutants, and four heavy metals salts, most of which exhibited LC(50)-24 h between 0.07 and 58.43 mg/L except for bleomycin and mitomycin C with LC(50)-24 h over 300 mg/L.

  8. Application of CO2 laser cutting machine to shipbuilding; Zosen no setsudan eno CO2 laser no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1998-11-01

    Carbon dioxide laser has been applied to cutting works in shipbuilding. As NC cutter was obsolete, CO2 laser cutting machine with a rated output 3 kW was introduced. According to the specifications of the machinable plate, the maximum thickness is 19 mm, and effective width and length are 5.4 m and 29.1 m, respectively. As the cutting width is wide and the running distance of laser beam is long, the error of light axis is expanded only by a small error of irradiation angle, which results in the inconvenience. Stable operation was realized by improving the fixation of reflecting mirror. Right angle cutting section with a cutting curve below 0.5 mm was obtained, and cutting time was reduced by the one-line cutting by which both sections can be available with a single cutting line. For the cutting of thin plate with a thickness less than 10 mm, strain was not formed, and remedy was not required. Block strain was remarkably reduced during the assembly process. Maintenance-free operation without monitoring can be performed for a long time. This machine is operated at night and lunch time, resulting in the reduced processes. The working environment is appropriate without noise and dust. Facility cost and maintenance cost were also reduced. Lower cutting speed is a weak point, when compared with the plasma cutting machine. The present machine is not applied to aluminum plates with high surface reflectivity. 13 figs.

  9. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    International Nuclear Information System (INIS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Park, Joong Yull; Kang, AhRan; Lee, Sang-Hoon; Takayama, Shuichi

    2015-01-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm 2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis. (paper)

  10. Operator-machine interface at a large laser-fusion facility

    International Nuclear Information System (INIS)

    Sutton, J.G.; Howell, J.A.

    1982-01-01

    The operator-machine interface at the Antares Laser Facility provides the operator with a means of controlling the laser system and obtaining operational and performance information. The goal of this interface is to provide an operator with access to the control system in a comfortable way, and to facilitate meeting operational requirements. We describe the philosophy and requirements behind this interface, the hardware used in building it, and the software environment

  11. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  12. Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2018-01-01

    Full Text Available Bioactivity and ingrowth of ceramic implants is commonly enhanced by a suitable interconnected porous network. In this work, the laser machining of CaSiO3‒Ca3(PO42 biocompatible eutectic glass-ceramics and glasses was studied. For this purpose, 300 µm diameter craters were machined by using pulsed laser radiation at 532 nm with a pulsewidth in the nanosecond range. Machined samples were soaked in simulated body fluid for 2 months to assess the formation of a hydroxyapatite layer on the surface of the laser machined areas. The samples were manufactured by the laser floating zone technique using a CO2 laser. Morphology, composition and microstructure of the machined samples were described by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and micro-Raman Spectroscopy.

  13. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  14. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  15. Study on on-machine defects measuring system on high power laser optical elements

    Science.gov (United States)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  16. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Fang Liang

    2014-08-01

    Full Text Available Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE. The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications.

  17. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    Science.gov (United States)

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  18. Picosecond laser machined designed patterns with anti-ice effect

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2010-01-01

    Micromachining using ultra short laser pulses (USLP) has evolved over the past years as a versatile tool for introducing functional features in surfaces at a micrometric and even at a sub wavelength scale. Being able to control the surface topography at this level provides a method to change the

  19. Femtosecond laser micro-machined polyimide films for cell scaffold applications

    DEFF Research Database (Denmark)

    Antanavičiute, Ieva; Šimatonis, Linas; Ulčinas, Orestas

    2018-01-01

    of commercially available 12.7 and 25.4μm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e. arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental...... micro-tensile testing results could be numerically simulated and explained by two-material model, assuming that 2-6μm width rings around the holes possessed up to five times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of 'dog-bone'-shaped specimens......Engineering of sophisticated synthetic 3D scaffolds that allow controlling behaviour and location of the cells requires advanced micro/nano-fabrication techniques. Ultrafast laser micro-machining employing a 1030-nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining...

  20. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    Directory of Open Access Journals (Sweden)

    Yuchuan Chen

    2018-03-01

    Full Text Available Laser induced damage threshold (LIDT is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT, followed by water dissolution ultra-precision polishing (WDUP and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal.

  1. Inkjet printing as a technique for filling of micro-wells with biocompatible polymers

    DEFF Research Database (Denmark)

    Marizza, Paolo; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    We present an innovative technique to dispense precise amounts of polymer solutions into large arrays of microscopic wells. An inkjet printer (NP 2.1 GeSim, Germany) is used to fill micro-wells with poly (vinyl pyrrolidone) (PVP K10). The micro-wells are fabricated with cavity diameters of 300 μm...

  2. 3D Lasers Increase Efficiency, Safety of Moving Machines

    Science.gov (United States)

    2015-01-01

    Canadian company Neptec Design Group Ltd. developed its Laser Camera System, used by shuttles to render 3D maps of their hulls for assessing potential damage. Using NASA funding, the firm incorporated LiDAR technology and created the TriDAR 3D sensor. Its commercial arm, Neptec Technologies Corp., has sold the technology to Orbital Sciences, which uses it to guide its Cygnus spacecraft during rendezvous and dock operations at the International Space Station.

  3. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  4. Feasibility of Machine Learning Methods for Separating Wood and Leaf Points from Terrestrial Laser Scanning Data

    Science.gov (United States)

    Wang, D.; Hollaus, M.; Pfeifer, N.

    2017-09-01

    Classification of wood and leaf components of trees is an essential prerequisite for deriving vital tree attributes, such as wood mass, leaf area index (LAI) and woody-to-total area. Laser scanning emerges to be a promising solution for such a request. Intensity based approaches are widely proposed, as different components of a tree can feature discriminatory optical properties at the operating wavelengths of a sensor system. For geometry based methods, machine learning algorithms are often used to separate wood and leaf points, by providing proper training samples. However, it remains unclear how the chosen machine learning classifier and features used would influence classification results. To this purpose, we compare four popular machine learning classifiers, namely Support Vector Machine (SVM), Na¨ıve Bayes (NB), Random Forest (RF), and Gaussian Mixture Model (GMM), for separating wood and leaf points from terrestrial laser scanning (TLS) data. Two trees, an Erytrophleum fordii and a Betula pendula (silver birch) are used to test the impacts from classifier, feature set, and training samples. Our results showed that RF is the best model in terms of accuracy, and local density related features are important. Experimental results confirmed the feasibility of machine learning algorithms for the reliable classification of wood and leaf points. It is also noted that our studies are based on isolated trees. Further tests should be performed on more tree species and data from more complex environments.

  5. FEASIBILITY OF MACHINE LEARNING METHODS FOR SEPARATING WOOD AND LEAF POINTS FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    D. Wang

    2017-09-01

    Full Text Available Classification of wood and leaf components of trees is an essential prerequisite for deriving vital tree attributes, such as wood mass, leaf area index (LAI and woody-to-total area. Laser scanning emerges to be a promising solution for such a request. Intensity based approaches are widely proposed, as different components of a tree can feature discriminatory optical properties at the operating wavelengths of a sensor system. For geometry based methods, machine learning algorithms are often used to separate wood and leaf points, by providing proper training samples. However, it remains unclear how the chosen machine learning classifier and features used would influence classification results. To this purpose, we compare four popular machine learning classifiers, namely Support Vector Machine (SVM, Na¨ıve Bayes (NB, Random Forest (RF, and Gaussian Mixture Model (GMM, for separating wood and leaf points from terrestrial laser scanning (TLS data. Two trees, an Erytrophleum fordii and a Betula pendula (silver birch are used to test the impacts from classifier, feature set, and training samples. Our results showed that RF is the best model in terms of accuracy, and local density related features are important. Experimental results confirmed the feasibility of machine learning algorithms for the reliable classification of wood and leaf points. It is also noted that our studies are based on isolated trees. Further tests should be performed on more tree species and data from more complex environments.

  6. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    International Nuclear Information System (INIS)

    Ji, Yang; Grindal, Alexander W; Fraser, James M; Webster, Paul J L

    2015-01-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7–8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm 3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics. (paper)

  7. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    International Nuclear Information System (INIS)

    Zhao, Yanhua; Sun, Jie; Li, Jianfeng

    2014-01-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La 2 O 3 mixed powder. The effect of La 2 O 3 on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La 2 O 3 on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La 2 O 3 content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La 2 O 3 are improved significantly; and (c) the machining vibrations of laser cladding layer with La 2 O 3 are obviously reduced and the chatter is effectively avoided occurring

  8. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanhua, E-mail: zhaoyanhua_007@163.com [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Sun, Jie, E-mail: sunjie@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Li, Jianfeng [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-12-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La{sub 2}O{sub 3} mixed powder. The effect of La{sub 2}O{sub 3} on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La{sub 2}O{sub 3} on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La{sub 2}O{sub 3} content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La{sub 2}O{sub 3} are improved significantly; and (c) the machining vibrations of laser cladding layer with La{sub 2}O{sub 3} are obviously reduced and the chatter is effectively avoided occurring.

  9. Combustion-assisted laser cutting of a difficult-to-machine superalloy

    International Nuclear Information System (INIS)

    Molian, P.A.

    1992-01-01

    In laser cutting, the largest single application of lasers in manufacturing, the assist gas plays an important role in affecting the cutting performance. The assist gas is usually oxygen or an inert gas. In this paper acetylene and oxygen was employed to create combustion reactions during CO 2 laser cutting that enabled an improvement in the cutting speed, and cut quality of a difficult-to-machine superalloy. A comparison with laser cutting of a plain carbon steel under identical conditions was also made to determine the usefulness of combustion energy. Results indicate that both cutting speed and quality are enhanced by the reduction in the viscosity of slag formed during cutting (which assisted in ejection of the slag through the bottom of the kerf) due to the heat released by the acetylene burning inside the kerf. Correlations of experimental data with a theoretical model provided the influence of combustion power and gas-flow power on the cutting phenomena

  10. Integrated aeroelastic vibrator for fluid mixing in open microwells

    Science.gov (United States)

    Xia, H. M.; Jin, X.; Zhang, Y. Y.; Wu, J. W.; Zhang, J.; Wang, Z. P.

    2018-01-01

    Fluid mixing in micro-wells/chambers is required in a variety of biological and biochemical processes. However, mixing fluids of small volumes is usually difficult due to increased viscous effects. In this study, we propose a new method for mixing enhancement in microliter-scale open wells. A thin elastic diaphragm is used to seal the bottom of the mixing microwell, underneath which an air chamber connects an aeroelastic vibrator. Driven by an air flow, the vibrator produces self-excited vibrations and causes pressure oscillations in the air chamber. Then the elastic diaphragm is actuated to mix the fluids in the microwell. Two designs that respectively have one single well and 2  ×  2 wells were prototyped. Testing results show that for liquids with a volume ranging from 10-60 µl and viscosity ranging from 1-5 cP, complete mixing can be obtained within 5-20 s. Furthermore, the device is operable with an air micropump, and hence facilitating the miniaturization and integration of lab-on-a-chip and microbioreactor systems.

  11. High-intensity fibre laser design for micro-machining applications

    Science.gov (United States)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  12. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  13. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    Science.gov (United States)

    Hu, Jun; Zhu, Dezhi

    2018-06-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  14. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    Science.gov (United States)

    Hu, Jun; Zhu, Dezhi

    2017-08-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  15. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weinan; Zhang, Ruoheng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Wang, Chunhui; Wang, Jing [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Cheng, Laifei [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-02-28

    Graphical abstract: - Highlights: • The highlights of the manuscript include the following two aspects. • First, we found that the different machining modes (helical line scanning and single ring line scanning) and processing power of machining have remarkable effect on the surface morphology of the machined area, such as the shape, depth and the formation of different surface structures. • Secondly, we investigated that the debris consisted of C, Si and O was observed on the machined surface. • Some of the Si–C bonds of the SiC matrix and fibers would be transformed into Si–O bonds after machined, depending on the processing power. - Abstract: Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si–O bonds and Si–C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  16. Analysis and optimization of machining parameters of laser cutting for polypropylene composite

    Science.gov (United States)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    Present works explains about machining of self-reinforced Polypropylene composite fabricated using hot compaction method. The objective of the experiment is to find optimum machining parameters for Polypropylene (PP). Laser power and Machining speed were the parameters considered in response to tensile test and Flexure test. Taguchi method is used for experimentation. Grey Relational Analysis (GRA) is used for multiple process parameter optimization. ANOVA (Analysis of Variance) is used to find impact for process parameter. Polypropylene has got the great application in various fields like, it is used in the form of foam in model aircraft and other radio-controlled vehicles, thin sheets (∼2-20μm) used as a dielectric, PP is also used in piping system, it is also been used in hernia and pelvic organ repair or protect new herrnis in the same location.

  17. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  18. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available texturing of Si(sub3)N(sub4)–SiC composites in the fabrication of machining tool inserts for various tribological applications. The samples were machined at varied laser energy (0.1–0.6 mJ) and lateral pulse overlap (50–88%) in order to generate a sequence...

  19. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  20. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  1. Fast and intuitive programming of adaptive laser cutting of lace enabled by machine vision

    Science.gov (United States)

    Vaamonde, Iago; Souto-López, Álvaro; García-Díaz, Antón

    2015-07-01

    A machine vision system has been developed, validated, and integrated in a commercial laser robot cell. It permits an offline graphical programming of laser cutting of lace. The user interface allows loading CAD designs and aligning them with images of lace pieces. Different thread widths are discriminated to generate proper cutting program templates. During online operation, the system aligns CAD models of pieces and lace images, pre-checks quality of lace cuts and adapts laser parameters to thread widths. For pieces detected with the required quality, the program template is adjusted by transforming the coordinates of every trajectory point. A low-cost lace feeding system was also developed for demonstration of full process automation.

  2. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  3. Tool feed influence on the machinability of CO(2) laser optics.

    Science.gov (United States)

    Arnold, J B; Steger, P J; Saito, T T

    1975-08-01

    Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.

  4. Reversible Shaping of Microwells by Polarized Light Irradiation

    Directory of Open Access Journals (Sweden)

    Federica Pirani

    2017-01-01

    Full Text Available In the last years, stimuli-responsive polymeric materials have attracted great interest, due to their low cost and ease of structuration over large areas combined with the possibility to actively manipulate their properties. In this work, we propose a polymeric pattern of soft-imprinted microwells containing azobenzene molecules. The shape of individual elements of the pattern can be controlled after fabrication by irradiation with properly polarized light. By taking advantage of the light responsivity of the azobenzene compound, we demonstrate the possibility to reversibly modulate a contraction-expansion of wells from an initial round shape to very narrow slits. We also show that the initial shape of the microconcavities can be restored by flipping the polarization by 90°. The possibility to reversibly control the final shape of individual elements of structured surfaces offers the opportunity to engineer surface properties dynamically, thus opening new perspectives for several applications.

  5. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  6. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2013-03-01

    Full Text Available This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954 was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999.

  7. The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining

    Science.gov (United States)

    Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.

    2007-02-01

    The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.

  8. Cold laser machining of nickel-yttrium stabilised zirconia cermets: Composition dependence

    International Nuclear Information System (INIS)

    Sola, D.; Gurauskis, J.; Pena, J.I.; Orera, V.M.

    2009-01-01

    Cold laser micromachining efficiency in nickel-yttrium stabilised zirconia cermets was studied as a function of cermet composition. Nickel oxide-yttrium stabilised zirconia ceramic plates obtained via tape casting technique were machined using 8-25 ns pulses of a Nd: YAG laser at the fixed wavelength of 1.064 μm and a frequency of 1 kHz. The morphology of the holes, etched volume, drill diameter, shape and depth were evaluated as a function of the processing parameters such as pulse irradiance and of the initial composition. The laser drilling mechanism was evaluated in terms of laser-material interaction parameters such as beam absorptivity, material spallation and the impact on the overall process discussed. By varying the nickel oxide content of the composite the optical absorption (-value is greatly modified and significantly affected the drilling efficiency of the green state ceramic substrates and the morphology of the holes. Higher depth values and improved drilled volume upto 0.2 mm 3 per pulse were obtained for substrates with higher optical transparency (lower optical absorption value). In addition, a laser beam self-focussing effect is observed for the compositions with less nickel oxide content. Holes with average diameter from 60 μm to 110 μm and upto 1 mm in depth were drilled with a high rate of 40 ms per hole while the final microstructure of the cermet obtained by reduction of the nickel oxide-yttrium stabilised zirconia composites remained unchanged.

  9. Prediction of laser cutting heat affected zone by extreme learning machine

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Skrijelj, Hivzo; Nedić, Bogdan

    2017-01-01

    Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.

  10. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    Science.gov (United States)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2018-04-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  11. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    Science.gov (United States)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  12. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    Science.gov (United States)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  13. Step-and-Repeat Nanoimprint-, Photo- and Laser Lithography from One Customised CNC Machine.

    Science.gov (United States)

    Greer, Andrew Im; Della-Rosa, Benoit; Khokhar, Ali Z; Gadegaard, Nikolaj

    2016-12-01

    The conversion of a computer numerical control machine into a nanoimprint step-and-repeat tool with additional laser- and photolithography capacity is documented here. All three processes, each demonstrated on a variety of photoresists, are performed successfully and analysed so as to enable the reader to relate their known lithography process(es) to the findings. Using the converted tool, 1 cm(2) of nanopattern may be exposed in 6 s, over 3300 times faster than the electron beam equivalent. Nanoimprint tools are commercially available, but these can cost around 1000 times more than this customised computer numerical control (CNC) machine. The converted equipment facilitates rapid production and large area micro- and nanoscale research on small grants, ultimately enabling faster and more diverse growth in this field of science. In comparison to commercial tools, this converted CNC also boasts capacity to handle larger substrates, temperature control and active force control, up to ten times more curing dose and compactness. Actual devices are fabricated using the machine including an expanded nanotopographic array and microfluidic PDMS Y-channel mixers.

  14. Surface-Enhanced Raman Scattering of Bacteria in Microwells Constructed from Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mustafa Çulha

    2012-01-01

    Full Text Available Whole bacterial cell characterization is critically important for fast bacterial identification. Surface-enhanced Raman scattering (SERS is proven to be powerful technique to serve such a goal. In this study, the characterization of whole bacterial cells in the microwells constructed from colloidal silver nanoparticles (AgNPs with “convective-assembly” method is reported. The proper size of the microwells for the model bacteria, Escherichia coli and Staphylococcus cohnii, is determined to be 1.2 μm from their electron microscopy images. A minimum dilution factor of 20 is necessary for the bacterial samples collected from growth media to diminish the bacterial aggregation to place the bacterial cells into the microwells. The constructed microwell structures are tested for their bacterial SERS performance and compared to the SERS spectra obtained from the samples prepared with a simple mixing of bacteria and AgNPs for the same bacteria. The results indicate that microwell structures not only improve the spectral quality but also increase the reproducibility of the SERS spectra.

  15. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays

    Directory of Open Access Journals (Sweden)

    Yuyi Wang

    2018-06-01

    Full Text Available Microfluidic systems have been regarded as a potential platform for high-throughput screening technology in drug discovery due to their low sample consumption, high integration, and easy operation. The handling of small-volume liquid is an essential operation in microfluidic systems, especially in investigating large-scale combination conditions. Here, we develop a nanoliter centrifugal liquid dispenser (NanoCLD coupled with superhydrophobic microwell array chips for high-throughput cell-based assays in the nanoliter scale. The NanoCLD consists of a plastic stock block with an array of drilled through holes, a reagent microwell array chip (reagent chip, and an alignment bottom assembled together in a fixture. A simple centrifugation at 800 rpm can dispense ~160 nL reagents into microwells in 5 min. The dispensed reagents are then delivered to cells by sandwiching the reagent chip upside down with another microwell array chip (cell chip on which cells are cultured. A gradient of doxorubicin is then dispensed to the cell chip using the NanoCLD for validating the feasibility of performing drug tests on our microchip platform. This novel nanoliter-volume liquid dispensing method is simple, easy to operate, and especially suitable for repeatedly dispensing many different reagents simultaneously to microwells.

