WorldWideScience

Sample records for laser imaging diagnosis

  1. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Zabarylo, U.; Minet, O.

    2010-01-01

    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  2. Early diagnosis of teeth erosion using polarized laser speckle imaging

    Science.gov (United States)

    Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie

    2016-07-01

    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.

  3. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  4. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  5. Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo.

    Directory of Open Access Journals (Sweden)

    Sebastian Foersch

    Full Text Available Early detection and evaluation of brain tumors during surgery is crucial for accurate resection. Currently cryosections during surgery are regularly performed. Confocal laser endomicroscopy (CLE is a novel technique permitting in vivo histologic imaging with miniaturized endoscopic probes at excellent resolution. Aim of the current study was to evaluate CLE for in vivo diagnosis in different types and models of intracranial neoplasia. In vivo histomorphology of healthy brains and two different C6 glioma cell line allografts was evaluated in rats. One cell line expressed EYFP, the other cell line was used for staining with fluorescent dyes (fluorescein, acriflavine, FITC-dextran and Indocyanine green. To evaluate future application in patients, fresh surgical resection specimen of human intracranial tumors (n = 15 were examined (glioblastoma multiforme, meningioma, craniopharyngioma, acoustic neurinoma, brain metastasis, medulloblastoma, epidermoid tumor. Healthy brain tissue adjacent to the samples served as control. CLE yielded high-quality histomorphology of normal brain tissue and tumors. Different fluorescent agents revealed distinct aspects of tissue and cell structure (nuclear pattern, axonal pathways, hemorrhages. CLE discrimination of neoplastic from healthy brain tissue was easy to perform based on tissue and cellular architecture and resemblance with histopathology was excellent. Confocal laser endomicroscopy allows immediate in vivo imaging of normal and neoplastic brain tissue at high resolution. The technology might be transferred to scientific and clinical application in neurosurgery and neuropathology. It may become helpful to screen for tumor free margins and to improve the surgical resection of malignant brain tumors, and opens the door to in vivo molecular imaging of tumors and other neurologic disorders.

  6. Confocal laser endomicroscopy for diagnosis of Barrett´s esophagus

    Directory of Open Access Journals (Sweden)

    Helmut eNeumann

    2012-05-01

    Full Text Available Barrett´s esophagus (BE is established as a premalignant condition in the distal esophagus. Current surveillance guidelines recommend random biopsies every 1-2 cm at intervals of 3-5 years. Advanced endoscopic imaging of BE underwent several technical revolutions within the last decade including broad-field (red-flag techniques (e.g. chromoendoscopy and small-field techniques with confocal laser endomicroscopy (CLE at the forefront. In this review we will focus on advanced endoscopic imaging using CLE for the diagnosis and characterization of BE and associated neoplasia. In addition, we will critically discuss the technique of CLE and provide some tricks and hints for the daily routine practice of CLE for diagnosis of BE.

  7. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  8. Role of imaging in glaucoma diagnosis and follow-up

    Directory of Open Access Journals (Sweden)

    Vizzeri Gianmarco

    2011-12-01

    Full Text Available The purpose of the review is to provide an update on the role of imaging devices in the diagnosis and follow-up of glaucoma with an emphasis on techniques for detecting glaucomatous progression and the newer spectral domain optical coherence tomography instruments. Imaging instruments provide objective quantitative measures of the optic disc and the retinal nerve fiber layer and are increasingly utilized in clinical practice. This review will summarize the recent enhancements in confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography with an emphasis on how to utilize these techniques to manage glaucoma patients and highlight the strengths and limitations of each technology. In addition, this review will briefly describe the sophisticated data analysis strategies that are now available to detect glaucomatous change overtime.

  9. Computer Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Daniela Ştefănescu

    Full Text Available Confocal laser endomicroscopy (CLE is becoming a popular method for optical biopsy of digestive mucosa for both diagnostic and therapeutic procedures. Computer aided diagnosis of CLE images, using image processing and fractal analysis can be used to quantify the histological structures in the CLE generated images. The aim of this study is to develop an automatic diagnosis algorithm of colorectal cancer (CRC, based on fractal analysis and neural network modeling of the CLE-generated colon mucosa images.We retrospectively analyzed a series of 1035 artifact-free endomicroscopy images, obtained during CLE examinations from normal mucosa (356 images and tumor regions (679 images. The images were processed using a computer aided diagnosis (CAD medical imaging system in order to obtain an automatic diagnosis. The CAD application includes image reading and processing functions, a module for fractal analysis, grey-level co-occurrence matrix (GLCM computation module, and a feature identification module based on the Marching Squares and linear interpolation methods. A two-layer neural network was trained to automatically interpret the imaging data and diagnose the pathological samples based on the fractal dimension and the characteristic features of the biological tissues.Normal colon mucosa is characterized by regular polyhedral crypt structures whereas malignant colon mucosa is characterized by irregular and interrupted crypts, which can be diagnosed by CAD. For this purpose, seven geometric parameters were defined for each image: fractal dimension, lacunarity, contrast correlation, energy, homogeneity, and feature number. Of the seven parameters only contrast, homogeneity and feature number were significantly different between normal and cancer samples. Next, a two-layer feed forward neural network was used to train and automatically diagnose the malignant samples, based on the seven parameters tested. The neural network operations were cross

  10. Advance in diagnosis of female genital tract tumor with laser fluorescence

    Science.gov (United States)

    Ding, Ai-Hua; Tseng, Quen; Lian, Shao-Hui

    1998-11-01

    In order to improve the diagnostic accuracy of malignant tumors with laser fluorescence, in 1996, our group successfully created the computerized laser fluorescence spectrograph type II with more reliable images shown overshadowing the naked eye method before 74 cases of female genital tract diseases had been examined by the LFS II resulting in 10 positive cases which were also proven pathologically as malignant tumors, without nay false negative, 3 cases presented suspicious positive but all were proven pathologically as non-tumors lesions, the false positive rate was 4 percent. Our work showed that the method of LFS II can provide a more rapid and accurate diagnosis for the clinical malignant tumors.

  11. Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas

    International Nuclear Information System (INIS)

    Teng, Y.L.; Fedosejevs, R.; Sigel, R.

    1981-03-01

    In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)

  12. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  13. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  14. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  15. Present and future status of flexible spectral imaging color enhancement and blue laser imaging technology.

    Science.gov (United States)

    Osawa, Hiroyuki; Yamamoto, Hironori

    2014-01-01

    The usefulness of flexible spectral imaging color enhancement (FICE) has been reported for evaluating the esophagus, stomach, and small and large intestine. Higher contrast is shown between cancer and the surrounding mucosa in the esophagus and stomach and may facilitate the detection of gastric cancers missed by white light imaging alone. The surface patterns of gastric mucosa are clearly visualized in non-malignant areas but are irregular and blurred in malignant areas, leading to clear demarcation. Capsule endoscopy with FICE detects angiodysplasia and erosions of the small intestine. The surface and vascular pattern with FICE is useful for the differential diagnosis of colorectal polyps. However, FICE remains somewhat poor at visualizing mucosal microvasculature on a tumor surface. Narrow-band imaging (NBI) is dark in observing whole gastric mucosa and poor at visualizing mucosal microstructure. Blue laser imaging (BLI) has the potential to resolve these limitations. Narrow-band laser light combined with white light shows irregular microvessels on both differentiated and undifferentiated gastric cancer similar to those using NBI. In addition, irregular surface patterns including minute white zones are clearly seen on the uneven surface of differentiated lesions, resulting in exclusion of undifferentiated lesions. Using both distant and close-up views, a high contrast between green intestinal metaplasia and brown gastric cancer may lead to early detection of gastric cancers and determination of a demarcation line. BLI produces high-contrast images in esophageal cancer with clear vision of intrapapillary capillary loops and also predicts the histopathological diagnosis and depth of invasion in colorectal neoplasms. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  16. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  17. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  18. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  19. Classification of atrophic mucosal patterns on Blue LASER Imaging for endoscopic diagnosis of Helicobacter pylori-related gastritis: A retrospective, observational study.

    Science.gov (United States)

    Nishikawa, Yoshiyuki; Ikeda, Yoshio; Murakami, Hidehiro; Hori, Shin-Ichiro; Hino, Kaori; Sasaki, Chise; Nishikawa, Megumi

    2018-01-01

    Atrophic gastritis can be classified according to characteristic mucosal patterns observed by Blue LASER Imaging (BLI) in a medium-range to distant view. To facilitate the endoscopic diagnosis of Helicobacter pylori (HP)-related gastritis, we investigated whether atrophic mucosal patterns correlated with HP infection based on the image interpretations of three endoscopists blinded to clinical features. This study included 441 patients diagnosed as having atrophic gastritis by upper gastrointestinal endoscopy at Nishikawa Gastrointestinal Clinic between April 1, 2015 and March 31, 2016. The presence/absence of HP infection was not taken into consideration. Endoscopy was performed using a Fujifilm EG-L580NW scope. Atrophic mucosal patterns observed by BLI were classified into Spotty, Cracked and Mottled. Image interpretation results were that 89, 122 and 228 patients had the Spotty, Cracked and Mottled patterns, respectively, and 2 patients an undetermined pattern. Further analyses were performed on 439 patients, excluding the 2 with undetermined patterns. The numbers of patients testing negative/positive for HP infection in the Spotty, Cracked and Mottled pattern groups were 12/77, 105/17, and 138/90, respectively. The specificity, positive predictive value and positive likelihood ratio for endoscopic diagnosis with positive HP infection based on the Spotty pattern were 95.3%, 86.5% and 8.9, respectively. In all patients with the Spotty pattern before HP eradication, the Cracked pattern was observed on subsequent post-eradication endoscopy. The Spotty pattern may represent the presence of HP infection, the Cracked pattern, a post-inflammatory change as seen after HP eradication, and the Mottled pattern, intestinal metaplasia.

  20. Chondromalacia patellae: diagnosis with MR imaging.

    Science.gov (United States)

    McCauley, T R; Kier, R; Lynch, K J; Jokl, P

    1992-01-01

    Most previous studies of MR imaging for detection of chondromalacia have used T1-weighted images. We correlated findings on axial MR images of the knee with arthroscopic findings to determine MR findings of chondromalacia patellae on T2-weighted and proton density-weighted images. The study population included 52 patients who had MR examination of the knee with a 1.5-T unit and subsequent arthroscopy, which documented chondromalacia patellae in 29 patients and normal cartilage in 23. The patellar cartilage was assessed retrospectively for MR signal and contour characteristics. MR diagnosis based on the criteria of focal signal or focal contour abnormality on either the T2-weighted or proton density-weighted images yielded the highest correlation with the arthroscopic diagnosis of chondromalacia. When these criteria were used, patients with chondromalacia were detected with 86% sensitivity, 74% specificity, and 81% accuracy. MR diagnosis based on T2-weighted images alone was more sensitive and accurate than was diagnosis based on proton density-weighted images alone. In conclusion, most patients with chondromalacia patellae have focal signal or focal contour defects in the patellar cartilage on T2-weighted MR images. These findings are absent in most patients with arthroscopically normal cartilage.

  1. Crack imaging by pulsed laser spot thermography

    International Nuclear Information System (INIS)

    Li, T; Almond, D P; Rees, D A S; Weekes, B

    2010-01-01

    A surface crack close to a spot heated by a laser beam impedes lateral heat flow and produces alterations to the shape of the thermal image of the spot that can be monitored by thermography. A full 3D simulation has been developed to simulate heat flow from a laser heated spot in the proximity of a crack. The modelling provided an understanding of the ways that different parameters affect the thermal images of laser heated spots. It also assisted in the development of an efficient image processing strategy for extracting the scanned cracks. Experimental results show that scanning pulsed laser spot thermography has considerable potential as a remote, non-contact crack imaging technique.

  2. Detection of white spot lesions by segmenting laser speckle images using computer vision methods.

    Science.gov (United States)

    Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M

    2018-05-05

    This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.

  3. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  4. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  5. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  6. Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2018-02-01

    Diabetic retinopathy (DR) leads to irreversible vision loss. Diagnosis and staging of DR is usually based on the presence, number, location and type of retinal lesions. Ultra-wide field (UWF) digital scanning laser technology provides an opportunity for computer-aided DR lesion detection. High-resolution UWF images (3078×2702 pixels) may allow detection of more clinically relevant retinopathy in comparison with conventional retinal images as UWF imaging covers a 200° retinal area, versus 45° by conventional cameras. Current approaches to DR diagnosis that analyze 7-field Early Treatment Diabetic Retinopathy Study (ETDRS) retinal images provide similar results to UWF imaging. However, in 40% of cases, more retinopathy was found outside the 7- field ETDRS fields by UWF and in 10% of cases, retinopathy was reclassified as more severe. The reason is that UWF images examine both the central retina and more peripheral regions. We propose an algorithm for automatic detection and classification of DR lesions such as cotton wool spots, exudates, microaneurysms and haemorrhages in UWF images. The algorithm uses convolutional neural network (CNN) as a feature extractor and classifies the feature vectors extracted from colour-composite UWF images using a support vector machine (SVM). The main contribution includes detection of four types of DR lesions in the peripheral retina for diagnostic purposes. The evaluation dataset contains 146 UWF images. The proposed method for detection of DR lesion subtypes in UWF images using two scenarios for transfer learning achieved AUC ≈ 80%. Data was split at the patient level to validate the proposed algorithm.

  7. Clinical comparative study between the use of lasers and conventional methods of diagnosis and treatment in deciduous teeth with presence of carious lesion

    International Nuclear Information System (INIS)

    Pulga, Fabiane Galvao

    2001-01-01

    The aim of this work was to evaluate the efficiency of deciduous tooth cavity preparation by the Er:YAG laser in comparison with the conventional burr rotary instrument. Besides, we have used the laser fluorescence technique (DIAGNOdent equipment) for diagnosis and compared it to the usual tactile and visual examination as well as X-ray diagnosis. For this purpose, 20 chronic occlusal carious deciduous molar teeth from children with the ages between 5 to 10 years old were selected. Selection was ma de according to visual inspection, X-ray periapical image and measures of the DIAGNOdent. For treatment the teeth were divided in two groups, 10 to be treated by the Er:YAG laser and 10 with conventional burr. For enamel, the laser energy used was in the interval from 200 to 300 mJ; for the dentine the range was from 100 mJ to 200 mJ. In both cases, the laser frequency was in the range from 2 to 4 Hz. The results have shown that the laser treatment was more accepted by the children than the conventional burro Clinical evaluation of the cavity preparation indicates that the Er:YAG laser treatment is recommend. The DIAGNOdent evaluation method was very effective for diagnosis of carious tissue for initial detection. After successful removal of the carious tissue, confirmed by visual inspection, the DIAGNOdent evaluation method was only effective for the treatment with conventional burro For evaluation of the tooth after cavity preparation with the Er:YAG laser, the measurements oscillate covering the full range of the equipment. Therefore, the use of the DIAGNOdent equipment is indicated only for initial caries diagnosis. (author)

  8. Reflections on imaging diagnosis of sella masses

    International Nuclear Information System (INIS)

    Hernandez Yero, Jose Arturo; Jorge Gonzalez, Raquel

    2005-01-01

    Some reflections were made on imaging diagnosis of sella masses, specifying some characteristics of the main sella masses and their appearance in magnetic resonance imaging. The purpose was to call the attention on this important issue on the basis that modern imaging advances offer very useful distinctive elements in the diagnosis of a group of masses located in the sella turcica region. The paper underlined details of signal intensity in pituitary adenomas, craniopharyngiomas, Rathkes pouch cysts, hypophyseal hyperplasia and the so-called empty sella syndrome, among other causes of anatomical changes in sella region. It was concluded that magnetic resonance imaging would be the ideal method for a better diagnosis of sella masses, but if this technique was not available, then contrast-enhanced tomography would be useful in under 2 mm views. The importance of a multidisciplinary team of clinicians, endocrinologists, imaging specialists, neurosurgeons and anatomy pathologists to reach more accurate diagnosis and better therapeutic results was stressed

  9. Image-converter diagnostics of laser and laser plasma in pico-femtosecond region

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1979-01-01

    In the present communication we would like to outline some new trends in development of pico-femtosecond image-converter diagnostics for laser and laser plasma research on the basis of the recent works done in P.N.Lebedev Physical Institute. The discussion of the following subjects will be included: new generation of picosecond image-converter tubes (ICT), pulsed control circuitry, late prototype of picosecond image-converter cameras (ICC), test installation consisting of Nd: glass and YAG lasers for production the ultra-short pulses and sinusoidally modulated radiation, methods and techniques for image tube and camera dynamic measurements in IR, visible and X-ray spectral regions. Also discussed are the image processing technique for pictures taken with picosecond ICC in order to correct the geometrical distortions, enhance pictures quality and evaluate parameters of the input signals through their recorded images. (author)

  10. Research on range-gated laser active imaging seeker

    Science.gov (United States)

    You, Mu; Wang, PengHui; Tan, DongJie

    2013-09-01

    Compared with other imaging methods such as millimeter wave imaging, infrared imaging and visible light imaging, laser imaging provides both a 2-D array of reflected intensity data as well as 2-D array of range data, which is the most important data for use in autonomous target acquisition .In terms of application, it can be widely used in military fields such as radar, guidance and fuse. In this paper, we present a laser active imaging seeker system based on range-gated laser transmitter and sensor technology .The seeker system presented here consist of two important part, one is laser image system, which uses a negative lens to diverge the light from a pulse laser to flood illuminate a target, return light is collected by a camera lens, each laser pulse triggers the camera delay and shutter. The other is stabilization gimbals, which is designed to be a rotatable structure both in azimuth and elevation angles. The laser image system consists of transmitter and receiver. The transmitter is based on diode pumped solid-state lasers that are passively Q-switched at 532nm wavelength. A visible wavelength was chosen because the receiver uses a Gen III image intensifier tube with a spectral sensitivity limited to wavelengths less than 900nm.The receiver is image intensifier tube's micro channel plate coupled into high sensitivity charge coupled device camera. The image has been taken at range over one kilometer and can be taken at much longer range in better weather. Image frame frequency can be changed according to requirement of guidance with modifiable range gate, The instantaneous field of views of the system was found to be 2×2 deg. Since completion of system integration, the seeker system has gone through a series of tests both in the lab and in the outdoor field. Two different kinds of buildings have been chosen as target, which is located at range from 200m up to 1000m.To simulate dynamic process of range change between missile and target, the seeker system has

  11. Medical image diagnosis of liver cancer using artificial intelligence

    International Nuclear Information System (INIS)

    Kondo, Tadashi; Ueno, Junji; Takao, Shoichiro

    2010-01-01

    A revised Group Method of Data Handling (GMDH)-type neural network algorithm using artificial intelligence technology for medical image diagnosis is proposed and is applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis are used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Prediction Sum of Squares (PSS). It is shown that the revised GMDH-type neural network can be easily applied to the medical image diagnosis. (author)

  12. Imaging diagnosis of chondromyxoid fibroma

    International Nuclear Information System (INIS)

    Guo Maofeng; Li Li; Xie Daohai; Zhang Wen

    2003-01-01

    Objective: To study the value of imaging diagnosis of chondromyxoid fibroma. Methods: Eight cases verified by surgery and pathology were respectively evaluated. Results: The important characters were as follows: (1) the age of incidence was in the 2nd decade of life; (2) the lesion located at the metaphysics of the long tubular bone (6/8); (3) the shape of lesion was round or geographic bone destruction, some had compartment (3/8); (4) the border of some cases had sclerotic rim (mainly the face close to morrow); (5) CT, MR were helpful in finding punctuate calcification and soft tissue mass. Conclusion: Authors' results suggest that pathological and imaging diagnosis combined with clinical diagnosis could be an ideal way to diagnose chondromyxoid fibroma in clinical practice

  13. Laser-induced photo-thermal strain imaging

    Science.gov (United States)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  14. Laser biostimulation therapy planning supported by imaging

    Science.gov (United States)

    Mester, Adam R.

    2018-04-01

    Ultrasonography and MR imaging can help to identify the area and depth of different lesions, like injury, overuse, inflammation, degenerative diseases. The appropriate power density, sufficient dose and direction of the laser treatment can be optimally estimated. If required minimum 5 mW photon density and required optimal energy dose: 2-4 Joule/cm2 wouldn't arrive into the depth of the target volume - additional techniques can help: slight compression of soft tissues can decrease the tissue thickness or multiple laser diodes can be used. In case of multiple diode clusters light scattering results deeper penetration. Another method to increase the penetration depth is a second pulsation (in kHz range) of laser light. (So called continuous wave laser itself has inherent THz pulsation by temporal coherence). Third solution of higher light intensity in the target volume is the multi-gate technique: from different angles the same joint can be reached based on imaging findings. Recent developments is ultrasonography: elastosonography and tissue harmonic imaging with contrast material offer optimal therapy planning. While MRI is too expensive modality for laser planning images can be optimally used if a diagnostic MRI already was done. Usual DICOM images offer "postprocessing" measurements in mm range.

  15. Real time diagnosis of bladder cancer with probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Wu, Katherine; Adams, Winifred; Hsiao, Shelly T.; Mach, Kathleen E.; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2011-02-01

    Probe-based confocal laser endomicroscopy (pCLE) is an emerging technology for in vivo optical imaging of the urinary tract. Particularly for bladder cancer, real time optical biopsy of suspected lesions will likely lead to improved management of bladder cancer. With pCLE, micron scale resolution is achieved with sterilizable imaging probes (1.4 or 2.6 mm diameter), which are compatible with standard cystoscopes and resectoscopes. Based on our initial experience to date (n = 66 patients), we have demonstrated the safety profile of intravesical fluorescein administration and established objective diagnostic criteria to differentiate between normal, benign, and neoplastic urothelium. Confocal images of normal bladder showed organized layers of umbrella cells, intermediate cells, and lamina propria. Low grade bladder cancer is characterized by densely packed monomorphic cells with central fibrovascular cores, whereas high grade cancer consists of highly disorganized microarchitecture and pleomorphic cells with indistinct cell borders. Currently, we are conducting a diagnostic accuracy study of pCLE for bladder cancer diagnosis. Patients scheduled to undergo transurethral resection of bladder tumor are recruited. Patients undergo first white light cystocopy (WLC), followed by pCLE, and finally histologic confirmation of the resected tissues. The diagnostic accuracy is determined both in real time by the operative surgeon and offline after additional image processing. Using histology as the standard, the sensitivity, specificity, positive and negative predictive value of WLC and WLC + pCLE are calculated. With additional validation, pCLE may prove to be a valuable adjunct to WLC for real time diagnosis of bladder cancer.

  16. Image diagnosis of hyperparathyroidism

    International Nuclear Information System (INIS)

    Morikawa, Mitsuru; Saga, Yuuji; Watabe, Yoshihiko; Fujisawa, Makoto; Kaneko, Shigeo; Tokunaka, Sohei; Yachiku, Sunao

    1989-01-01

    Between January, 1983 and January 1988, the diagnosis of hyperparathyroidism was made on 14 patients (8 primary and 6 secondary), and was identified operatively in all. The procedures for image diagnosis were computed tomography (CT), ultrasonography and scintigraphy. Scintigraphy was performed using Tc-99m and T1-201 by a subtraction technique. For primary hyperparathyroidism, the accuracy of localization was 100% by CT, 87.5% by ultrasonography, 100% by scintigraphy, and 100% by the combination of these three methods. For secondary hyperparathyroidism, it was 68% by CT, 68% by ultrasonography, 36% by scintigraphy and 84% by the combination of these three methods. Ultrasonography and CT were quite useful for imaging of small abnormal parathyroid glands. The accuracy of scintigraphy in secondary hyperparathyroidism was low. Because the swellings of glands do not occur equally in most secondary hyperparathyroidism cases, we consider that large glands absorb the majority of injected radionuclides. Some discussion on merits and demerits of each image procedure was done. (author)

  17. Paediatric neuro-imaging: Diagnosis

    Directory of Open Access Journals (Sweden)

    S.K. Misser

    2013-06-01

    Full Text Available We congratulate Professor Savvas Andronikou of the Department of Radiology, University of Pretoria, for his spot-on diagnosis, for which he receives the award of R1 000 from the RSSA. Dr Misser elaborates below on the images and findings. Please refer to page 45 of the March 2013 issue of the SAJR for the investigative images.

  18. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    Science.gov (United States)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  19. Final Report - DOE Center for Laser Imaging and Cancer Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R.; Koutcher, Jason A.

    2002-10-31

    This Final Report summarizes the significant progress made by the researchers, students and staff of the Center for Laser Imaging and Cancer Diagnostics (CLICD) from January 1998 through May 2002. During this period, the Center supported several projects. Most projects were proposed initially, some were added subsequently as their relevance and importance to the DOE mission became evident. DOE support has been leveraged to obtain continuing funding for some projects. Leveraged funds come from various sources, including NIH, Army, NSF and the Air Force. The goal of the Center was to develop laser-based instruments for use in the detection and diagnosis of major diseases, with an emphasis on detection and diagnosis of various cancers. Each of the supported projects is a collaborative effort between physicists and laser scientists and the City College of New York and noted physicians, surgeons, pathologists, and biologists located at medical centers in the Metropolitan area. The participating institutions were: City College of New York Institute for Ultrafast Lasers and Spectroscopy, Hackensack University Medical Center, Lawrence Livermore National Laboratory, Memorial Sloan Kettering Cancer Center, and New York Eye and Ear Institute. Each of the projects funded by the Center is grouped into one of four research categories: a) Disease Detection, b) Non-Disease Applications, c) New Diagnostic Tools, and, d) Education, Training, Outreach and Dissemination. The progress achieved by the multidisciplinary teams was reported in 51 publications and 32 presentations at major national conferences. Also, one U.S. patent was obtained and six U.S. patent applications have been filed for innovations resulting from the projects sponsored by the Center.

  20. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    Science.gov (United States)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  1. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  2. Laser radiography forming bremsstrahlung radiation to image an object

    Science.gov (United States)

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  3. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  4. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  5. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  6. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  7. Imaging diagnosis of bronchial asthma and related diseases

    International Nuclear Information System (INIS)

    Sakai, Fumikazu; Fujimura, Mikihiko; Kimura, Fumiko; Fujimura, Kaori; Hayano, Toshio; Nishii, Noriko; Machida, Haruhiko; Toda, Jo; Saito, Naoko

    2002-01-01

    We describe imaging features of bronchial asthma and related diseases. The practical roles of imaging diagnosis are the evaluation of severity and complications of bronchial asthma and differential diagnosis of diseases showing asthmatic symptoms other than bronchial asthma. (author)

  8. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  9. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  10. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  11. Image diagnosis of parathyroid glands in chronic renal failure

    International Nuclear Information System (INIS)

    Takagi, H.; Tominaga, Y.; Uchida, K.; Yamada, N.; Morimoto, T.; Yasue, M.

    1983-01-01

    Twenty-two out of 31 patients with chronic renal failure and secondary hyperparathyroidism who underwent parathyroidectomy before operation underwent non-invasive image diagnosis of parathyroid glands by computed tomography (CT), scintigraphy with 201 TlCl and /sup 99m/TcO 4+ , and/or ultrasonography. CT visualized 39 of 45 parathyroid glands (86.7%), weighing more than 500 mg. Scintigraphy with a subtraction method using a computer performed the diagnosis in 19 of 27 glands (70.4%). Ultrasonography detected 21 of 27 glands (77.8%). Image diagnosis was also useful in the postoperative follow-up study. The non-invasive image diagnosis of parathyroid glands in patients with chronic renal failure is thus valuable for 1) definite diagnosis of secondary hyperparathyroidism, 2) localization, and 3) diagnosis for effectiveness of conservative treatment

  12. Image processing for medical diagnosis of human organs

    International Nuclear Information System (INIS)

    Tamura, Shin-ichi

    1989-01-01

    The report first describes expectations and needs for diagnostic imaging in the field of clinical medicine, radiation medicine in particular, viewed by the author as an image processing expert working at a medical institute. Then, medical image processing techniques are discussed in relation to advanced information processing techniques that are currently drawing much attention in the field of engineering. Finally, discussion is also made of practical applications of image processing techniques to diagnosis. In the field of clinical diagnosis, advanced equipment such as PACS (picture archiving and communication system) has come into wider use, and efforts have been made to shift from visual examination to more quantitative and objective diagnosis by means of such advanced systems. In clinical medicine, practical, robust systems are more useful than sophisticated ones. It is difficult, though important, to develop completely automatized diagnostic systems. The urgent, realistic goal, therefore, is to develop effective diagnosis support systems. In particular, operation support systems equipped with three-dimensional displays will be very useful. (N.K.)

  13. Spectral and imaging characterization of tabletop X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.; Osterheld, A.L.; Moon, S.J.; Fournier, K.B.; Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I. [Lawrence Livermore National Lab., CA (United States); MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Shlyaptsev, V.N. [Lawrence Livermore National Lab., CA (United States); California Univ., Davis, CA (United States). DAS

    2001-07-01

    We have performed L-shell spectroscopy and one-dimensional (1-D) imaging of a line focus plasma from a laser-heated Fe polished slab using the tabletop COMET laser system at the Lawrence Livermore National Laboratory. These plasmas are used to generate a Ne-like Fe transient gain X-ray laser that is recorded simultaneously. A spherically-curved crystal spectrometer gives high resolution X-ray spectra of the n=3-2 and n=4-2 resonance lines with 1-D spatial resolution along the line focus. Spectra are presented for different laser pulse conditions. In addition, a variety of X-ray imaging techniques are described. We discuss imaging results from a double-slit X-ray camera with a spherically-curved crystal spectrometer. We show a high resolution Fe K-{alpha} spectrum from the X-ray laser target that indicates the presence of hot electrons in the X-ray laser plasma. (orig.)

  14. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  15. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    Science.gov (United States)

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  16. In-vivo cancer diagnosis of the esophagus using laser-induced fluorescence

    Science.gov (United States)

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.; Buckley, Paul F., II; Edwards, Donna H.

    1995-04-01

    Laser-induced fluorescence (LIF) was used for direct in-vivo cancer diagnosis of the esophagus without requiring biopsy. The methodology was applied to differentiate normal and malignant tumors of the esophagus. Endogenous fluorescence of normal and malignant tissues were measured directly using a fiberoptic probe inserted through an endoscope. The measurements were performed in vivo during routine endoscopy. Detection of the fluorescence signal from the tissue was performed using laser excitation. The results of this LIF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal and malignant tumors for the samples investigated. The LIF procedure could lead to the development of a rapid and cost-effective technique for cancer diagnosis.

  17. Nanosecond-laser induced crosstalk of CMOS image sensor

    Science.gov (United States)

    Zhu, Rongzhen; Wang, Yanbin; Chen, Qianrong; Zhou, Xuanfeng; Ren, Guangsen; Cui, Longfei; Li, Hua; Hao, Daoliang

    2018-02-01

    The CMOS Image Sensor (CIS) is photoelectricity image device which focused the photosensitive array, amplifier, A/D transfer, storage, DSP, computer interface circuit on the same silicon substrate[1]. It has low power consumption, high integration,low cost etc. With large scale integrated circuit technology progress, the noise suppression level of CIS is enhanced unceasingly, and its image quality is getting better and better. It has been in the security monitoring, biometrice, detection and imaging and even military reconnaissance and other field is widely used. CIS is easily disturbed and damaged while it is irradiated by laser. It is of great significance to study the effect of laser irradiation on optoelectronic countermeasure and device for the laser strengthening resistance is of great significance. There are some researchers have studied the laser induced disturbed and damaged of CIS. They focused on the saturation, supersaturated effects, and they observed different effects as for unsaturation, saturation, supersaturated, allsaturated and pixel flip etc. This paper research 1064nm laser interference effect in a typical before type CMOS, and observring the saturated crosstalk and half the crosstalk line. This paper extracted from cmos devices working principle and signal detection methods such as the Angle of the formation mechanism of the crosstalk line phenomenon are analyzed.

  18. Influence of laser ablation parameters on trueness of imaging

    International Nuclear Information System (INIS)

    Vaculovič, T.; Warchilová, T.; Čadková, Z.; Száková, J.; Tlustoš, P.; Otruba, V.; Kanický, V.

    2015-01-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw rel ) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw rel is strongly reduced (down to 2%) at low scan speed (10 μm s −1 ) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s −1 within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake

  19. Influence of laser ablation parameters on trueness of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaculovič, T.; Warchilová, T. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic); Čadková, Z.; Száková, J.; Tlustoš, P. [Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Praha 16521 (Czech Republic); Otruba, V. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Kanický, V., E-mail: viktork@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic)

    2015-10-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw{sub rel}) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw{sub rel} is strongly reduced (down to 2%) at low scan speed (10 μm s{sup −1}) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s{sup −1} within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake.

  20. Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis.

    Science.gov (United States)

    Sethi, Sanjeev; Vrana, Julie A; Theis, Jason D; Leung, Nelson; Sethi, Anjali; Nasr, Samih H; Fervenza, Fernando C; Cornell, Lynn D; Fidler, Mary E; Dogan, Ahmet

    2012-07-01

    Accurate diagnosis and typing of renal amyloidosis is critical for prognosis, genetic counseling, and treatment. Laser microdissection and mass spectrometry are emerging techniques for the analysis and diagnosis of many renal diseases. Here we present the results of laser microdissection and mass spectrometry performed on 127 cases of renal amyloidosis during 2008-2010. We found the following proteins in the amyloid deposits: immunoglobulin light and heavy chains, secondary reactive serum amyloid A protein, leukocyte cell-derived chemotaxin-2, fibrinogen-α chain, transthyretin, apolipoprotein A-I and A-IV, gelsolin, and β-2 microglobulin. Thus, laser microdissection of affected areas within the kidney followed by mass spectrometry provides a direct test of the composition of the deposit and forms a useful ancillary technique for the accurate diagnosis and typing of renal amyloidosis in a single procedure.

  1. Image processing for medical diagnosis using CNN

    International Nuclear Information System (INIS)

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  2. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  3. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  4. Proteomic Mass Spectrometry Imaging for Skin Cancer Diagnosis.

    Science.gov (United States)

    Lazova, Rossitza; Seeley, Erin H

    2017-10-01

    Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus. In the difficult area of atypical Spitzoid neoplasms, mass spectrometry diagnosis can predict clinical outcome better than histopathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Imaging in the diagnosis of chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Vasile D. Balaban

    2014-12-01

    Full Text Available Chronic pancreatitis is characterised by progressive and irreversible damage of the pancreatic parenchyma and ductal system, which leads to chronic pain, loss of endocrine and exocrine functions. Clinically, pancreatic exocrine insufficiency becomes apparent only after 90% of the parenchima has been lost. Despite the simple definition, diagnosing chronic pancreatitis remains a challenge, especially for early stage disease. Because pancreatic function tests can be normal until late stages and have significant limitations, there is an incresing interest in the role of imaging techniques for the diagnosis of chronic pancreatitis. In this article we review the utility and accuracy of different imaging methods in the diagnosis of chronic pancreatitis, focusing on the role of advanced imaging (magnetic resonance imaging, endoscopic retrograde cholangiopancreatography and endoscopic ultrasound.

  6. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  7. Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser

    OpenAIRE

    Liu, S. Y.; Ogi, Yoshihiro; Fuji, Takao; Nishizawa, Kiyoshi; Horio, Takuya; Mizuno, Tomoya; Kohguchi, Hiroshi; Nagasono, Mitsuru; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Senba, Yasunori; Ohashi, Haruhiko; Kimura, Hiroaki; Ishikawa, Tetsuya

    2010-01-01

    A time-resolved photoelectron imaging using a femtosecond ultraviolet (UV) laser and a vacuum UV freeelectron laser is presented. Ultrafast internal conversion and intersystem crossing in pyrazine in a supersonic molecular beam were clearly observed in the time profiles of photoioinzation intensity and time-dependent photoelectron images.

  8. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  9. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    Science.gov (United States)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  10. Portable multispectral imaging system for oral cancer diagnosis

    Science.gov (United States)

    Hsieh, Yao-Fang; Ou-Yang, Mang; Lee, Cheng-Chung

    2013-09-01

    This study presents the portable multispectral imaging system that can acquire the image of specific spectrum in vivo for oral cancer diagnosis. According to the research literature, the autofluorescence of cells and tissue have been widely applied to diagnose oral cancer. The spectral distribution is difference for lesions of epithelial cells and normal cells after excited fluorescence. We have been developed the hyperspectral and multispectral techniques for oral cancer diagnosis in three generations. This research is the third generation. The excited and emission spectrum for the diagnosis are acquired from the research of first generation. The portable system for detection of oral cancer is modified for existing handheld microscope. The UV LED is used to illuminate the surface of oral cavity and excite the cells to produce fluorescent. The image passes through the central channel and filters out unwanted spectrum by the selection of filter, and focused by the focus lens on the image sensor. Therefore, we can achieve the specific wavelength image via fluorescence reaction. The specificity and sensitivity of the system are 85% and 90%, respectively.

  11. Novel shadowless imaging for eyes-like diagnosis in vivo

    Science.gov (United States)

    Xue, Ning; Jiang, Kai; Li, Qi; Zhang, Lili; Ma, Li; Huang, Guoliang

    2016-10-01

    Eyes-like diagnosis was a traditional Chinese medicine method for many diseases, such as chronic gastritis, diabetes, hypertension etc. There was a close relationship between viscera and eyes-like. White-Eye was divided into fourteen sections, which corresponded to different viscera, so eyes-like was the reflection of status of viscera, in another words, it was an epitome of viscera health condition. In this paper, we developed a novel shadowless imaging technology and system for eyes-like diagnosis in vivo, which consisted of an optical shadowless imaging device for capturing and saving images of patients' eyes-like, and a computer linked to the device for image processing. A character matching algorithm was developed to extract the character of white-eye in corresponding sections of eyes-like images taken by the optical shadowless imaging device, according to the character of eyes-like, whether there were viscera diseases could be learned. A series of assays were carried out, and the results verified the feasibility of eyes-like diagnosis technique.

  12. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Liu Sirun; Zhu Tianyuan; Huang Li; Leng Xiaoming

    2003-01-01

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T 1 WI, T 2 WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ 2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  13. Imaging diagnosis in various renal sinus lesions

    International Nuclear Information System (INIS)

    Yoon, Yeo Dong; Byun, Jae Young; Jee, Won Hee; Hwang, Tae Gon; Park, Sok Hee; Shinn, Kyung Sub; Kim, Seung Hyup; Kim, Myeong Jin

    1997-01-01

    The renal sinus extends from the perinephric space into the deep recess situatede on the tuated on the medial border of the kidney. Contained within the space are the pelvocalyceal system, fat and lymph nodes. Arteries, veins, lymphatic channels and nerves of the autonomic nervous system traverse the sinus, and various pathological conditions may occur in this area. These various sinusal lesions may present a similar imaging appearance, and diagnostic errors may frequently occur, especially if diagnosis is attempted without first clearly understanding the several possibilities. This pictorial essay demonstrates various renal sinus lesions and emphasizes the proper combination of multimodal imaging. For evaluation of the extent of the lesious, CT is the preferred imaging modality, since this best depicts the anatomy of the renal sinus. Using a proper combination of multimodal imaging, specific diagnosis was in most cases possible.=20

  14. Imaging diagnosis in various renal sinus lesions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeo Dong; Byun, Jae Young; Jee, Won Hee; Hwang, Tae Gon; Park, Sok Hee; Shinn, Kyung Sub [Catholic Univ. College of Medicine, Seoul (Korea, Republic of); Kim, Seung Hyup [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of); Kim, Myeong Jin [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-09-01

    The renal sinus extends from the perinephric space into the deep recess situatede on the tuated on the medial border of the kidney. Contained within the space are the pelvocalyceal system, fat and lymph nodes. Arteries, veins, lymphatic channels and nerves of the autonomic nervous system traverse the sinus, and various pathological conditions may occur in this area. These various sinusal lesions may present a similar imaging appearance, and diagnostic errors may frequently occur, especially if diagnosis is attempted without first clearly understanding the several possibilities. This pictorial essay demonstrates various renal sinus lesions and emphasizes the proper combination of multimodal imaging. For evaluation of the extent of the lesious, CT is the preferred imaging modality, since this best depicts the anatomy of the renal sinus. Using a proper combination of multimodal imaging, specific diagnosis was in most cases possible.=20.

  15. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  16. Influence of Atmospheric Propagation on Performance of Laser Active Imaging System

    International Nuclear Information System (INIS)

    Li Yingchun; Sun Huayan; Guo Huichao; Zhao Yun

    2011-01-01

    Atmospheric propagation has serious influence on the performance of a good designed laser active imaging system. Atmospheric attenuation and turbulence are two main effects on laser atmospheric propagation. Imaging SNR (Signal-Noise-Ratio) and resolution are two key indexes to describe the performance of a laser active imaging system. Establishing the relation between system performance index and atmospheric propagation effect is significant. The paper analyzed the relation between imaging performance and atmospheric attenuation and turbulence through simulation. And also the experiments were done under different weather to validate the conclusion of simulation.

  17. The effect of compression on clinical diagnosis of glaucoma based on non-analyzed confocal scanning laser ophthalmoscopy images

    NARCIS (Netherlands)

    Abramoff, M.D.

    2006-01-01

    Knowledge of the effect of compression of ophthalmic images on diagnostic reading is essential for effective tele-ophthalmology applications. It was therefore with great anticipation that I read the article “The Effect of Compression on Clinical Diagnosis of Glaucoma Based on Non-analyzed Confocal

  18. Magnetic resonance imaging in the diagnosis of Fournier's gangrene

    International Nuclear Information System (INIS)

    Kickuth, R.; Adams, S.; Kirchner, J.; Simon, S.; Liermann, D.; Pastor, J.

    2001-01-01

    Magnetic resonance imaging and ultrasound are the imaging modalities recommended in the early diagnosis of Fournier's gangrene. Because of the high mortality of this inflammatory disease early diagnosis is essential to initiate adequate surgical and medical treatment. In the clinical literature only a handful of cases, in which diagnosis of Fournier's gangrene is based on MRI findings, have been reported; therefore, we report another case which shows the ability of MRI especially to determine the point of origin and extension of disease. (orig.)

  19. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks

    OpenAIRE

    Heintz, Keely A.; Mayerich, David; Slater, John H.

    2017-01-01

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope...

  20. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    Science.gov (United States)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  1. The cut-off point of dual energy X-ray and laser of calcaneus osteoporosis diagnosis in postmenopausal women

    International Nuclear Information System (INIS)

    Salimzadeh, A.; Forough, B.; Olia, B.; Alishiri, G. H.; Ghasemzadeh, A.

    2005-01-01

    Dual X-Ray Absorptiometry is a method which can extensively be used for bone mineral densitometry . Another more recent method is dual energy X-ray and laser, which associate with dual X ray absorptiometry, assisted by laser measure heel thickness. In this study the cut off points for dual energy X-ray and laser of calcaneus in the diagnosis of osteoporosis in different bone regions in postmenopausal women had been determined. Materials and Methods: In 268 postmenopausal women, BMD of the spinal and femoral regions was measured by DM, and the value for the calcaneous was measured by dual energy X-ray and laser. The agreement of the two methods in the diagnosis of osteoporosis and optimal cut-off point for dual energy X-ray and laser in defining osteoporosis was obtained. What obtained was the agreement of the two methods in the diagnosis of osteoporosis, as well as the optimal cut-off point for dual energy X-ray and laser in defining osteoporosis. Results: Dual X-Ray Absorptiometry showed osteoporosis in 40.7% of cases with 35.2% in L2-L4, 16.2% in the femoral neck, and 11.7% for the femoral total region. The dual energy X-ray and laser found osteoporosis, considering -2.5 SD as a threshold, in 26.1% of cases. Agreement of the two methods in the diagnosis of osteoporosis (Kappa score) was 0.443 for the lumbar region, 0.464 for the neck, and, 0.421 for total femur regions (all P values were significant). Using Receiver Operating Characteristic curves, it was found that a T-score of -2.1, -2.6 and -2.4 as the optimal cut-off point of dual energy X-ray and laser in the diagnosis of osteoporosis in the lumbar spine, the neck and total region of femur, respectively. Conclusion: The results of this study showed a moderate agreement between the two methods in the diagnosis of osteoporosis. It seems that the dual energy X-ray and laser cannot be used as a substitute for the DM method, but it can be used as a screening method to find (to diagnose) osteoporosis

  2. Magnetic resonance imaging in obstetric diagnosis.

    Science.gov (United States)

    Weinreb, J C; Lowe, T W; Santos-Ramos, R; Cunningham, F G; Parkey, R

    1985-01-01

    Five patients with abnormal pregnancies were examined with ultrasound (US) and magnetic resonance imaging (MR). Three had a malformed fetus, 1 had a molar pregnancy, and 1 had an ovarian mass. Both maternal and fetal structures were clearly shown, although fetal motion may have resulted in image degradation in some cases. The authors suggest that MR may be useful in obstetric diagnosis.