  16. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  17. Factors affecting the laser processing of wood, 2: Effects of material parameters on machinability

    International Nuclear Information System (INIS)

    Arai, T.; Hayashi, D.

    1994-01-01

    Material parameters of wood were investigated. Factors relating to the workpiece include cutting direction, specific gravity, and components of the wood such as resin-like materials. Also studies of the effects of irregular tissue on machinability were made. The interactions between laser beam and materials are often greatly complex. They depend on the characteristics of the laser beam, the thermal constants of the woods, and the optical surface properties of the woods. Therefore, high quality beam mode and carefully selected materials were used. The following laser cutting properties became clear after studying the experimental results. Slow speed cutting and softwoods make slight differences, regarding cutting section and fiber direction. However, it can beconsidered that there is not very much change except in cross-section. Because of the high power density of laser, cutting speed makes no big difference. The irregular tissue of wood cannot maintain normal cutting speed and accuracy. The factor of genuine density eta, which is thought to be entirely independent of each specific gravity, is definedas the concept of density in general. It can be obtained by applying a simple rule, that is, the eta is the ratio of r(u)/rho(s) where rho(s) is the wood substance as the characteristic value of wood, and r(u)is specific gravity. An experimental formula shows that the depth of cut decreases in proportion to the value of eta. However, in the strict sense of the word, data of wood material as a natural resources mustbe treated qualitatively, because there are deviations from regularity due to various reasons. (author)

  18. Fabrication of locally micro-structured fiber Bragg gratings by fs-laser machining

    Science.gov (United States)

    Dutz, Franz J.; Stephan, Valentin; Marchi, Gabriele; Koch, Alexander W.; Roths, Johannes; Huber, Heinz P.

    2018-06-01

    Here, we describe a method for producing locally micro-structured fiber Bragg gratings (LMFGB) by fs-laser machining. This technique enables the precise and reproducible ablation of cladding material to create circumferential grooves inside the claddings of optical fibers. From initial ablation experiments we acquired optimized process parameters. The fabricated grooves were located in the middle of uniform type I fiber Bragg gratings. LMFBGs with four different groove widths of 48, 85, 135 and 205 μ { {m}} were produced. The grooves exhibited constant depths of about 30 μ {m} and steep sidewall angles. With the combination of micro-structures and fiber Bragg gratings, fiber optic sensor elements with enhanced functionalities can be achieved.

  19. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  20. Does the Laser-Microtextured Short Implant Collar Design Reduce Marginal Bone Loss in Comparison with a Machined Collar?

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. To compare marginal bone loss between subgingivally placed short-collar implants with machined collars and those with machined and laser-microtextured collars. Materials and Methods. The investigators used a retrospective study design and included patients who needed missing posterior teeth replaced with implants. Short-collar implants with identical geometries were divided into two groups: an M group, machined collar; and an L group, machined and laser-microtextured collar. Implants were evaluated according to marginal bone loss, implant success, and probing depth (PD at 3 years of follow-up. Results. Sixty-two patients received 103 implants (56 in the M group and 47 in the L group. The cumulative survival rate was 100%. All implants showed clinically acceptable marginal bone loss, although bone resorption was lower in the L group (0.49 mm than in the M group (1.38 mm at 3 years (p<0.01. A significantly shallower PD was found for the implants in the L group during follow-up (p<0.01. Conclusions. Our results suggest predictable outcomes with regard to bone loss for both groups; however, bone resorption was less in the L group than in the M group before and after loading. The laser-microtextured collar implant may provide a shallower PD than the machined collar implant.

  1. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  2. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine

  3. Transient time of an Ising machine based on injection-locked laser network

    International Nuclear Information System (INIS)

    Takata, Kenta; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2012-01-01

    We numerically study the dynamics and frequency response of the recently proposed Ising machine based on the polarization degrees of freedom of an injection-locked laser network (Utsunomiya et al 2011 Opt. Express 19 18091). We simulate various anti-ferromagnetic Ising problems, including the ones with symmetric Ising and Zeeman coefficients, which enable us to study the problem size up to M = 1000. Transient time, to reach a steady-state polarization configuration after a given Ising problem is mapped onto the system, is inversely proportional to the locking bandwidth and does not scale exponentially with the problem size. In the Fourier analysis with first-order linearization approximation, we find that the cut-off frequency of a system's response is almost identical to the locking bandwidth, which supports the time-domain analysis. It is also shown that the Zeeman term, which is created by the horizontally polarized injection signal from the master laser, serves as an initial driving force on the system and contributes to the transient time in addition to the inverse locking bandwidth. (paper)

  4. Analysis of the Influence of the Use of Cutting Fluid in Hybrid Processes of Machining and Laser Metal Deposition (LMD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hybrid manufacturing processes that combine additive and machining operations are gaining relevance in modern industry thanks to the capability of building complex parts with minimal material and, many times, with process time reduction. Besides, as the additive and subtractive operations are carried out in the same machine, without moving the part, dead times are reduced and higher accuracies are achieved. However, it is not clear whether the direct material deposition after the machining operation is possible or intermediate cleaning stages are required because of the possible presence of residual cutting fluids. Therefore, different Laser Metal Deposition (LMD tests are performed on a part impregnated with cutting fluid, both directly and after the removal of the coolant by techniques such as laser vaporizing and air blasting. The present work studies the influence of the cutting fluid in the LMD process and the quality of the resulting part. Resulting porosity is evaluated and it is concluded that if the part surface is not properly clean after the machining operation, deficient clad quality can be obtained in the subsequent laser additive operation.

  5. High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering

    NARCIS (Netherlands)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart A.; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the

  6. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    Science.gov (United States)

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered.

  7. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  8. Effect of microwell chip structure on cell microsphere production of various animal cells.

    Science.gov (United States)

    Sakai, Yusuke; Yoshida, Shirou; Yoshiura, Yukiko; Mori, Rhuhei; Tamura, Tomoko; Yahiro, Kanji; Mori, Hideki; Kanemura, Yonehiro; Yamasaki, Mami; Nakazawa, Kohji

    2010-08-01

    The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  10. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  11. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    International Nuclear Information System (INIS)

    Ha, Kyoung Ho; Lee, Se Won; Jee, Won Young; Chu, Chong Nam; Kim, Janggil

    2015-01-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8 µm-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12 µm was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9 µm, which was 60% less than the minimum size hole by LBM without a cover plate. (technical note)

  12. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  13. High-throughput live-imaging of embryos in microwell arrays using a modular specimen mounting system.

    Science.gov (United States)

    Donoughe, Seth; Kim, Chiyoung; Extavour, Cassandra G

    2018-04-30

    High-throughput live-imaging of embryos is an essential technique in developmental biology, but it is difficult and costly to mount and image embryos in consistent conditions. Here, we present OMMAwell, a simple, reusable device to easily mount dozens of embryos in arrays of agarose microwells with customizable dimensions and spacing. OMMAwell can be configured to mount specimens for upright or inverted microscopes, and includes a reservoir to hold live-imaging medium to maintain constant moisture and osmolarity of specimens during time-lapse imaging. All device components can be fabricated by cutting pieces from a sheet of acrylic using a laser cutter or by making them with a 3D printer. We demonstrate how to design a custom mold and use it to live-image dozens of embryos at a time. We include descriptions, schematics, and design files for 13 additional molds for nine animal species, including most major traditional laboratory models and a number of emerging model systems. Finally, we provide instructions for researchers to customize OMMAwell inserts for embryos or tissues not described herein. © 2018. Published by The Company of Biologists Ltd.

  14. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-23

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine. The duty cycle and the pulse repetition rate of the laser were optimized for increased tuning range, high chirp rate, and small line width to achieve effective laser-cavity coupling. This enabled spectrally resolved CO line-shape measurements at high pressures (P ~10 bar). A gain factor of 133 and a time resolution of 10 μs were demonstrated. CO concentration-time profiles during the oxidation of highly dilute n-octane/air mixtures were recorded, illustrating new opportunities in RCM experiments for chemical kinetics.

  15. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  16. LANDSLIDES IDENTIFICATION USING AIRBORNE LASER SCANNING DATA DERIVED TOPOGRAPHIC TERRAIN ATTRIBUTES AND SUPPORT VECTOR MACHINE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    K. Pawłuszek

    2016-06-01

    Full Text Available Since the availability of high-resolution Airborne Laser Scanning (ALS data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM, Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user’s accuracy (UA, producer’s accuracy (PA, and overall accuracy (OA were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.

  17. Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish.

    Science.gov (United States)

    Lehner, Adam; Kaszas, Zita; Murber, Akos; Rigo, Janos; Urbancsek, Janos; Fancsovits, Peter

    2017-08-01

    Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.

  18. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-01-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  19. Evaluation of the expansion of umbilical cord blood derived from CD133+ cells on biocompatible microwells

    Directory of Open Access Journals (Sweden)

    Mina Soufizomorrod

    2016-05-01

    Full Text Available Background: Hematopoietic stem cell transplantation (HSCT is a therapeutic approach for treatment of hematological malignancies and incompatibility of Bone marrow. Umbilical cord blood (UCB has known as an alternative for hematopoietic stem/progenitor cells (HPSC in allogeneic transplantation. The low volume of collected samples is the main hindrance in application of HPSC derived from umbilical cord blood. So, ex vivo expansion of HPSCs is the useful approach to overcome this restriction. The goal of using this system is to produce appropriate amount of hematopoietic stem cells, which have the ability of transplantation and long term haematopoiesis. Material & Methods: In current study CD133+ cells were isolated from cord blood (CB. Isolated cells were seeded on microwells. Then expanded cells proliferation rate and ability in colony formation were assessed and finally were compared with 2 Dimensional (2D culture systems. Results: Our findings demonstrated that CD133+ cells derived from UCB which were cultivated on microwells had significantly higher rate of proliferation in compared with routine cell culture systems. Conclusion: In Current study, it was shown that CD133+ cells’ proliferations which were seeded on PDMS microwells coated with collagen significantly increased. We hope that 3 dimensional (3D microenvironment which mimics the 3D structure of bone marrow can solve the problem of using UCB as an alternative source of bone marrow.

  20. XeCl Excimer Laser For Micro - Machining Of Materials: Preliminary Theoretical And Experimental Works.

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik; Stefanski, Miroslaw; Ujda, Zbigniew

    1987-10-01

    The paper presents the results of preliminary investigations, both theoretical and experimental, of XeC1 excimer laser pumped by transverse electric discharge with UU preionization. The medium was a mixture of gases He-Xe-HC1. A theoretical model of the XeC1 laser was worked out and a lot of laser parameters calculations were done. In the same time an excimer laser operating on the mixture He-Xe-HC1 was started, the generation of laser radiation was of energy about 20mJ.

  1. A Study on The Development of Local Exhaust Ventilation System (LEV’s) for Installation of Laser Cutting Machine

    Science.gov (United States)

    Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.

    2017-09-01

    Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.

  2. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  3. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  4. A study of the machining characteristics of AISI 1045 steel and Inconel 718 with a cylindrical shape in laser-assisted milling

    International Nuclear Information System (INIS)

    Woo, Wan-Sik; Lee, Choon-Man

    2015-01-01

    Laser-assisted machining (LAM) is an effective and economic technique for enhancing the machinability of materials which are difficult-to-cut, such as nickel alloys, titanium alloys and various ceramics. Recently, many researchers have studied the effectiveness of laser-assisted turning (LAT) by measuring its cutting force, tool wear, specific cutting energy and surface roughness. However, research on laser-assisted milling (LAMill) is still in progress because it is difficult to control the laser heating source and tool path to machine the varying shape of the workpiece using this method. Moreover, there have been no researches of workpieces with three-dimensional shapes. During the LAMill process, the material is softened and the mechanical strength of the material is reduced when a laser is used to irradiate the surface of the workpiece. As a result, the cutting force is reduced and the surface roughness is improved with LAMill. The purpose of this study was to develop three-dimensional LAMill and to verify the effectiveness of this approach by comparing it to the conventional machining (CM) method. A thermal analysis was also conducted in order to determine the effective depth of cut (DOC). Also, the cutting force and surface roughness of AISI 1045 steel and Inconel 718 with cylindrical shapes were measured. Measured results of machining characteristics were also analyzed according to the cutting method, i.e., up cut milling, down cut milling and milling style. - Highlights: • The materials with cylindrical shape is first applied to laser-assisted milling (LAMill). • The method determining the depth of cut through thermal analysis is proposed. • The effectiveness of LAMill is verified by comparing the conventional machining. • Down cut milling is recommended for the case of Inconel 718.

  5. A radiolabel-release microwell assay for proteolytic enzymes present in cell culture media

    International Nuclear Information System (INIS)

    Rucklidge, G.J.; Milne, G.

    1990-01-01

    A modified method for the measurement of proteolytic enzyme activity in cell culture-conditioned media has been developed. Using the release of 3H-labeled peptides from 3H-labeled gelatin the method is performed in microwell plates. The substrate is insolubilized and attached to the wells by glutaraldehyde treatment, thus eliminating the need for a precipitation step at the end of the assay. The assay is sensitive, reproducible, and convenient for small sample volumes. The effect of different protease inhibitors on activity can be assessed rapidly allowing an early characterization of the enzyme. It can also be adapted to microplate spectrophotometric analysis by staining residual substrate with Coomassie blue

  6. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Thomas; Grapes, Michael D. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Zhang, Yong [Dept. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Weihs, Timothy P. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-04-15

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10{sup 3}/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70 ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300 µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length. - Highlights: • Tensile straining TEM specimens made by femtosecond laser machining and ion milling. • Accurate positioning of the electron transparent area within a controlled gauge region. • Optimization of femtosecond laser and ion milling parameters. • Fast production of numerous samples with a highly repeatable geometry.

  7. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, Tracie; Tilson, Will; Jones, Zack

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future

  8. Low specific-grinding energy machining of ceramics by a laser dressed diamond grinding stone

    International Nuclear Information System (INIS)

    Jodan, K.; Matsumaru, K.; Ishizaki, K.

    2003-01-01

    A laser dressing is an effective dressing method to accomplish efficient ceramic grinding. Since laser dressing achieves protrusion heights of abrasive-grains without grain dislodgment, the number of abrasive-grains in a laser dressed grinding stone (LGS) is higher than that in a mechanically dressed grinding stone (MGS), remaining the initial grain distribution. Thus, the LGS contains higher number of effective cutting edges, and forms higher number of ground grooves on a ground surface than the MGS. Consequently, the LGS can achieve lower specific grinding energy than the MGS. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  9. Development of multi-axis laser micromachining system suitable for machining non-linear contoured surfaces

    OpenAIRE

    Kerimoğlu, Serhat

    2016-01-01

    Cataloged from PDF version of article. Thesis (M.S.): Bilkent University, Department of Mechanical Engineering, İhsan Doğramacı Bilkent University, 2016. Includes bibliographical references (leaves 82-84). In recent years, studies on manufacturing systems have proved the importance of cooperation of positioning systems with laser cutting technology. The performance of the manufacturing system can be improved by utilizing both laser and positioning systems together. In thi...

  10. Research on the automatic laser navigation system of the tunnel boring machine

    Science.gov (United States)

    Liu, Yake; Li, Yueqiang

    2011-12-01

    By establishing relevant coordinates of the Automatic Laser Navigation System, the basic principle of the system which accesses the TBM three-dimensional reference point and yawing angle by mathematical transformation between TBM, target prism and earth coordinate systems is discussed deeply in details. According to the way of rigid body descriptions of its posture, TBM attitude parameters measurement and data acquisition methods are proposed, and measures to improve the accuracy of the Laser Navigation System are summarized.

  11. Optimization and design of a laser-cutting machine using delta robot

    OpenAIRE

    Moharana, B.; Gupta, Rakesh; Kushwaha, Bashishth Kumar

    2014-01-01

    Industrial high speed laser operations the use of delta parallel robots potentially offers many benefits due to their structural stiffness and limited moving masses. This paper deals with a particular Delta, developed for high speed laser cutting. Parallel delta robot has numerous advantages in comparison with serial robots Higher stiffness and connected with that a lower mass of links the possibility of transporting heavier loads, and higher accuracy. The main drawback is however a smaller w...

  12. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    Science.gov (United States)

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-12-01

    The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale.

  13. Micro machining workstation for a diode pumped Nd:YAG high brightness laser system

    NARCIS (Netherlands)

    Kleijhorst, R.A.; Offerhaus, Herman L.; Bant, P.

    1998-01-01

    A Nd:YAG micro-machining workstation that allows cutting on a scale of a few microns has been developed and operated. The system incorporates a telescope viewing system that allows control during the work and a software interface to translate AutoCad files. Some examples of the performance are

  14. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  15. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    Science.gov (United States)

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  16. Co-fabrication of chitosan and epoxy photoresist to form microwell arrays with permeable hydrogel bottoms

    Science.gov (United States)

    Ornoff, Douglas M.; Wang, Yuli; Proctor, Angela; Shah, Akash S.; Allbritton, Nancy L.

    2015-01-01

    Microfabrication technology offers the potential to create biological platforms with customizable patterns and surface chemistries, allowing precise control over the biochemical microenvironment to which a cell or group of cells is exposed. However, most microfabricated platforms grow cells on impermeable surfaces. This report describes the co-fabrication of a micropatterned epoxy photoresist film with a chitosan film to create a freestanding array of permeable, hydrogel-bottomed microwells. These films possess optical properties ideal for microscopy applications, and the chitosan layers are semi-permeable with a molecular exclusion of 9.9 ± 2.1 kDa. By seeding cells into the microwells, overlaying inert mineral oil, and supplying media via the bottom surface, this hybrid film permits cells to be physically isolated from one another but maintained in culture for at least 4 days. Arrays co-fabricated using these materials reduce both large-molecular-weight biochemical crosstalk between cells and mixing of different clonal populations, and will enable high-throughput studies of cellular heterogeneity with increased ability to customize dynamic interrogations compared to materials in currently available technologies. PMID:26447557

  17. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Science.gov (United States)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  18. Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis

    International Nuclear Information System (INIS)

    Yang Hong-Xing; Fu Hong-Bo; Wang Hua-Dong; Jia Jun-Wei; Dong Feng-Zhong; Sigrist, Markus W

    2016-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a versatile tool for both qualitative and quantitative analysis. In this paper, LIBS combined with principal component analysis (PCA) and support vector machine (SVM) is applied to rock analysis. Fourteen emission lines including Fe, Mg, Ca, Al, Si, and Ti are selected as analysis lines. A good accuracy (91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA. It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program, but also solve the problem of linear inseparability by combining PCA and SVM. By this method, the ability of LIBS to classify rock is validated. (paper)

  19. Experimental analysis on semi-finishing machining of Ti6Al4V additively manufactured by direct melting laser sintering

    Science.gov (United States)

    Imbrogno, Stano; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico

    2016-10-01

    The Additive Manufacturing (AM) techniques are particularly appealing especially for titanium aerospace and biomedical components because they permit to achieve a strong reduction of the buy-to-fly ratio. However, finishing machining operations are often necessary to reduce the uneven surface roughness and geometrics because of local missing accuracy. This work shows the influence of the cutting parameters, cutting speed and feed rate, on the cutting forces as well as on the thermal field observed in the cutting zone, during a turning operation carried out on bars made of Ti6Al4V obtained by the AM process called Direct Metal Laser Sintering (DMLS). Moreover, the sub-surface microstructure alterations due to the process are also showed and commented.

  20. On-machine measurement of the grinding wheels' 3D surface topography using a laser displacement sensor

    Science.gov (United States)

    Pan, Yongcheng; Zhao, Qingliang; Guo, Bing

    2014-08-01

    A method of non-contact, on-machine measurement of three dimensional surface topography of grinding wheels' whole surface was developed in this paper, focusing on an electroplated coarse-grained diamond grinding wheel. The measuring system consists of a Keyence laser displacement sensor, a Keyence controller and a NI PCI-6132 data acquisition card. A resolution of 0.1μm in vertical direction and 8μm in horizontal direction could be achieved. After processing the data by LabVIEW and MATLAB, the 3D topography of the grinding wheel's whole surface could be reconstructed. When comparing the reconstructed 3D topography of the grinding wheel's marked area to its real topography captured by a high-depth-field optical digital microscope (HDF-ODM) and scanning electron microscope (SEM), they were very similar to each other, proving that this method is accurate and effective. By a subsequent data processing, the topography of every grain could be extracted and then the active grain number, the active grain volume and the active grain's bearing ration could be calculated. These three parameters could serve as the criterion to evaluate the grinding performance of coarse-grained diamond grinding wheels. Then the performance of the grinding wheel could be evaluated on-machine accurately and quantitatively.