  3. Clinical comparative study between the use of lasers and conventional methods of diagnosis and treatment in deciduous teeth with presence of carious lesion; Estudo clinico comparativo entre o uso de lasers e metodos convencionais de diagnostico e tratamento em dentes deciduos da presenca de lesao cariosa

    Energy Technology Data Exchange (ETDEWEB)

    Pulga, Fabiane Galvao

    2001-07-01

    The aim of this work was to evaluate the efficiency of deciduous tooth cavity preparation by the Er:YAG laser in comparison with the conventional burr rotary instrument. Besides, we have used the laser fluorescence technique (DIAGNOdent equipment) for diagnosis and compared it to the usual tactile and visual examination as well as X-ray diagnosis. For this purpose, 20 chronic occlusal carious deciduous molar teeth from children with the ages between 5 to 10 years old were selected. Selection was ma de according to visual inspection, X-ray periapical image and measures of the DIAGNOdent. For treatment the teeth were divided in two groups, 10 to be treated by the Er:YAG laser and 10 with conventional burr. For enamel, the laser energy used was in the interval from 200 to 300 mJ; for the dentine the range was from 100 mJ to 200 mJ. In both cases, the laser frequency was in the range from 2 to 4 Hz. The results have shown that the laser treatment was more accepted by the children than the conventional burro Clinical evaluation of the cavity preparation indicates that the Er:YAG laser treatment is recommend. The DIAGNOdent evaluation method was very effective for diagnosis of carious tissue for initial detection. After successful removal of the carious tissue, confirmed by visual inspection, the DIAGNOdent evaluation method was only effective for the treatment with conventional burro For evaluation of the tooth after cavity preparation with the Er:YAG laser, the measurements oscillate covering the full range of the equipment. Therefore, the use of the DIAGNOdent equipment is indicated only for initial caries diagnosis. (author)

  4. Contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Seidl, Z.; Obenberger, J.; Vitak, T.

    1996-01-01

    The potential of magnetic resonance imaging in the diagnosis of multiple sclerosis (MS) was confirmed on 52 patients. In 25 patients, MS was diagnosed as highly probable, in additional 8 patients this diagnosis was suspected. MR imaging supported the diagnosis in 21 (95%) patients where this disease had been diagnosed as highly probable, and in 3 (38%) suspect patients. Lesions were found most frequently paraventricularly in the white matter of the brain, but also in the deep structures of the white matter of the temporal lobe and below the tentorium (in the cerebellum, pons and mesencephalon). No lesions were found in the optic nerve despite the frequent diagnosis of retrobulbar neuritis. Computerized tomography (CT) was performed in 14 patients; this technique only supported the diagnosis of MS in 3 patients, in all of whom this diagnosis had also been suggested by MR imaging. It is concluded that MR imaging can fully supersede CT as a tool for diagnosing multiple sclerosis. 3 figs., 10 refs

  5. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  6. AN AUTOMATIC PROCEDURE FOR COMBINING DIGITAL IMAGES AND LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    W. Moussa

    2012-07-01

    Full Text Available Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM of a scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of accurate control information for the direct computation of absolute camera orientations with redundant information by means of accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an extended Helmert (seven-parameter transformation is introduced and its parameters are estimated. Precedent to that, in the second method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion (SaM reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the effectiveness of the presented procedures.

  7. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  8. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  9. Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry.

    Science.gov (United States)

    Tornow, R P; Beuel, S; Zrenner, E

    1997-08-01

    The necessary modifications and technical requirements are described for using a commercially available scanning laser ophthalmoscope (Rodenstock Model 101 SLO) as an imaging densitometer to assess human photopigment distribution. The main requirements are a linear detector amplifier, fast shutters for the laser beams, and a trigger unit. Images must be compensated for varying laser intensity. Both rod and cone photopigments are measured with the 514-nm argon laser of the SLO. Discrimination is possible owing to the different spatial distribution. The cone pigment density peaks in the foveal center (D = 0.40) with a steep decrease with increasing eccentricity E (full width at half-maximum, 2.5 degrees ). Rod photopigment increases with increasing eccentricity (D = 0.23 for E = 11 degrees ). These values are in agreement with previous reported results obtained with scanning laser ophthalmoscopes specially designed for retinal densitometry and high stability.

  10. Imaging aspects of the diagnosis of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, Paolo [University of Modena and Reggio Emilia, Center for Rare Lung Diseases, Respiratory Disease Unit, Department of Oncology Haematology and Respiratory Diseases, Modena (Italy); Sverzellati, Nicola [University of Parma, Department of Surgical Sciences, section of Radiology, Parma (Italy); Wells, Athol U. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2014-04-15

    Sarcoidosis is a systemic granulomatous disorder of unknown aetiology with a wide spectrum of radiological appearances and almost invariably pulmonary involvement. Lung involvement accounts for most of the morbidity and much of the mortality associated with sarcoidosis. Imaging contributes significantly to the diagnosis and management of patients with sarcoidosis. In typical cases, chest radiography may be sufficient to establish the diagnosis with little margin of error and CT is not necessary. However, CT can play a critical role in several clinical settings: atypical clinical and/or radiographic findings; normal or near-normal chest radiograph but clinical suspicion of sarcoidosis; and detection of complications. Moreover, in many patients, CT findings are atypical and unfamiliar to most radiologists (e.g. sarcoidosis mimicking other lung diseases and vice versa), and in these cases histological confirmation of the diagnosis is recommended. CT is also useful in assessing disease extent and may help to discriminate between reversible and irreversible lung disease, thus providing critical prognostic information. This review concentrates on the more difficult imaging aspects of sarcoidosis, in particular differential diagnosis and disease complications. (orig.)

  11. Post-modelling of images from a laser-induced wavy boiling front

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R.S., E-mail: ramiz.matti@ltu.se [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden); University of Mosul, College of Engineering, Department of Mechanical Engineering, Mosul (Iraq); Kaplan, A.F.H. [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden)

    2015-12-01

    Highlights: • New method: post-modelling of high speed images from a laser-induced front. • From the images a wavy cavity and its absorption distribution is calculated. • Histograms enable additional statistical analysis and understanding. • Despite the complex topology the absorptivity is bound to 35–43%. • The new method visualizes valuable complementary information. - Abstract: Processes like laser keyhole welding, remote fusion laser cutting or laser drilling are governed by a highly dynamic wavy boiling front that was recently recorded by ultra-high speed imaging. A new approach has now been established by post-modelling of the high speed images. Based on the image greyscale and on a cavity model the three-dimensional front topology is reconstructed. As a second step the Fresnel absorptivity modulation across the wavy front is calculated, combined with the local projection of the laser beam. Frequency polygons enable additional analysis of the statistical variations of the properties across the front. Trends like shadow formation and time dependency can be studied, locally and for the whole front. Despite strong topology modulation in space and time, for lasers with 1 μm wavelength and steel the absorptivity is bounded to a narrow range of 35–43%, owing to its Fresnel characteristics.

  12. Image-guided macular laser therapy: design considerations and progress toward implementation

    Science.gov (United States)

    Berger, Jeffrey W.; Shin, David S.

    1999-06-01

    Laser therapy is currently the only treatment of proven benefit for exudative age related macular degeneration and diabetic retinopathy. To guide treatment for macular diseases, investigations were initiated to permit overlay of previously-stored angiographic images and image sequences superimposed onto the real-time biomicroscopic fundus image. Prior to treatment, a set of partially overlapping fundus images is acquired and montaged in order to provide a map for subsequent tracking operations. A binocular slit-lamp biomicroscope interfaced to a CCD camera, framegrabber board, and PC permits acquisition and rendering of retinal images. Computer-vision algorithms facilitate robust tracking, registration, and near-video-rate image overlay of previously-stored retinal photographic and angiographic images onto the real-time fundus image. Laser treatment is guided in this augmented reality environment where the borders of the treatment target--for example, the boundaries of a choroidal neovascularization complex--are easily identified through overlay of angiographic information superimposed on, and registered with, the real-time fundus image. During periods of misregistration as judged by the amplitude of the tracking similarity metric, laser function is disabled, affording additional safety. Image-guided macular laser therapy should facilitate accurate targeting of treatable lesions and less unintentional retinal injury when compared with standard techniques.

  13. Delayed hepatobiliary imaging in the diagnosis of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Chen, S.; Ma, Z.; Tang, Z.

    2000-01-01

    In recent years, the use of ultrasonography (US), X-CT and MRI has reduced the employment of isotopic explorations in the detection of hepatocellular carcinoma (HCC). But sometime the results of US, X-CT or MRI were different and diagnosis was very difficult. This present investigation was aimed to assess the usefulness of delayed hepatobiliary imaging in the diagnosis of HCC in these patients. Forty-eight patients consisting of 33 males and 15 females were entered into the research protocol. The mean age was 46 yr old (range 12-71 yr old). All of the patients were performed by surgery and verified histologically after nuclear examination. The subject was in a supine position under a gamma camera (Elscint, Apex Ap-6) and 555 MBq of Tc-99m-PMT were injected intravenously. The initial scinphotos obtained within 1 min after injection were used to image the blood pool phase. Subsequently, hepatic scans were obtained at 5 min, 1,2 and 5 hr. Anterior, right lateral and posterior hepatic images were recorded. According to the radioactive uptake by the lesion in delayed phase, the negative (no or minor uptake), positive (equal or greater uptake) or very strong positive (almost equal to the activity, of gallbladder) were judged. The positive were considered as diagnostic of HCC. And the very strong positive, were considered as diagnostic of benign hepatoma, such as adenoma or FNH. Thirty-seven of the forty-eight patients were HCC based on histology. Delayed imaging revealed increased or equilibrated uptake of radioactivity by the tumors in 22 of 37 patients with hepatocellular carcinoma. The sensitivity was 59.5%. One patient final diagnosis based on histology was focal nodular regenerative hyperplasia, and only the diagnosis with delayed hepatobiliary imaging before surgery was correct. Compared with US, X-CT and MRI, delayed hepatobiliary imaging had the highest specificity for diagnosis of hepatocellular carcinoma. In recent group, the specificity of Tc-99m-PMT delayed

  14. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    Science.gov (United States)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  15. Impact of future technology on oncologic diagnosis: oncologic imaging and diagnosis

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1983-01-01

    Over the past few years, the discipline of medical imaging has entered an evolutionary period that reflects primarily the introduction of computers and digital technology into the imaging process. Clinical applications of this evolution realized to date (e.g., transmission computed tomography, ultrasound and quantitative nuclear medicine) are only indicative of future developments that promise to increase the contributions of medical imaging in a very substantial manner. This increase in the area of oncologic diagnosis is one of the more exciting possibilities existing in medicine today

  16. Image-guided automatic triggering of a fractional CO2 laser in aesthetic procedures.

    Science.gov (United States)

    Wilczyński, Sławomir; Koprowski, Robert; Wiernek, Barbara K; Błońska-Fajfrowska, Barbara

    2016-09-01

    Laser procedures in dermatology and aesthetic medicine are associated with the need for manual laser triggering. This leads to pulse overlapping and side effects. Automatic laser triggering based on image analysis can provide a secure fit to each successive doses of radiation. A fractional CO2 laser was used in the study. 500 images of the human skin of healthy subjects were acquired. Automatic triggering was initiated by an application together with a camera which tracks and analyses the skin in visible light. The tracking algorithm uses the methods of image analysis to overlap images. After locating the characteristic points in analysed adjacent areas, the correspondence of graphs is found. The point coordinates derived from the images are the vertices of graphs with respect to which isomorphism is sought. When the correspondence of graphs is found, it is possible to overlap the neighbouring parts of the image. The proposed method of laser triggering owing to the automatic image fitting method allows for 100% repeatability. To meet this requirement, there must be at least 13 graph vertices obtained from the image. For this number of vertices, the time of analysis of a single image is less than 0.5s. The proposed method, applied in practice, may help reduce the number of side effects during dermatological laser procedures resulting from laser pulse overlapping. In addition, it reduces treatment time and enables to propose new techniques of treatment through controlled, precise laser pulse overlapping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  18. Range-Gated Laser Stroboscopic Imaging for Night Remote Surveillance

    International Nuclear Information System (INIS)

    Xin-Wei, Wang; Yan, Zhou; Song-Tao, Fan; Jun, He; Yu-Liang, Liu

    2010-01-01

    For night remote surveillance, we present a method, the range-gated laser stroboscopic imaging(RGLSI), which uses a new kind of time delay integration mode to integrate target signals so that night remote surveillance can be realized by a low-energy illuminated laser. The time delay integration in this method has no influence on the video frame rate. Compared with the traditional range-gated laser imaging, RGLSI can reduce scintillation and target speckle effects and significantly improve the image signal-to-noise ratio analyzed. Even under low light level and low visibility conditions, the RGLSI system can effectively work. In a preliminary experiment, we have detected and recognized a railway bridge one kilometer away under a visibility of six kilometers, when the effective illuminated energy is 29.5 μJ

  19. Laser amplification of optical images using a CW Nd:YAG amplifier

    International Nuclear Information System (INIS)

    Aman, H

    2013-01-01

    In this paper a scheme for the amplification of optical images is described, using a continuous wave (CW) diode-pumped Nd:YAG (yttrium aluminum garnet) laser module. A passively q-switched end-pumped Nd:YAG laser is used as a pump source, which carries the optical image distribution as an input which is transmitted towards the amplifier at a distance of about ten feet. For amplification, a three-side-pumped CW Nd:YAG laser module is utilized without the cavity mirrors. In this way, optical images are amplified by a factor of 3.2 and imaged at a distance of ten feet with a spatial resolution of 500 μm. (paper)

  20. Comparative study of digital laser film and analog paper image recordings

    International Nuclear Information System (INIS)

    Lee, K.R.; Cox, G.G.; Templeton, A.W.; Preston, D.F.; Anderson, W.H.; Hensley, K.S.; Dwyer, S.J.

    1987-01-01

    The increase in the use of various imaging modalities demands higher quality and more efficacious analog image recordings. Laser electronic recordings with digital array prints of 4,000 x 5,000 x 12 bits obtained using laser-sensitive film or paper are being evaluated. Dry silver paper recordings are being improved and evaluated. High-resolution paper dot printers are being studied to determine their gray-scale capabilities. The authors evaluated the image quality, costs, clinical utilization, and acceptability of CT scans, MR images, digital subtraction angiograms, digital radiographs, and radionuclide scans recorded by seven different printers (three laser, three silver paper, and one dot) and compared the same features in conventional film recording. This exhibit outlines the technical developments and instrumentation of digital laser film and analog paper recorders and presents the results of the study

  1. Holographic Imaging of Evolving Laser-Plasma Structures

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael [Univ. of Texas, Austin, TX (United States); Shvets, G. [Univ. of Texas, Austin, TX (United States)

    2014-07-31

    In the 1870s, English photographer Eadweard Muybridge captured motion pictures within one cycle of a horse’s gallop, which settled a hotly debated question of his time by showing that the horse became temporarily airborne. In the 1940s, Manhattan project photographer Berlin Brixner captured a nuclear blast at a million frames per second, and resolved a dispute about the explosion’s shape and speed. In this project, we developed methods to capture detailed motion pictures of evolving, light-velocity objects created by a laser pulse propagating through matter. These objects include electron density waves used to accelerate charged particles, laser-induced refractive index changes used for micromachining, and ionization tracks used for atmospheric chemical analysis, guide star creation and ranging. Our “movies”, like Muybridge’s and Brixner’s, are obtained in one shot, since the laser-created objects of interest are insufficiently repeatable for accurate stroboscopic imaging. Our high-speed photographs have begun to resolve controversies about how laser-created objects form and evolve, questions that previously could be addressed only by intensive computer simulations based on estimated initial conditions. Resolving such questions helps develop better tabletop particle accelerators, atmospheric ranging devices and many other applications of laser-matter interactions. Our photographic methods all begin by splitting one or more “probe” pulses from the laser pulse that creates the light-speed object. A probe illuminates the object and obtains information about its structure without altering it. We developed three single-shot visualization methods that differ in how the probes interact with the object of interest or are recorded. (1) Frequency-Domain Holography (FDH). In FDH, there are 2 probes, like “object” and “reference” beams in conventional holography. Our “object” probe surrounds the light-speed object, like a fleas swarming around a

  2. Laser Imaging Video Camera Sees Through Fire, Fog, Smoke

    Science.gov (United States)

    2015-01-01

    Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.

  3. Laser image recording on detonation nanodiamond films

    International Nuclear Information System (INIS)

    Mikheev, G M; Mikheev, K G; Mogileva, T N; Puzyr, A P; Bondar, V S

    2014-01-01

    A focused He – Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm -2 . Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp 2 carbon. The feasibility of image recording on DND films by a focused He – Ne laser beam is demonstrated. (letters)

  4. Laser image recording on detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, G M; Mikheev, K G; Mogileva, T N [Institute of Mechanics, Ural Branch of the Russian Academy of Sciences, Izhevsk (Russian Federation); Puzyr, A P; Bondar, V S [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences (Russian Federation)

    2014-01-31

    A focused He – Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm{sup -2}. Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp{sup 2} carbon. The feasibility of image recording on DND films by a focused He – Ne laser beam is demonstrated. (letters)

  5. Non-invasive retinal imaging in mice with fluorescent Scanning Laser Ophthalmoscopy and Fourier Domain Optical Coherence Tomography

    OpenAIRE

    Hossein-Javaheri, Nima

    2010-01-01

    Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. The aim of this thesis is to develop multi-modal non-invasive imaging technology for studying retinal degeneration and gene therapy in mice. We have constructed a FD-OCT prototype and combined it with a Scanning Laser Ophthalmoscope (SLO) to permit real time alignment of the retinal field of...

  6. [A computer-aided image diagnosis and study system].

    Science.gov (United States)

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  7. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Statistical Image Recovery From Laser Speckle Patterns With Polarization Diversity

    Science.gov (United States)

    2010-09-01

    several techniques for speckle suppression in optical imaging [19]. However, averaging nonimaged laser speckle patterns does not yield the same result...Comparison”. Applied Optics , 21(15):2758–2769, August 1982. 13. Fienup, James R. “Image Formation from Nonimaged Laser Speckle Patterns”. S. R. Robinson...6 ν Optical Frequency . . . . . . . . . . . . . . . . . . . . . . 6 t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ϕ

  9. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  10. Improved CT imaging in diagnosis of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Mai Yuanfeng; Sun Haixing; Ling Jian; Kuang Jianyi; Pan Ximin

    2006-01-01

    Objective: To evaluate the improved CT imaging of sacroiliac joint in diagnosis of ankylosing spondylitis (AS). Methods: 22 patients, diagnosed as AS by clinical and radiography, undertook both conventional and improved CT imaging. All images were comparatively studied. Results: With conventional CT imaging, in the 44 joints of 22 cases, unremarkable images were obtained in 3 cases; early stage AS was found in 15 joints of 9 cases; AS in progressive stage was revealed in 8 cases/16 joints, stabled AS was presented in 2 cases/4 joints. There were 23 joints in 12 cases diagnosed as early term by improved imaging, progressive staged AS was shown in 8 cases/16 joints as, stable AS was demonstrated in 2 cases/4 joints. Conclusion: The improved imaging is sensitive in the diagnosis of early staged AS, for the application of thin slice scan, which helps to reduce partial volume effect. Scanning along the longitudinal axis of the sacroiliac joint extends the observation of erosion of the joint surface. For progressive or stable staged AS, the alterations of bone and joint space are prominent, improved CT imaging is not superior to the conventional. (authors)

  11. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available The mouse model of laser-induced choroidal neovascularization (CNV has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.

  12. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  13. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  14. The diagnosis of deep venous thrombosis using laser Doppler skin perfusion measurements

    NARCIS (Netherlands)

    de Graaff, J. C.; Ubbink, D. T.; Büller, H. R.; Jacobs, M. J.

    2001-01-01

    Compression ultrasonography (CUS) falls short in the diagnosis of deep venous thrombosis in asymptomatic patients and thrombi limited to the calf veins. Alternatively, laser Doppler fluxmetry (LDF) may be useful for this purpose, as it can measure the peripheral vasoconstriction response upon an

  15. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  16. Enabling vendor independent photoacoustic imaging systems with asynchronous laser source

    Science.gov (United States)

    Wu, Yixuan; Zhang, Haichong K.; Boctor, Emad M.

    2018-02-01

    Channel data acquisition, and synchronization between laser excitation and PA signal acquisition, are two fundamental hardware requirements for photoacoustic (PA) imaging. Unfortunately, however, neither is equipped by most clinical ultrasound scanners. Therefore, less economical specialized research platforms are used in general, which hinders a smooth clinical transition of PA imaging. In previous studies, we have proposed an algorithm to achieve PA imaging using ultrasound post-beamformed (USPB) RF data instead of channel data. This work focuses on enabling clinical ultrasound scanners to implement PA imaging, without requiring synchronization between the laser excitation and PA signal acquisition. Laser synchronization is inherently consisted of two aspects: frequency and phase information. We synchronize without communicating the laser and the ultrasound scanner by investigating USPB images of a point-target phantom in two steps. First, frequency information is estimated by solving a nonlinear optimization problem, under the assumption that the segmented wave-front can only be beamformed into a single spot when synchronization is achieved. Second, after making frequencies of two systems identical, phase delay is estimated by optimizing the image quality while varying phase value. The proposed method is validated through simulation, by manually adding both frequency and phase errors, then applying the proposed algorithm to correct errors and reconstruct PA images. Compared with the ground truth, simulation results indicate that the remaining errors in frequency correction and phase correction are 0.28% and 2.34%, respectively, which affirm the potential of overcoming hardware barriers on PA imaging through software solution.

  17. Clinical study of syringomyelia. Relation of neurological symptoms and imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ohga, Ritsu; Konishi, Yoshihiro; Higashi, Yasuto; Kawai, Kingo; Yasuda, Takeshi; Terao, Akira (Kawasaki Medical School, Kurashiki, Okayama (Japan))

    1988-12-01

    We discussed the relationship between neurological symptoms and the locations of syringes observed by CT and MRI (imaging diagnosis) in six cases of syringomyelia admitted to our department during the past five years. Neurological symptoms of the upper cervical and thoracic cords were found in six cases and five cases of them had symmetric distribution. Syringes were found in all cases by delayed CT (D-CT) and MRI. Five cases had laterality. The sites in the spinal cord exhibiting severe involvement of neurological symptoms corresponded with the sites of syringes in imaging diagnosis. The main asymmetric lesions of the syringes were located in the posterior horn. They indicated the relationship with the appearance of the neurological symptoms of the lesion. We compared with the width of the longitudinal level from neurological findings and imaging diagnosis. The rostral level of both corresponded in all cases, but the caudal level corresponded in only one case and neurological symptoms were broader than syringes in imaging diagnosis. It was difficult to identify small syringes when there was complicated scoliosis. The diagnosis of typical cases of syringomyelia is mainly based on such neurological symptoms as a bilateral segmental pattern of dissociated sensory impairment in the past, but imaging diagnosis has recently come to be regarded as very important. (J.P.N.).

  18. Optical coherence tomography image-guided smart laser knife for surgery.

    Science.gov (United States)

    Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E

    2018-03-01

    Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental

  19. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    International Nuclear Information System (INIS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-01-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge. (paper)

  20. Plantar fascia: imaging diagnosis and guided treatment.

    Science.gov (United States)

    McNally, Eugene G; Shetty, Shilpa

    2010-09-01

    Plantar fasciopathy is a common cause of heel pain. This article covers the imaging anatomy of the hindfoot, the imaging findings on ultrasound and magnetic resonance imaging (MRI) of plantar fasciopathy, plantar fibromas, trauma, Achilles tendonopathy, neural compression, stress fractures of the os calcis and other heel pad lesions. Thickening of the plantar fascia insertion more than 5 mm either on ultrasound or MRI is suggestive of plantar fasciopathy. Ultrasound is superior to MRI for diagnosis of plantar fibroma as small low signal lesions on MRI are similar to the normal plantar fascia signal. Ultrasound demonstrates low echogenicity compared with the echogenic plantar fascia. Penetrating injuries can appear bizarre due to associated foreign body impaction and infection. Achilles tendonopathy can cause heel pain and should be considered as a possible diagnosis. Treatment options include physical therapy, ECSWT, corticosteroid injection, and dry needling. Percutaneous US guided treatment methods will be described. Thieme Medical Publishers.

  1. X-ray imaging in the laser-fusion program

    International Nuclear Information System (INIS)

    McCall, G.H.

    1977-01-01

    Imaging devices which are used or planned for x-ray imaging in the laser-fusion program are discussed. Resolution criteria are explained, and a suggestion is made for using the modulation transfer function as a uniform definition of resolution for these devices

  2. Computer-aided diagnosis and artificial intelligence in clinical imaging.

    Science.gov (United States)

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio

    2011-11-01

    Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and

  3. Dual-wavelength differential spectroscopic imaging for diagnostics of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Ma, Q.L. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Gregoire, S. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Lei, W.Q.; Wang, X.C. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Pelascini, F.; Surma, F. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Detalle, V. [Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Yu, J. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-08-15

    A specific configuration for plasma fast spectroscopic imaging was developed, where a pair of narrowband filters, one fitting an emission line of a species to be studied and the other out of its emission line, allowed double images to be taken for a laser-induced plasma. A dedicated software was developed for the subtraction between the double images. The result represents therefore the monochromatic emission image of the species in the plasma. We have shown in this work that such configuration is especially efficient for the monitoring of a plasma generated under the atmospheric pressure at very short delays after the impact of the laser pulse on the target, when a strong continuum emission is observed. The efficiency of the technique has been particularly demonstrated in the study of laser-induced plasma on a polymer target. Molecular species, such as C{sub 2} and CN, as well as atomic species, such as C and N, were imaged starting from 50 ns after the laser impact. Moreover space segregation of different species, atomic or molecular, inside of the plasma was clearly observed. - Highlights: Black-Right-Pointing-Pointer Imaging to study species with time and space resolution in laser induced plasma. Black-Right-Pointing-Pointer Image display of multiple species is proposed based on RGB color model. Black-Right-Pointing-Pointer Molecular emission (CN and C{sub 2}) is observed at very short delays (50 ns). Black-Right-Pointing-Pointer Segregation of different species inside the plasma is clearly established.

  4. Laser Imaging Facilitates Early Detection of Synchronous Adenocarcinomas in Patients with Barrett’s Esophagus

    Directory of Open Access Journals (Sweden)

    Chihiro Iwashita

    2017-01-01

    Full Text Available Barrett’s adenocarcinoma may occur in multiple sites, and recurrence and metachronous lesions are the major problems with endoscopic resection. Therefore, early detection of such lesions is ideal to achieve complete resection and obtain improved survival rates with minimally invasive treatment. Laser imaging systems allow multiple modalities of endoscopic imaging by using white light laser, flexible spectral imaging color enhancement (FICE, blue laser imaging (BLI, and linked color imaging even at a distant view. However, the usefulness of these modalities has not been sufficiently reported regarding Barrett’s adenocarcinoma. Here, we report on a patient with three synchronous lesions followed by one metachronous lesion in a long segment with changes of Barrett’s esophagus, all diagnosed with this new laser endoscopic imaging system and enhanced by using FICE and/or BLI with high contrast compared with the surrounding mucosa. Laser endoscopic imaging may facilitate the detection of malignancies in patients with early Barrett’s adenocarcinoma.

  5. Imaging diagnosis of dural and direct cavernous carotid fistulae

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela dos; Monsignore, Lucas Moretti; Nakiri, Guilherme Seizem; Cruz, Antonio Augusto Velasco e; Colli, Benedicto Oscar; Abud, Daniel Giansante, E-mail: danisantos2404@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    2014-07-15

    Arteriovenous fistulae of the cavernous sinus are rare and difficult to diagnose. They are classified into dural cavernous sinus fistulae or direct carotid-cavernous fistulae. Despite the similarity of symptoms between both types, a precise diagnosis is essential since the treatment is specific for each type of fistula. Imaging findings are remarkably similar in both dural cavernous sinus fistulae and carotid-cavernous fistulae, but it is possible to differentiate one type from the other. Amongst the available imaging methods (Doppler ultrasonography, computed tomography, magnetic resonance imaging and digital subtraction angiography), angiography is considered the gold standard for the diagnosis and classification of cavernous sinus arteriovenous fistulae. The present essay is aimed at didactically presenting the classification and imaging findings of cavernous sinus arteriovenous fistulae. (author)

  6. The imaging diagnosis of costal solitary eosinophilic granuloma

    International Nuclear Information System (INIS)

    Cui Fa; Feng Shiting

    2007-01-01

    Objective: To study the imaging features of costal eosinophilic granuloma so as to improve diagnosis accuracy of the disease. Methods: The clinical and imaging materials of 6 patients with costal solitary eosinophilic granuloma which were proved by surgery or histopathology were analyzed retrospectively. X-ray plain films were performed in all the cases, CT in 3 cases, 2 cases were received CT plain scan and I case received both CT plain scan and enhanced CT scan. Results: 4 cases of them located in the anterior ribs. All the lesions were round-like and 5 were single cavity and 1 was multiple cavities. 3 of them were expansile destruction and 3 were cystic destruction. Soft tissue mass around the lesion was identified. Conclusion: X-ray plain films integrating CT play an important role in diagnosis and differential diagnosis of the costal eosinophilic granuloma. (authors)

  7. An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor

    Science.gov (United States)

    Liscombe, Michael

    3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.

  8. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis.

    Science.gov (United States)

    Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Campbell, J Peter; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir; Jonas, Karyn; Chan, R V Paul; Ostmo, Susan; Chiang, Michael F

    2015-11-01

    We developed and evaluated the performance of a novel computer-based image analysis system for grading plus disease in retinopathy of prematurity (ROP), and identified the image features, shapes, and sizes that best correlate with expert diagnosis. A dataset of 77 wide-angle retinal images from infants screened for ROP was collected. A reference standard diagnosis was determined for each image by combining image grading from 3 experts with the clinical diagnosis from ophthalmoscopic examination. Manually segmented images were cropped into a range of shapes and sizes, and a computer algorithm was developed to extract tortuosity and dilation features from arteries and veins. Each feature was fed into our system to identify the set of characteristics that yielded the highest-performing system compared to the reference standard, which we refer to as the "i-ROP" system. Among the tested crop shapes, sizes, and measured features, point-based measurements of arterial and venous tortuosity (combined), and a large circular cropped image (with radius 6 times the disc diameter), provided the highest diagnostic accuracy. The i-ROP system achieved 95% accuracy for classifying preplus and plus disease compared to the reference standard. This was comparable to the performance of the 3 individual experts (96%, 94%, 92%), and significantly higher than the mean performance of 31 nonexperts (81%). This comprehensive analysis of computer-based plus disease suggests that it may be feasible to develop a fully-automated system based on wide-angle retinal images that performs comparably to expert graders at three-level plus disease discrimination. Computer-based image analysis, using objective and quantitative retinal vascular features, has potential to complement clinical ROP diagnosis by ophthalmologists.

  9. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  10. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  11. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  12. CT of jejunal diverticulitis: imaging findings, differential diagnosis, and clinical management

    International Nuclear Information System (INIS)

    Macari, M.; Faust, M.; Liang, H.; Pachter, H.L.

    2007-01-01

    Aim: To describe the imaging findings of jejunal diverticulitis as depicted at contrast-enhanced computed tomography (CT) and review the differential diagnosis and clinical management. Materials and Methods: CT and pathology databases were searched for the diagnosis of jejunal diverticulitis. Three cases were identified and the imaging and clinical findings correlated. Results: Jejunal diverticulitis presents as a focal inflammatory mass involving the proximal small bowel. A trial of medical management with antibiotics may be attempted. Surgical resection may be required if medical management is unsuccessful. Conclusion: The imaging findings at MDCT may allow a specific diagnosis of jejunal diverticulitis to be considered and may affect the clinical management of the patient

  13. A contribution to laser range imaging technology

    Science.gov (United States)

    Defigueiredo, Rui J. P.; Denney, Bradley S.

    1991-01-01

    The goal of the project was to develop a methodology for fusion of a Laser Range Imaging Device (LRID) and camera data. Our initial work in the project led to the conclusion that none of the LRID's that were available were sufficiently adequate for this purpose. Thus we spent the time and effort on the development of the new LRID with several novel features which elicit the desired fusion objectives. In what follows, we describe the device developed and built under contract. The Laser Range Imaging Device (LRID) is an instrument which scans a scene using a laser and returns range and reflection intensity data. Such a system would be extremely useful in scene analysis in industry and space applications. The LRID will be eventually implemented on board a mobile robot. The current system has several advantages over some commercially available systems. One improvement is the use of X-Y galvonometer scanning mirrors instead of polygonal mirrors present in some systems. The advantage of the X-Y scanning mirrors is that the mirror system can be programmed to provide adjustable scanning regions. For each mirror there are two controls accessible by the computer. The first is the mirror position and the second is a zoom factor which modifies the amplitude of the position of the parameter. Another advantage of the LRID is the use of a visible low power laser. Some of the commercial systems use a higher intensity invisible laser which causes safety concerns. By using a low power visible laser, not only can one see the beam and avoid direct eye contact, but also the lower intensity reduces the risk of damage to the eye, and no protective eyeware is required.

  14. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  15. Imaging hydrogen flames by two-photon, laser-induced fluorescence

    Science.gov (United States)

    Miles, R.; Lempert, W.; Kumar, V.; Diskin, G.

    1991-01-01

    A nonintrusive multicomponent imaging system is developed which can image hydrogen, hot oxygen, and air simultaneously. An Ar-F excimer laser is injection-locked to cover the Q1 two-photon transition in molecular hydrogen which allows the observation of both hot oxygen and cold hydrogen. Rayleigh scattering from the water molecules occurs at the same frequency as the illuminating laser allowing analysis of the air density. Images of ignited and nonignited hydrogen jets are recorded with a high-sensitivity gated video camera. The images permit the analysis of turbulent hydrogen-core jet, the combustion zone, and the surrounding air, and two-dimensional spatial correlations can be made to study the turbulent structure and couplings between different regions of the flow field. The method is of interest to the study of practical combustion systems which employ hydrogen-air diffusion flames.

  16. Ultrasound imaging in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Christo Naveen Prince

    2012-01-01

    Full Text Available Background and Objectives: To assess the diagnostic capability of real-time ultrasound imaging, together with the application of color power Doppler in the identification and differential diagnosis of the periapical lesions. Materials and Methods: Fifteen patients with periapical lesions of pulpal origin, diagnosed with clinical and conventional radiographic examination, were examined further using ultrasonography. The results from the biopsies of the lesions were compared and statistically analyzed. Results: The differential diagnosis between periapical granulomas and cystic lesions, which were based on the ultrasonographic findings, were confirmed by the results of the histopathologic examination in 13 (86.7% of 15 cases, one being granuloma and 14 being cystic lesion. Interpretation and Conclusion: Ultrasound real-time imaging is a technique that may help make a differential diagnosis between cysts and granulomas by revealing the nature of the content of a bony lesion. This technique may have further applications in the study of other lesions of the jaws.

  17. Screening and preventive diagnosis with radiological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M.F. [University Hospitals - Grosshadern and Innenstadt (Germany). Dept. of Clinical Radiology; Kaick, G. van [Deutsches Krebsforschungszentrum, Heidelberg (Germany); Fink, C.; Schoenberg, S.O. (eds.) [Univ. Hospital Mannheim (Germany). Dept. of Clinical Radiology

    2008-07-01

    Continuous technical developments have improved the potential of organ-based radiological diagnostics and have now also led to the use of dedicated whole-body examinations in the field of screening and preventive diagnosis. This book aims to provide clinicians with a broad understanding of screening and preventive diagnosis using radiological imaging. The first part of the book is dedicated to the fundamentals of screening and preventive diagnosis, and comprises chapters on epidemiology and pathology, technical and organizational aspects of radiological screening, legal and ethical issues, and cost-benefit analysis. The second part of the book discusses in depth the most important practical examples of radiological screening and surveillance, both for unselected populations and for individual risk groups. (orig.)

  18. Screening and preventive diagnosis with radiological imaging

    International Nuclear Information System (INIS)

    Reiser, M.F.; Fink, C.; Schoenberg, S.O.

    2008-01-01

    Continuous technical developments have improved the potential of organ-based radiological diagnostics and have now also led to the use of dedicated whole-body examinations in the field of screening and preventive diagnosis. This book aims to provide clinicians with a broad understanding of screening and preventive diagnosis using radiological imaging. The first part of the book is dedicated to the fundamentals of screening and preventive diagnosis, and comprises chapters on epidemiology and pathology, technical and organizational aspects of radiological screening, legal and ethical issues, and cost-benefit analysis. The second part of the book discusses in depth the most important practical examples of radiological screening and surveillance, both for unselected populations and for individual risk groups. (orig.)

  19. Diffusion-weighted MR images and pineoblastoma. Diagnosis and follow-up

    International Nuclear Information System (INIS)

    Gasparetto, Emerson L.; Cruz Junior, L. Celso Hygino; Doring, Thomas M.; Domingues, Romeu C.; Araujo, Bertha; Dantas, Mario Alberto; Chimelli, Leila

    2008-01-01

    Pineoblastomas are uncommon pineal tumors, which demonstrate rapid growing and poor prognosis. We report the case of a 43-year-old man with an enhancing pineal region mass, which showed restriction of the diffusion on diffusion-weighted (DW) MR images. The surgical biopsy defined the diagnosis of pineoblastoma and the therapy was initiated with radiation and chemotherapy. Three months later, the follow-up MR imaging showed areas suggestive of necrosis and the DW images demonstrate no significant areas of restricted diffusion. The differential diagnosis of pineal region masses that could show restriction of diffusion is discussed. (author)

  20. Magnetic resonance imaging in the diagnosis of Fournier's gangrene

    Energy Technology Data Exchange (ETDEWEB)

    Kickuth, R.; Adams, S.; Kirchner, J.; Simon, S.; Liermann, D. [Dept. of Radiology, Marienhospital Herne, University of Bochum, Herne (Germany); Pastor, J. [Dept. of Urology, Marienhospital Herne, University of Bochum, Herne (Germany)

    2001-05-01

    Magnetic resonance imaging and ultrasound are the imaging modalities recommended in the early diagnosis of Fournier's gangrene. Because of the high mortality of this inflammatory disease early diagnosis is essential to initiate adequate surgical and medical treatment. In the clinical literature only a handful of cases, in which diagnosis of Fournier's gangrene is based on MRI findings, have been reported; therefore, we report another case which shows the ability of MRI especially to determine the point of origin and extension of disease. (orig.)

  1. Investigating biomass burning aerosol morphology using a laser imaging nephelometer

    Science.gov (United States)

    Manfred, Katherine M.; Washenfelder, Rebecca A.; Wagner, Nicholas L.; Adler, Gabriela; Erdesz, Frank; Womack, Caroline C.; Lamb, Kara D.; Schwarz, Joshua P.; Franchin, Alessandro; Selimovic, Vanessa; Yokelson, Robert J.; Murphy, Daniel M.

    2018-02-01

    Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4-175° scattering angle with ˜ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle

  2. Laser plasmas as x-ray sources for lithographic imaging of submicron structures

    International Nuclear Information System (INIS)

    Bijkerk, F.; van Dorssen, G.E.; van der Wiel, M.J.

    1988-01-01

    Laser radiation can be used efficiently to generate x-rays for lithographic imaging of submicron patterns, e.g., for VLSI device fabrication. Due to their short wavelength and high average power, excimer lasers show much potential for this application. Results are presented of scaling studies for high repetition rate excimer laser application, using the frequency doubled output of a low repetition rate Nd:YAG/Glass laser. Spectral and spatial characteristics of x-ray emission of the laser plasma are shown. The power density in the laser focus was 3 x 10 12 W/cm 2 . With this source Si x-ray masks with submicron Au absorber profiles are imaged into high sensitivity x-ray photoresist. For the exposures 80 laser shots sufficed to yield high quality submicron structures. Extrapolation of the results to a high power excimer laser reduces the exposure time of the photoresists to several seconds, enabling a wafer throughput at an industrial level

  3. Early melanoma diagnosis with mobile imaging.

    Science.gov (United States)

    Do, Thanh-Toan; Zhou, Yiren; Zheng, Haitian; Cheung, Ngai-Man; Koh, Dawn

    2014-01-01

    We research a mobile imaging system for early diagnosis of melanoma. Different from previous work, we focus on smartphone-captured images, and propose a detection system that runs entirely on the smartphone. Smartphone-captured images taken under loosely-controlled conditions introduce new challenges for melanoma detection, while processing performed on the smartphone is subject to computation and memory constraints. To address these challenges, we propose to localize the skin lesion by combining fast skin detection and fusion of two fast segmentation results. We propose new features to capture color variation and border irregularity which are useful for smartphone-captured images. We also propose a new feature selection criterion to select a small set of good features used in the final lightweight system. Our evaluation confirms the effectiveness of proposed algorithms and features. In addition, we present our system prototype which computes selected visual features from a user-captured skin lesion image, and analyzes them to estimate the likelihood of malignance, all on an off-the-shelf smartphone.

  4. Quality Assurance By Laser Scanning And Imaging Techniques

    Science.gov (United States)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  5. Novel fiber optic-based needle redox imager for cancer diagnosis

    Science.gov (United States)

    Kanniyappan, Udayakumar; Xu, He N.; Tang, Qinggong; Gaitan, Brandon; Liu, Yi; Li, Lin Z.; Chen, Yu

    2018-02-01

    Despite various technological advancements in cancer diagnosis, the mortality rates were not decreased significantly. We aim to develop a novel optical imaging tool to assist cancer diagnosis effectively. Fluorescence spectroscopy/imaging is a fast, rapid, and minimally invasive technique which has been successfully applied to diagnosing cancerous cells/tissues. Recently, the ratiometric imaging of intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), as pioneered by Britton Chance and the co-workers in 1950-70's, has gained much attention to quantify the physiological parameters of living cells/tissues. The redox ratio, i.e., FAD/(FAD+NADH) or FAD/NADH, has been shown to be sensitive to various metabolic changes in in vivo and in vitro cells/tissues. Optical redox imaging has also been investigated for providing potential imaging biomarkers for cancer transformation, aggressiveness, and treatment response. Towards this goal, we have designed and developed a novel fiberoptic-based needle redox imager (NRI) that can fit into an 11G clinical coaxial biopsy needle for real time imaging during clinical cancer surgery. In the present study, the device is calibrated with tissue mimicking phantoms of FAD and NADH along with various technical parameters such as sensitivity, dynamic range, linearity, and spatial resolution of the system. We also conducted preliminary imaging of tissues ex vivo for validation. We plan to test the NRI on clinical breast cancer patients. Once validated this device may provide an effective tool for clinical cancer diagnosis.

  6. Remote defect imaging for plate-like structures based on the scanning laser source technique

    Science.gov (United States)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  7. Ultrafast molecular imaging by laser-induced electron diffraction

    International Nuclear Information System (INIS)

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-01-01

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO 2 molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  8. Transmyocardial laser revascularization - first experiences of imaging in MRT

    International Nuclear Information System (INIS)

    Weber, C.; Maas, R.; Steiner, P.; Beese, M.; Hvalic, M.; Buecheler, E.; Stubbe, M.

    1998-01-01

    Purpose: Imaging of myocardial signal alteration and perfusion differences after transmyocardial laser revascularization (TMLR). Methods and Material: 5 patients suffering from coronary vessel disease underwent MRI (0.5 T) pre- and 4-7 d post-TMLR. T 1 -weighted spin echo sequences were acquired ECG-triggered native and after injection of gadolinium. Qualitative analysis was performed on both native and contrast-enhanced images. Myocardial signal alterations and wall changes were evaluated. Qualitative and quantitative analyses of contrast-enhanced images were performed with regard of post therapeutic perfusion differences. Analysis was based on contrast-to-noise (C/N) data obtained from operator defined 'regions of interest'. Results: Visualization of laser-induced channels was not possible. Native scans obtained before and after TMLR revealed no significant change with regard to the qualitative analysis. Both qualitative and quantitative analyses demonstrated a posttherapeutic increase of C/N in both the left ventricular myocardium (64.4 pre-TMLR; 89.1 post-TMLR; p=0.06) and the septum in the majority of cases. No significant difference between laser-treated left myocardium and untreated septum was observed (p>0.05). Discussion: Single myocardial laser channels could not be visualized with a 0.5-T MRI. However, visualization of increased myocardial contrast enhancement in laser-treated left ventricular myocardium was evident in the majority of cases on the basis of qualitative and quantitative analyses. Conclusions: The MRI technique used enabled a first, limited depiction of TMLR-induced myocardial changes. The clinical value and impact still have to be defined. (orig.) [de

  9. Imaging and Diagnosis of Physical Child Abuse.

    Science.gov (United States)

    Johnson, Marlene M

    2017-09-01

    Child abuse involves grave and disturbing acts of violence that can have lasting physical and emotional consequences for children and their families. The diagnosis of child abuse is emotionally difficult for those involved, and an error in judgment either way can have a detrimental effect on the health and safety of the child. Physicians rely on the skills of the imaging team to produce high-quality images that assist in differentiating inflicted injuries from accidental trauma. This article explores the significance of imaging in child abuse by discussing the types of injuries that occur and the imaging studies that aid in diagnosing physical child abuse. ©2017 American Society of Radiologic Technologists.