  1. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative foca...

  2. Investigation on interlaminar shear strength properties of disc laser machined consolidated CF-PPS laminates

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available In consequence of an increased interest in using endless carbon fibre reinforced thermoplastic composites (TPC, automated and highly productive processing technologies for cutting and trimming steps of consolidated materials are sought. In this paper, the influence on the thermal effect caused by laser cutting with respect to static strength properties of TPC based on a polyphenylene sulfide (PPS matrix is studied. For the cutting experiments, consolidated TPC laminates at varying thicknesses up to s = 3.1 mm and a disc laser emitting at a wavelength of λ = 1030 nm at a maximum output power of PL = 2 kW are used. For the first time, the resulting magnitude of the heat affected zone (HAZ at the cutting edge of the composite material is correlated with interlaminar shear strength tests. The results are compared to specimens prepared by milling and abrasive water jet cutting. Depending on the laminate thickness, the laser treated TPC samples show comparable properties to those of conventionally processed specimens. A reduced load bearing area, as a consequence of damaged fibre-matrix-adhesion due to laser impact, is identified as main factor for the reduction of interlaminar shear strengths for higher laminate thicknesses.

  3. Photo-Machining of Semiconductor Related Materials with Femtosecond Laser Ablation and Characterization of Its Properties

    Science.gov (United States)

    Yokotani, Atushi; Mizuno, Toshio; Mukumoto, Toru; Kawahara, Kousuke; Ninomiya, Takahumi; Sawada, Hiroshi; Kurosawa, Kou

    We have analyzed the drilling process with femtosecond laser on the silicon surface in order to investigate a degree of thermal effect during the dicing process of the very thin silicon substrate. A regenerative amplified Ti:Al2O3 laser (E= 30˜500 μJ/pulse, τ= 200 fs, λ= 780 nm, f= 10 Hz) was used and focused onto a 50 μm-thick silicon sample. ICCD (Intensified Charge coupled Device) camera with a high-speed gate of 5 ns was utilized to take images of processing hole. First, we investigated the dependence of laser energy on the speed of the formation of the drilled hole. As a result, it was found that the lager the energy, the slower the speed of the formation under the minimum hole was obtained. Consequently, in the case of defocused condition, even when the smaller the energy density was used, the very slow speed of formation and the much lager thermal effects are simultaneously observed. So we can say that the degree of the thermal effects is not simply related to energy density of the laser but strongly related to the speed of the formation, which can be measured by the ICCD camera. The similar tendency was also obtained for other materials, which are important for the fabrication of ICs (Al, Cu, SiO2 and acrylic resin).

  4. Machining and metrology systems for free-form laser printer mirrors

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    optical systems were designed and manufactured for the individual laser wavelength to be ... The design objective in utilizing a free-form mirror has resulted in a corresponding ... Since mass production of these free-form mirrors is required, the ...

  5. A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery.

    Science.gov (United States)

    Mattos, Leonardo S; Deshpande, Nikhil; Barresi, Giacinto; Guastini, Luca; Peretti, Giorgio

    2014-08-01

    To introduce a novel computerized surgical system for improved usability, intuitiveness, accuracy, and controllability in robot-assisted laser phonomicrosurgery. Pilot technology assessment. The novel system was developed involving a newly designed motorized laser micromanipulator, a touch-screen display, and a graphics stylus. The system allows the control of a CO2 laser through interaction between the stylus and the live video of the surgical area. This empowers the stylus with the ability to have actual effect on the surgical site. Surgical enhancements afforded by this system were established through a pilot technology assessment using randomized trials comparing its performance with a state-of-the-art laser microsurgery system. Resident surgeons and medical students were chosen as subjects in performing sets of trajectory-following exercises. Image processing-based techniques were used for an objective performance assessment. A System Usability Scale-based questionnaire was used for the qualitative assessment. The computerized interface demonstrated superiority in usability, accuracy, and controllability over the state-of-the-art system. Significant ease of use and learning experienced by the subjects were demonstrated by the usability score assigned to the two compared interfaces: computerized interface = 83.96% versus state-of-the-art = 68.02%. The objective analysis showed a significant enhancement in accuracy and controllability: computerized interface = 90.02% versus state-of-the-art = 75.59%. The novel system significantly enhances the accuracy, usability, and controllability in laser phonomicrosurgery. The design provides an opportunity to improve the ergonomics and safety of current surgical setups. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Novel microwell-based spectrophotometric assay for determination of atorvastatin calcium in its pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Abdel-Rahman Hamdy M

    2011-10-01

    Full Text Available Abstract The formation of a colored charge-transfer (CT complex between atorvastatin calcium (ATR-Ca as a n-electron donor and 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ as a π-electron acceptor was investigated, for the first time. The spectral characteristics of the CT complex have been described, and the reaction mechanism has been proved by computational molecular modeling. The reaction was employed in the development of a novel microwell-based spectrophotometric assay for determination of ATR-Ca in its pharmaceutical formulations. The proposed assay was carried out in 96-microwell plates. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, linear relationship with good correlation coefficient (0.9995 was found between the absorbance and the concentration of ATR-Ca in the range of 10-150 μg/well. The limits of detection and quantitation were 5.3 and 15.8 μg/well, respectively. No interference was observed from the additives that are present in the pharmaceutical formulation or from the drugs that are co-formulated with ATR-Ca in its combined formulations. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, and reduction in the analysis cost by 50-fold. Although the proposed assay was validated for ATR-Ca, however, the same methodology could be used for any electron-donating analyte for which a CT reaction can be performed.

  7. TPX foams for inertial fusion laser experiments: foam preparation, machining, characterization, and discussion of density issues

    International Nuclear Information System (INIS)

    Grosse, M.; Guillot, L.; Reneaume, B.; Fleury, E.; Hermerel, C.; Choux, A.; Jeannot, L.; Geoffray, I.; Faivre, A.; Breton, O.; Andre, J.; Collier, R.; Legaie, O.

    2011-01-01

    Low density foams (in this work, foam density refers to apparent density) are materials of interest for fusion experiments. Low density poly(4-methyl-1-pentene)(commercial name TPX) foams have been produced for 30 years. TPX foams have been shown to have densities as low as 3 mg.cm -3 , which is very close to air density (1.2 mg.cm -3 ). Around this density foams are very light and highly fragile. Their fabrication is thus a real technological challenge. However, shrinking always appears in ranges ranking from 25% to almost 200%. As a result, the apparent density of the final foam never matches the expected value given by the precursor solution concentration. Besides, even if the mold dimensions are precisely known, shrinkage is never linear, and foams have to be machined for precise density measurement. In our work we present a fabrication process for TPX foams and discuss machining and density measuring issues. Particularly, we have found that there are volume and weight limits for a determination of density within the range of 3% uncertainty. This raises the question whether density should rather be determined directly on millimeter-sized targets or should be performed on a bigger scale sample prepared from the same batch. (authors)

  8. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  9. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  10. Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities

    KAUST Repository

    Hernandez Diaz, Edwin

    2017-11-21

    This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape and area fraction on the mechanical response. Experimental results are evaluated with the support of three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel force and dissipated energy with respect to baseline homogeneous sanded interface.

  11. Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities

    KAUST Repository

    Diaz, Edwin Hernandez; Alfano, Marco; Pulungan, Ditho Ardiansyah; Lubineau, Gilles

    2017-01-01

    This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape and area fraction on the mechanical response. Experimental results are evaluated with the support of three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel force and dissipated energy with respect to baseline homogeneous sanded interface.

  12. Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines

    Science.gov (United States)

    Lu, Shengzi; Dong, Meirong; Huang, Jianwei; Li, Wenbing; Lu, Jidong; Li, Jun

    2018-02-01

    T91 steel is a representative martensitic heat-resistant steel widely used in high temperature compression components of industrial equipment. During the service period, the operation safety and the service life of the equipment will be affected by the change of structure and mechanical properties of the steel components, which is called material aging. In order to develop a rapid in-situ aging estimation technology of high temperature compression components surface, laser-induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) was employed in this paper. The spectral characteristics of 10 T91 steel specimens with different aging grades were analyzed. Line intensities and the line intensity ratios (ionic/atomic and alloying element/matrix element) that indicate the change of metallographic structure were used to establish SVM models, and the results using different variable sets were compared. The model was optimized by comparing different pulse number for practical effectiveness, and the robustness of the model was investigated in dealing with the inhomogeneity of steel composition. The study results show that the estimation model obtained the best performance using line intensities and line intensity ratios averaged from 31st-60th laser pulses as input variables. The estimation accuracy of validation set was greatly improved from 75.8% to 95.3%. In addition, the model showed the outstanding capacity for handling the fluctuations of spectral signals between measuring-points (spots), which indicated that the aging estimation based on a few measuring-points is feasible. The studies presented here demonstrate that the LIBS coupled with SVM is a new useful technique for the aging estimation of steel, and would be well-suited for fast safety assessment in industrial field.

  13. Hair analysis by means of laser induced breakdown spectroscopy technique and support vector machine model for diagnosing addiction

    Directory of Open Access Journals (Sweden)

    M Vahid Dastjerdi

    2018-02-01

    Full Text Available Along with the development of laboratory methods for diagnosing addiction, concealment ways, either physically or chemically, for creating false results have been in progress. In this research based on the Laser Induced Breakdown Spectroscopy technique (LIBS and analyzing hair of addicted and normal people, we are proposing a new method to overcome problems in conventional methods and reduce possibility of cheating in the process of diagnosing addiction. For this purpose, at first we have sampled hair of 17 normal and addicted people and recorded 5 spectrums for each sample, overall 170 spectrums. After analyzing the recorded LIBS spectra and detecting the atomic and ionic lines as well as molecular bands, relative intensities of emission lines for Aluminum to Calcium (Al/Ca and Aluminum to Sodium (Al/Na were selected as the input variables for the Support Vector Machine model (SVM.The Radial Basis, Polynomial Kernel functions and a linear function were chosen for classifying the data in SVM model. The results of this research showed that by the combination of LIBS technique and SVM one can distinguish addicted person with precision of 100%. Because of several advantages of LIBS such as high speed analysis and being portable, this method can be used individually or together with available methods as an automatic method for diagnosing addiction through hair analysis.

  14. Proposal to negotiate a collaboration agreement for the design and prototyping of a machine for laser treatment of metallic vacuum chamber walls for electron cloud mitigation at the High Luminosity LHC

    CERN Document Server

    2016-01-01

    Proposal to negotiate a collaboration agreement for the design and prototyping of a machine for laser treatment of metallic vacuum chamber walls for electron cloud mitigation at the High Luminosity LHC

  15. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device.

    Science.gov (United States)

    Han, Chao; Zhang, Qiufang; Ma, Rui; Xie, Lan; Qiu, Tian; Wang, Lei; Mitchelson, Keith; Wang, Jundong; Huang, Guoliang; Qiao, Jie; Cheng, Jing

    2010-11-07

    In vitro fertilization (IVF) therapy is an important treatment for human infertility. However, the methods for clinical IVF have only changed slightly over decades: culture medium is held in oil-covered drops in Petri dishes and manipulation occurs by manual pipetting. Here we report a novel microwell-structured microfluidic device that integrates single oocyte trapping, fertilization and subsequent embryo culture. A microwell array was used to capture and hold individual oocytes during the flow-through process of oocyte and sperm loading, medium substitution and debris cleaning. Different microwell depths were compared by computational modeling and flow washing experiments for their effectiveness in oocyte trapping and debris removal. Fertilization was achieved in the microfluidic devices with similar fertilization rates to standard oil-covered drops in Petri dishes. Embryos could be cultured to blastocyst stages in our devices with developmental status individually monitored and tracked. The results suggest that the microfluidic device may bring several advantages to IVF practices by simplifying oocyte handling and manipulation, allowing rapid and convenient medium changing, and enabling automated tracking of any single embryo development.

  16. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite.

    Science.gov (United States)

    Rahimi, Rahim; Ochoa, Manuel; Tamayol, Ali; Khalili, Shahla; Khademhosseini, Ali; Ziaie, Babak

    2017-03-15

    The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r 2 = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.

  17. Robotic platform for parallelized cultivation and monitoring of microbial growth parameters in microwell plates.

    Science.gov (United States)

    Knepper, Andreas; Heiser, Michael; Glauche, Florian; Neubauer, Peter

    2014-12-01

    The enormous variation possibilities of bioprocesses challenge process development to fix a commercial process with respect to costs and time. Although some cultivation systems and some devices for unit operations combine the latest technology on miniaturization, parallelization, and sensing, the degree of automation in upstream and downstream bioprocess development is still limited to single steps. We aim to face this challenge by an interdisciplinary approach to significantly shorten development times and costs. As a first step, we scaled down analytical assays to the microliter scale and created automated procedures for starting the cultivation and monitoring the optical density (OD), pH, concentrations of glucose and acetate in the culture medium, and product formation in fed-batch cultures in the 96-well format. Then, the separate measurements of pH, OD, and concentrations of acetate and glucose were combined to one method. This method enables automated process monitoring at dedicated intervals (e.g., also during the night). By this approach, we managed to increase the information content of cultivations in 96-microwell plates, thus turning them into a suitable tool for high-throughput bioprocess development. Here, we present the flowcharts as well as cultivation data of our automation approach. © 2014 Society for Laboratory Automation and Screening.

  18. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection

    Directory of Open Access Journals (Sweden)

    Candice Tosi Michelon

    2011-03-01

    Full Text Available Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476 of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.

  19. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Science.gov (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  20. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread

    Directory of Open Access Journals (Sweden)

    Zhixu Dong

    2018-04-01

    Full Text Available The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS. Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability, and hence the accuracy and efficiency of measurement are both improved.

  1. New algorithms for motion error detection of numerical control machine tool by laser tracking measurement on the basis of GPS principle

    Science.gov (United States)

    Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie

    2018-01-01

    As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.

  2. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.

    Directory of Open Access Journals (Sweden)

    Xue Gong

    Full Text Available Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.

  3. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    Science.gov (United States)

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  4. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    International Nuclear Information System (INIS)

    Piasecka, Magdalena; Strąk, Kinga; Grabas, Bogusław; Maciejewska, Beata

    2016-01-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining. (paper)

  5. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    Science.gov (United States)

    Kelley, Rebecca L; Gardner, David K

    2017-05-01

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Thomas F., E-mail: boucher@cs.umass.edu [School of Computer Science, University of Massachusetts Amherst, 140 Governor' s Drive, Amherst, MA 01003, United States. (United States); Ozanne, Marie V. [Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 (United States); Carmosino, Marco L. [School of Computer Science, University of Massachusetts Amherst, 140 Governor' s Drive, Amherst, MA 01003, United States. (United States); Dyar, M. Darby [Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 (United States); Mahadevan, Sridhar [School of Computer Science, University of Massachusetts Amherst, 140 Governor' s Drive, Amherst, MA 01003, United States. (United States); Breves, Elly A.; Lepore, Kate H. [Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 (United States); Clegg, Samuel M. [Los Alamos National Laboratory, P.O. Box 1663, MS J565, Los Alamos, NM 87545 (United States)

    2015-05-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO{sub 2}, Fe{sub 2}O{sub 3}, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na{sub 2}O, K{sub 2}O, TiO{sub 2}, and P{sub 2}O{sub 5}, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high

  7. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.

    2015-01-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO 2 , Fe 2 O 3 , CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na 2 O, K 2 O, TiO 2 , and P 2 O 5 , the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144

  8. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available Traditional abrasive techniques such as grinding and lapping have long been used in the surface conditioning of engineering materials. However, in the processing of hard and brittle materials like silicon nitride (Si(sub3)N(sub4)), machining...

  9. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  10. A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces

    International Nuclear Information System (INIS)

    Li, Bin; Li, Feng; Liu, Hongqi; Cai, Hui; Mao, Xinyong; Peng, Fangyu

    2014-01-01

    This study presents a novel measurement strategy and an error-compensation model for the measurement of large-scale free-form surfaces in on-machine laser measurement systems. To improve the measurement accuracy, the effects of the scan depth, surface roughness, incident angle and azimuth angle on the measurement results were investigated experimentally, and a practical measurement strategy considering the position and orientation of the sensor is presented. Also, a semi-quantitative model based on geometrical optics is proposed to compensate for the measurement error associated with the incident angle. The normal vector of the measurement point is determined using a cross-curve method from the acquired surface data. Then, the azimuth angle and incident angle are calculated to inform the measurement strategy and error-compensation model, respectively. The measurement strategy and error-compensation model are verified through the measurement of a large propeller blade on a heavy machine tool in a factory environment. The results demonstrate that the strategy and the model are effective in increasing the measurement accuracy. (paper)

  11. 3D FE simulation of semi-finishing machining of Ti6Al4V additively manufactured by direct metal laser sintering

    Science.gov (United States)

    Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico

    2018-05-01

    The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.

  12. Application tests of a remote controlled machine for laser sealing and cutting of pipelines in hazardous circuits

    Energy Technology Data Exchange (ETDEWEB)

    Cai, G. (Ansaldo SpA, Genoa (Italy)); Cantello, M.; Accampo, G.

    1991-12-01

    This short communication deals with the experimental investigation on sealing and cutting tubes with the same laser beam after partial compression of the tube using presses of limited force easy to install on a robot for dismantling chemical or nuclear plants.

  13. A low-cost microwell device for high-resolution imaging of neurite outgrowth in 3D

    Science.gov (United States)

    Ren, Yuan; Mlodzianoski, Michael J.; Cheun Lee, Aih; Huang, Fang; Suter, Daniel M.

    2018-06-01

    Objective. Current neuronal cell culture is mostly performed on two-dimensional (2D) surfaces, which lack many of the important features of the native environment of neurons, including topographical cues, deformable extracellular matrix, and spatial isotropy or anisotropy in three dimensions. Although three-dimensional (3D) cell culture systems provide a more physiologically relevant environment than 2D systems, their popularity is greatly hampered by the lack of easy-to-make-and-use devices. We aim to develop a widely applicable 3D culture procedure to facilitate the transition of neuronal cultures from 2D to 3D. Approach. We made a simple microwell device for 3D neuronal cell culture that is inexpensive, easy to assemble, and fully compatible with commonly used imaging techniques, including super-resolution microscopy. Main results. We developed a novel gel mixture to support 3D neurite regeneration of Aplysia bag cell neurons, a system that has been extensively used for quantitative analysis of growth cone dynamics in 2D. We found that the morphology and growth pattern of bag cell growth cones in 3D culture closely resemble the ones of growth cones observed in vivo. We demonstrated the capability of our device for high-resolution imaging of cytoskeletal and signaling proteins as well as organelles. Significance. Neuronal cell culture has been a valuable tool for neuroscientists to study the behavior of neurons in a controlled environment. Compared to 2D, neurons cultured in 3D retain the majority of their native characteristics, while offering higher accessibility, control, and repeatability. We expect that our microwell device will facilitate a wider adoption of 3D neuronal cultures to study the mechanisms of neurite regeneration.

  14. Multi-degree-of-freedom motion error measurement in an ultra precision machine using laser encoder - Review

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cha Bum; Lee, Sun Kyu [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2013-01-15

    Recently, in accordance with the increasing market demand for ultra precision technology, a high precision multi-degree-of-freedom displacement measurement technology has become important for industrial applications such as the field of manufacturing and inspection because those physical quantities, linear and angular displacements, are key parameters for keeping and improving quality control of a production system. A number of instruments capable of precise multi-degree-of-freedom measurements have been built and some novel techniques have been introduced. The current state-of-art techniques for multi-degree-of-freedom motion error measurement in a linear stage using laser encoder-implemented system are reviewed. First, we summarize the basic principles behind the measurement technology of the motion error in a stage and simple encoder system. Next, the basic design principles of practical laser encoder system are discussed using the experience of past and existing cases to refer to the important points and the major scientific results. The current trends in the field are significantly discussed, including the novel techniques under construction and advanced technologies. Lastly, the future of multi-functional laser encoder-implemented system, highlighting the kinds of new science upcoming in the next few years, is discussed.

  15. Multi-degree-of-freedom motion error measurement in an ultra precision machine using laser encoder - Review

    International Nuclear Information System (INIS)

    Lee, Cha Bum; Lee, Sun Kyu

    2013-01-01

    Recently, in accordance with the increasing market demand for ultra precision technology, a high precision multi-degree-of-freedom displacement measurement technology has become important for industrial applications such as the field of manufacturing and inspection because those physical quantities, linear and angular displacements, are key parameters for keeping and improving quality control of a production system. A number of instruments capable of precise multi-degree-of-freedom measurements have been built and some novel techniques have been introduced. The current state-of-art techniques for multi-degree-of-freedom motion error measurement in a linear stage using laser encoder-implemented system are reviewed. First, we summarize the basic principles behind the measurement technology of the motion error in a stage and simple encoder system. Next, the basic design principles of practical laser encoder system are discussed using the experience of past and existing cases to refer to the important points and the major scientific results. The current trends in the field are significantly discussed, including the novel techniques under construction and advanced technologies. Lastly, the future of multi-functional laser encoder-implemented system, highlighting the kinds of new science upcoming in the next few years, is discussed.

  16. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  17. Laser-induced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model

    International Nuclear Information System (INIS)

    Yang, Jianhong; Yi, Cancan; Xu, Jinwu; Ma, Xianghong

    2015-01-01

    A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine. - Highlights: • Both training and testing samples are considered for analytical lines selection. • The analytical lines are auto-selected based on the built-in characteristics of spectral lines. • The new method can achieve better prediction accuracy and modeling robustness. • Model predictions are given with confidence interval of probabilistic distribution

  18. Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers

    Science.gov (United States)

    Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying

    2018-06-01

    In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.

  19. Machine Shop Grinding Machines.

    Science.gov (United States)

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  20. Application of Various Lasers to Laser Trimming Resistance System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  1. Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Moros, J; Serrano, J; Gallego, F J; Macías, J; Laserna, J J

    2013-06-15

    During recent years laser-induced breakdown spectroscopy (LIBS) has been considered one of the techniques with larger ability for trace detection of explosives. However, despite of the high sensitivity exhibited for this application, LIBS suffers from a limited selectivity due to difficulties in assigning the molecular origin of the spectral emissions observed. This circumstance makes the recognition of fingerprints a latent challenging problem. In the present manuscript the sorting of six explosives (chloratite, ammonal, DNT, TNT, RDX and PETN) against a broad list of potential harmless interferents (butter, fuel oil, hand cream, olive oil, …), all of them in the form of fingerprints deposited on the surfaces of objects for courier services, has been carried out. When LIBS information is processed through a multi-stage architecture algorithm built from a suitable combination of 3 learning classifiers, an unknown fingerprint may be labeled into a particular class. Neural network classifiers trained by the Levenberg-Marquardt rule were decided within 3D scatter plots projected onto the subspace of the most useful features extracted from the LIBS spectra. Experimental results demonstrate that the presented algorithm sorts fingerprints according to their hazardous character, although its spectral information is virtually identical in appearance, with rates of false negatives and false positives not beyond of 10%. These reported achievements mean a step forward in the technology readiness level of LIBS for this complex application related to defense, homeland security and force protection. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning

    International Nuclear Information System (INIS)

    Mihailescu, A.

    2016-01-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond ( fs ) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  3. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.

    2015-05-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels

  4. Fiscal 1998 achievement report on regional consortium research and development project. Research and development for developing basic technologies of composite laser-aided metal machining into highly advanced system (Technology of machining process systematization for furnishing titanium and titanium alloys with advanced functions - 2nd year); 1998 nendo fukugo laser nado ni yoru kinzoku kako kiban gijutsu no kodo system ka no kenkyu kaihatsu seika hokokusho. 2. Chitan oyobi chitan gokin eno kokino fuyo kako system ka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the creation of new industries and for their expansion to the consumer market, efforts are made to develop laser-aided technology of bonding titanium with other metals and CAD/CAM (computer-aided design/computer-aided manufacture)-aided technology of high-precision multidimensional laser machining for titanium. In the development of technology for bonding titanium and other metals, combinations of titanium and stainless steel and titanium and copper are examined, and a dissimilar metal joint is successfully manufactured, free of cracks at a tension shear strength level of approximately 4200N/40mm and shear stress of 200MPa or higher. In the study of the mechanism of bonding, it is found that a sound weld metal is created with the formation of intermetallic compounds well inhibited by allowing titanium to be on the upper surface. In the study of laser-aided titanium cutting, a dross-free cutting process is realized by optimizing cutting conditions such as those involving laser excitation and assist gas application. Three-dimensional laser-aided cutting is carried out in compliance with a 3-dimensional laser cutting program incorporating metal pattern data, and the process is found to reduce the number of necessary dies to 1/4 to shorten and simplify the process. (NEDO)

  5. Machine tool evaluation

    International Nuclear Information System (INIS)

    Lunsford, B.E.

    1976-01-01

    Continued improvement in numerical control (NC) units and the mechanical components used in the construction of today's machine tools, necessitate the use of more precise instrumentation to calibrate and determine the capabilities of these systems. It is now necessary to calibrate most tape-control lathes to a tool-path positioning accuracy of +-300 microinches in the full slide travel and, on some special turning and boring machines, a capability of +-100 microinches must be achieved. The use of a laser interferometer to determine tool-path capabilities is described

  6. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  7. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    Science.gov (United States)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  8. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  9. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  10. Face machines

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-06-01

    The article surveys latest equipment available from the world`s manufacturers of a range of machines for tunnelling. These are grouped under headings: excavators; impact hammers; road headers; and shields and tunnel boring machines. Products of thirty manufacturers are referred to. Addresses and fax numbers of companies are supplied. 5 tabs., 13 photos.

  11. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  12. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  13. Nonplanar machines

    International Nuclear Information System (INIS)

    Ritson, D.

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs

  14. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  15. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2015-01-01

    Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...

  16. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  17. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  18. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  19. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  20. Use of response surface methodology for development of new microwell-based spectrophotometric method for determination of atrovastatin calcium in tablets

    Directory of Open Access Journals (Sweden)

    Wani Tanveer A

    2012-11-01

    Full Text Available Abstract Background Response surface methodology by Box–Behnken design employing the multivariate approach enables substantial improvement in the method development using fewer experiments, without wastage of large volumes of organic solvents, which leads to high analysis cost. This methodology has not been employed for development of a method for analysis of atorvastatin calcium (ATR-Ca. Results The present research study describes the use of in optimization and validation of a new microwell-based UV-Visible spectrophotometric method of for determination of ATR-Ca in its tablets. By the use of quadratic regression analysis, equations were developed to describe the behavior of the response as simultaneous functions of the selected independent variables. Accordingly, the optimum conditions were determined which included concentration of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, time of reaction and temperature. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The method was validated, in accordance with ICH guidelines for accuracy, precision, selectivity and linearity (r² = 0.9993 over the concentration range of 20–200 μg/ml. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. Conclusion The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, environmentally friendly "Green" approach and reduction in the analysis cost by 50-fold.

  1. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system.

    Science.gov (United States)

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Aikawa, Yoshio; Ohtake, Masaki; Matsuda, Hideo; Kobayashi, Shuji; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2013-01-01

    To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 μl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density.

  2. Use of response surface methodology for development of new microwell-based spectrophotometric method for determination of atrovastatin calcium in tablets

    Science.gov (United States)

    2012-01-01

    Background Response surface methodology by Box–Behnken design employing the multivariate approach enables substantial improvement in the method development using fewer experiments, without wastage of large volumes of organic solvents, which leads to high analysis cost. This methodology has not been employed for development of a method for analysis of atorvastatin calcium (ATR-Ca). Results The present research study describes the use of in optimization and validation of a new microwell-based UV-Visible spectrophotometric method of for determination of ATR-Ca in its tablets. By the use of quadratic regression analysis, equations were developed to describe the behavior of the response as simultaneous functions of the selected independent variables. Accordingly, the optimum conditions were determined which included concentration of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), time of reaction and temperature. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The method was validated, in accordance with ICH guidelines for accuracy, precision, selectivity and linearity (r² = 0.9993) over the concentration range of 20–200 μg/ml. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. Conclusion The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, environmentally friendly "Green" approach) and reduction in the analysis cost by 50-fold. PMID:23146143

  3. Machine Protection

    International Nuclear Information System (INIS)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012

  4. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  5. Machine Protection

    CERN Document Server

    Zerlauth, Markus; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  6. Machine Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  7. Teletherapy machine

    International Nuclear Information System (INIS)

    Panyam, Vinatha S.; Rakshit, Sougata; Kulkarni, M.S.; Pradeepkumar, K.S.

    2017-01-01

    Radiation Standards Section (RSS), RSSD, BARC is the national metrology institute for ionizing radiation. RSS develops and maintains radiation standards for X-ray, beta, gamma and neutron radiations. In radiation dosimetry, traceability, accuracy and consistency of radiation measurements is very important especially in radiotherapy where the success of patient treatment is dependent on the accuracy of the dose delivered to the tumour. Cobalt teletherapy machines have been used in the treatment of cancer since the early 1950s and India had its first cobalt teletherapy machine installed at the Cancer Institute, Chennai in 1956

  8. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  9. Machine rates for selected forest harvesting machines

    Science.gov (United States)

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  10. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  11. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  12. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  13. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  14. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  15. Representational Machines

    DEFF Research Database (Denmark)

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  16. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  17. The laser principles and application techniques

    International Nuclear Information System (INIS)

    Maillet, H.

    1990-01-01

    In this book on laser applications chapter 4 is devoted to uranium isotopic separation and chapter 5 to laser inertial fusion, other topics include machining, medical applications, measurements, military applications, holography, reprography, telecommunications, compact discs, light shows and safety [fr

  18. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser......-machined surfaces, normalized bearing area curves and parameters are used to characterize the surface quantitatively. The range of normalized bearing area curve parameters for plate-able surface is suggested. PBT/PET with 40 % glass fiber was used as the substrate material. For all of the studied lasers......, the parameters were varied in a relatively large range, and matrixes of the laser-machined surface were obtained. The topography of those laser-machined surfaces was examined by scanning electronic microscope (SEM). For each sample examined by SEM, there was an identical workpiece plated by for 90 min...

  19. Qualification and standardisation of solid phase surface machining using laser beams. Final report; Qualifizierung und Normung der Festphasen-Oberflaechenbearbeitung mit Laserstrahlung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H.W.; Mueller, K.

    1999-07-01

    Laser hardening is still not generally accepted, owing to a lack of data on material response, which makes it hard for the potential user to assess the possibilities and limits of the process. A test method was developed and tested on four model materials. The results will provide a basis for an extensive dta compilation and will be developed into future specifications for application of laser hardening. The investigations described here are not laser-specific and can be applied to other surface hardening processes as well. [German] Das Laserstrahlhaerten hat trotz intensiver Forschung und Entwicklung noch nicht die erwartete Verbreitung in der Industrie gefunden. Daher ist es das Ziel der vorliegenden Arbeit, das Verfahren aus werkstoffkundlicher Sicht zu qualifizieren, um damit eine wichtige Voraussetzung fuer die breite industrielle Nutzung zu schaffen. Als wesentliche Hindernisse wurde der fehlende Haertbarkeitsbegriff und ein Mangel an Daten zur Beschreibung des Werkstoffverhaltens erkannt. Dies macht es einem potentiellen Anwender schwer, die Moeglichkeiten und Grenzen des Verfahrens abzuschaetzen. Fuer die Charakterisierung des Werkstoffverhaltens bei einer Kurzzeitaustenitisierung war es notwendig, bestehende Pruefverfahren zu modifizieren, um den Gegebenheiten einer raschen Erwaermung Rechnung zu tragen. Es wurde ein einfacher Versuchsstand entwickelt, der es erlaubt, die generelle Eignung eines Werkstoffs zu beurteilen. Die Anwendung des Pruefverfahrens auf vier verschiedene Modellwerkstoffe hat dessen Aussagefaehigkeit bestaetigt. Die konduktive Erwaermung von Proben ermoeglicht es, die Zeit-Temperaturzyklen, die beim Laserstrahlhaerten auftreten, naeherungsweise nachzubilden. Damit laesst sich einerseits das Umwandlungsverhalten der Werkstoffe auf elegante Art und Weise untersuchen, andererseits ist es moeglich, die mechanischen Eigenschaften in dem Zustand zu messen, den der Werkstoff im Augenblick der Laserbehandlung tatsaechlich besitzt. Diese

  20. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  1. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  2. Non-equilibrium quantum heat machines

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  3. Non-equilibrium quantum heat machines

    International Nuclear Information System (INIS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-01-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)

  4. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  5. New power lasers

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  6. Laser Processing and Chemistry

    CERN Document Server

    Bäuerle, Dieter

    2011-01-01

    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  7. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    Science.gov (United States)

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  8. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach.

    Science.gov (United States)

    Wang, Hsin-Yao; Lee, Tzong-Yi; Tseng, Yi-Ju; Liu, Tsui-Ping; Huang, Kai-Yao; Chang, Yung-Ta; Chen, Chun-Hsien; Lu, Jang-Jih

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra.

  9. Machine Protection

    International Nuclear Information System (INIS)

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3 × 10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS

  10. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  11. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  12. Diamond turning on advanced machine tool prototypes

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.

    1975-01-01

    Specular-quality metal mirrors are being machined for use in laser optical systems. The fabrication process incorporates special quality diamond tools and specially constructed turning machines. The machines are controlled by advanced control techniques and are housed in an environmentally controlled laboratory to insure ultimate machine stability and positional accuracy. The materials from which these mirrors are primarily produced are the softer face-center-cubic structure metals, such as gold, silver, copper, and aluminum. Mirror manufacturing by the single-point diamond machining process is in an early stage of development, but it is anticipated that this method will become the most economical way for producing high-quality metal mirrors. (U.S.)

  13. Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.

    Science.gov (United States)

    Islam, R S; Tisi, D; Levy, M S; Lye, G J

    2008-04-01

    Fermentation optimization experiments are ideally performed at small scale to reduce time, cost and resource requirements. Currently microwell plates (MWPs) are under investigation for this purpose as the format is ideally suited to automated high-throughput experimentation. In order to translate an optimized small-scale fermentation process to laboratory and pilot scale stirred-tank reactors (STRs) it is necessary to characterize key engineering parameters at both scales given the differences in geometry and the mechanisms of aeration and agitation. In this study oxygen mass transfer coefficients are determined in three MWP formats and in 7.5 L and 75 L STRs. k(L)a values were determined in cell-free media using the dynamic gassing-out technique over a range of agitation conditions. Previously optimized culture conditions at the MWP scale were then scaled up to the larger STR scales on the basis of matched k(L)a values. The accurate reproduction of MWP (3 mL) E. coli BL21 (DE3) culture kinetics at the two larger scales was shown in terms of cell growth, protein expression, and substrate utilization for k(L)a values that provided effective mixing and gas-liquid distribution at each scale. This work suggests that k(L)a provides a useful initial scale-up criterion for MWP culture conditions which enabled a 15,000-fold scale translation in this particular case. This work complements our earlier studies on the application of DoE techniques to MWP fermentation optimization and in so doing provides a generic framework for the generation of large quantities of soluble protein in a rapid and cost-effective manner.

  14. Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos.

    Science.gov (United States)

    Sugimura, Satoshi; Akai, Tomonori; Somfai, Tamás; Hirayama, Muneyuki; Aikawa, Yoshio; Ohtake, Masaki; Hattori, Hideshi; Kobayashi, Shuji; Hashiyada, Yutaka; Konishi, Kazuyuki; Imai, Kei

    2010-12-01

    We have developed a polystyrene-based well-of-the-well (WOW) system using injection molding to track individual embryos throughout culture using time-lapse cinematography (TLC). WOW culture of bovine embryos following in vitro fertilization was compared with conventional droplet culture (control). No differences between control- and WOW-cultured embryos were observed during development to the blastocyst stage. Morphological quality and inner cell mass (ICM) and trophectoderm (TE) cell numbers were not different between control- and WOW-derived blastocysts; however, apoptosis in both the ICM and TE cells was reduced in WOW culture (P < 0.01). Oxygen consumption in WOW-derived blastocysts was closer to physiological level than that of control-derived blastocysts. Moreover, WOW culture improved embryo viability, as indicated by increased pregnancy rates at Days 30 and 60 after embryo transfer (P < 0.05). TLC monitoring was performed to evaluate the cleavage pattern and the duration of the first cell cycle of embryos from oocytes collected by ovum pickup; correlations with success of pregnancy were determined. Logistic regression analysis indicated that the cleavage pattern correlated with success of pregnancy (P < 0.05), but cell cycle length did not. Higher pregnancy rates (66.7%) were observed for animals in which transferred blastocysts had undergone normal cleavage, identified by the presence of two blastomeres of the same size without fragmentation, than among those with abnormal cleavage (33.3%). These results suggest that our microwell culture system is a powerful tool for producing and selecting healthy embryos and for identifying viability biomarkers.

  15. Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wang, Zhennan [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China); Han, Xiaoshuang [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China); College of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Hou, Huaming [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China)

    2014-12-01

    With the hope of applying laser-induced breakdown spectroscopy (LIBS) to the geological logging field, a series of cutting samples were classified using LIBS coupled with chemometric methods. In this paper, we focused on a comparative investigation of the linear PLS-DA method and non-linear SVM method. Both the optimal PLS-DA model and SVM model were built by the leave-one-out cross-validation (LOOCV) approach with the calibration LIBS spectra, and then tested by validation spectra. We show that the performance of SVM is significantly better than PLS-DA because of its ability to address the non-linear relationships in LIBS spectra, with a correct classification rate of 91.67% instead of 68.34%, and an unclassification rate of 3.33% instead of 28.33%. To further improve the classification accuracy, we then designed a new classification approach by the joint analysis of PLS-DA and SVM models. With this method, 95% of the validation spectra are correctly classified and no unclassified spectra are observed. This work demonstrated that the coupling of LIBS with the non-linear SVM method has great potential to be used for on-line classification of geological cutting samples, and the combination of PLS-DA and SVM enables the cuttings identification with an excellent performance. - Highlights: • The geological cuttings were classified using LIBS coupled with chemometric methods. • The non-linear SVM showed significantly better performance than PLS-DA. • The joint analysis of PLS-DA and SVMs provided an excellent accuracy of 95%.

  16. Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tian, Ye; Wang, Zhennan; Han, Xiaoshuang; Hou, Huaming; Zheng, Ronger

    2014-01-01

    With the hope of applying laser-induced breakdown spectroscopy (LIBS) to the geological logging field, a series of cutting samples were classified using LIBS coupled with chemometric methods. In this paper, we focused on a comparative investigation of the linear PLS-DA method and non-linear SVM method. Both the optimal PLS-DA model and SVM model were built by the leave-one-out cross-validation (LOOCV) approach with the calibration LIBS spectra, and then tested by validation spectra. We show that the performance of SVM is significantly better than PLS-DA because of its ability to address the non-linear relationships in LIBS spectra, with a correct classification rate of 91.67% instead of 68.34%, and an unclassification rate of 3.33% instead of 28.33%. To further improve the classification accuracy, we then designed a new classification approach by the joint analysis of PLS-DA and SVM models. With this method, 95% of the validation spectra are correctly classified and no unclassified spectra are observed. This work demonstrated that the coupling of LIBS with the non-linear SVM method has great potential to be used for on-line classification of geological cutting samples, and the combination of PLS-DA and SVM enables the cuttings identification with an excellent performance. - Highlights: • The geological cuttings were classified using LIBS coupled with chemometric methods. • The non-linear SVM showed significantly better performance than PLS-DA. • The joint analysis of PLS-DA and SVMs provided an excellent accuracy of 95%

  17. Addiction Machines

    Directory of Open Access Journals (Sweden)

    James Godley

    2011-10-01

    Full Text Available Entry into the crypt William Burroughs shared with his mother opened and shut around a failed re-enactment of William Tell’s shot through the prop placed upon a loved one’s head. The accidental killing of his wife Joan completed the installation of the addictation machine that spun melancholia as manic dissemination. An early encryptment to which was added the audio portion of abuse deposited an undeliverable message in WB. Wil- liam could never tell, although his corpus bears the in- scription of this impossibility as another form of pos- sibility. James Godley is currently a doctoral candidate in Eng- lish at SUNY Buffalo, where he studies psychoanalysis, Continental philosophy, and nineteenth-century litera- ture and poetry (British and American. His work on the concept of mourning and “the dead” in Freudian and Lacanian approaches to psychoanalytic thought and in Gothic literature has also spawned an essay on zombie porn. Since entering the Academy of Fine Arts Karlsruhe in 2007, Valentin Hennig has studied in the classes of Sil- via Bächli, Claudio Moser, and Corinne Wasmuht. In 2010 he spent a semester at the Dresden Academy of Fine Arts. His work has been shown in group exhibi- tions in Freiburg and Karlsruhe.