  10. Clinical value of SPECT/CT imaging in the diagnosis of bone metastasis

    International Nuclear Information System (INIS)

    Wang Xinhua; Zhao Yanping; Lu Haijian; Dong Zhanfei

    2010-01-01

    Objective: To evaluate the clinical value of 99 Tc m -methylene diphosphonic acid (MDP) SPECT/CT imaging for the diagnosis of bone metastasis. Methods: Patients suspected for bone metastasis and with bone pain of unknown origin were included in this study (n=237). All cases underwent SPECT and CT imaging at 180 min after 99 Tc m -MDP injection. Diagnosis was confirmed by pathology (n=21), more than 2 kinds of radiologieal imaging (MRI, CT, X-ray) (n=106), and clinical follow up in 2 years (n=110). χ 2 -test was used to compare the results of planar and SPECT/CT imaging using SAS 6.12 software. Results: In 237 patients, planar imaging of 142 cases matched the final diagnosis in which 72 had benign lesions and 70 had bone metastases. The definite coincidence rate was 95.30% (142/149). SPECT/CT imaging of 224 cases matched the final diagnosis in which 104 had benign lesions and 120 cases diagnosed as bone metastases. The coincidence and definite coincidence rates were 94.51% (224/237), and 99.48% (192/193). Difference in the definite coincidence rate between planar and SPECT/CT imaging was statistically significant (χ 2 = 5.37, P=0.024). Conclusion: SPECT/CT imaging is valuable for accurate localization of osseous pathology and for improvement of diagnosing bone metastasis. (authors)

  11. Optimizing Ti:Sapphire laser for quantitative biomedical imaging

    Science.gov (United States)

    James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.

    2018-02-01

    Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.

  12. Magnetic resonance imaging diagnosis of Herlyn-Werner-Wunderlich syndrome

    Directory of Open Access Journals (Sweden)

    Taruna Yadav

    2017-01-01

    Full Text Available Herlyn-Werner-Wunderlich syndrome (HWW is a triad of didelphys uterus, obstructed hemivagina, and ipsilateral renal agenesis. It is a combined anomaly of Mullerian and mesonephric ducts. It usually presents in adolescent females after menarche with nonspecific symptoms of pelvic pain, dysmenorrhea, and rarely a palpable pelvic mass. We report here, a case of an 18-year-old female presenting with complaints of lower abdominal pain and dysmenorrhea where magnetic resonance imaging (MRI confirmed the diagnosis of HWW syndrome. MRI is the imaging modality of choice for diagnosis of HWW syndrome and associated complications such as endometriosis.

  13. Global manipulation of digital images can lead to variation in cytological diagnosis.

    Science.gov (United States)

    Prasad, H; Wanjari, Sangeeta; Parwani, Rajkumar

    2011-03-31

    With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. To analyse the impact of manipulating digital images on their diagnosis. Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP) to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted κ statistics was used to measure and assess the levels of agreement between observers. Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  14. Peran Pencitraan dalam Diagnosis Uveitis

    Directory of Open Access Journals (Sweden)

    Ratna Sitompul

    2016-09-01

    Full Text Available Uveitis merupakan penyakit inflamasi yang dapat melibatkan berbagai bagian mata seperti iris, badansiliar, pars plana, vitreus, koroid dan retina. Penyakit tersebut dapat disebabkan oleh inflamasi lokal di mataatau merupakan bagian dari penyakit inflamasi sistemik akibat autoimun, infeksi dan keganasan. Uveitisdapat menimbulkan gejala nyeri, fotofobia, penurunan tajam penglihatan hingga kebutaan. Oleh karenaitu, diagnosis harus segera ditegakkan agar tata laksana uveitis dapat dilakukan dengan cepat dan tepat.Diagnosis uveitis dapat ditetapkan berdasarkan anamnesis, pemeriksaan mata secara klinis, pemeriksaanlaboratorium dan pemeriksaan penunjang yaitu pencitraan. Slitlamp dan fotografi umum adalah teknikpencitraan sederhana yang dapat membantu menegakkan diagnosis uveitis. Pemeriksaan tersebut dapatdigunakan untuk melihat tanda inflamasi di bagian luar mata hingga ke bilik mata depan. Untuk menilai derajatinflamasi secara kuantitatif dapat digunakan laser flare photometry (LFP dan fotografi fundus berwarna dapatdigunakan untuk melihat bagian posterior bola mata. fundus fluorescein angiography (FFA, indocyaninegreen angiography (ICG, dan fundus autofluorescence (FAF bermanfaat untuk mengevaluasi integritasvaskular retina dan koroid. USG, optical coherence tomography (OCT, dan pencitraan multimodal merupakanteknik pencitraan non-kontak dan non-invasif yang dapat memperlihatkan gambaran retina, koroid, sarafoptik dan lapisan serat saraf retina dengan baik. Magnetic resonance imaging (MRI dapat digunakan untukmengevaluasi kondisi inflamasi di mata. Berbagai teknik pencitraan tersebut dapat membantu dokter dalammenegakkan diagnosis uveitis serta memantau perjalanan penyakit dan keberhasilan terapi. Kata kunci: uveitis, slit lamp, fotografi fundus, LFP, FFA, ICG, FAF, USG, OCT, MRI   The Role of Imaging in Uveitis Diagnosis Abstract Uveitis is an inflammatory disease affecting iris, ciliary body, pars plana, vitreous, choroid and retina

  15. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  16. A laser scanner for imaging fluorophore labeled molecules in electrophoretic gels

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D.J.; Sutherland, J.C. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.

    1995-08-01

    A laser scanner for imaging electrophoretic gels was constructed and tested. The scanner incorporates a green helium-neon (HeNe) laser (543.5nm wavelength) and can achieve a spatial resolution of 19{micro}m. The instrument can function in two modes : snap-shot and finish-line. In snapshot mode, all samples are electrophoresed for the same time and the gel is scanned after completion of electrophoresis, while in finish-line mode, fluorophore labeled samples are electrophoresed for a constant distance and the image is formed as the samples pass under the detector. The resolving power of the finish-line mode of imaging is found to be greater than that of the snapshot mode of imaging. This laser scanner is also compared with a Charge Coupled Device (CCD) camera and in terms of resolving power is found to be superior. Sensitivity of the instrument is presented in terms of the minimum amount of DNA that can be detected verses its molecular length.

  17. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  18. Investigation of multimedia didactic courseware of network on image diagnosis

    International Nuclear Information System (INIS)

    Yang Xiaochun; Gong Jianping; Shen Junkang; Lu Zhian; Chen Guangqiang

    2001-01-01

    Objective: To investigate the methods of the design of multimedia didactic courseware of network on image diagnosis and its characteristic. Methods: Based on the teaching material of 'image diagnosis', the images were collected with computers and scanners, and processed with graphic software, and then the multimedia didactic courseware was designed with Frontpage. Results: The design of multimedia didactic courseware of network has been completed. Domain name has been applied. Part of the courseware has been passed to the website. Conclusion: Multimedia didactic courseware of network, with bright prospects, is superior in agility of didactic style, in abundance of content, and in timeliness of information

  19. Advances in medical imaging for the diagnosis and management of common genitourinary cancers.

    Science.gov (United States)

    Bagheri, Mohammad H; Ahlman, Mark A; Lindenberg, Liza; Turkbey, Baris; Lin, Jeffrey; Cahid Civelek, Ali; Malayeri, Ashkan A; Agarwal, Piyush K; Choyke, Peter L; Folio, Les R; Apolo, Andrea B

    2017-07-01

    Medical imaging of the 3 most common genitourinary (GU) cancers-prostate adenocarcinoma, renal cell carcinoma, and urothelial carcinoma of the bladder-has evolved significantly during the last decades. The most commonly used imaging modalities for the diagnosis, staging, and follow-up of GU cancers are computed tomography, magnetic resonance imaging (MRI), and positron emission tomography (PET). Multiplanar multidetector computed tomography and multiparametric MRI with diffusion-weighted imaging are the main imaging modalities for renal cell carcinoma and urothelial carcinoma, and although multiparametric MRI is rapidly becoming the main imaging tool in the evaluation of prostate adenocarcinoma, biopsy is still required for diagnosis. Functional and molecular imaging using 18-fluorodeoxyglucose-PET and sodium fluoride-PET are essential for the diagnosis, and especially follow-up, of metastatic GU tumors. This review provides an overview of the latest advances in the imaging of these 3 major GU cancers. Published by Elsevier Inc.

  20. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  1. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    Directory of Open Access Journals (Sweden)

    Chen Lu

    Full Text Available Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for

  2. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    Science.gov (United States)

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  3. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...

  4. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging

    International Nuclear Information System (INIS)

    Eadie, Leila H.; Taylor, Paul; Gibson, Adam P.

    2012-01-01

    Objectives: This study reviews the evidence for the effectiveness of computer-assisted diagnosis (CAD) in cancer imaging. Diagnostic applications were studied to estimate the impact of CAD on radiologists’ detection and diagnosis of cancer lesions. Methods: Online databases were searched and 48 studies from 1992 to 2010 were included: 16 with radiologists using CAD to detect lesions (CADe) and 32 with radiologists using CAD to classify or diagnose lesions (CADx). Weighted means, statistics, summary receiver operating characteristics (SROC) curves, and related measures were used for analysis. Results: There is evidence that CADx significantly improves diagnosis in mammography and breast ultrasound. In contrast, studies of CADx applied to lung CT and dermatologic imaging show an adverse impact on diagnosis. Overall, there is no evidence of a benefit due to the use of CADe. The area under the SROC curves was not significantly increased for radiologists using either CADe or CADx. Conclusions: From this analysis it seems CADx can offer some benefit to radiologists in specific imaging applications for breast cancer diagnosis. There is no evidence of a beneficial effect in other applications of CAD and some evidence of a detrimental one.

  5. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    Science.gov (United States)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  6. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    Science.gov (United States)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  7. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  8. Imaging and Diagnosis: Using Imaging to Fight the World’S Biggest Killers

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Modern medicine has developed techniques and cures for many of humanity’s ailments, treatments that often require early detection or frequent observations. Some of the most revolutionary advances in improving diagnosis and observation of diseases have been through the use of imaging. Radioisotope imaging techniques like SPECT, PET/CT and conventional imaging such as MRI and CT are instrumental in fighting modern diseases like cardiovascular disease and cancer, and the IAEA plays an important role in helping its Member States acquire the skills and resources for implementing these technologies

  9. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    Science.gov (United States)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by

  10. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  11. Image quality of a wet laser printer versus a paper printer for full-field digital mammograms.

    Science.gov (United States)

    Schueller, Gerd; Kaindl, Elisabeth; Matzek, Wolfgang K; Semturs, Friedrich; Schueller-Weidekamm, Claudia; Helbich, Thomas H

    2006-01-01

    The purpose of our study was to compare the image quality of a wet laser printer with that of a paper printer for full-field digital mammography (FFDM). For both a wet laser printer and a paper printer connected to an FFDM system, image quality parameters were evaluated using a standardized printer test image (luminance density, dynamic range). The detectability of standardized objects on a phantom was also evaluated. Furthermore, 640 mammograms of 80 patients with different breast tissue composition patterns were imaged with both printers. Subjective image quality parameters (brightness, contrast, and detection of details of anatomic structures-that is, skin, subcutis, musculature, glandular tissue, and fat), the detectability of breast lesions (mass, calcifications), and the diagnostic performance according to the BI-RADS classification were evaluated. Both the luminance density and the dynamic range were superior for the wet laser printer. More standardized objects were visible on the phantom imaged with the wet laser printer than with the paper printer (13/16 vs 11/16). Each subjective image quality parameter of the mammograms from the wet laser printer was rated superior to those of the paper printer. Significantly more breast lesions were detected on the wet laser printer images than on the paper printer images (masses, 13 vs 10; calcifications, 65 vs 48; p printer images, BI-RADS 4 and 5 categories were underestimated for 10 (43.5%) of 23 patients. For FFDM, images obtained from a wet laser printer show superior objective and subjective image quality compared with a paper printer. As a consequence, the paper printer should not be used for FFDM.

  12. Diagnosis, imaging and clinical management of aortic coarctation.

    Science.gov (United States)

    Dijkema, Elles J; Leiner, Tim; Grotenhuis, Heynric B

    2017-08-01

    Coarctation of the aorta (CoA ) is a well-known congenital heart disease (CHD) , which is often associated with several other cardiac and vascular anomalies, such as bicuspid aortic valve (BAV), ventricular septal defect, patent ductus arteriosus and aortic arch hypoplasia. Despite echocardiographic screening, prenatal diagnosis of C o A remains difficult. Most patients with CoA present in infancy with absent, delayed or reduced femoral pulses, a supine arm-leg blood pressure gradient (> 20 mm Hg), or a murmur due to rapid blood flow across the CoA or associated lesions (BAV). Transthoracic echocardiography is the primary imaging modality for suspected CoA. However, cardiac magnetic resonance imaging is the preferred advanced imaging modality for non-invasive diagnosis and follow-up of CoA. Adequate and timely diagnosis of CoA is crucial for good prognosis, as early treatment is associated with lower risks of long-term morbidity and mortality. Numerous surgical and transcatheter treatment strategies have been reported for CoA. Surgical resection is the treatment of choice in neonates, infants and young children. In older children (> 25 kg) and adults, transcatheter treatment is the treatment of choice. In the current era, patients with CoA continue to have a reduced life expectancy and an increased risk of cardiovascular sequelae later in life, despite adequate relief of the aortic stenosis. Intensive and adequate follow-up of the left ventricular function, valvular function, blood pressure and the anatomy of the heart and the aorta are , therefore, critical in the management of CoA. This review provides an overview of the current state-of-the-art clinical diagnosis, diagnostic imaging algori thms, treatment and follow-up of patients with CoA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis

    Science.gov (United States)

    Itoh, Hayato; Mori, Yuichi; Misawa, Masashi; Oda, Masahiro; Kudo, Shin-ei; Mori, Kensaku

    2018-02-01

    This paper presents a new classification method for endocytoscopic images. Endocytoscopy is a new endoscope that enables us to perform conventional endoscopic observation and ultramagnified observation of cell level. This ultramagnified views (endocytoscopic images) make possible to perform pathological diagnosis only on endo-scopic views of polyps during colonoscopy. However, endocytoscopic image diagnosis requires higher experiences for physicians. An automated pathological diagnosis system is required to prevent the overlooking of neoplastic lesions in endocytoscopy. For this purpose, we propose a new automated endocytoscopic image classification method that classifies neoplastic and non-neoplastic endocytoscopic images. This method consists of two classification steps. At the first step, we classify an input image by support vector machine. We forward the image to the second step if the confidence of the first classification is low. At the second step, we classify the forwarded image by convolutional neural network. We reject the input image if the confidence of the second classification is also low. We experimentally evaluate the classification performance of the proposed method. In this experiment, we use about 16,000 and 4,000 colorectal endocytoscopic images as training and test data, respectively. The results show that the proposed method achieves high sensitivity 93.4% with small rejection rate 9.3% even for difficult test data.

  14. Global manipulation of digital images can lead to variation in cytological diagnosis

    Directory of Open Access Journals (Sweden)

    H Prasad

    2011-01-01

    Full Text Available Background: With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. Aim: To analyse the impact of manipulating digital images on their diagnosis. Design: Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted k statistics was used to measure and assess the levels of agreement between observers. Results: Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Conclusion: Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  15. Research of time fiducial and imaging VISAR laser for Shenguang-III laser facility

    Science.gov (United States)

    Zhang, Rui; Wang, Zhenguo; Tian, Xiaocheng; Zhou, Dandan; Zhu, Na; Wang, Jianjun; Li, Mingzhong; Xu, Dangpeng; Dang, Zhao; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Wang, Feng

    2015-10-01

    Time fiducial laser is an important tool for the precise measurement in high energy density physics experiments. The VISAR probe laser is also vital for shock wave diagnostics in ICF experiments. Here, time fiducial laser and VISAR light were generated from one source on SG-III laser facility. After generated from a 1064-nm DFB laser, the laser is modulated by an amplitude modulator driven by 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20-ns VISAR pulse were split by a 1×2 multiplexer and then chosen by two acoustic optic modulators. Using the technique, cost of the system was reduced. The technologies adopted in the system also include pulse polarization stabilization, high precision fiber coupling and energy transmission. The time fiducial laser generated synchronized 12-beam 2ω and 4-beam 3ω laser, providing important reference marks for different detectors and making it convenient for the analysis of diagnostic data. After being amplified by fiber amplifiers and Nd:YAG rod amplifiers, the VISAR laser pulse was frequency-converted to 532-nm pulse by a thermally controlled LBO crystal with final output energy larger than 20 mJ. Finally, the green light was coupled into a 1-mm core diameter, multimode fused silica optical fiber and propagated to the imaging VISAR. The VISAR laser has been used in the VISAR diagnostic physics experiments. Shock wave loading and slowdown processes were measured. Function to measure velocity history of shock wave front movement in different kinds of materials was added to the SG-III laser facility.

  16. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods

    Science.gov (United States)

    Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun

    2018-01-01

    Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.

  17. Magnetic resonance imaging for early diagnosis of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Laubenberger, J.; Kempis, J. v.; Langer, M.

    1997-01-01

    Nuclear magnetic resonance tomography (MRI) represents essential progress in the diagnostic means for evaluation of lesions of the muskuloskeletal system. The imaging of bone joints including material and structures like cartilage, tendons, ligaments, effusions, pannus, cortical bone and marrow offers essential advantages for diagnosis, differential diagnosis, follow-up control and detection of local complications in rheumatics radiology. The review article discusses the achievements of MRI for detection of early signs of rheumatoid arthritis and the current indications for MRI examination for early diagnosis. (Orig./AJ) [de

  18. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  19. Brain medical image diagnosis based on corners with importance-values.

    Science.gov (United States)

    Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao

    2017-11-21

    Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection

  20. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  1. The role of fluorescence diagnosis in clinical practice

    Directory of Open Access Journals (Sweden)

    Sieroń A

    2013-07-01

    Full Text Available Aleksander Sieroń,1 Karolina Sieroń-Stołtny,1 Aleksandra Kawczyk-Krupka,1 Wojciech Latos,1 Sebastian Kwiatek,1 Dariusz Straszak,1 Andrzej M Bugaj1,2 1Clinical Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Silesian Medical University, Bytom, 2College of Health, Beauty Care and Education, Poznan, Poland Abstract: Fluorescence diagnosis is a fast, easy, noninvasive, selective, and sensitive diagnostic tool for estimation of treatment results in oncology. In clinical practice the use of photodynamic diagnosis is focused on five targets: detection for prevention of malignant transformation precancerous changes, detection of neoplasmatic tissue in the early stages for fast removal, prevention of expansion and detection of recurrence of the cancer, monitoring therapy, and the possibility of excluding neoplasmatic disease. In this article, selected applications of fluorescence diagnosis at the Center for Laser Diagnostics and Therapy in Bytom, Poland, for each of these targets are presented. Keywords: autofluorescence, cancer, fluorescence, imaging, photodynamic diagnosis, photodynamic therapy 

  2. A pin diode x-ray camera for laser fusion diagnostic imaging: Final technical report

    International Nuclear Information System (INIS)

    Jernigan, J.G.

    1987-01-01

    An x-ray camera has been constructed and tested for diagnostic imaging of laser fusion targets at the Laboratory for Laser Energetics (LLE) of the University of Rochester. The imaging detector, developed by the Hughes Aircraft Company, is a germanium PIN diode array of 10 x 64 separate elements which are bump bonded to a silicon readout chip containing a separate low noise amplifier for each pixel element. The camera assembly consists of a pinhole alignment mechanism, liquid nitrogen cryostat with detector mount and a thin beryllium entrance window, and a shielded rack containing the analog and digital electronics for operations. This x-ray camera has been tested on the OMEGA laser target chamber, the primary laser target facility of LLE, and operated via an Ethernet link to a SUN Microsystems workstation. X-ray images of laser targets are presented. The successful operation of this particular x-ray camera is a demonstration of the viability of the hybrid detector technology for future imaging and spectroscopic applications. This work was funded by the Department of Energy (DOE) as a project of the National Laser Users Facility (NLUF)

  3. Lipoma arborescens: diagnosis and image

    International Nuclear Information System (INIS)

    Goncalves, Marcela; Len, Claudio Arnaldo; Terreri, Maria Teresa Ramos Ascencao; Fernandes, Artur da Rocha Correa; Hilario, Maria Odete Esteves

    2004-01-01

    Lipoma arborescens is an intraarticular lesion of unknown etiology, consisting of a chronic villous fat proliferation of the synovial membrane. The disease has occasionally been associated with diabetes mellitus, degenerative diseases, juvenile rheumatoid arthritis and also rheumatoid arthritis. The diagnosis relies on magnetic resonance imaging evaluation and synovial biopsy. We report a case of a 8-year-old girl with a two year history of bilateral swelling of the knees and elbows. The patient had improvement of the arthritis after starting treatment with conventional drugs. (author)

  4. Illumination Effect of Laser Light in Foggy Objects Using an Active Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Ahn, Yong-Jin; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Active imaging techniques usually provide improved image information when compared to passive imaging techniques. Active vision is a direct visualization technique using an artificial illuminant. Range-gated imaging (RGI) technique is one of active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The Range-gated imaging is an emerging technology in the field of surveillance for security application, especially in the visualization of darken night or foggy environment. Although RGI viewing was discovered in the 1960's, this technology is currently more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. Especially, this system can be adopted in robot-vision system by virtue of the compact system configuration. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated range imaging based on range-gated imaging. Laser light having a short pulse width is usually used for the range-gated imaging system. In this paper, an illumination effect of laser light in foggy objects is studied using a range-gated imaging system. The used imaging system consists of an ultra-short pulse (0.35 ns) laser light and a gated imaging sensor. The experiment is carried out to monitor objects in a box filled by fog. In this paper, the effects by fog particles in range-gated imaging technique are studied. Edge blurring and range distortion are the generated by fog particles.