  18. Machine musicianship

    Science.gov (United States)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  19. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  20. High power lasers

    CERN Document Server

    Niku-Lari, A

    1989-01-01

    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  1. Machine technology: a survey

    International Nuclear Information System (INIS)

    Barbier, M.M.

    1981-01-01

    An attempt was made to find existing machines that have been upgraded and that could be used for large-scale decontamination operations outdoors. Such machines are in the building industry, the mining industry, and the road construction industry. The road construction industry has yielded the machines in this presentation. A review is given of operations that can be done with the machines available

  2. Machine Shop Lathes.

    Science.gov (United States)

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  3. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  4. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  5. Compact digital NTSC TV signal transmission system using SM optical fibers and its application to operating status monitoring for laser cutting machine; Digital gazo shingo no kan`igata hikari fiber denso system to sono laser cutter no dosa jotai kanshi eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Asada, H. [NEC Shizuoka, Ltd., Shizuoka (Japan); Rabou, N. [University of Helwan, (Egypt); Ikeda, H.; Shimodaira, Y.; Yoshida, H. [Shizuoka University, Shizuoka (Japan)

    1998-02-01

    This paper describes a compact bandwidth-compressed digital NTSC picture code transmission system in which circuit configurations are simplified and made inexpensive. The bandwidth of digital NTSC picture codes is compressed in accordance with subjective evaluation, and so the sampling rate is set at 8.13 MHz (2.28 times fsc) and the quantizing level at 5 bits. The frame bits for detecting the frames of picture elements me generated by alternately generating 1 and 0 when the frames are specified. The proposed system is constructed using edge- emitting LED`s (ELED`s) and single- mode (SM) fibers for transmitting digital NTSC picture codes w m to easily distribute video signals from a video camera to video monitors. The transmitter was 80 times 100mm in size, 120 g in weight, and 1000mw in power dissipation. The receiver was 55 times 120 mm in size, 100g in weight, and 800mw in power dissipation. Using the compact bandwidth-compressed digital NTSC picture code transmission system a shot of the working pice in the laser cutting machine, as an example, was satisfactorily transmitted via SM optical fibers without noses. 18 refs., 12 figs., 2 tabs.

  6. Buying a laser - tips and pearls.

    Science.gov (United States)

    Aurangabadkar, Sanjeev J; Mysore, Venkataram; Ahmed, E Suhail

    2014-04-01

    Lasers and aesthetic procedures have transformed dermatology practice. They have aided in the treatment of hitherto untreatable conditions and allowed better financial remuneration to the physician. The availability of a variety of laser devices of different makes, specifications and pricing has lead to confusion and dilemma in the mind of the buying physician. There are presently no guidelines available for buying a laser. Since purchase of a laser involves large investments, careful consideration to laser specifications, training, costing, warranty, availability of spares, and reliability of service are important prerequisites. This article describes various factors that are needed to be considered and also attempts to lay down criteria to be assessed while buying a laser system that will be useful to physicians before investing in a laser machine. Meticulous planning of the type of machine, specifications, financial aspects, maintenance and warranties is important.It is wise to sign a contract or agreement between the buyer and seller before purchase of a laser which covers key aspects of installation, after sales service and maintenance of the machine.Adequate training is essential; understanding laser physics and laser-tissue interaction goes a long way in getting the best out of the machine.The credibility of the dealer and company should be ascertained in order to be assured of after-sales service.Buying used machines, sharing of equipment to offset high initial investments is a good option but even more care is required to ensure proper functioning and maintenance.

  7. MITS machine operations

    International Nuclear Information System (INIS)

    Flinchem, J.

    1980-01-01

    This document contains procedures which apply to operations performed on individual P-1c machines in the Machine Interface Test System (MITS) at AiResearch Manufacturing Company's Torrance, California Facility

  8. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  9. Applied machining technology

    CERN Document Server

    Tschätsch, Heinz

    2010-01-01

    Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It includes many examples of concrete calculations, problems and solutions.

  10. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  11. Machine medical ethics

    CERN Document Server

    Pontier, Matthijs

    2015-01-01

    The essays in this book, written by researchers from both humanities and sciences, describe various theoretical and experimental approaches to adding medical ethics to a machine in medical settings. Medical machines are in close proximity with human beings, and getting closer: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. In such contexts, machines are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for e...

  12. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  13. Machine protection systems

    CERN Document Server

    Macpherson, A L

    2010-01-01

    A summary of the Machine Protection System of the LHC is given, with particular attention given to the outstanding issues to be addressed, rather than the successes of the machine protection system from the 2009 run. In particular, the issues of Safe Machine Parameter system, collimation and beam cleaning, the beam dump system and abort gap cleaning, injection and dump protection, and the overall machine protection program for the upcoming run are summarised.

  14. Dictionary of machine terms

    International Nuclear Information System (INIS)

    1990-06-01

    This book has introduction of dictionary of machine terms, and a compilation committee and introductory remarks. It gives descriptions of the machine terms in alphabetical order from a to Z and also includes abbreviation of machine terms and symbol table, way to read mathematical symbols and abbreviation and terms of drawings.

  15. Mankind, machines and people

    Energy Technology Data Exchange (ETDEWEB)

    Hugli, A

    1984-01-01

    The following questions are addressed: is there a difference between machines and men, between human communication and communication with machines. Will we ever reach the point when the dream of artificial intelligence becomes a reality. Will thinking machines be able to replace the human spirit in all its aspects. Social consequences and philosophical aspects are addressed. 8 references.

  16. A Universal Reactive Machine

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Mørk, Simon; Sørensen, Morten U.

    1997-01-01

    Turing showed the existence of a model universal for the set of Turing machines in the sense that given an encoding of any Turing machine asinput the universal Turing machine simulates it. We introduce the concept of universality for reactive systems and construct a CCS processuniversal...

  17. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...

  18. Your Sewing Machine.

    Science.gov (United States)

    Peacock, Marion E.

    The programed instruction manual is designed to aid the student in learning the parts, uses, and operation of the sewing machine. Drawings of sewing machine parts are presented, and space is provided for the student's written responses. Following an introductory section identifying sewing machine parts, the manual deals with each part and its…

  19. GPC Light Shaper for energy efficient laser materials processing.

    OpenAIRE

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson; Aabo, Thomas; Glückstad, Jesper

    2014-01-01

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different opti...

  20. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  1. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  2. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  3. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  4. Process control & monitoring for laser micromaching of Si3N4 ceramics

    CSIR Research Space (South Africa)

    Tshabalala, L

    2012-09-01

    Full Text Available Laser machining which is a non-contact process that offers the advantage of machining advanced ceramics. In laser machining Si3N4, surface temperature is increased and controlled to evaporate the YSiAlON glassy phase of the Si3N4. However...

  5. Trends in laser micromachining

    Science.gov (United States)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  6. 78 FR 37723 - Laser Products; Proposed Amendment to Performance Standard

    Science.gov (United States)

    2013-06-24

    ... of products that incorporate lasers are compact disc and DVD players, fax machines, fiber optic and... incorporate lasers are compact disc and DVD players, fax machines, fiber optic and free-air communication... additional training costs associated with learning the new standard, but believe estimated costs would be so...

  7. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  8. CERN's web application updates for electron and laser beam technologies

    CERN Document Server

    Sigas, Christos

    2017-01-01

    This report describes the modifications at CERN's web application for electron and laser beam technologies. There are updates at both the front and the back end of the application. New electron and laser machines were added and also old machines were updated. There is also a new feature for printing needed information.

  9. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  10. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  11. The Newest Machine Material

    International Nuclear Information System (INIS)

    Seo, Yeong Seop; Choe, Byeong Do; Bang, Meong Sung

    2005-08-01

    This book gives descriptions of machine material with classification of machine material and selection of machine material, structure and connection of material, coagulation of metal and crystal structure, equilibrium diagram, properties of metal material, elasticity and plasticity, biopsy of metal, material test and nondestructive test. It also explains steel material such as heat treatment of steel, cast iron and cast steel, nonferrous metal materials, non metallic materials, and new materials.

  12. Introduction to machine learning

    OpenAIRE

    Baştanlar, Yalın; Özuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning app...

  13. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  14. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  15. Tribology in machine design

    CERN Document Server

    Stolarski, Tadeusz

    1999-01-01

    ""Tribology in Machine Design is strongly recommended for machine designers, and engineers and scientists interested in tribology. It should be in the engineering library of companies producing mechanical equipment.""Applied Mechanics ReviewTribology in Machine Design explains the role of tribology in the design of machine elements. It shows how algorithms developed from the basic principles of tribology can be used in a range of practical applications within mechanical devices and systems.The computer offers today's designer the possibility of greater stringen

  16. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  17. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  18. Electrical machines & drives

    CERN Document Server

    Hammond, P

    1985-01-01

    Containing approximately 200 problems (100 worked), the text covers a wide range of topics concerning electrical machines, placing particular emphasis upon electrical-machine drive applications. The theory is concisely reviewed and focuses on features common to all machine types. The problems are arranged in order of increasing levels of complexity and discussions of the solutions are included where appropriate to illustrate the engineering implications. This second edition includes an important new chapter on mathematical and computer simulation of machine systems and revised discussions o

  19. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  20. Machine listening intelligence

    Science.gov (United States)

    Cella, C. E.

    2017-05-01

    This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.

  1. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  2. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  3. Are there intelligent Turing machines?

    OpenAIRE

    Bátfai, Norbert

    2015-01-01

    This paper introduces a new computing model based on the cooperation among Turing machines called orchestrated machines. Like universal Turing machines, orchestrated machines are also designed to simulate Turing machines but they can also modify the original operation of the included Turing machines to create a new layer of some kind of collective behavior. Using this new model we can define some interested notions related to cooperation ability of Turing machines such as the intelligence quo...

  4. Machine-vision based optofluidic cell sorting

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew

    the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the laser catapulted and sorted cells....... machine vision1. This approach is gentler, less invasive and more economical compared to conventional FACS-systems. As cells are less responsive to plastic or glass objects commonly used in the optical manipulation literature2, and since laser safety would be an issue in clinical use, we develop efficient...... approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method3-9 that can be used for efficiently illuminating spatial light modulators10 or creating well-defined contiguous optical traps11 is supplemented by diffractive techniques capable of integrating...

  5. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  6. Laser cutting system in bridge fabricating line; Kyoryo seisaku line ni okeru laser no setsudan system

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, Y.; Yokotani, K. [Hitachi Zosen Corp., Osaka (Japan)

    1994-11-01

    This paper describes the laser cutting system established at a new advanced plant that was constructed by Hitachi Shipbuilding and Engineering Co., Ltd. in 1993. At the plant, the cutting line consists of four NC cutting lines: the plasma cutting machine, gas cutting machine, frame planer, and laser cutting machine. The laser cutting machine is used to cut complex shapes of relatively thin (6 - 16 mm) materials with high accuracy. The machine consists of a 3 kW CO2 laser oscillator mounted gantry type NC cutter and a slat conveyor of about 30 m long, with the maximum cutting width of 3.6 m. The NC cutting machine is provided with the automatic printing function using NC data, marking function, scheduled operation function, steel plate detector, and coordinate rotation function, etc. These functions enable unattended operation of the machine to cut multiple materials. This NC laser cutting line has the same performance data collection function for data during the operating time as other production lines. Therefore, the NC laser cutting line can be subjected to the realtime centralized control together with the other lines. All these technologies have provided high accuracy and efficiency for production as well as an environment in which many female operators can successfully work. 10 figs., 4 tabs.

  7. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  8. The Hooey Machine.

    Science.gov (United States)

    Scarnati, James T.; Tice, Craig J.

    1992-01-01

    Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)

  9. Nanocomposites for Machining Tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials...

  10. A nucleonic weighing machine

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The design and operation of a nucleonic weighing machine fabricated for continuous weighing of material over conveyor belt are described. The machine uses a 40 mCi cesium-137 line source and a 10 litre capacity ionization chamber. It is easy to maintain as there are no moving parts. It can also be easily removed and reinstalled. (M.G.B.)

  11. An asymptotical machine

    Science.gov (United States)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  12. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  13. The deleuzian abstract machines

    DEFF Research Database (Denmark)

    Werner Petersen, Erik

    2005-01-01

    To most people the concept of abstract machines is connected to the name of Alan Turing and the development of the modern computer. The Turing machine is universal, axiomatic and symbolic (E.g. operating on symbols). Inspired by Foucault, Deleuze and Guattari extended the concept of abstract...

  14. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  15. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  16. Precision machining commercialization

    International Nuclear Information System (INIS)

    1978-01-01

    To accelerate precision machining development so as to realize more of the potential savings within the next few years of known Department of Defense (DOD) part procurement, the Air Force Materials Laboratory (AFML) is sponsoring the Precision Machining Commercialization Project (PMC). PMC is part of the Tri-Service Precision Machine Tool Program of the DOD Manufacturing Technology Five-Year Plan. The technical resources supporting PMC are provided under sponsorship of the Department of Energy (DOE). The goal of PMC is to minimize precision machining development time and cost risk for interested vendors. PMC will do this by making available the high precision machining technology as developed in two DOE contractor facilities, the Lawrence Livermore Laboratory of the University of California and the Union Carbide Corporation, Nuclear Division, Y-12 Plant, at Oak Ridge, Tennessee

  17. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  18. LHC Report: machine development

    CERN Multimedia

    Rogelio Tomás García for the LHC team

    2015-01-01

    Machine development weeks are carefully planned in the LHC operation schedule to optimise and further study the performance of the machine. The first machine development session of Run 2 ended on Saturday, 25 July. Despite various hiccoughs, it allowed the operators to make great strides towards improving the long-term performance of the LHC.   The main goals of this first machine development (MD) week were to determine the minimum beam-spot size at the interaction points given existing optics and collimation constraints; to test new beam instrumentation; to evaluate the effectiveness of performing part of the beam-squeezing process during the energy ramp; and to explore the limits on the number of protons per bunch arising from the electromagnetic interactions with the accelerator environment and the other beam. Unfortunately, a series of events reduced the machine availability for studies to about 50%. The most critical issue was the recurrent trip of a sextupolar corrector circuit –...

  19. Laser cutting of Kevlar laminates

    Energy Technology Data Exchange (ETDEWEB)

    VanCleave, R.A.

    1977-09-01

    An investigation has been conducted of the use of laser energy for cutting contours, diameters, and holes in flat and shaped Kevlar 49 fiber-reinforced epoxy laminates as an alternate to conventional machining. The investigation has shown that flat laminates 6.35 mm thick may be cut without backup by using a high-powered (1000-watt) continuous wave CO/sub 2/ laser at high feedrates (33.87 mm per second). The cut produced was free of the burrs and delaminations resulting from conventional machining methods without intimate contact backup. In addition, the process cycle time was greatly reduced.

  20. Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Piels, Molly

    2015-01-01

    In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms...

  1. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  2. Machine learning and radiology.

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  3. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  4. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  5. Laser cutting: industrial relevance, process optimization, and laser safety

    Science.gov (United States)

    Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver

    1998-09-01

    Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to

  6. Fundamentals of machine design

    CERN Document Server

    Karaszewski, Waldemar

    2011-01-01

    A forum of researchers, educators and engineers involved in various aspects of Machine Design provided the inspiration for this collection of peer-reviewed papers. The resultant dissemination of the latest research results, and the exchange of views concerning the future research directions to be taken in this field will make the work of immense value to all those having an interest in the topics covered. The book reflects the cooperative efforts made in seeking out the best strategies for effecting improvements in the quality and the reliability of machines and machine parts and for extending

  7. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  8. Creativity in Machine Learning

    OpenAIRE

    Thoma, Martin

    2016-01-01

    Recent machine learning techniques can be modified to produce creative results. Those results did not exist before; it is not a trivial combination of the data which was fed into the machine learning system. The obtained results come in multiple forms: As images, as text and as audio. This paper gives a high level overview of how they are created and gives some examples. It is meant to be a summary of the current work and give people who are new to machine learning some starting points.

  9. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  10. Laser treatment of Port-wine stains

    OpenAIRE

    Boffa, Michael J.

    2001-01-01

    A state-of-the-art pulsed dye laser machine to treat port-wine stains and other vascular lesions has been available in the Malta Health Service since 1999. This article reviews the pathophysiology and clinical features of port- wine stains and describes the principles of laser treatment for this condition.

  11. Lasers for RF guns: Proceedings

    International Nuclear Information System (INIS)

    Srinivasan-Rao, T.

    1994-01-01

    In the past decade, laser driven RF guns have matured from a device under development to a proven source for high brightness and low emittance electron beams. The reliability of the electron beam from these sources is dictated by the laser system that drives it. In addition, capabilities of the laser systems play a vital role in the design of the electron source for future machines such as the TESLA and NLC. The purpose of this workshop was to provide a forum for discussing the design criteria for the laser systems so that the reliability of the existing sources could be improved and the future machines could be serviced. The Workshop brought together experts in RF Guns, accelerators, and lasers, from both the commercial and academic community. Most of the presentations, discussions and conclusions at the workshop are included in these proceedings. The contents are divided into three sections, Section I contains the invited talks that outline the requirements of the RF Guns and the capabilities of the laser systems to meet these requirements. Section II includes most of the papers presented in the poster session. These papers describe various laser systems used with electron guns, schemes to modify the laser beam profile to optimize the electron bunch, and computer simulations of electron trajectories. Section III contains the summaries of the working groups. As the summary section indicates, with sufficient feed back systems, the electron gun could be made to operate reliably with minimum downtime, using commercial lasers currently available. The design of laser systems for future colliders depend critically on the choice of the cathode m the gun and its efficiency. Tentative designs of laser systems for the TESLA test facility and LCLS had been drawn assuming a copper cathode. Using a more efficient cathode will ease the energy requirement of the laser and simplify the design. The individual papers have been cataloged separately elsewhere

  12. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  13. Gas flow parameters in laser cutting of wood- nozzle design

    Science.gov (United States)

    Kali Mukherjee; Tom Grendzwell; Parwaiz A.A. Khan; Charles McMillin

    1990-01-01

    The Automated Lumber Processing System (ALPS) is an ongoing team research effort to optimize the yield of parts in a furniture rough mill. The process is designed to couple aspects of computer vision, computer optimization of yield, and laser cutting. This research is focused on optimizing laser wood cutting. Laser machining of lumber has the advantage over...

  14. High-power copper vapour lasers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

    1995-08-01

    Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

  15. Coordinate measuring machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceabilit...... and uncertainty during coordinate measurements, 3) Digitalisation and Reverse Engineering. This document contains a short description of each step in the exercise and schemes with room for taking notes of the results.......This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceability...