  5. Illumination Effect of Laser Light in Foggy Objects Using an Active Imaging System

    International Nuclear Information System (INIS)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Ahn, Yong-Jin; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Active imaging techniques usually provide improved image information when compared to passive imaging techniques. Active vision is a direct visualization technique using an artificial illuminant. Range-gated imaging (RGI) technique is one of active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The Range-gated imaging is an emerging technology in the field of surveillance for security application, especially in the visualization of darken night or foggy environment. Although RGI viewing was discovered in the 1960's, this technology is currently more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. Especially, this system can be adopted in robot-vision system by virtue of the compact system configuration. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated range imaging based on range-gated imaging. Laser light having a short pulse width is usually used for the range-gated imaging system. In this paper, an illumination effect of laser light in foggy objects is studied using a range-gated imaging system. The used imaging system consists of an ultra-short pulse (0.35 ns) laser light and a gated imaging sensor. The experiment is carried out to monitor objects in a box filled by fog. In this paper, the effects by fog particles in range-gated imaging technique are studied. Edge blurring and range distortion are the generated by fog particles

  6. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single-shot, volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...acquisition; (110.6955) Tomographic imaging ; (110.6960) Tomography; (280.2490) Flow diagnostics; (300.2530) Fluorescence , laser-induced...84 (1983). 2. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence ,” Exp

  7. Transillumination optical sensing for biomedicine and diagnostics: feasibility of early diagnosis for rheumatoid arthritis

    International Nuclear Information System (INIS)

    Yuasa, Tetsuya; Sasaki, Yoshiaki; Devaraj, Balasigamani; Akatsuka, Takao; Tanosaki, Shinji; Takagi, Michiaki; Taniguchi, Hiroshi

    2002-01-01

    Optical computed tomography of thick biological tissues remains an elusive but fascinating area of research with potential applications in biomedicine. Our measurement use the optical heterodyne detection method wherein CW and single frequency lasers are used to exploit the maximum advantages of heterodyne detection such as high directionality, selectivity and sensitivity. We have demonstrated the advantages and capabilities of the measurement technique for transillumination optical computed tomography in biomedicine. Biological tissues by nature are heterogeneous, complex and forward scattering media. The optical heterodyne detection method enables selective filtering of the directional coherence retaining emergent photons for image reconstruction similar to those as in X-ray CT. Here, we report our recent results on transillumination in vivo imaging for diagnosis of rheumatoid arthritis (RA). In particular, we demonstrate the feasibility of early diagnosis for RA by comparing the laser tomographic images of fingers of an RA patient and a healthy volunteer. (author)

  8. Iris recognition and what is next? Iris diagnosis: a new challenging topic for machine vision from image acquisition to image interpretation

    Science.gov (United States)

    Perner, Petra

    2017-03-01

    Molecular image-based techniques are widely used in medicine to detect specific diseases. Look diagnosis is an important issue but also the analysis of the eye plays an important role in order to detect specific diseases. These topics are important topics in medicine and the standardization of these topics by an automatic system can be a new challenging field for machine vision. Compared to iris recognition has the iris diagnosis much more higher demands for the image acquisition and interpretation of the iris. One understands by iris diagnosis (Iridology) the investigation and analysis of the colored part of the eye, the iris, to discover factors, which play an important role for the prevention and treatment of illnesses, but also for the preservation of an optimum health. An automatic system would pave the way for a much wider use of the iris diagnosis for the diagnosis of illnesses and for the purpose of individual health protection. With this paper, we describe our work towards an automatic iris diagnosis system. We describe the image acquisition and the problems with it. Different ways are explained for image acquisition and image preprocessing. We describe the image analysis method for the detection of the iris. The meta-model for image interpretation is given. Based on this model we show the many tasks for image analysis that range from different image-object feature analysis, spatial image analysis to color image analysis. Our first results for the recognition of the iris are given. We describe how detecting the pupil and not wanted lamp spots. We explain how to recognize orange blue spots in the iris and match them against the topological map of the iris. Finally, we give an outlook for further work.

  9. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...

  10. In-vivo diagnosis and non-inasive monitoring of Imiquimod 5% cream for non-melanoma skin cancer using confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Dietterle, S; Lademann, J; Röwert-Huber, H-J; Stockfleth, E; Astner, S; Antoniou, C; Sterry, W

    2008-01-01

    Basal cell carcinoma (BCC) is the most common cutaneous malignancy with increasing incidence rates worldwide. A number of established treatments are available, including surgical excision. The emergence of new non-invasive treatment modalities has prompted the development of non-invasive optical devices for therapeutic monitoring and evaluating treatment efficacy. This study was aimed to evaluate the clinical applicability of a fluorescence confocal laser scanning microscope (CFLSM) for non-invasive therapeutic monitoring of basal cell carcinoma treated with Imiquimod (Aldara®) as topical immune-response modifier. Eight participants with a diagnosis of basal cell carcinoma (BCC) were enrolled in this investigation. Sequential evaluation during treatment with Imiquimod showed progressive normalization of the confocal histomorphologic parameters in correlation with normal skin. Confocal laser scanning microscopy was able to identify characteristic features of BCC and allowed the visualization of therapeutic effects over time. Thus our results indicate the clinical applicability of CFLSM imaging to evaluate treatment efficacy in vivo and non-invasively

  11. Color model comparative analysis for breast cancer diagnosis using H and E stained images

    Science.gov (United States)

    Li, Xingyu; Plataniotis, Konstantinos N.

    2015-03-01

    Digital cancer diagnosis is a research realm where signal processing techniques are used to analyze and to classify color histopathology images. Different from grayscale image analysis of magnetic resonance imaging or X-ray, colors in histopathology images convey large amount of histological information and thus play significant role in cancer diagnosis. Though color information is widely used in histopathology works, as today, there is few study on color model selections for feature extraction in cancer diagnosis schemes. This paper addresses the problem of color space selection for digital cancer classification using H and E stained images, and investigates the effectiveness of various color models (RGB, HSV, CIE L*a*b*, and stain-dependent H and E decomposition model) in breast cancer diagnosis. Particularly, we build a diagnosis framework as a comparison benchmark and take specific concerns of medical decision systems into account in evaluation. The evaluation methodologies include feature discriminate power evaluation and final diagnosis performance comparison. Experimentation on a publicly accessible histopathology image set suggests that the H and E decomposition model outperforms other assessed color spaces. For reasons behind various performance of color spaces, our analysis via mutual information estimation demonstrates that color components in the H and E model are less dependent, and thus most feature discriminate power is collected in one channel instead of spreading out among channels in other color spaces.

  12. Validation of image quality in full-field digital mammography: Is the replacement of wet by dry laser printers justified?

    International Nuclear Information System (INIS)

    Schueller, Gerd; Kaindl, Elisabeth; Langenberger, Herbert; Stadler, Alfred; Schueller-Weidekamm, Claudia; Semturs, Friedrich; Helbich, Thomas H.

    2007-01-01

    Objective: Dry laser printers have replaced wet laser printers to produce hard copies of high-resolution digital images, primarily because of environmental concerns. However, no scientific research data have been published that compare the image quality of dry and wet laser printers in full-field digital mammography (FFDM). This study questions the image quality of these printers. Materials and methods: Objective image quality parameters of both printers were evaluated using a standardized printer test image, i.e., optical density and detectability of specific image elements (lines, curves, and shapes). Furthermore, mammograms of 129 patients with different breast tissue composition patterns were imaged with both printers. A total of 1806 subjective image quality parameters (brightness, contrast, and detail detection of anatomic structures), the detectability of breast lesions, as well as diagnostic performance according to the BI-RADS classification were evaluated. In addition, the presence of film artifacts was investigated. Results: Optical density values were equal for the dry and the wet laser printer. Detection of specific image elements on the printer test image was not different. Ratings of subjective image quality parameters were equal, as were the detectability of breast lesions and the diagnostic performance. Dry laser printer images showed more artifacts (164 versus 27). However, these artifacts did not influence image quality. Conclusion: Based on the evidence of objective and subjective parameters, a dry laser printer equals the image quality of a wet laser printer in FFDM. Therefore, not only for reasons of environmental preference, the replacement of wet laser printers by dry laser printers in FFDM is justified

  13. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  14. Image Signal Transfer Method in Artificial Retina using Laser

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, I.Y.; Lee, B.H.; Kim, S.J. [Seoul National University, Seoul (Korea)

    2002-05-01

    Recently, the research on artificial retina for the blind is active. In this paper a new optical link method for the retinal prosthesis is proposed. Laser diode system was chosen to transfer image into the eye in this project and the new optical system was designed and evaluated. The use of laser diode array in artificial retina system makes system simple for lack of signal processing part inside of the eyeball. Designed optical system is enough to focus laser diode array on photodiode array in 20X20 application. (author). 11 refs., 7 figs., 2 tabs.

  15. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  16. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  17. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    Science.gov (United States)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  18. Diagnosis of a sigmoid volvulus in pregnancy: ultrasonography and magnetic resonance imaging findings.

    Science.gov (United States)

    Palmucci, Stefano; Lanza, Maria Letizia; Gulino, Fabrizio; Scilletta, Beniamino; Ettorre, Giovanni Carlo

    2014-02-01

    Sigmoid volvulus complicating pregnancy is a rare, non-obstetric cause of abdominal pain that requires prompt surgical intervention (decompression) to avoid intestinal ischemia and perforation. We report the case of a 31-week pregnant woman with abdominal pain and subsequent development of constipation. Preoperative diagnosis was achieved using magnetic resonance imaging and ultrasonography: the large bowel distension and a typical whirl sign - near a sigmoid colon transition point - suggested the diagnosis of sigmoid volvulus. The decision to refer the patient for emergency laparotomy was adopted without any ionizing radiation exposure, and the pre-operative diagnosis was confirmed after surgery. Imaging features of sigmoid volvulus and differential diagnosis from other non-obstetric abdominal emergencies in pregnancy are discussed in our report, with special emphasis on the diagnostic capabilities of ultrasonography and magnetic resonance imaging.

  19. Laser injury and in vivo multimodal imaging using a mouse model

    Science.gov (United States)

    Pocock, Ginger M.; Boretsky, Adam; Gupta, Praveena; Oliver, Jeff W.; Motamedi, Massoud

    2011-03-01

    Balb/c wild type mice were used to perform in vivo experiments of laser-induced thermal damage to the retina. A Heidelberg Spectralis HRA confocal scanning laser ophthalmoscope with a spectral domain optical coherence tomographer was used to obtain fundus and cross-sectional images of laser induced injury in the retina. Sub-threshold, threshold, and supra-threshold lesions were observed using optical coherence tomography (OCT), infrared reflectance, red-free reflectance, fluorescence angiography, and autofluorescence imaging modalities at different time points post-exposure. Lesions observed using all imaging modalities, except autofluorescence, were not visible immediately after exposure but did resolve within an hour and grew in size over a 24 hour period. There was a decrease in fundus autofluorescence at exposure sites immediately following exposure that developed into hyper-fluorescence 24-48 hours later. OCT images revealed threshold damage that was localized to the RPE but extended into the neural retina over a 24 hour period. Volumetric representations of the mouse retina were created to visualize the extent of damage within the retina over a 24 hour period. Multimodal imaging provides complementary information regarding damage mechanisms that may be used to quantify the extent of the damage as well as the effectiveness of treatments without need for histology.

  20. Near field imaging of transient collisional excitation x-ray laser

    International Nuclear Information System (INIS)

    Tanaka, Momoko; Kado, Masataka; Hasegawa, Noboru; Kawachi, Tetsuya; Sukegawa, Kouta; Lu, Peixiang; Nagashima, Akira; Kato, Yoshiaki

    2001-01-01

    We observed the spatial profile of the transient collisional excitation Ni-like Ag laser (λ=13.9 nm) for various plasma lengths using the near field imaging method. The gain coefficient of the x-ray laser was estimated as 24 cm -1 . The gain region was a 50 μm crescent shape and included localized high gain areas. (author)

  1. Imaging approach to the diagnosis of pulmonary sequestration

    International Nuclear Information System (INIS)

    Hang, J.D.; Guo, Q.Y.; Chen, C.X.; Chen, L.Y.

    1996-01-01

    Purpose: To describe the characteristic features of pulmonary sequestration (PS), to evaluate the usefulness of various imaging modalities, and to find a rational approach to accurate diagnosis. Material and Methods: Twenty-four patients with PS proved by operation and pathology were reviewed retrospectively. Plain chest films were done in all patients, bronchography in 3, sonography in 14, CT in 6 (including CT angiography in 1 case), MR in 8 (including MR angiography in 1 case) and aortography in 12 (including DSA in 1 case). Results: Plain chest films demonstrated a solid mass in 14 patients and a cystic mass in 10. Bronchograms showed displacement of adjacent bronchi with no filling of contrast medium within the lesion in 2 cases, while another case had a blind intermediate portion of the right bronchus (hypoplasia of middle and lower lobes associated with extralobar sequestration). Sonography demonstrated a solid lung mass in 12 cases and a solid mass with cystic areas in 2, and detected vessel-like structures within the mass or in its surroundings in 12. Doppler analysis showed arterial spectral wave confirming a feeding artery. CT revealed a solid mass in all patients, a mass with low density area in 4, and emphysema surrounding the mass in 3. MR imaging depicted anomalous arteries in all patients and venous drainage in 4 cases. Aortography demonstrated anomalous systemic arterial supply to the PS in all patients. In this series, 21 cases (87.5%) were correctly diagnosed preoperatively by the imaging modalities. Conclusion: Plain chest films can provide a diagnostic due to PS. Sonography, CT and MR are helpful for showing arterial blood supply and for making a definite diagnosis. We recommend a rational imaging approach for the diagnosis of PS. (orig.)

  2. Precise focusing and diagnosis technology for laser beams in ICF target chamber

    International Nuclear Information System (INIS)

    Zhu Qixiang

    1999-01-01

    The precise focusing and diagnosis experimental system for laser beams in ICF target chamber is introduced. The system is controlled by computer. In process of focusing a series data of displacement in axial direction and relative area of focus spots are acquired. According to the functional curvature the accurate position of focal plane is determined. The construction of the system is simple, the system is controlled conveniently and runs quickly

  3. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    International Nuclear Information System (INIS)

    Moses, Lance M.; Ellis, Wade C.; Jones, Derick D.; Farnsworth, Paul B.

    2015-01-01

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions

  4. Computerized video interaction self-instruction of MR imaging fundamentals utilizing laser disk technology

    International Nuclear Information System (INIS)

    Genberg, R.W.; Javitt, M.C.; Popky, G.L.; Parker, J.A.; Pinkney, M.N.

    1986-01-01

    Interactive computer-assisted self-instruction is emerging as a recognized didactic modality and is now being introduced to teach physicians the physics of MR imaging. The interactive system consists of a PC-compatible computer, a 12-inch laser disk drive, and a high-resolution monitor. The laser disk, capable of storing 54,000 images, is pressed from a previously edited video tape of MR and video images. The interactive approach is achieved through the use of the computer and appropriate software. The software is written to include computer graphics overlays of the laser disk images, to select interactive branching paths (depending on the user's response to directives or questions), and to provide feedback to the user so that he can assess his performance. One of their systems is available for use in the scientific exhibit area

  5. Machine learning techniques for medical diagnosis of diabetes using iris images.

    Science.gov (United States)

    Samant, Piyush; Agarwal, Ravinder

    2018-04-01

    Complementary and alternative medicine techniques have shown their potential for the treatment and diagnosis of chronical diseases like diabetes, arthritis etc. On the same time digital image processing techniques for disease diagnosis is reliable and fastest growing field in biomedical. Proposed model is an attempt to evaluate diagnostic validity of an old complementary and alternative medicine technique, iridology for diagnosis of type-2 diabetes using soft computing methods. Investigation was performed over a close group of total 338 subjects (180 diabetic and 158 non-diabetic). Infra-red images of both the eyes were captured simultaneously. The region of interest from the iris image was cropped as zone corresponds to the position of pancreas organ according to the iridology chart. Statistical, texture and discrete wavelength transformation features were extracted from the region of interest. The results show best classification accuracy of 89.63% calculated from RF classifier. Maximum specificity and sensitivity were absorbed as 0.9687 and 0.988, respectively. Results have revealed the effectiveness and diagnostic significance of proposed model for non-invasive and automatic diabetes diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    2002-01-01

    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  7. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  8. Body imaging in the differential diagnosis of jaundice

    International Nuclear Information System (INIS)

    Kuno, Nobuyoshi; Endo, Tokiko; Kasugai, Tatsuzo

    1981-01-01

    Forty-five jaundiced patients with confirmed pancreatico-biliary diseases were studied to determine the value of body imaging in the differential diagnosis of jaundice. In this study, body imaging included five tests, which were US, CT, ERCP, PTC and RI. The results indicate that each to these five tests is useful and highly accurate in differentiating between obstructive and nonobstructive jaundice (about 90%). The site of obstruction was delineated in 91.3%, 90.9%, 82.5%, 66.7% and 50% by PTC, ERCP, CT, US and RI, respectively. ERCP, PTC, CT, US and RI helped determine the etiology of jaundice in 79.5%, 65.2%, 57.5%, 50% and 0%, respectively. ERCP and US were highly accurate in establishing the diagnosis of resectable pancreatico-biliary cancer with obstructive jaundice. On the basis of these results, we propose a diagnostic approach to obstructive jaundice as in Table 5. (author)

  9. Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets

    DEFF Research Database (Denmark)

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna

    2012-01-01

    and pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size...

  10. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  11. Granulomatous lobular mastitis: imaging, diagnosis, and treatment.

    Science.gov (United States)

    Hovanessian Larsen, Linda J; Peyvandi, Banafsheh; Klipfel, Nancy; Grant, Edward; Iyengar, Geeta

    2009-08-01

    Granulomatous lobular mastitis is a rare chronic inflammatory disease that has clinical and radiologic findings similar to those of breast cancer. We performed a retrospective analysis of clinical, imaging, and treatment findings in 54 women diagnosed with granulomatous lobular mastitis between January 2000 and April 2008. The imaging findings of granulomatous lobular mastitis overlap with those of malignancy. The most common presentation is a focal asymmetric density on mammography and an irregular hypoechoic mass with tubular extensions on ultrasound. Core biopsy is typically diagnostic. Once the diagnosis is established by tissue sampling, corticosteroids are the first line of treatment.

  12. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.

    Science.gov (United States)

    Singh, Anushikha; Dutta, Malay Kishore

    2017-12-01

    The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The use of film imaging techniques in the diagnosis of mammary intraductal papilloma (report of 23 cases)

    International Nuclear Information System (INIS)

    Wei Shaohua; Liu Genshou

    2001-01-01

    Objective: To summarize the value of the film imaging techniques in the diagnosis of mammary intraductal papilloma. Methods: Retrospectively analysis 23 in patients with mammary intraductal papilloma which was confirmed by diagnosis with multiple function ultrasound instrument, mammography and breast duct imaging techniques. Results: The diagnosis sensitivities of multiple function ultrasound instrument and breast duct imaging techniques were 66.7% and 70.6% respectively (P > 0.05). Both of them had a definite value in diagnosis of mammary intraductal papilloma. Conclusion: Film imaging techniques are valuable to locate lesions, but is not useful for making pathological diagnosis

  14. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  15. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  16. Hyperspectral laser-induced autofluorescence imaging of dental caries

    Science.gov (United States)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  17. Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, RO-077125 Bucharest (Romania); Shaw-Stewart, J. [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Functional Polymers, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Paul Scherrer Institute, General Energy Research Department, 5232 Villigen PSI (Switzerland); Mattle, T. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinca, V. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, RO-077125 Bucharest (Romania); Lippert, T.; Wokaun, A. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, RO-077125 Bucharest (Romania)

    2013-08-01

    Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.

  18. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  19. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model☆

    Science.gov (United States)

    Burmeister, David M.; Ponticorvo, Adrien; Yang, Bruce; Becerra, Sandra C.; Choi, Bernard; Durkin, Anthony J.; Christy, Robert J.

    2015-01-01

    Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing severity were created on the dorsum of a Yorkshire pig, and wounds were imaged with SFDI/LSI starting immediately after-burn and then daily for the next 4 days. In addition, on each day the burn wounds were biopsied for histological analysis of burn depth, defined by collagen coagulation, apoptosis, and adnexal/vascular necrosis. Histological results show that collagen coagulation progressed from day 0 to day 1, and then stabilized. Results of burn wound imaging using non-invasive techniques were able to produce metrics that correlate to different predictors of burn depth. Collagen coagulation and apoptosis correlated with SFDI scattering coefficient parameter ( μs′) and adnexal/vascular necrosis on the day of burn correlated with blood flow determined by LSI. Therefore, incorporation of SFDI scattering coefficient and blood flow determined by LSI may provide an algorithm for accurate assessment of the severity of burn wounds in real time. PMID:26138371

  20. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  1. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho; Ari Satmoko; Budhi Cynthia Dewi

    2007-01-01

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  2. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  3. Computer Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma

    DEFF Research Database (Denmark)

    Ştefănescu, Daniela; Streba, Costin; Cârţână, Elena Tatiana

    2016-01-01

    functions, a module for fractal analysis, grey-level co-occurrence matrix (GLCM) computation module, and a feature identification module based on the Marching Squares and linear interpolation methods. A two-layer neural network was trained to automatically interpret the imaging data and diagnose...... the pathological samples based on the fractal dimension and the characteristic features of the biological tissues. RESULTS: Normal colon mucosa is characterized by regular polyhedral crypt structures whereas malignant colon mucosa is characterized by irregular and interrupted crypts, which can be diagnosed by CAD.......14, validation: 17.42, testing: 15.48. The diagnosis accuracy error was 15.5%. CONCLUSIONS: Computed aided diagnosis via fractal analysis of glandular structures can complement the traditional histological and minimally invasive imaging methods. A larger dataset from colorectal and other pathologies should...

  4. Computer-aided diagnosis in radiological imaging: current status and future challenges

    Science.gov (United States)

    Doi, Kunio

    2009-10-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.