  16. Machine Vision Handbook

    CERN Document Server

    2012-01-01

    The automation of visual inspection is becoming more and more important in modern industry as a consistent, reliable means of judging the quality of raw materials and manufactured goods . The Machine Vision Handbook  equips the reader with the practical details required to engineer integrated mechanical-optical-electronic-software systems. Machine vision is first set in the context of basic information on light, natural vision, colour sensing and optics. The physical apparatus required for mechanized image capture – lenses, cameras, scanners and light sources – are discussed followed by detailed treatment of various image-processing methods including an introduction to the QT image processing system. QT is unique to this book, and provides an example of a practical machine vision system along with extensive libraries of useful commands, functions and images which can be implemented by the reader. The main text of the book is completed by studies of a wide variety of applications of machine vision in insp...

  17. Enter the machine

    Science.gov (United States)

    Palittapongarnpim, Pantita; Sanders, Barry C.

    2018-05-01

    Quantum tomography infers quantum states from measurement data, but it becomes infeasible for large systems. Machine learning enables tomography of highly entangled many-body states and suggests a new powerful approach to this problem.

  18. Some applications on laser material processing

    International Nuclear Information System (INIS)

    Oros, C.

    2005-01-01

    An overview of the state-of-the-art in laser material processing for a large types of lasers from IR (CO 2 laser, NdYAG laser) to UV (excimer laser) and different kinds of materials (metals, dielectrics) is given. Laser radiation has found a wide range of applications as machining tool for various kinds of materials processing. The machining geometry, the work piece geometry, the material properties and economic productivity claim for customized systems with special design for beam guiding, shaping and delivery in order to fully utilize the laser radiation for surface processing with optimum efficiency, maximum processing speed and high processing quality. The laser-material interaction involves complex processes of heating, melting, vaporization, ejection of atoms, ions, and molecules, shock waves, plasma initiation and plasma expansion. The interaction is dependent on the laser beam parameters (pulse duration, energy and wavelength), the solid target properties and the surrounding environments condition. Experimental results for laser surface melting and laser ablation are given. Also, assuming the applicability of a one dimensional model for short pulses used, and restricting condition to single-pulse exposure, the temperature rise on the target was calculated taking account of the finite optical absorption depth and pulse duration of the laser

  19. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  20. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances

    Science.gov (United States)

    Brennan, Jennifer; Tillitt, Donald E.

    2018-01-01

    There is a need to adapt cell bioassays to 384-well and 1536-well formats instead of the traditional 96-well format as high-throughput screening (HTS) demands increase. However, the sensitivity and performance of the bioassay must be re-verified in these higher micro-well plates, and verification of cell health must also be HT (high-throughput). We have adapted two commonly used human breast luciferase transactivation cell bioassays, the recently re-named estrogen agonist/antagonist screening VM7Luc4E2 cell bioassay (previously designated BG1Luc4E2) and the androgen/glucocorticoid screening MDA-kb2 cell bioassay, to 384-well formats for HTS of endocrine-active substances (EASs). This cost-saving adaptation includes a fast, accurate, and easy measurement of protein amount in each well via the fluorescamine assay with which to normalize luciferase activity of cell lysates without requiring any transfer of the cell lysates. Here we demonstrate that by accounting for protein amount in the cell lysates, antagonistic agents can easily be distinguished from cytotoxic agents in the MDA-kb2 and VM7Luc4E2 cell bioassays. Additionally, we demonstrate via the fluorescamine assay improved interpretation of luciferase activity in wells along the edge of the plate (the so-called “edge effect”), thereby increasing usable wells to the entire plate, not just interior wells.

  1. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  2. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  3. Quantum Machine Learning

    OpenAIRE

    Romero García, Cristian

    2017-01-01

    [EN] In a world in which accessible information grows exponentially, the selection of the appropriate information turns out to be an extremely relevant problem. In this context, the idea of Machine Learning (ML), a subfield of Artificial Intelligence, emerged to face problems in data mining, pattern recognition, automatic prediction, among others. Quantum Machine Learning is an interdisciplinary research area combining quantum mechanics with methods of ML, in which quantum properties allow fo...

  4. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  5. Some relations between quantum Turing machines and Turing machines

    OpenAIRE

    Sicard, Andrés; Vélez, Mario

    1999-01-01

    For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.

  6. Reactor refueling machine simulator

    International Nuclear Information System (INIS)

    Rohosky, T.L.; Swidwa, K.J.

    1987-01-01

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console

  7. Buying a laser - Tips and pearls

    Directory of Open Access Journals (Sweden)

    Sanjeev J Aurangabadkar

    2014-01-01

    Meticulous planning of the type of machine, specifications, financial aspects, maintenance and warranties is important.It is wise to sign a contract or agreement between the buyer and seller before purchase of a laser which covers key aspects of installation, after sales service and maintenance of the machine.Adequate training is essential; understanding laser physics and laser-tissue interaction goes a long way in getting the best out of the machine.The credibility of the dealer and company should be ascertained in order to be assured of after-sales service.Buying used machines, sharing of equipment to offset high initial investments is a good option but even more care is required to ensure proper functioning and maintenance.

  8. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  9. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  10. Machine learning enhanced optical distance sensor

    Science.gov (United States)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  11. Manifold learning in machine vision and robotics

    Science.gov (United States)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  12. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  13. Laser processing of ceramics for microelectronics manufacturing

    Science.gov (United States)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  14. The Knife Machine. Module 15.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  15. The Buttonhole Machine. Module 13.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the bottonhole machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers two topics: performing special operations on the buttonhole machine (parts and purpose) and performing special operations on the buttonhole machine (gauged buttonholes). For each topic these components are…

  16. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  17. Virtual Machine in Automation Projects

    OpenAIRE

    Xing, Xiaoyuan

    2010-01-01

    Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper is to examine how to better utilize virtual machine for the automation projects. This paper designs different project scenarios using virtual machine. It analyzes installability, performance and stability of virtual machine from the test results. Technical solutions concerning virtual machine are discussed such as the conversion with physical...

  18. Non-conventional electrical machines

    CERN Document Server

    Rezzoug, Abderrezak

    2013-01-01

    The developments of electrical machines are due to the convergence of material progress, improved calculation tools, and new feeding sources. Among the many recent machines, the authors have chosen, in this first book, to relate the progress in slow speed machines, high speed machines, and superconducting machines. The first part of the book is dedicated to materials and an overview of magnetism, mechanic, and heat transfer.

  19. Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A laser absorption sensor for carbon monoxide concentration was developed for combustion studies in a rapid compression machine using a pulsed quantum cascade laser near 4.89 μm. Cavity enhancement reduced minimum detection limit down to 2.4 ppm

  20. Advanced SLARette delivery machine

    International Nuclear Information System (INIS)

    Bodner, R.R.

    1995-01-01

    SLARette 1 equipment, comprising of a SLARette Delivery Machine, SLAR Tools, SLAR power supplies and SLAR Inspection Systems was designed, developed and manufactured to service fuel channels of CANDU 6 stations during the regular yearly station outages. The Mark 2 SLARette Delivery Machine uses a Push Tube system to provide the axial and rotary movements of the SLAR Tool. The Push Tubes are operated remotely but must be attached and removed manually. Since this operation is performed at the Reactor face, there is radiation dose involved for the workers. An Advanced SLARette Delivery Machine which incorporates a computer controlled telescoping Ram in the place of the Push Tubes has been recently designed and manufactured. Utilization of the Advanced SLARette Delivery Machine significantly reduces the amount of radiation dose picked up by the workers because the need to have workers at the face of the Reactor during the SLARette operation is greatly reduced. This paper describes the design, development and manufacturing process utilized to produce the Advanced SLARette Delivery Machine and the experience gained during the Gentilly-2 NGS Spring outage. (author)

  1. The Bearingless Electrical Machine

    Science.gov (United States)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  2. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  3. Modelling Machine Tools using Structure Integrated Sensors for Fast Calibration

    Directory of Open Access Journals (Sweden)

    Benjamin Montavon

    2018-02-01

    Full Text Available Monitoring of the relative deviation between commanded and actual tool tip position, which limits the volumetric performance of the machine tool, enables the use of contemporary methods of compensation to reduce tolerance mismatch and the uncertainties of on-machine measurements. The development of a primarily optical sensor setup capable of being integrated into the machine structure without limiting its operating range is presented. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allows for fast and automated online measurements of the axes’ motion errors and thermal conditions with comparable accuracy, lower cost, and smaller dimensions as compared to state-of-the-art optical measuring instruments for offline machine tool calibration. The development is tested through simulation of the sensor setup based on raytracing and Monte-Carlo techniques.

  4. Human-Machine Communication

    International Nuclear Information System (INIS)

    Farbrot, J.E.; Nihlwing, Ch.; Svengren, H.

    2005-01-01

    New requirements for enhanced safety and design changes in process systems often leads to a step-wise installation of new information and control equipment in the control room of older nuclear power plants, where nowadays modern digital I and C solutions with screen-based human-machine interfaces (HMI) most often are introduced. Human factors (HF) expertise is then required to assist in specifying a unified, integrated HMI, where the entire integration of information is addressed to ensure an optimal and effective interplay between human (operators) and machine (process). Following a controlled design process is the best insurance for ending up with good solutions. This paper addresses the approach taken when introducing modern human-machine communication in the Oskarshamn 1 NPP, the results, and the lessons learned from this work with high operator involvement seen from an HF point of view. Examples of possibilities modern technology might offer for the operators are also addressed. (orig.)

  5. Machines and Metaphors

    Directory of Open Access Journals (Sweden)

    Ángel Martínez García-Posada

    2016-10-01

    Full Text Available The edition La ley del reloj. Arquitectura, máquinas y cultura moderna (Cátedra, Madrid, 2016 registers the useful paradox of the analogy between architecture and technique. Its author, the architect Eduardo Prieto, also a philosopher, professor and writer, acknowledges the obvious distance from machines to buildings, so great that it can only be solved using strange comparisons, since architecture does not move nor are the machines habitable, however throughout the book, from the origin of the metaphor of the machine, with clarity in his essay and enlightening erudition, he points out with certainty some concomitances of high interest, drawing throughout history a beautiful cartography of the fruitful encounter between organics and mechanics.

  6. Machine Learning for Security

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  7. Chatter and machine tools

    CERN Document Server

    Stone, Brian

    2014-01-01

    Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

  8. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  9. Machine learning systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R

    1984-05-01

    With the dramatic rise of expert systems has come a renewed interest in the fuel that drives them-knowledge. For it is specialist knowledge which gives expert systems their power. But extracting knowledge from human experts in symbolic form has proved arduous and labour-intensive. So the idea of machine learning is enjoying a renaissance. Machine learning is any automatic improvement in the performance of a computer system over time, as a result of experience. Thus a learning algorithm seeks to do one or more of the following: cover a wider range of problems, deliver more accurate solutions, obtain answers more cheaply, and simplify codified knowledge. 6 references.

  10. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  11. Machine shop basics

    CERN Document Server

    Miller, Rex

    2004-01-01

    Use the right tool the right wayHere, fully updated to include new machines and electronic/digital controls, is the ultimate guide to basic machine shop equipment and how to use it. Whether you're a professional machinist, an apprentice, a trade student, or a handy homeowner, this fully illustrated volume helps you define tools and use them properly and safely. It's packed with review questions for students, and loaded with answers you need on the job.Mark Richard Miller is a Professor and Chairman of the Industrial Technology Department at Texas A&M University in Kingsville, T

  12. Electrical machines diagnosis

    CERN Document Server

    Trigeassou, Jean-Claude

    2013-01-01

    Monitoring and diagnosis of electrical machine faults is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives.This book provides a survey of the techniques used to detect the faults occurring in electrical drives: electrical, thermal and mechanical faults of the electrical machine, faults of the static converter and faults of the energy storage unit.Diagnosis of faults occurring in electrical drives is an essential part of a global monitoring system used to improve reliability and serviceability. This diagnosis is perf

  13. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  14. Man - Machine Communication

    CERN Document Server

    Petersen, Peter; Nielsen, Henning

    1984-01-01

    This report describes a Man-to-Machine Communication module which together with a STAC can take care of all operator inputs from the touch-screen, tracker balls and mechanical buttons. The MMC module can also contain a G64 card which could be a GPIB driver but many other G64 cards could be used. The soft-ware services the input devices and makes the results accessible from the CAMAC bus. NODAL functions for the Man Machine Communication is implemented in the STAC and in the ICC.

  15. MRTD: man versus machine

    Science.gov (United States)

    van Rheenen, Arthur D.; Taule, Petter; Thomassen, Jan Brede; Madsen, Eirik Blix

    2018-04-01

    We present Minimum-Resolvable Temperature Difference (MRTD) curves obtained by letting an ensemble of observers judge how many of the six four-bar patterns they can "see" in a set of images taken with different bar-to-background contrasts. The same images are analyzed using elemental signal analysis algorithms and machine-analysis based MRTD curves are obtained. We show that by adjusting the minimum required signal-to-noise ratio the machine-based MRTDs are very similar to the ones obtained with the help of the human observers.

  16. Advances in Machine Technology.

    Science.gov (United States)

    Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio

    2018-01-01

    Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.

  17. 3D Laser Processing : The Renault Rl5

    Science.gov (United States)

    Rolland, Olivier C.; Meyer, Bernard D.

    1986-11-01

    The RL5, a five-axis robot, is designed to steer a powerful laser beam on 3 dimensional (3D) trajectories with a great accuracy. Cutting and welding with a CO2 laser beam, drilling with a YAG laser beam are some applications of this machine which can be integrated in a production line. Easy management and modifications of trajectories, obtained either in a teaching mode or by a CAD-CAM system, give the laser tool its main interest : flexibility.

  18. Some possibilities for determining cutting data when using laser cutting:

    OpenAIRE

    Radovanović, Miroslav

    2006-01-01

    The technological problems faced in the field of the application of laser-cutting machines lie in insufficient knowledge of the laser technique and the absence of both sufficiently reliable practical data and knowledge about the parameters affecting the work process itself. A significant parameter that is necessary to determine and to enter in an NC-program is the cutting speed. Various authors analyze the laser-cutting process and give mathematical models where laser cutting is modeled by us...

  19. Machine speech and speaking about machines

    Energy Technology Data Exchange (ETDEWEB)

    Nye, A. [Univ. of Wisconsin, Whitewater, WI (United States)

    1996-12-31

    Current philosophy of language prides itself on scientific status. It boasts of being no longer contaminated with queer mental entities or idealist essences. It theorizes language as programmable variants of formal semantic systems, reimaginable either as the properly epiphenomenal machine functions of computer science or the properly material neural networks of physiology. Whether or not such models properly capture the physical workings of a living human brain is a question that scientists will have to answer. I, as a philosopher, come at the problem from another direction. Does contemporary philosophical semantics, in its dominant truth-theoretic and related versions, capture actual living human thought as it is experienced, or does it instead reflect, regardless of (perhaps dubious) scientific credentials, pathology of thought, a pathology with a disturbing social history.

  20. Laser-driven grating linac

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1982-01-01

    I would like to consider a 50 TeV on 50 TeV collider. Even a hadron machine with such an energy seems unrealistic with current technology. Magnetic fields higher than 10 Tesla are difficult and at this field the circumference would be 120 km. I conclude that only a high gradient Linac could be practical and that one should aim for 10 GeV/meter so as to keep the total length down to the order ot 10 km. Currently it is only plausible to obtain such fields using the very high energy densities produced by lasers. The luminosity is another issue. I aim for 10 33 to 10 34 but I am conscious that higher luminosities than even these are really desired, especially for an e + e - machine. I tend to assume that the machine is an e + e - machine but it will also accept hadrons

  1. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  2. Making molecular machines work

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Ben L.

    2006-01-01

    In this review we chart recent advances in what is at once an old and very new field of endeavour the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a

  3. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop

  4. Turbulence and Flying Machines

    Indian Academy of Sciences (India)

    other to make the aircraft roll. For example, a downward dis- placement of the left aileron causes the airplane to roll to the right. In Figure 4 the elevators have been deflected downwards, giving rise to a 'nose-down' moment about the pitch axis. Delaying Turbulence. In the last few decades, flying machines have proliferated ...

  5. Consuming a Machinic Servicescape

    OpenAIRE

    Hietanen, Joel; Andéhn, Mikael; Iddon, Thom; Denny, Iain; Ehnhage, Anna

    2016-01-01

    Consumer encounters with servicescapes tend to emphasize the harmonic tendency of their value-creating potential. We contest this assumption from a critical non-representational perspective that foregrounds the machinic and repressive potentiality of such con- sumption contexts. We offer the airport servicescape as an illustrative example. 

  6. War Machines and Ethics

    DEFF Research Database (Denmark)

    Nielsen, Thomas Galasz; Buhl, Kenneth Øhlenschlæger

    2018-01-01

    and save military lives. However, this opens up for discussions about ethical dilemmas about machines that autonomously are able to kill humans: What is an autonomous weapons system? What laws covers the use of fully autonomous weapons systems? Should it apply to International Humanitarian Law?...

  7. GPK heading machine

    Energy Technology Data Exchange (ETDEWEB)

    Krmasek, J.; Novosad, K.

    1981-01-01

    This article evaluates performance tests of the Soviet made GPK heading machine carried out in 4 coal mines in Czechoslovakia (Ostrava-Karvina region and Kladno mines). GPK works in coal seams and rocks with compression strength of 40 to 50 MPa. Dimensions of the tunnel are height 1.8 to 3.8 m and width 2.6 to 4.7 m, tunnel gradient plus to minus 10 degrees. GPK weighs 16 t, its conical shaped cutting head equipped with RKS-1 cutting tools is driven by an electric motor with 55 kW capacity. Undercarriage of the GPK, gathering-arm loader, hydraulic system, electric system and dust supression system (water spraying or pneumatic section) are characterized. Specifications of GPK heading machines are compared with PK-3r and F8 heading machines. Reliability, number of failures, dust level, noise, productivity depending on compression strength of rocks, heading rate in coal and in rocks, energy consumption, performance in inclined tunnels, and cutting tool wear are evaluated. Tests show that GPK can be used to drive tunnels in coal with rock constituting up to 50% of the tunnel crosscut, as long as rock compression strength does not exceed 50 MPa. In rocks characterized by higher compression strength cutting tool wear sharply increases. GPK is characterized by higher productivity than that of the PK-3r heading machine. Among the weak points of the GPK are: unsatisfactory reliability and excessive wear of its elements. (4 refs.) (In Czech)

  8. A Turing Machine Simulator.

    Science.gov (United States)

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  9. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  10. Natural Nano-Machines

    Indian Academy of Sciences (India)

    Administrator

    transport, ion pump, ATP syn- thase. A popularized ..... gas. A lice: I could not understand how A T P m olecules serve as fuels for m olecular m achines. ..... [16] V Balzani, M Venturi and A Credi, Molecular Devices and Machines: a Journey into ...

  11. ADAM: ADaptive Autonomous Machine

    NARCIS (Netherlands)

    van Oosten, Daan C.; Nijenhuis, Lucas F.J.; Bakkers, André; Vervoort, Wiek

    1996-01-01

    This paper describes a part of the development of an adaptive autonomous machine that is able to move in an unknown world extract knowledge out of the perceived data, has the possibility to reason, and finally has the capability to exchange experiences and knowledge with other agents. The agent is

  12. Machine Parts as Metaphor.

    Science.gov (United States)

    Porter, Gerald

    The connection between Language for Specific Purposes (LSP) and literature is discussed with examples of technical vocabulary drawn from a variety of writers, with particular attention to a sketch by the British dramatist Harold Pinter, "Trouble in the Works," which makes extensive use of the terminology of machine parts. It is noted…

  13. Machine-Learning Research

    OpenAIRE

    Dietterich, Thomas G.

    1997-01-01

    Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

  14. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  15. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tong Tao; Li Jinggao; Longtin, Jon P.

    2004-01-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features

  16. Machining of Machine Elements Made of Polymer Composite Materials

    Science.gov (United States)

    Baurova, N. I.; Makarov, K. A.

    2017-12-01

    The machining of the machine elements that are made of polymer composite materials (PCMs) or are repaired using them is considered. Turning, milling, and drilling are shown to be most widely used among all methods of cutting PCMs. Cutting conditions for the machining of PCMs are presented. The factors that most strongly affect the roughness parameters and the accuracy of cutting PCMs are considered.

  17. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  18. DESIGN OF GRASS BRIQUETTE MACHINE

    African Journals Online (AJOL)

    user

    E-mail addresses: 1 mike.ajieh@gmail.com, 2 dracigboanugo@yahoo.com, ... machine design was considered for processing biomass of grass origin. The machine operations include pulverization, compaction and extrusion of the briquettes.

  19. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  20. Tattoo machines, needles and utilities.

    Science.gov (United States)

    Rosenkilde, Frank

    2015-01-01

    Starting out as a professional tattooist back in 1977 in Copenhagen, Denmark, Frank Rosenkilde has personally experienced the remarkable development of tattoo machines, needles and utilities: all the way from home-made equipment to industrial products of substantially improved quality. Machines can be constructed like the traditional dual-coil and single-coil machines or can be e-coil, rotary and hybrid machines, with the more convenient and precise rotary machines being the recent trend. This development has resulted in disposable needles and utilities. Newer machines are more easily kept clean and protected with foil to prevent crosscontaminations and infections. The machines and the tattooists' knowledge and awareness about prevention of infection have developed hand-in-hand. For decades, Frank Rosenkilde has been collecting tattoo machines. Part of his collection is presented here, supplemented by his personal notes. © 2015 S. Karger AG, Basel.

  1. QCD machines - present and future

    International Nuclear Information System (INIS)

    Christ, N.H.

    1991-01-01

    The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)

  2. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  3. Student Modeling and Machine Learning

    OpenAIRE

    Sison , Raymund; Shimura , Masamichi

    1998-01-01

    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  4. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  5. Nuclear reactor machine refuelling system

    International Nuclear Information System (INIS)

    Cashen, W.S.; Erwin, D.

    1977-01-01

    Part of an on-line fuelling machine for a CANDU pressure-tube reactor is described. The present invention provides a refuelling machine wherein the fuelling components, including the fuel carrier and the closure adapter, are positively positioned and retained within the machine magazine or positively secured to the machine charge tube head, and cannot be accidentally disengaged as in former practice. The positive positioning devices include an arcuate keeper plate. Simplified hooked fingers are used. (NDH)

  6. The Chainstitch Machine. Module 18.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the chainstitch machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the chainstitch machine. These components are provided: an introduction, directions, an objective, learning activities, student information, a student self-check, and…

  7. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  8. Adaptive Machine Aids to Learning.

    Science.gov (United States)

    Starkweather, John A.

    With emphasis on man-machine relationships and on machine evolution, computer-assisted instruction (CAI) is examined in this paper. The discussion includes the background of machine assistance to learning, the current status of CAI, directions of development, the development of criteria for successful instruction, meeting the needs of users,…

  9. Machine Shop Fundamentals: Part I.

    Science.gov (United States)

    Kelly, Michael G.; And Others

    These instructional materials were developed and designed for secondary and adult limited English proficient students enrolled in machine tool technology courses. Part 1 includes 24 lessons covering introduction, safety and shop rules, basic machine tools, basic machine operations, measurement, basic blueprint reading, layout, and bench tools.…

  10. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  11. Effect of Machining Velocity in Nanoscale Machining Operations

    International Nuclear Information System (INIS)

    Islam, Sumaiya; Khondoker, Noman; Ibrahim, Raafat

    2015-01-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s. (paper)

  12. Quo vadis, Intelligent Machine?

    Directory of Open Access Journals (Sweden)

    Rosemarie Velik

    2010-09-01

    Full Text Available Artificial Intelligence (AI is a branch of computer science concerned with making computers behave like humans. At least this was the original idea. However, it turned out that this is no task easy to be solved. This article aims to give a comprehensible review on the last 60 years of artificial intelligence taking a philosophical viewpoint. It is outlined what happened so far in AI, what is currently going on in this research area, and what can be expected in future. The goal is to mediate an understanding for the developments and changes in thinking in course of time about how to achieve machine intelligence. The clear message is that AI has to join forces with neuroscience and other brain disciplines in order to make a step towards the development of truly intelligent machines.

  13. Smart Machine Protection System

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.; Spencer, N.; Hutchinson, D.; Olsen, J.; Millsom, D.; White, G.; Gromme, T.; Allison, S.; Underwood, K.; Zelazny, M.; Kang, H.

    1991-11-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerator to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is compiled into a logical decision tree for the 68030 processor. 3 figs

  14. Smart machine protection system

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.

    1992-01-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerators to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is complied into a logical decision tree for the 68030 processor. (author)

  15. Operation and machine studies

    International Nuclear Information System (INIS)

    1992-01-01

    This annual report describes the GANIL (Grand accelerateur national d'ions lourds, Caen, France) operation and the machine studies realized in 1992. Metallic ions have been accelerated during 36 pc of the time; some were produced for the first time at GANIL: 125 Te, 52 Cr with ECR3, 181 Ta with ECR4. The various machine studies are: comparison of lifetimes of carbon sheets, charge exchange of very heavy ions in carbon foils and in the residual gas of the Ganil cyclotrons, commissioning of the new high intensity axial injection system for Ganil, tantalum acceleration with the new injector, a cyclotron as a mass spectrometer; other studies concerned: implementing the new control system, gettering flux measurement, energy deposited by neutrons and gamma rays in the cryogenic system of SISSI; latest developments on multicharged ECR ion sources, and an on-line isotopic separator test bench at Ganil

  16. Introduction to Machine Protection

    CERN Document Server

    Schmidt, R

    2016-01-01

    Protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent, although there was one paper that discussed beam-induced damage for the SLAC linac (Stanford Linear Accelerator Center) as early as in 1967. It is related to the increasing beam power of high-power proton accelerators, to the emission of synchrotron light by electron-positron accelerators and to the increase of energy stored in the beam. Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping ...

  17. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  18. Quantum Virtual Machine (QVM)

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-18

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  19. Machine Translation from Text

    Science.gov (United States)

    Habash, Nizar; Olive, Joseph; Christianson, Caitlin; McCary, John

    Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of the GALE project. Beyond being a well defined application that stands on its own, MT from text is the link between the automatic speech recognition component and the distillation component. The focus of MT in GALE is on translating from Arabic or Chinese to English. The three languages represent a wide range of linguistic diversity and make the GALE MT task rather challenging and exciting.

  20. Unconventional wind machine

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1979-01-01

    It is the purpose of this paper to introduce an unconventional wind machine which has economics comparable with nuclear power and is already available in the public market place. Specifically, up to about 17 MWE could be saved for other uses such as sale in most 1000 MWE plants of any type - nuclear, oil, gas, peat, or wood - which use conventional electrically driven fans in their cooling towers. 10 refs

  1. Rapid Prototyping — A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2014-07-01

    Full Text Available Rapid prototyping has received considerable interest with the introduction of affordable rapid prototyping machines. These machines can be used to manufacture physical models from three-dimensional digital mesh models. In this paper, we compare the results obtained with a new, affordable, rapid prototyping machine, and a traditional professional machine. Two separate data sets are used for this, both of which were acquired using terrestrial laser scanning. Both of the machines were able to produce complex and highly detailed geometries in plastic material from models based on terrestrial laser scanning. The dimensional accuracies and detail levels of the machines were comparable, and the physical artifacts caused by the fused deposition modeling (FDM technique used in the rapid prototyping machines could be found in both models. The accuracy of terrestrial laser scanning exceeded the requirements for manufacturing physical models of large statues and building segments at a 1:40 scale.

  2. A Computer-Controlled Laser Bore Scanner

    Science.gov (United States)

    Cheng, Charles C.

    1980-08-01

    This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.

  3. Behind the machines

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    One of the first things we think about when someone mentions physics is the machines. But behind the machines, there are the men and women who design, build and operate them. In an exhibition at the Thinktank planetarium’s art gallery in Birmingham (UK), Claudia Marcelloni and her husband Neal Hartman—she is a photographer and Outreach Officer for ATLAS, while he is an engineer working on the ATLAS pixel detector—explore the human side of scientists.   The exhibition at the Thinktank Planetarium art gallery, Birmingham (UK). It all began two years ago with the publication of Exploring the mystery of matter, a book about ATLAS. “A Norwegian physicist friend, Heidi Sandaker, saw my photographs and suggested that I display them in a museum. I thought this was an interesting idea, except that the photos consisted entirely of depictions of machinery, with human beings completely absent. For me, showing the people who are behind the machines and the fascination ...

  4. Evolution of Replication Machines

    Science.gov (United States)

    Yao, Nina Y.; O'Donnell, Mike E.

    2016-01-01

    The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some “gears” of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the “replisome” machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus. PMID:27160337

  5. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. © 2015 American Heart Association, Inc.

  6. Quantum Machine Learning

    Science.gov (United States)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  7. Machine Learning in Medicine

    Science.gov (United States)

    Deo, Rahul C.

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games – tasks which would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in healthcare. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades – and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  8. Homopolar machine design

    International Nuclear Information System (INIS)

    Thullen, P.

    1978-01-01

    A general conceptual design for a disc-type homopolar machine is presented. This machine uses a superconducting, air-core, solenoidal field winding with a peak field of 8 T. A total energy of 500 MJ is stored in two counter-rotating disc rotors that operate at a surface speed of 200 m/s. Terminal voltages of 500 to 2000 V are obtained over the range of designs studied. Brush systems to collect 3 MA are investigated. Various brush materials are discussed to determine their usefulness in this application. Sufficient information on operating characteristics in high-power applications is only available for copper-graphite brushes. The use of sliding brushes for terminal voltage regulation is discussed. This feature cannot provide a great deal of flexibility in this particular application although it may be useful during start-up. The brush system is the most demanding feature of this design. Few systems in the million ampere range have been constructed, consequently, it is not possible to predict the behavior of this brush system with great certainty. A detailed design of the brushes should be undertaken. It is estimated that the cost of such a machine will range from 0.5 to 1.5 cents per joule

  9. Introduction: Minds, Bodies, Machines

    Directory of Open Access Journals (Sweden)

    Deirdre Coleman

    2008-10-01

    Full Text Available This issue of 19 brings together a selection of essays from an interdisciplinary conference on 'Minds, Bodies, Machines' convened last year by Birkbeck's Centre for Nineteenth-Century Studies, University of London, in partnership with the English programme, University of Melbourne and software developers Constraint Technologies International (CTI. The conference explored the relationship between minds, bodies and machines in the long nineteenth century, with a view to understanding the history of our technology-driven, post-human visions. It is in the nineteenth century that the relationship between the human and the machine under post-industrial capitalism becomes a pervasive theme. From Blake on the mills of the mind by which we are enslaved, to Carlyle's and Arnold's denunciation of the machinery of modern life, from Dickens's sooty fictional locomotive Mr Pancks, who 'snorted and sniffed and puffed and blew, like a little labouring steam-engine', and 'shot out […]cinders of principles, as if it were done by mechanical revolvency', to the alienated historical body of the late-nineteenth-century factory worker under Taylorization, whose movements and gestures were timed, regulated and rationalised to maximize efficiency; we find a cultural preoccupation with the mechanisation of the nineteenth-century human body that uncannily resonates with modern dreams and anxieties around technologies of the human.

  10. An HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2012-01-01

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which...... conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33...

  11. Mechanical design of machine components

    CERN Document Server

    Ugural, Ansel C

    2015-01-01

    Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combines the theory needed to gain insight into mechanics with numerical methods in design. It presents real-world engineering applications, and reveals the link between basic mechanics and the specific design of machine components and machines. Divided into three parts, this revised text presents basic background topics, deals with failure prevention in a variety of machine elements and covers applications in design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included.Key Features of the Second Edition:Incorporates material that has been completely updated with new chapters, problems, practical examples...

  12. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  13. Machine Ethics: Creating an Ethical Intelligent Agent

    OpenAIRE

    Anderson, Michael; Anderson, Susan Leigh

    2007-01-01

    The newly emerging field of machine ethics (Anderson and Anderson 2006) is concerned with adding an ethical dimension to machines. Unlike computer ethics -- which has traditionally focused on ethical issues surrounding humans' use of machines -- machine ethics is concerned with ensuring that the behavior of machines toward human users, and perhaps other machines as well, is ethically acceptable. In this article we discuss the importance of machine ethics, the need for machines that represent ...

  14. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  15. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  16. Case study of virtual reality in CNC machine tool exhibition

    Directory of Open Access Journals (Sweden)

    Kao Yung-Chou

    2017-01-01

    laser-assisted milling machine motion simulation has also been successfully conducted to show the expandability of the VR based technology. One can conclude that VR will be adopted and paid more and more attention in the future in helping CNC machine tool promotion. Further study could be extended to education and training system, and also for the maintenance system, too.

  17. Robotic refueling machine

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1996-01-01

    One of the longest critical path operations performed during the outage is removing and replacing the fuel. A design is currently under development for a refueling machine which would allow faster, fully automated operation and would also allow the handling of two fuel assemblies at the same time. This design is different from current designs, (a) because of its lighter weight, making increased acceleration and speed possible, (b) because of its control system which makes locating the fuel assembly more dependable and faster, and (c) because of its dual handling system allowing simultaneous fuel movements. The new design uses two robotic arms to span a designated area of the vessel and the fuel storage area. Attached to the end of each robotic arm is a lightweight telescoping mast with a pendant attached to the end of each mast. The pendant acts as the base unit, allowing attachment of any number of end effectors depending on the servicing or inspection operation. Housed within the pendant are two television cameras used for the positioning control system. The control system is adapted from the robotics field using the technology known as machine vision, which provides both object and character recognition techniques to enable relative position control rather than absolute position control as in past designs. The pendant also contains thrusters that are used for fast, short distance, precise positioning. The new refueling machine system design is capable of a complete off load and reload of an 872 element core in about 5.3 days compared to 13 days for a conventional system

  18. Mineral mining machines

    Energy Technology Data Exchange (ETDEWEB)

    Mc Gaw, B H

    1984-01-01

    A machine for mining minerals is patented. It is a cutter loader with a drum actuating element of the worm type equipped with a multitude of cutting teeth reinforced with tungsten carbide. A feature of the patented machine is that all of the cutting teeth and holders on the drum have the identical design. This is achieved through selecting a slant angle for the cutting teeth which is the mean between the slant angle of the conventional radial teeth and the slant angle of the advance teeth. This, in turn, is provided thanks to the corresponding slant of the holders relative to the drum and (or) the slant of the cutting part of the teeth relative to their stems. Thus, the advance teeth projecting beyond the surface of the drum on the face side and providing upper and lateral clearances have the same angle of attack as the radial teeth, that is, from 20 to 35 degrees. A series of modifications of the cutting teeth is patented. One of the designs allows the cutting tooth to occupy a varying position relative to the drum, from the conventional vertical to an inverted, axially projecting position. In the last case the tooth in the extraction process provides the upper and lateral clearances for the drum on the face side. Among the different modifications of the cutting teeth, a design is proposed which provides for the presence of a stem which is shaped like a truncated cone. This particular stem is designed for use jointly with a wedge which unfastens the teeth and is placed in a holder. The latter is completed in a transverse slot thanks to which the rear end of the stem is compressed, which simplifies replacement of a tooth. Channels are provided in the patented machine for feeding water to the worm spiral, the holders and the cutting teeth themselves in order to deal with dust.

  19. Tribology in machine design

    CERN Document Server

    Stolarski, T A

    1990-01-01

    Tribology in Machine Design aims to promote a better appreciation of the increasingly important role played by tribology at the design stage in engineering. This book shows how algorithms developed from the basic principles of tribology can be used in a range of practical applications. The concept of tribodesign is introduced in Chapter 1. Chapter 2 is devoted to a brief discussion of the basic principles of tribology, including some concepts and models of lubricated wear and friction under complex kinematic conditions. Elements of contact mechanics, presented in Chapter 3, are confined to the

  20. Electrical machines with Matlab

    CERN Document Server

    Gonen, Turan

    2011-01-01

    Basic ConceptsDistribution SystemImpact of Dispersed Storage and GenerationBrief Overview of Basic Electrical MachinesReal and Reactive Powers in Single-Phase AC CircuitsThree-Phase CircuitsThree-Phase SystemsUnbalanced Three-Phase LoadsMeasurement of Average Power in Three-Phase CircuitsPower Factor CorrectionMagnetic CircuitsMagnetic Field of Current-Carrying ConductorsAmpère's Magnetic Circuital LawMagnetic CircuitsMagnetic Circuit with Air GapBrief Review of FerromagnetismMagnetic Core LossesHow to Determine Flux for a Given MMFPermanent MagnetsTransformersTransformer ConstructionBrief Rev

  1. Session 2: Machine studies

    International Nuclear Information System (INIS)

    Assmann, R.W.; Papotti, G.

    2012-01-01

    This document summarizes the talks and discussion that took place in the second session of the Chamonix 2012 workshop concerning results from machine studies performed in 2011. The session consisted of the following presentations: -) LHC experience with different bunch spacings by G. Rumolo; -) Observations of beam-beam effects in MDs in 2011 by W. Herr; -) Beam-induced heating/ bunch length/RF and lessons for 2012 by E. Metral; -) Lessons in beam diagnostics by R. Jones; -) Quench margins by M. Sapinski; and -) First demonstration with beam of the Achromatic Telescopic Squeeze (ATS) by S. Fartoukh. (authors)

  2. Daphne machine project

    Energy Technology Data Exchange (ETDEWEB)

    Vignola, G. and Daphne Project Team [Istituto Nazionale di Fisica Nucleare, Frascati (Italy)

    1996-07-01

    Daphne, a high luminosity e{sup +}/e{sup -} {Phi} factory, is presently under construction in Frascati. The beginning of the collider commissioning is scheduled by winter 1997, with a short term luminosity goal L=1.3 10{sup 32} cm{sup -2} sec{sup -1}. Daphne shall be the first of the new generation of very high luminosity colliders, called factories, to come in operation. Other factories under construction are PEP-II and KEK-B: first collision, for both machines, is planned for 1998.

  3. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  4. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  5. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  6. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  7. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  8. Effect of Moisture Content of Paper Material on Laser Cutting

    Science.gov (United States)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  9. Lasers in the automobile industry

    Science.gov (United States)

    Roessler, David M.; Uddin, Nasin

    1996-04-01

    The use of lasers for automotive materials processing is reviewed both from an historical perspective and in terms of current trends. The initial lead gained in North America has subsequently given way to the remarkable growth in the use of lasers in the Japanese automotive industry. The latter's dominance has resulted in cutting being the most common laser machining application on a global basis, even though welding predominates in the US. About 98% of all automotive laser materials processing employs either CO2 or Nd:YAG lasers, although there are special applications where the excimer or other lasers can be found. This paper discusses two of the processes currently receiving most attention. Laser technology is not stagnant and the automotive industry continues to benefit from the continuing developments. However, even more striking growth can be expected as the whole process of automotive manufacture is being re-examined in response to the demands for more fuel- efficient and environmentally friendly, but still affordable and satisfying, vehicles.

  10. Trial manufacture of inside ellipse mirror for laser amplifier

    International Nuclear Information System (INIS)

    Kodama, Kenzo; Numajiri, Fumio; Kikuta, Yozo; Takasawa, Minoru; Oohira, Susumu; Nagaoka, Isao

    1984-01-01

    Inside ellipse mirrors have been trially manufactured for high power glass laser amplifiers. Their cutting process, machining, surface roughness, usage of cutting tools, materials, and processing process are given. Trial manufacture of supplementary devices for adjusting the direction of laser beam axis is also given. (author)

  11. Giro form reading machine

    Science.gov (United States)

    Minh Ha, Thien; Niggeler, Dieter; Bunke, Horst; Clarinval, Jose

    1995-08-01

    Although giro forms are used by many people in daily life for money remittance in Switzerland, the processing of these forms at banks and post offices is only partly automated. We describe an ongoing project for building an automatic system that is able to recognize various items printed or written on a giro form. The system comprises three main components, namely, an automatic form feeder, a camera system, and a computer. These components are connected in such a way that the system is able to process a bunch of forms without any human interactions. We present two real applications of our system in the field of payment services, which require the reading of both machine printed and handwritten information that may appear on a giro form. One particular feature of giro forms is their flexible layout, i.e., information items are located differently from one form to another, thus requiring an additional analysis step to localize them before recognition. A commercial optical character recognition software package is used for recognition of machine-printed information, whereas handwritten information is read by our own algorithms, the details of which are presented. The system is implemented by using a client/server architecture providing a high degree of flexibility to change. Preliminary results are reported supporting our claim that the system is usable in practice.