  5. Quantitative diagnosis of bladder cancer by morphometric analysis of HE images

    Science.gov (United States)

    Wu, Binlin; Nebylitsa, Samantha V.; Mukherjee, Sushmita; Jain, Manu

    2015-02-01

    In clinical practice, histopathological analysis of biopsied tissue is the main method for bladder cancer diagnosis and prognosis. The diagnosis is performed by a pathologist based on the morphological features in the image of a hematoxylin and eosin (HE) stained tissue sample. This manuscript proposes algorithms to perform morphometric analysis on the HE images, quantify the features in the images, and discriminate bladder cancers with different grades, i.e. high grade and low grade. The nuclei are separated from the background and other types of cells such as red blood cells (RBCs) and immune cells using manual outlining, color deconvolution and image segmentation. A mask of nuclei is generated for each image for quantitative morphometric analysis. The features of the nuclei in the mask image including size, shape, orientation, and their spatial distributions are measured. To quantify local clustering and alignment of nuclei, we propose a 1-nearest-neighbor (1-NN) algorithm which measures nearest neighbor distance and nearest neighbor parallelism. The global distributions of the features are measured using statistics of the proposed parameters. A linear support vector machine (SVM) algorithm is used to classify the high grade and low grade bladder cancers. The results show using a particular group of nuclei such as large ones, and combining multiple parameters can achieve better discrimination. This study shows the proposed approach can potentially help expedite pathological diagnosis by triaging potentially suspicious biopsies.

  6. The current status of imaging diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Liu Fang; Tang Guangcai

    2013-01-01

    In recent years, the incidence and the mortality rate of female breast cancer in our country is increasing, Early diagnosis of breast cancer is particularly important. Precious preoperative staging in the breast cancer is advantageous for the treatment planning. Evaluating the efficacy of chemotherapy is beneficial for adjusting the follow-up plan. Imaging examination has become an important role in breast cancer management. At present, commonly used equipment include mammography, ultrasound, CT, and MRI, etc. This article reviews the present study status of these tools in diagnosis of breast cancer. A reasonable and effective choice of those tools can facilitate clinic diagnosis and treatment. (authors)

  7. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  8. Laser therapy (image)

    Science.gov (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  9. Flexible Spectral Imaging Color Enhancement and Probe-based Confocal Laser Endomicroscopy in Minimal Change Esophageal Reflux Disease.

    Science.gov (United States)

    Pittayanon, Rapat; Aumkaew, Surasak; Rerknimitr, Rungsun; Wisedopas, Naruemon; Kullavanijaya, Pinit

    2016-07-25

    Although flexible spectral imaging color enhancement (FICE) can facilitate the diagnosis of minimal change esophageal reflux disease (MERD), the complicated diagnostic criteria cause suboptimal inter-observer agreement. Confocal laser endomicroscopy (CLE) yields good diagnostic results but its inter-observer agreement has never been explored. This study compares the diagnostic value of magnifying FICE and probe-based CLE (pCLE) for MERD and evaluates the inter-observer agreement of both techniques. Thirty-six patients with suspected MERD and 18 asymptomatic controls were recruited. Magnifying FICE was used for evaluation of distal esophagus. pCLE counted the number of intrapapillary capillary loops (IPCLs) using more than five IPCLs in 500×500 micron area as a criterion for MERD diagnosis. The validity scores and interobserever agreement of both FICE and pCLE were assessed. For FICE vs. pCLE, the accuracy was 79% vs. 87%, sensitivity 94% vs. 97%, specificity 50% vs. 66%, positive predictive value 79% vs. 85%, and negative predictive value 82% vs. 92%. Interobserver agreement of FICE was fair to substantial, whereas pCLE had substantial to almost perfect agreement. Both FICE and pCLE have good operating characteristics and can facilitate the MERD diagnosis. However, among different observers, pCLE is more consistent on MERD diagnosis.

  10. Pre- and postcontrast FLAIR MR imaging in the diagnosis of intracranial meningeal pathology

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Hachiya, Junichi

    2000-01-01

    Few reports address the use of fluid-attenuated inversion-recovery (FLAIR) images of the brain in the diagnosis of extraaxial lesions. Our purpose was to assess the value of FLAIR images, including postcontrast ones, in the diagnosis of intracranial meningeal diseases. We reviewed precontrast (n=24) and postcontrast (n=20) FLAIR images obtained from 25 patients with infectious meningitis (n=13), carcinomatous meningitis or dissemination of primary brain tumor (n=7), dural metastasis (n=3), and others (n=2) in comparison with fast spin-echo T2-weighted and postcontrast T1-weighted images. In lesion detectability, precontrast FLAIR images were significantly superior to fast spin-echo T2-weighted images but inferior to postcontrast T1-weighted images. There was no significant difference between postcontrast T1-weighted and FLAIR images. Precontrast FLAIR images can substitute for conventional fast spin-echo T2-weighted images. Postcontrast FLAIR images have diagnostic potential equivalent to conventional postcontrast T1-weighted images. (author)

  11. Systems and methods for imaging using radiation from laser produced plasmas

    Science.gov (United States)

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  12. Coincidence imaging of polyatomic molecules via laser-induced Coulomb explosion

    International Nuclear Information System (INIS)

    Gagnon, J; Corkum, P B; Bhardwaj, V R; Lee, Kevin F; Rayner, D M

    2008-01-01

    We extend laser-induced Coulomb explosion imaging to retrieve the structure of the five-atom dichloromethane (CH 2 Cl 2 ) molecule by developing coincidence imaging and geometry optimization techniques. By detecting all five atoms in coincidence, we show that, from the measured velocity vectors, the geometry of the molecules can be reconstructed.

  13. Tissue imaging with a stigmatic mass microscope using laser desorption/ionization

    Science.gov (United States)

    Awazu, Kunio; Hazama, Hisanao; Hamanaka, Tomonori; Aoki, Jun; Toyoda, Michisato; Naito, Yasuhide

    2012-03-01

    A novel stigmatic mass microscope using laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG, has been developed. Stigmatic ion images of crystal violet masked by a fine square mesh grid with a 12.7 μm pitch were clearly observed, and the estimated spatial resolution was about 3 μm in the linear mode with a 20-fold ion optical magnification. Tissue sections of a brain and eyes of a mouse stained with crystal violet and methylene blue were observed in the linear mode, and the stigmatic total ion images of crystal violet and methylene blue agreed well with the optical photomicrograph of the same sections. Especially, the fine structure in the cornea tissue was clearly observed with a spatial resolution in the range of micrometers. Although the total measurement time of the stigmatic ion image for the whole-eye section was about 59 minutes using a laser with a 10 Hz repetition rate, the measurement time could be reduced to about 35 s using a laser with a 1 kHz repetition rate and automation of measurements. The stigmatic mass microscope developed in this research should be suitable for high-spatial resolution and high-throughput imaging mass spectrometry for pathology, pharmacokinetics, and so on.

  14. Critical analysis of imaging methods for the detection and diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Mendonca, Maria Helena Siqueira

    1999-01-01

    Breast cancer is a significant health problem. Early diagnosis of the disease is mandatory to increase the effectiveness of the treatment, to augment the chances of cure and to permit conservative surgery. The use of imaging methods is essential in the early diagnosis of the disease. Imaging methods advantages and disadvantages, use and limitations, specificity and sensitivity are presented and discussed. (author)

  15. Relevant aspects of imaging in the diagnosis and management of gout.

    Science.gov (United States)

    De Avila Fernandes, Eloy; Bergamaschi, Samuel Brighenti; Rodrigues, Tatiane Cantarelli; Dias, Gustavo Coelho; Malmann, Ralff; Ramos, Germano Martins; Monteiro, Soraya Silveira

    Gout is an inflammatory arthritis characterized by the deposition of monosodium urate crystals in the synovial membrane, articular cartilage and periarticular tissues leading to inflammation. Men are more commonly affected, mainly after the 5th decade of life. Its incidence has been growing with the population aging. In the majority of the cases, the diagnosis is made by clinical criteria and synovial fluid analysis, in search for monosodium urate crystals. Nonetheless, gout may sometimes have atypical presentations, complicating the diagnosis. In these situations, imaging methods have a fundamental role, aiding in the diagnostic confirmation or excluding other possible differential diagnosis. Conventional radiographs are still the most commonly used method in gout patients' evaluation; nevertheless, this is not a sensitive method, since it detect only late alterations. In the last years, there have been several advances in imaging methods for gout patients. Ultrasound has shown a great accuracy in the diagnosis of gout, identifying monosodium urate deposits in the synovial membrane and articular cartilage, in detecting and characterizing tophi and in identifying tophaceous tendinopathy and enthesopathy. Ultrasound has also been able to show crystal deposition in patients with articular pain in the absence of a classical gout crisis. Computed tomography is an excellent method for detecting bone erosions, being useful in spine involvement. Dual-energy CT is a new method able to provide information about the chemical composition of tissues, with high accuracy in the identification of monosodium urate deposits, even in the early stages of the disease and in cases of difficult characterization. Magnetic resonance imaging is useful in the evaluation of deep tissues not accessible by ultrasound. Besides the diagnosis, with the emergence of new drugs that aim to reduce tophaceous burden, imaging methods have become useful tools in monitoring the treatment of patients with

  16. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    Science.gov (United States)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  17. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  18. Integration of image exposure time into a modified laser speckle imaging method

    International Nuclear Information System (INIS)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J; Huang, Y C; Choi, B

    2010-01-01

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  19. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  20. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  1. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Svenmarker, Pontus; Tidemand-Lichtenberg, Peter

    2010-01-01

    signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image......We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-to-noise ratio to be achieved in the resulting autofluorescence...

  2. [Echographic diagnosis of missed early miscarriage: Assessment of image quality].

    Science.gov (United States)

    Barthes, C; Mezan De Malartic, C; Baumann, C; Rousseaux, H; Morel, O

    2018-02-01

    Ultrasound examination plays a central role in case of suspected non-viable pregnancy. A wrong diagnosis might have major consequence in terms of inadequate care, especially in cases of false positive non-viable pregnancy diagnosis. Ultrasound criterions are today well defined. Our objective was to evaluate the feasibility and reproducibility of a novel image-quoting method of first-trimester non-viable pregnancy. Thirty images of non-viable pregnancy were twice evaluated with blinded proofreading. Two quotations were evaluated: the first for the images of gestational sacs without embryo (gestational sac score), the second for the images with embryo (embryo score). The ICC (interclass correlation coefficient) was>0.75 for inter- and intra-observer reproducibility both for the quotations of the gestational sac and for the embryo with a low variability. Reproducibility of quoting crown rump length measurements 0.75. The inter- and intra-observer reproducibility of our quoting methods is high with a low variability. They might be a useful tool in current practice in the future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  4. ANALYSIS OF MOBILE LASER SCANNING DATA AND MULTI-VIEW IMAGE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available The combination of laser scanning (LS, active, direct 3D measurement of the object surface and photogrammetry (high geometric and radiometric resolution is widely applied for object reconstruction (e.g. architecture, topography, monitoring, archaeology. Usually the results are a coloured point cloud or a textured mesh. The geometry is typically generated from the laser scanning point cloud and the radiometric information is the result of image acquisition. In the last years, next to significant developments in static (terrestrial LS and kinematic LS (airborne and mobile LS hardware and software, research in computer vision and photogrammetry lead to advanced automated procedures in image orientation and image matching. These methods allow a highly automated generation of 3D geometry just based on image data. Founded on advanced feature detector techniques (like SIFT (Scale Invariant Feature Transform very robust techniques for image orientation were established (cf. Bundler. In a subsequent step, dense multi-view stereo reconstruction algorithms allow the generation of very dense 3D point clouds that represent the scene geometry (cf. Patch-based Multi-View Stereo (PMVS2. Within this paper the usage of mobile laser scanning (MLS and simultaneously acquired image data for an advanced integrated scene reconstruction is studied. For the analysis the geometry of a scene is generated by both techniques independently. Then, the paper focuses on the quality assessment of both techniques. This includes a quality analysis of the individual surface models and a comparison of the direct georeferencing of the images using positional and orientation data of the on board GNSS-INS system and the indirect georeferencing of the imagery by automatic image orientation. For the practical evaluation a dataset from an archaeological monument is utilised. Based on the gained knowledge a discussion of the results is provided and a future strategy for the integration of

  5. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  6. Application of Multimodality Imaging Fusion Technology in Diagnosis and Treatment of Malignant Tumors under the Precision Medicine Plan.

    Science.gov (United States)

    Wang, Shun-Yi; Chen, Xian-Xia; Li, Yi; Zhang, Yu-Ying

    2016-12-20

    The arrival of precision medicine plan brings new opportunities and challenges for patients undergoing precision diagnosis and treatment of malignant tumors. With the development of medical imaging, information on different modality imaging can be integrated and comprehensively analyzed by imaging fusion system. This review aimed to update the application of multimodality imaging fusion technology in the precise diagnosis and treatment of malignant tumors under the precision medicine plan. We introduced several multimodality imaging fusion technologies and their application to the diagnosis and treatment of malignant tumors in clinical practice. The data cited in this review were obtained mainly from the PubMed database from 1996 to 2016, using the keywords of "precision medicine", "fusion imaging", "multimodality", and "tumor diagnosis and treatment". Original articles, clinical practice, reviews, and other relevant literatures published in English were reviewed. Papers focusing on precision medicine, fusion imaging, multimodality, and tumor diagnosis and treatment were selected. Duplicated papers were excluded. Multimodality imaging fusion technology plays an important role in tumor diagnosis and treatment under the precision medicine plan, such as accurate location, qualitative diagnosis, tumor staging, treatment plan design, and real-time intraoperative monitoring. Multimodality imaging fusion systems could provide more imaging information of tumors from different dimensions and angles, thereby offing strong technical support for the implementation of precision oncology. Under the precision medicine plan, personalized treatment of tumors is a distinct possibility. We believe that multimodality imaging fusion technology will find an increasingly wide application in clinical practice.

  7. Focal adhesive arachnoiditis of the spinal cord: Imaging diagnosis and surgical resolution

    Directory of Open Access Journals (Sweden)

    Hiroki Morisako

    2010-01-01

    Full Text Available Background: Although adhesive arachnoiditis of the spinal cord can cause progressive symptoms associated with syringomyelia or myelomalacia, its surgical resolution based on the imaging diagnosis is not well characterized. This study aims to describe the use of imaging for the diagnosis of focal adhesive arachnoiditis of the spinal cord and its surgical resolution using microsurgical arachnoidolysis. Materials and Methods: Four consecutive patients with symptomatic syringomyelia or myelomalacia caused by focal adhesive arachnoiditis underwent microsurgical arachnoidolysis. Comprehensive imaging evaluation using constructive interference in steady-state (CISS magnetic resonance imaging (MRI or myelographic MR imaging using true fast imaging with steady-state precession (TrueFISP sequences was included before surgery to determine the surgical indication. Results: In all four patients a focal adhesion was identified at the cervical or thoracic level of the spinal cord, a consequence of infection or trauma. Three patients showed modest or minor improvement in neurological function, and one patient was unchanged after surgery. The syringomyelia or myelomalacia resolved after surgery and no recurrence was noted within the follow-up period, which ranged from 5 months to 30 months. Conclusions: MRI diagnosis of focal adhesive arachnoiditis is critical to determine the surgical indication. Microsurgical arachnoidolysis appears to be a straightforward method for stabilizing the progressive symptoms, though the procedure is technically demanding.

  8. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    Science.gov (United States)

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous

  9. Image Blocking Encryption Algorithm Based on Laser Chaos Synchronization

    Directory of Open Access Journals (Sweden)

    Shu-Ying Wang

    2016-01-01

    Full Text Available In view of the digital image transmission security, based on laser chaos synchronization and Arnold cat map, a novel image encryption scheme is proposed. Based on pixel values of plain image a parameter is generated to influence the secret key. Sequences of the drive system and response system are pretreated by the same method and make image blocking encryption scheme for plain image. Finally, pixels position are scrambled by general Arnold transformation. In decryption process, the chaotic synchronization accuracy is fully considered and the relationship between the effect of synchronization and decryption is analyzed, which has characteristics of high precision, higher efficiency, simplicity, flexibility, and better controllability. The experimental results show that the encryption algorithm image has high security and good antijamming performance.

  10. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    Science.gov (United States)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  11. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    International Nuclear Information System (INIS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-01-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis

  12. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Stoitsis, John [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece)]. E-mail: stoitsis@biosim.ntua.gr; Valavanis, Ioannis [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece); Mougiakakou, Stavroula G. [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece); Golemati, Spyretta [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece); Nikita, Alexandra [University of Athens, Medical School 152 28 Athens (Greece); Nikita, Konstantina S. [National Technical University of Athens, School of Electrical and Computer Engineering, Athens 157 71 (Greece)

    2006-12-20

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  13. Aerosol Imaging with a Soft X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W. Henry; Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim

    2010-01-01

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10 12 photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  14. Improving fluorescence diagnosis of cancer by SLIM

    Science.gov (United States)

    Rück, Angelika; Dolp, Frank; Kinzler, Ingrid; Hauser, Carmen; Scalfi-Happ, Claudia

    2006-02-01

    Although during the last years, significant progress was made in cancer diagnosis, using either intrinsic or specially designed fluorophores, still problems exist, due to difficulties in spectral separation of highly overlapping probes or in lack of specificity. Many of the problems could be circumvented by focusing on time-resolved methods. In combination with spectral resolved detection (spectral fluorescence lifetime imaging, SLIM) highly sophisticated fluorescence lifetime imaging can be performed which might improve specificity of cell diagnosis. To record lifetime images (τ-mapping) with spectral resolution a setup was realized consisting of a laser scanning microscope equipped with a 16 channel array for time-correlated single photon counting (TCSPC) and a spectrograph in front of the array. A Ti:Saphir laser can be used for excitation or alternatively ps diode lasers. With this system the time- and spectral-resolved fluorescence characteristics of different fluorophores were investigated in solution and in cell culture. As an example, not only the mitochondria staining dye rhodamine 123 could be easily distinguished from DAPI, which intercalates into nucleic acids, but also different binding sites of DAPI. This was proved by the appearance of different lifetime components within different spectral channels. Another example is Photofrin, a photosensitizer which is approved for bladder cancer and for palliative lung and esophageal cancer in 20 countries, including the United States, Canada and many European countries. Photofrin is a complex mixture of different monomeric and aggregated porphyrins. The phototoxic efficiency during photodynamic therapy (PDT) seems to be correlated with the relative amounts of monomers and aggregates. With SLIM different lifetimes could be attributed to various, spectrally highly overlapping compounds. In addition, a detailed analysis of the autofluorescence by SLIM could explain changes of mitochondrial metabolism during

  15. Pyogenic and tuberculous discitis: magnetic resonance imaging findings for differential diagnosis

    Directory of Open Access Journals (Sweden)

    Cristiano Gonzaga de Souza

    2013-06-01

    Full Text Available Spondylodiscitis represents 2%–4% of all bone infections cases. The correct diagnosis and appropriate treatment can prevent complications such as vertebral collapse and spinal cord compression, avoiding surgical procedures. The diagnosis is based on characteristic clinical and radiographic findings and confirmed by blood culture and biopsy of the disc or the vertebra. The present study was developed with Clementino Fraga Filho University Hospital patients with histopathologically and microbiologically confirmed diagnosis of spondylodiscitis, submitted to magnetic resonance imaging of the affected regions. In most cases, pyogenic spondylodiscitis affects the lumbar spine. The following findings are suggestive of the diagnosis: segmental involvement; ill-defined abscesses; early intervertebral disc involvement; homogeneous vertebral bodies and intervertebral discs involvement. Tuberculous spondylodiscitis affects preferentially the thoracic spine. Most suggestive signs include: presence of well-defined and thin-walled abscess; multisegmental, subligamentous involvement; heterogeneous involvement of vertebral bodies; and relative sparing of intervertebral discs. The present pictorial essay is aimed at showing the main magnetic resonance imaging findings of pyogenic and tuberculous discitis.

  16. Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry

    International Nuclear Information System (INIS)

    Grayson, K; De Silva, C M; Hutchins, N; Marusic, I

    2017-01-01

    The characteristics and causes of Nd:YAG laser warm-up transients and steady state beam stability effects are investigated in this study. Dynamic laser performance has a particularly noticeable impact on particle image velocimetry (PIV) and other laser-based flow visualisation techniques, where changes in beam pointing can influence the overlap between laser light sheets and thereby degrade the correlation of PIV image pairs. Despite anecdotal knowledge or experience of laser warm-up effects, they have not been formally documented or quantified to date for PIV applications. In this study, the nature of these laser transients are analysed and compared among a selection of typical PIV laser equipment. An investigation into the cause of these transients during the laser warm-up sequence is also presented. Furthermore, the degree of dual cavity transient coupling within a PIV laser system is analysed to determine a practical limit to the laser light sheet overlap that can be expected from PIV experiments. Finally, the results from this study inform a series of recommendations for PIV best practice, which aim to minimise the impact of laser transients on experimental data. (paper)

  17. Diagnosis and Characterization of Patellofemoral Instability: Review of Available Imaging Modalities.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Thawait, Gaurav K; Tanaka, Miho J; Demehri, Shadpour

    2017-06-01

    Patellofemoral instability (PI) is defined as single or multiple episodes of patellar dislocation. Imaging modalities are useful for characterization of patellar malalignment, maltracking, underlying morphologic abnormalities, and stabilizing soft-tissue injuries. Using these findings, orthopedic surgeons can decide when to operate, determine the best operation, and measure degree of correction postoperatively in PI patients. Also, these methods assist with PI diagnosis in some suspicious cases. Magnetic resonance imaging is the preferred method especially in the setting of acute dislocations. Multidetector computed tomography allows a more accurate assessment for malalignment such as patellar tilt and lateral subluxation and secondary osteoarthritis. Dynamic magnetic resonance imaging and 4-dimensional computed tomography have been introduced for better kinematic assessment of the patellofemoral maltracking during extension-flexion motions. In this review article, we will discuss the currently available evidence regarding both the conventional and the novel imaging modalities that can be used for diagnosis and characterization of PI.

  18. Imaging diagnosis of cardial chloroma; Bildgebung kardialer Chlorome

    Energy Technology Data Exchange (ETDEWEB)

    Esser, M.; Doerfel, D.; Mueller, I.; Horger, M.

    2016-06-15

    Cardiac chloroma are a seldom extramedullary manifestation of myeloproliferant and dysplastic diseases. An adequate imaging based on multimodal approaches is of importance for diagnosis. Perfusion CT allows identification of the extent of myocardial chlorome infiltration. The reliability of the method seems to be more efficient than cardiac MRT. For validation histological tests are unavoidable.

  19. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Schiavo, C.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.; Menichetti, L.