  12. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  13. Man-machine supervision

    International Nuclear Information System (INIS)

    Montmain, J.

    2005-01-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  14. Formal modeling of virtual machines

    Science.gov (United States)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  15. Machining of Complex Sculptured Surfaces

    CERN Document Server

    2012-01-01

    The machining of complex sculptured surfaces is a global technological topic in modern manufacturing with relevance in both industrialized and emerging in countries particularly within the moulds and dies sector whose applications include highly technological industries such as the automotive and aircraft industry. Machining of Complex Sculptured Surfaces considers new approaches to the manufacture of moulds and dies within these industries. The traditional technology employed in the manufacture of moulds and dies combined conventional milling and electro-discharge machining (EDM) but this has been replaced with  high-speed milling (HSM) which has been applied in roughing, semi-finishing and finishing of moulds and dies with great success. Machining of Complex Sculptured Surfaces provides recent information on machining of complex sculptured surfaces including modern CAM systems and process planning for three and five axis machining as well as explanations of the advantages of HSM over traditional methods ra...

  16. Laser Therapy

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser Resurfacing Uses for Laser Resurfacing Learn more ...

  17. Autocoding State Machine in Erlang

    DEFF Research Database (Denmark)

    Guo, Yu; Hoffman, Torben; Gunder, Nicholas

    2008-01-01

    This paper presents an autocoding tool suit, which supports development of state machine in a model-driven fashion, where models are central to all phases of the development process. The tool suit, which is built on the Eclipse platform, provides facilities for the graphical specification...... of a state machine model. Once the state machine is specified, it is used as input to a code generation engine that generates source code in Erlang....

  18. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  19. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  20. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  1. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  2. Recent advances in precision laser cutting for the ATLAS hadron calorimeter absorbers production

    International Nuclear Information System (INIS)

    Alikov, B.; Budagov, Yu.

    1995-01-01

    The optimised precision laser cutting technology for high tolerances ATLAS hadron calorimeter absorber plates production is described. Some recent results of laser cut absorber plates dimension measurements are presented. The plates have been manufactured by 'Universalmash' (S.-Petersburg) and RCTL RAS (Shatura). It has been shown that the proved accuracy of the laser machines is not worse than 45 microns. 9 figs

  3. Ultraprecision machining. Cho seimitsu kako

    Energy Technology Data Exchange (ETDEWEB)

    Suga, T [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1992-10-05

    It is said that the image of ultraprecision improved from 0.1[mu]m to 0.01[mu]m within recent years. Ultraprecision machining is a production technology which forms what is called nanotechnology with ultraprecision measuring and ultraprecision control. Accuracy means average machined sizes close to a required value, namely the deflection errors are small; precision means the scattered errors of machined sizes agree very closely. The errors of machining are related to both of the above errors and ultraprecision means the combined errors are very small. In the present ultraprecision machining, the relative precision to the size of a machined object is said to be in the order of 10[sup -6]. The flatness of silicon wafers is usually less than 0.5[mu]m. It is the fact that the appearance of atomic scale machining is awaited as the limit of ultraprecision machining. The machining of removing and adding atomic units using scanning probe microscopes are expected to reach the limit actually. 2 refs.

  4. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  5. YCOB lasers

    International Nuclear Information System (INIS)

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  6. Laser sampling

    International Nuclear Information System (INIS)

    Gorbatenko, A A; Revina, E I

    2015-01-01

    The review is devoted to the major advances in laser sampling. The advantages and drawbacks of the technique are considered. Specific features of combinations of laser sampling with various instrumental analytical methods, primarily inductively coupled plasma mass spectrometry, are discussed. Examples of practical implementation of hybrid methods involving laser sampling as well as corresponding analytical characteristics are presented. The bibliography includes 78 references

  7. HF laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  8. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  9. Development of YAG laser cutting system for decommissioning nuclear equipments

    International Nuclear Information System (INIS)

    Kasai, Takeshi; Nitta, Kazuhiko; Hosoda, Hiroshi.

    1995-01-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. As a result, the stainless steel plate with a thickness of 22mm could be cut by using an optical fiber which can flexibly propagate laser power, and possibility of application of this laser cutting system to decommissioning nuclear equipments was verified. (author)

  10. Development of YAG laser cutting system for decommissioning nuclear equipments

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takeshi [Fuji Electric Co. Research and Development Ltd., Yokosuka, Kanagawa (Japan); Nitta, Kazuhiko; Hosoda, Hiroshi

    1995-07-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. As a result, the stainless steel plate with a thickness of 22mm could be cut by using an optical fiber which can flexibly propagate laser power, and possibility of application of this laser cutting system to decommissioning nuclear equipments was verified. (author).

  11. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  12. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    Science.gov (United States)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  13. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  14. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  15. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  16. Progress toward a unified kJ-machine CANDY

    International Nuclear Information System (INIS)

    Kitagawa, Yoneyoshi; Mori, Yoshitaka; Komeda, Osamu; Hanayama, Ryohei; Ishii, Katsuhiro; Okihara, Shinichiro; Fujita, Kazuhisa; Nakayama, Suisei; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Watari, Takeshi; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi

    2016-01-01

    To construct a unified experimental machine CANDY using a kJ DPSSL driver in the fast-ignition scheme, the Laser for Fast Ignition Experiment (LFEX) at Osaka is used, showing that the laser-driven ions heat the preimploded core of a deuterated polystyrene (CD) shell target from 0.8 keV to 2 keV, resulting in 5 x 10 8 DD neutrons best ever obtained in the scheme. 4-J/10-Hz DPSSL laser HAMA is for the first time applied to the CD shell implosion- core heating experiments in the fast ignition scheme to yield neutrons and also to a continuous target injection, which yields neutrons of 3 x 10 5 n/4πsr n/shot. (paper)

  17. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  18. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate......Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....

  19. Mechanics of Wood Machining

    CERN Document Server

    Csanády, Etele

    2013-01-01

    Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...

  20. Technology Time Machine 2012

    DEFF Research Database (Denmark)

    Lehner, Wolfgang; Fettweis, Gerhard; Fitzek, Frank

    2013-01-01

    The IEEE Technology Time Machine (TTM) is a unique event for industry leaders, academics, and decision making government officials who direct R&D activities, plan research programs or manage portfolios of research activities. This report covers the main topics of the 2nd Symposium of future...... technologies. The Symposium brought together world renowned experts to discuss the evolutionary and revolutionary advances in technology landscapes as we look towards 2020 and beyond. TTM facilitated informal discussions among the participants and speakers thus providing an excellent opportunity for informal...... interaction between attendees, senior business leaders, world-renowned innovators, and the press. The goal of the Symposium is to discover key critical innovations across technologies which will alter the research and application space of the future. Topics covered the future of Wireless Technology, Smart...

  1. Tunnel boring machine applications

    International Nuclear Information System (INIS)

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-01-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM

  2. The uranium machine

    International Nuclear Information System (INIS)

    Walker, M.

    1990-01-01

    The German atom bomb is a chimera. Scientists such as Carl Friedrich von Weizsaecker and Werner Heisenberg have been claiming for a long time that they refused to carry out research in the Third Reich because they did not want to put such a terrible weapon into Hitler's hand. The author produces evidence proving that the German physicists were never in a position to carry out a research project on the scale of the 'Manhattan Project', quite apart from the fact that they were lacking important technical prerequisites for splitting isotopes. With a detective's touch the author succeeds in reconstructing the competition for the bomb in minute detail. This book is the most detailed and precise analysis of the reality of that uranium machine which for four decades has haunted scientific and journalistic literature. (orig./HP) [de

  3. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  4. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  5. Machine assisted histogram classification

    Science.gov (United States)

    Benyó, B.; Gaspar, C.; Somogyi, P.

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  6. Machine assisted histogram classification

    Energy Technology Data Exchange (ETDEWEB)

    Benyo, B; Somogyi, P [BME-IIT, H-1117 Budapest, Magyar tudosok koerutja 2. (Hungary); Gaspar, C, E-mail: Peter.Somogyi@cern.c [CERN-PH, CH-1211 Geneve 23 (Switzerland)

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  7. 6kW class laser cutting equipment; 6kW daishutsuryoku laser setsudanki ni yoru atsuita setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Y.; Nagahori, M. [Tanaka Engineering Works Ltd., Saitama (Japan)

    1994-11-01

    Application of the laser cutting machine to the area of cutting steel plates of 5 mm thick or more was first enabled in 1990 by the 2 kW oscillator that was introduced in that year. The thick plate cutting industry has a short history. This paper describes the features and performance of the 6 kW laser cutting machine that was announced in April, 1994. The machine uses a newly developed high-speed axial flow type carbon dioxide laser oscillater with the rated output of 6 kW. As the discharge excitation method, the machine adopted the RF (radio frequency) method that causes low contamination in the discharge tube. The 6 kW laser cutting machine has a number of features such as a large cutting area provided by the oscillator contained in the cutting machine, cutting quality stabilized by the optical path length fixing unit, and automatic functions such as automatic setting of the cutting conditions and scheduled operation. The machine can cut mild steel plates of up to 40 mm thick (or up to 16 mm for stainless steel plates) at the cutting speed of 1600 mm/min for a 16 mm thick plate and 2200 mm/min for a 12 mm thick plate, with the good cut sectional surface. 5 figs., 1 tab.

  8. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  9. Bionic machines and systems

    Energy Technology Data Exchange (ETDEWEB)

    Halme, A.; Paanajaervi, J. (eds.)

    2004-07-01

    Introduction Biological systems form a versatile and complex entirety on our planet. One evolutionary branch of primates, called humans, has created an extraordinary skill, called technology, by the aid of which it nowadays dominate life on the planet. Humans use technology for producing and harvesting food, healthcare and reproduction, increasing their capability to commute and communicate, defending their territory etc., and to develop more technology. As a result of this, humans have become much technology dependent, so that they have been forced to form a specialized class of humans, called engineers, who take care of the knowledge of technology developing it further and transferring it to later generations. Until now, technology has been relatively independent from biology, although some of its branches, e.g. biotechnology and biomedical engineering, have traditionally been in close contact with it. There exist, however, an increasing interest to expand the interface between technology and biology either by directly utilizing biological processes or materials by combining them with 'dead' technology, or by mimicking in technological solutions the biological innovations created by evolution. The latter theme is in focus of this report, which has been written as the proceeding of the post-graduate seminar 'Bionic Machines and Systems' held at HUT Automation Technology Laboratory in autumn 2003. The underlaying idea of the seminar was to analyze biological species by considering them as 'robotic machines' having various functional subsystems, such as for energy, motion and motion control, perception, navigation, mapping and localization. We were also interested about intelligent capabilities, such as learning and communication, and social structures like swarming behavior and its mechanisms. The word 'bionic machine' comes from the book which was among the initial material when starting our mission to the fascinating world

  10. Toxicological characterization of chemicals produced from laser irradiation of graphite composite materials

    International Nuclear Information System (INIS)

    Kwan, J.

    1990-11-01

    One of the major potential hazards associated with laser machining of graphite composite materials is the toxic fumes and gases that are generated. When exposed to the intense energy of the laser beam, the organic polymer matrix of the composite material may decompose into various toxic by-products. To advance the understanding of the laser machining process from a health and safety viewpoint, this particular study consisted of the following steps: collect and analyze gaseous by-products generated during laser machining; collect particulates generated during laser machining and chemically extract them to determine the chemical species that may have absorbed or recondensed onto these particles; and review and evaluate the toxicity of the identified chemical species

  11. Theory and practice in machining systems

    CERN Document Server

    Ito, Yoshimi

    2017-01-01

    This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings “Theory and Practice in Machining System” discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a guide and survey of machining technology for students an...

  12. The laser accelerator-another unicorn in the garden

    International Nuclear Information System (INIS)

    Hand, L.N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for ''grating-type'' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a ''multi-pass collider'', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range. (author)

  13. The laser accelerator-another unicorn in the garden

    Science.gov (United States)

    Hand, L. N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.

  14. Laser Cutting of Carbon Fiber Fabrics

    Science.gov (United States)

    Fuchs, A. N.; Schoeberl, M.; Tremmer, J.; Zaeh, M. F.

    Due to their high weight-specific mechanical stiffness and strength, parts made from carbon fiber reinforced polymers (CFRP) are increasingly used as structural components in the aircraft and automotive industry. However, the cutting of preforms, as with most automated manufacturing processes for CFRP components, has not yet been fully optimized. This paper discusses laser cutting, an alternative method to the mechanical cutting of preforms. Experiments with remote laser cutting and gas assisted laser cutting were carried out in order to identify achievable machining speeds. The advantages of the two different processes as well as their fitness for use in mass production are discussed.

  15. Microwell Arrays for Studying Many Individual Cells

    Science.gov (United States)

    Folch, Albert; Kosar, Turgut Fettah

    2009-01-01

    "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

  16. Storytelling machines for video search

    NARCIS (Netherlands)

    Habibian, A.

    2016-01-01

    We study a fundamental question for developing storytelling machines: what vocabulary is suited for machines to tell the story of a video? We start by manually specifying the vocabulary concepts and their annotations. In order to effectively handcraft the vocabulary, we empirically study what are

  17. Man Machine Systems in Education.

    Science.gov (United States)

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  18. Understanding and applying machine vision

    CERN Document Server

    Zeuch, Nello

    2000-01-01

    A discussion of applications of machine vision technology in the semiconductor, electronic, automotive, wood, food, pharmaceutical, printing, and container industries. It describes systems that enable projects to move forward swiftly and efficiently, and focuses on the nuances of the engineering and system integration of machine vision technology.

  19. LHC machine: Status and plan

    International Nuclear Information System (INIS)

    Pojer, M.

    2013-01-01

    The LHC Run I was successfully concluded in March 2012. An incredible amount of data has been collected and the performance continuously improved during these three years. Important information on the limitations of the machine also emerged, which will be used to further increase the potential of the machine in the coming years. (authors)

  20. The Blindstitch Machine. Module 11.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the purpose and use of the blindstitch machine, one in a series on clothing construction for industrial sewing machine operators designed for student self-study, contains three sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check,…

  1. Stochastic scheduling on unrelated machines

    NARCIS (Netherlands)

    Skutella, Martin; Sviridenko, Maxim; Uetz, Marc Jochen

    2013-01-01

    Two important characteristics encountered in many real-world scheduling problems are heterogeneous machines/processors and a certain degree of uncertainty about the actual sizes of jobs. The first characteristic entails machine dependent processing times of jobs and is captured by the classical

  2. The Machine Scoring of Writing

    Science.gov (United States)

    McCurry, Doug

    2010-01-01

    This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…

  3. Man and Machines: Three Criticisms.

    Science.gov (United States)

    Schneider, Edward F.

    As machines have become a more common part of daily life through the passage of time, the idea that the line separating man and machine is slowly fading has become more popular as well. This paper examines three critics of change through their most famous works. One of the most popular views of Mary Shelley's "Frankenstein" is that it is a…

  4. Machine Learning and Applied Linguistics

    OpenAIRE

    Vajjala, Sowmya

    2018-01-01

    This entry introduces the topic of machine learning and provides an overview of its relevance for applied linguistics and language learning. The discussion will focus on giving an introduction to the methods and applications of machine learning in applied linguistics, and will provide references for further study.

  5. Machine Accounting. An Instructor's Guide.

    Science.gov (United States)

    Gould, E. Noah, Ed.

    Designed to prepare students to operate the types of accounting machines used in many medium-sized businesses, this instructor's guide presents a full-year high school course in machine accounting covering 120 hours of instruction. An introduction for the instructor suggests how to adapt the guide to present a 60-hour module which would be…

  6. Machine Learning for Robotic Vision

    OpenAIRE

    Drummond, Tom

    2018-01-01

    Machine learning is a crucial enabling technology for robotics, in particular for unlocking the capabilities afforded by visual sensing. This talk will present research within Prof Drummond’s lab that explores how machine learning can be developed and used within the context of Robotic Vision.

  7. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  8. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  9. An art history of machines?

    Directory of Open Access Journals (Sweden)

    Daniel Bridgman

    2016-12-01

    Full Text Available A toast offered in honor of Donald Preziosi on the cusp of his seventy-fifth birthday, this essay considers a range of machine metaphors, their art historical settings, and their implications. Addressing the mythography of Daedalus and his wonder machines in relation to art history’s machinic enterprises, an ancient art-archaeology seminar Preziosi directed at UCLA (in 1988 and the book, Rethinking Art History: Meditations on a Coy Science (1989 form the focus of my thinking about Preziosi’s work. At issue across the essay is the work of recursion, when machines make machines and in so doing create a recessive subjectivity for the maker. The essay ends with the speculation that art history’s disciplinary machinery may owe its generative strength to a perpetual need for replacement parts.

  10. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  11. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  12. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  13. Machine safety: proper safeguarding techniques.

    Science.gov (United States)

    Martin, K J

    1992-06-01

    1. OSHA mandates certain safeguarding of machinery to prevent accidents and protect machine operators. OSHA specifies moving parts that must be guarded and sets criteria for the guards. 2. A 1989 OSHA standard for lockout/tagout requires locking the energy source during maintenance, periodically inspecting for power transmission, and training maintenance workers. 3. In an amputation emergency, first aid for cardiopulmonary resuscitation, shock, and bleeding are the first considerations. The amputated part should be wrapped in moist gauze, placed in a sealed plastic bag, and placed in a container of 50% water and 50% ice for transport. 4. The role of the occupational health nurse in machine safety is to conduct worksite analyses to identify proper safeguarding and to communicate deficiencies to appropriate personnel; to train workers in safe work practices and observe compliance in the use of machine guards; to provide care to workers injured by machines; and to reinforce safe work practices among machine operators.

  14. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  15. Comparison of three different laser systems for application in dentistry

    Science.gov (United States)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  16. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  17. GPC Light Shaper for energy efficient laser materials processing

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous...... with steep, well defined edges that would further increase laser cutting precision or allow “single shot” laser engraving of arbitrary 2D profiles, as opposed to point scanning [3,4]. Instead of lossy approaches, GPC beam shaping is achieved with simplified, binary phase-only optics [5] that redistributes...... because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different optimized shapes, they can be even more precise and energy efficient for materials processing. The cost...

  18. Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-07

    A laser absorption sensor for carbon monoxide concentration was developed for combustion studies in a rapid compression machine using a pulsed quantum cascade laser near 4.89 μm. Cavity enhancement reduced minimum detection limit down to 2.4 ppm at combustion relevant conditions. Off-axis alignment and rapid intra-pulse down-chirp resulted in effective suppression of cavity noise.

  19. Cutting NiTi with Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-01-01

    Full Text Available Superelastic shape memory alloys are difficult to machine by thermal processes due to the facility for Ti oxidation and by mechanical processes due to their superelastic behavior. In this study, femtosecond lasers were tested to analyze the potential for machining NiTi since femtosecond lasers allow nonthermal processing of materials by ablation. The effect of processing parameters on machining depth was studied, and material removal rates were computed. Surfaces produced were analyzed under SEM which shows a resolidified thin layer with minimal heat affected zones. However, for high cutting speeds, that is, for short interaction times, this layer was not observed. A depletion of Ni was seen which may be beneficial in biomedical applications since Ni is known to produce human tissue reactions in biophysical environments.

  20. Identification of Rotating Machines

    Directory of Open Access Journals (Sweden)

    T. Kreuzinger-Janik

    2000-01-01

    Full Text Available In this paper a method is proposed for unbalance identification ofelastic rotors. The method is essentially based on the rotordynamic theory combined with experimental modal analysis and allows to identify the unbalance distribution on the complete rotor. A rotor test rig designed for rotordynamic experiments, modal analysis and especially for the unbalance identification has been developed. It allows an arbitrary excitation with a particularly developed noncontact magnetic exciter, as well as measuring vibrations in radial direction with non-contact laser sensors and eddy currents. Special effects of rotordynamic like anisotropic journal bearings and gyroscopic forces can be simulated. Experimental and theoretical results like mode shapes and unbalance parameters for the laboratory model are presented in detail.