    2016-01-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  20. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  1. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    Science.gov (United States)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  2. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  3. Imaging in the diagnosis of juvenile nasopharyngeal angiofibroma

    Directory of Open Access Journals (Sweden)

    Satyaranjan Mishra

    2013-01-01

    Full Text Available Juvenile nasopharyngeal angiofibroma (JNA is a rare, benign, highly vascular, and locally aggressive tumor that predominantly occurs in adolescent males. Usually, the presenting symptom is a painless nasal obstruction or epistaxis; however, other symptoms may develop depending on the size and extent of the tumor mass. Owing to the vascularity of the tumor, incisional biopsy is not attempted. The diagnosis is dependent on multiplanar imaging modalities like Computed Tomography (CT, Magnetic Resonance Imaging (MRI, and Angiography. These imaging modalities help in assessing the tumor mass, pre-operative embolization of the feeder vessel, and treatment planning. Usually, patients with JNA are diagnosed by otorhinolaryngologists, but here, we present a rare case of JNA reporting to the dental hospital due to a tender palatal swelling.

  4. Structural damage identification based on laser ultrasonic propagation imaging technology

    Science.gov (United States)

    Chia, Chen-Ciang; Jang, Si-Gwang; Lee, Jung-Ryul; Yoon, Dong-Jin

    2009-06-01

    An ultrasonic propagation imaging (UPI) system consisted of a Q-switched Nd-YAG pulsed laser and a galvanometer laser mirror scanner was developed. The system which requires neither reference data nor fixed focal length could be used for health monitoring of curved structures. If combined with a fiber acoustic wave PZT (FAWPZT) sensor, it could be used to inspect hot target structures that present formidable challenges to the usage of contact piezoelectric transducers mainly due to the operating temperature limitation of transducers and debonding problem due to the mismatch of coefficient of thermal expansion between the target, transducer and bonding material. The inspection of a stainless steel plate with a curvature radius of about 4 m, having 2mm×1mm open-crack was demonstrated at 150°C using a FAWPZT sensor welded on the plate. Highly-curved surfaces scanning capability and adaptivity of the system for large laser incident angle up to 70° was demonstrated on a stainless steel cylinder with 2mm×1mm open-crack. The imaging results were presented in ultrasonic propagation movie which was a moving wavefield emerged from an installed ultrasonic sensor. Damages were localized by the scattering wavefields. The result images enabled easy detection and interpretation of structural defects as anomalies during ultrasonic wave propagation.

  5. Primary application of 99Tcm-octreotide imaging in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Zhang Jinshan; Deng Nianying; Li Shun; Zhang Jiayun; Lin Yanbing

    2004-01-01

    Objective: To evaluate the clinical value of 99 Tc m -octreotide scintigraphy in the diagnosis of breast cancer. Methods: 99 Tc m -octreotide and 99 Tc m -methoxyisobutylisonitrile (MIBI) imaging were performed on 36 patients with breast masses confirmed by pathology (19 patients with breast cancer and 17 benign lesions) . The imaging was read as positive when focal radioactivity increased in the breast both on 99 Tc m -octreotide and 99 Tc m -MIBI imaging. The uptake ratios (UR) of lesion (L) to normal (N) were calculated after 99 Tc m -MIBI injection at 10-15 min and 99 Tc m -octreotide injection at different time points (5-10 min, 60-90 min and 180 min). Results: The sensitivity of 99 Tc m -octreotide imaging in the diagnosis of primary breast cancer was lower than that of 99 Tc m -MIBI (68.4% vs 94.7%, P 99 Tc m -octreotide and 99 Tc m -MIBI (83.3% and 86.1%, respectively, P>0.05). Conclusion: Comparing with 99 Tc m -MIBI 99 Tc m -octreotide imaging showed a higher specificity and the same accuracy in the diagnosis of breast cancer

  6. The x-ray laser as a tool for imaging plasmas

    International Nuclear Information System (INIS)

    Libby, S.B.; Da Silva, L.B.; Barbee, T.W. Jr.

    1995-07-01

    The x-ray laser is now being used at LLNL as a tool for measuring the behaviors of hot dense plasmas. In particular, we have used the 155 Angstrom yttrium laser to study transient plasmas by both radiography and moire deflectrometry. These techniques have been used to probe long scale length plasmas at electron densities exceeding 10 22 cm -3 . Recent advances in multilayer technology have made it possible to directly image ion densities in directly driven thin foils to an accuracy of 1--2 μm. In addition, we have constructed an x-ray laser Mach-Zehnder interferometer using multilayer beam-splitters. This interferometer yields direct 2D projections of electron densities in plasmas with micron spatial resolution. In addition, this interferometer can be used to measure spectral line shapes to high accuracy. Among the subject plasmas under study are laser irradiated planar targets, gold hohlraums, and x-ray lasers themselves

  7. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  8. Nuclear magnetic resonance (NMR) imaging in the diagnosis of liver disease. Differential diagnosis of hepatic tumors and correlation between NMR imaging and histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, Masaaki; Oto, Masao; Sugiura, Nobuyuki; Kimura, Kunio; Okuda, Kunio; Hirooka, Noboru; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio

    1984-06-01

    Characteristics of nuclear magnetic resonance (NMR) images for various liver diseases were examined using a 0.1 T resistive NMR imaging unit on 26 patients with liver disease and 10 normal volunteers. Hepatic tumors, including small hepatocellular carcinoma 1.5 cm in diameter, were detected on NMR imaging. Ring sign characteristic of nodular type hepatocellular carcinoma was shown on NMR-CT in 60 % of patients. T/sub 1/ values allowed differential diagnosis of hepatic tumors. There was close correlation between NMR images and histopathological findings. The T/sub 1/ in the liver and spleen was more prolonged in patients with liver cirrhosis than in normal volunteers, with significant differences. (Namekawa, K.).

  9. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging

    Science.gov (United States)

    Schmidlin, Franz R.; Beghuin, Didier; Delacretaz, Guy P.; Venzi, Giordano; Jichlinski, Patrice; Rink, Klaus; Leisinger, Hans-Juerg; Graber, Peter

    1998-07-01

    Improvements of endoscopic techniques have renewed the interest of urologists in laser lithotripsy in recent years. Laser energy can be easily transmitted through flexible fibers thereby enabling different surgical procedures such as cutting, coagulating and lithotripsy. The Ho:YAG laser offers multiple medical applications in Urology, among them stone fragmentation. However, the present knowledge of its fragmentation mechanism is incomplete. The objective was therefore to analyze the fragmentation process and to discuss the clinical implications related to the underlying fragmentation mechanism. The stone fragmentation process during Ho:YAG laser lithotripsy was observed by time resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF-needle hydrophone. Fragmentation was performed on artificial and cystine kidney stones in water. We observed that though the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has only a minimal effect on stone fragmentation. Fragment ejection is mainly due to direct laser stone heating leading to vaporization of organic stone constituents and interstitial water. The minimal effect of the cavitation bubble is confirmed by acoustic transients measurements, which reveal weak pressure transients. Stone fragmentation with the Holmium laser is the result of vaporization of interstitial (stone) water and organic stone constituents. It is not due to the acoustic effects of a cavitation bubble or plasma formation. The fragmentation process is strongly related with heat production thereby harboring the risk of undesired thermal damage. Therefore, a solid comprehension of the fragmentation process is needed when using the different clinically available laser types of lithotripsy.

  10. Confocal Laser Endomicroscopy for the Diagnosis of Urothelial Carcinoma in the Bladder and the Upper Urinary Tract: Protocols for Two Prospective Explorative Studies.

    Science.gov (United States)

    Liem, Esmee Iml; Freund, Jan Erik; Baard, Joyce; de Bruin, D Martijn; Laguna Pes, M Pilar; Savci-Heijink, C Dilara; van Leeuwen, Ton G; de Reijke, Theo M; de la Rosette, Jean Jmch

    2018-02-07

    Visual confirmation of a suspicious lesion in the urinary tract is a major corner stone in diagnosing urothelial carcinoma. However, during cystoscopy (for bladder tumors) and ureterorenoscopy (for tumors of the upper urinary tract) no real-time histopathologic information can be obtained. Confocal laser endomicroscopy (CLE) is an optical imaging technique that allows for in vivo high-resolution imaging and may allow real-time tumor grading of urothelial lesions. The primary objective of both studies is to develop descriptive criteria for in vivo CLE images of urothelial carcinoma (low-grade, high-grade, carcinoma in situ) and normal urothelium by comparing CLE images with corresponding histopathology. In these two prospective clinical trials, CLE imaging will be performed of suspicious lesions and normal tissue in the urinary tract during surgery, prior to resection or biopsy. In the bladder study, CLE will be performed in 60 patients using the Cystoflex UHD-R probe. In the upper urinary tract study, CLE will be performed in 25 patients during ureterorenoscopy, who will undergo radical treatment (nephroureterectomy or segmental ureter resection) thereafter. All CLE images will be analyzed frame by frame by three independent, blinded observers. Histopathology and CLE-based diagnosis of the lesions will be evaluated. Both studies comply with the IDEAL stage 2b recommendations. Presently, recruitment of patients is ongoing in both studies. Results and outcomes are expected in 2018. For development of CLE-based diagnosis of urothelial carcinoma in the bladder and the upper urinary tract, a structured conduct of research is required. This study will provide more insight in tissue-specific CLE criteria for real-time tumor grading of urothelial carcinoma. Confocal Laser Endomicroscopy: ClinicalTrials.gov NCT03013894; https://clinicaltrials.gov /ct2/show/NCT03013894?term=NCT03013894&rank=1 (Archived by WebCite at http://www.webcitation.org/6wiPZ378I); and Dutch Central

  11. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  12. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  13. Imaging diagnosis of Granulocytic Sarcoma in the skull base

    International Nuclear Information System (INIS)

    Zheng Shaoyan; Xie Jiming; Yang Zhiyun; Zhou Zhou; Li Shurong

    2010-01-01

    Objective: To improve the understanding and imaging diagnosis of granulocytic sarcoma in the skull base. Methods: Three cases of granulocytic sarcomas in the skull base are reported. The clinical features and imaging findings were analyzed. Results: The three cases occurred in children with acute myeloid leukemia. Two patients presented with oculomotor paralysis before the diagnosis of leukemia, the third patient with history of leukemia presented with headache. Diffuse infiltration of basal skull bone marrow and extracranial soft tissue masses were shown on MRI. The signal intensities of the masses were similar to that of gray matter on T 1 WI and T 2 WI with marked contrast enhancement. The soft tissue masses were located in the para-sellar region and surrounded the lateral wall of the maxillary sinus in one case. The soft tissue mass of the second case infiltrated the orbital cavity, cavernous sinus and oculomotor nerve. Tumor infiltrating the meninges, cranial nerves and paranasal sinuses was seen in the third patient. Conclusion: Cranial nerve paralysis can be the presenting symptom of basal skull granulocytic sarcoma in children. Granulocytic sarcoma should be considered in the different diagnosis when diffuse abnormal signal intensities in the basal skull bone marrow with solitary or multiple soft tissue masses are shown on MRI. (authors)

  14. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

    Science.gov (United States)

    Berrocal, E.; Kristensson, E.; Hottenbach, P.; Aldén, M.; Grünefeld, G.

    2012-12-01

    Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

  15. IMAGING AS AN AID TO THE DIAGNOSIS OF ACUTE APPENDICITIS

    Directory of Open Access Journals (Sweden)

    Lionel I Wijesuriya

    2007-01-01

    Full Text Available Acute appendicitis has been known as a disease entity for well over a century but a confident diagnosis before surgeryin all patients suspected of the condition is still not possible. Timely diagnosis is essential to minimise morbidity due topossible perforation of the inflamed organ in the event treatment is delayed; so much so that surgeons often preferredto operate at the slightest suspicion of the diagnosis in the past. This resulted in the removal of many normal appendixes.When the diagnosis of appendicitis is clear from the history and clinical examination, then no further investigation isnecessary and prompt surgical treatment is appropriate. Where there is doubt about the diagnosis however it is advisableto resort to imaging studies such as abdominal ultrasound or computed tomography to clear such suspicions beforesubjecting the patient to an appendicectomy. These studies would also help avoid delays in surgery in deservingpatients.

  16. Influence of 'optical illusion' on the detectability of pneumothorax in diagnosis for chest CT images. Substantiation by visual psychological simulation images

    International Nuclear Information System (INIS)

    Henmi, Shuichi

    2008-01-01

    Some cases have been reported in which an optical illusion of lightness perception influences the detectability in diagnosis of low-density hematoma in head CT images in addition to the visual impression of the photographic density of the brain. Therefore, in this study, the author attempted to compare the detectability in diagnosis for chest images with pneumothorax using visual subjective evaluation, and investigated the influence of optical illusion on that detectability in diagnosis. Results indicated that in the window setting of lung, on such an occasion when the low-absorption free space with pneumothorax forms a crescent or the reduced lung borders on the chest-wall, an optical illusion in which the visual impression on the difference of the film contrast between the lung and the low-absorption free space with pneumothorax was psychologically emphasized when contrast was observed. In all cases the detectability in diagnosis for original images with the white thorax and mediastinum was superior to virtual images. Further, in case of the virtual double window setting of lung, thorax, and mediastinum, under the influence of the difference in the radiological anatomy of thorax and mediastinum as a result of the grouping theories of lightness computation, an optical illusion different from the original images was observed. (author)

  17. Comparison of Optical Coherence Tomography Angiography and Laser Speckle Flowgraphy for the Diagnosis of Normal-Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Asuka Takeyama

    2018-01-01

    Full Text Available Purpose. To compare optical coherence tomography angiography (OCT-A and laser speckle flowgraphy (LSFG for the diagnosis of normal-tension glaucoma (NTG. Methods. Twenty-eight eyes of 28 patients with NTG and 25 eyes of 25 normal subjects matched for age, refractive errors, systemic blood pressure, and central corneal thickness were evaluated. OCT-A was used to measure whole image vessel density, inside disc vessel density, and peripapillary vessel density; using LSFG, mean blur rate (MBR inside the whole optic nerve head (ONH area (MBRA, and MBR of the vessel area (MBRV and tissue area (MBRT inside the ONH, were determined. Receiver operating characteristic (ROC curves and areas under the ROC (AUROC were used to assess the diagnostic ability of each variable. Results. The AUROC for OCT-A whole image vessel density (0.950 was significantly greater than that for OCT-A peripapillary vessel density (0.830 and for all LSFG parameters (MBRA = 0.793, MBRV = 0.601, and MBRT = 0.61 (P<0.001. The AUROC for OCT-A inside disc vessel density (0.931 was significantly greater than that for all LSFG parameters (P<0.005. Conclusions. OCT-A vessel density had a higher glaucoma diagnostic ability compared to all LSFG parameters in patients with NTG.

  18. Subcellular imaging of freeze-fractured cell cultures by TOF-SIMS and Laser-SNMS

    International Nuclear Information System (INIS)

    Fartmann, M.; Dambach, S.; Kriegeskotte, C.; Lipinsky, D.; Wiesmann, H.P.; Wittig, A.; Sauerwein, W.; Arlinghaus, H.F.

    2003-01-01

    We have examined atomic and molecular distributions in freeze-fractured freeze-dried primary osteoblasts and cancer cells using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and non-resonant laser secondary neutral mass spectrometry (NR-Laser-SNMS). A pulsed Ga primary ion beam with a diameter of approximately 200 nm was employed to bombard the sample. Ion-induced electron-images were used to identify individual cells. High resolution elemental and molecular images were obtained from cell cultures. From these data the K/Na ratio was determined. It shows a higher K-concentration inside individual cells demonstrating that the chemical and structural integrity of living cells were preserved by the applied preparation technique. Consecutive presputtering of the sample with different primary ion dose densities was used to move the analysis plane toward the inside of the cell. It can be concluded that TOF-SIMS and Laser-SNMS are well suited for imaging trace element and molecule concentrations in biological samples

  19. QUANTITATIVE FLOW-ANALYSIS AROUND AQUATIC ANIMALS USING LASER SHEET PARTICLE IMAGE VELOCIMETRY

    NARCIS (Netherlands)

    STAMHUIS, EJ; VIDELER, JJ

    Two alternative particle image velocimetry (PIV) methods have been developed, applying laser light sheet illumination of particle-seeded flows around marine organisms, Successive video images, recorded perpendicular to a light sheet parallel to the main stream, were digitized and processed to map

  20. Miscellaneous conditions of the shoulder: Anatomical, clinical, and pictorial review emphasizing potential pitfalls in imaging diagnosis

    International Nuclear Information System (INIS)

    Farid, Nikdokht; Bruce, Dean; Chung, Christine B.

    2008-01-01

    The purpose of this article is to review the key imaging findings in major categories of pathology affecting the shoulder joint including hydroxyapatite deposition disease, rotator cuff interval pathology, acromioclavicular joint pathology, glenohumeral osteoarthrosis, and synovial inflammatory processes, with specific emphasis on findings that have associated pitfalls in imaging diagnosis. The pathophysiology and clinical manifestations of the above mentioned categories of pathology will be reviewed, followed in each section by a detailed pictorial review of the key imaging findings in each category including plain film, computed tomography, and magnetic resonance imaging findings as applicable. Imaging challenges that relate to both diagnosis and characterization will be addressed with each type of pathology. The goal is that after reading this article, the reader will be able to recognize the key imaging findings in major categories of pathology affecting the shoulder joint and will become familiar with the potential pitfalls in their imaging diagnosis

  1. Miscellaneous conditions of the shoulder: Anatomical, clinical, and pictorial review emphasizing potential pitfalls in imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Nikdokht [University of California San Diego, Department of Radiology, 200 West Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States); Bruce, Dean [University of California San Diego, Department of Radiology, 200 West Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States); University of Alberta, Edmonton, Alberta (Canada); Chung, Christine B. [University of California San Diego, Department of Radiology, 200 West Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States)], E-mail: cbchung@ucsd.edu

    2008-10-15

    The purpose of this article is to review the key imaging findings in major categories of pathology affecting the shoulder joint including hydroxyapatite deposition disease, rotator cuff interval pathology, acromioclavicular joint pathology, glenohumeral osteoarthrosis, and synovial inflammatory processes, with specific emphasis on findings that have associated pitfalls in imaging diagnosis. The pathophysiology and clinical manifestations of the above mentioned categories of pathology will be reviewed, followed in each section by a detailed pictorial review of the key imaging findings in each category including plain film, computed tomography, and magnetic resonance imaging findings as applicable. Imaging challenges that relate to both diagnosis and characterization will be addressed with each type of pathology. The goal is that after reading this article, the reader will be able to recognize the key imaging findings in major categories of pathology affecting the shoulder joint and will become familiar with the potential pitfalls in their imaging diagnosis.

  2. Recent advances in magnetic resonance imaging for stroke diagnosis

    Directory of Open Access Journals (Sweden)

    Radhika Rastogi

    2015-01-01

    Full Text Available In stroke, diagnosis and identification of the infarct core and the penumbra is integral to therapeutic determination. With advances in magnetic resonance imaging (MRI technology, stroke visualization has been radically altered. MRI allows for better visualization of factors such as cerebral microbleeds (CMBs, lesion and penumbra size and location, and thrombus identification; these factors help determine which treatments, ranging from tissue plasminogen activator (tPA, anti-platelet therapy, or even surgery, are appropriate. Current stroke diagnosis standards use several MRI modalities in conjunction, with T2- or T2FNx01- weighted MRI to rule out intracerebral hemorrhage (ICH, magnetic resonance angiography (MRA for thrombus identification, and the diffusion-weighted imaging (DWI and perfusion-weighted imaging (PWI mismatch for penumbral identification and therapeutic determination. However, to better clarify the neurological environment, susceptibility-weighted imaging (SWI for assessing oxygen saturation and the presence of CMBs as well as additional modalities, such as amide proton transfer (APT imaging for pH mapping, have emerged to offer more insight into anatomical and biological conditions during stroke. Further research has unveiled potential for alternative contrasts to gadolinium for PWI as well, as the contrast has contraindications for patients with renal disease. Superparamagnetic iron oxide nanoparticles (SPIONs as an exogenous contrast and arterial spin labeling (ASL as an endogenous contrast offer innovative alternatives. Thus, emerging MRI modalities are enhancing the diagnostic capabilities of MRI in stroke and provide more guidance for patient outcome by offering increased accessibility, accuracy, and information.

  3. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  4. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Brenner, Ceri M.; Stitt, Camilla A.; Armstrong, Chris; Rusby, Dean R.; Mirfayzi, Seyed R.; Wilson, Lucy A.; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M.H.; Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John

    2016-01-01

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10"7–10"9 neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm"2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  5. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    Science.gov (United States)

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  6. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    Science.gov (United States)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self

  7. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis.

    Science.gov (United States)

    Myburgh, Hermanus C; van Zijl, Willemien H; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-03-01

    Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations.

  8. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    Science.gov (United States)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  9. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  10. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    Institute of Scientific and Technical Information of China (English)

    Jean-Fran?ois Sarrazin; Fran?ois Philippon; Mika?l Trottier; Michel Tessier

    2016-01-01

    Cardiovascular implantable electronic device(CIED) infection and prosthetic valve endocarditis(PVE) remain a diagnostic challenge.Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE.Over the past few years,cardiac radionuclide imaging has gained a key role in the diagnosis of these patients,and in assessing the need for surgery,mainly in the most difficult cases.Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography(18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography(WBC SPECT/CT) have been studied in these situations.In their 2015 guidelines for the management of infective endocarditis,the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE,but not CIED infection since the data were judged insufficient at the moment.This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE,and describes the technical aspects of cardiac radionuclide imaging.It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE,the limitations of these tests,and potential areas of future research.

  11. Role of radionuclide imaging for diagnosis of device and prosthetic valve infections

    Science.gov (United States)

    Sarrazin, Jean-François; Philippon, François; Trottier, Mikaël; Tessier, Michel

    2016-01-01

    Cardiovascular implantable electronic device (CIED) infection and prosthetic valve endocarditis (PVE) remain a diagnostic challenge. Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE. Over the past few years, cardiac radionuclide imaging has gained a key role in the diagnosis of these patients, and in assessing the need for surgery, mainly in the most difficult cases. Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography (WBC SPECT/CT) have been studied in these situations. In their 2015 guidelines for the management of infective endocarditis, the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE, but not CIED infection since the data were judged insufficient at the moment. This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE, and describes the technical aspects of cardiac radionuclide imaging. It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE, the limitations of these tests, and potential areas of future research. PMID:27721936

  12. Ultrasound imaging of Nd:YAG laser-induced tissue coagulation in porcine livers.

    Science.gov (United States)

    Ritzel, U; Wietzke-Braun, P; Brinck, U; Leonhardt, U; Ramadori, G

    2001-12-01

    Absorption of laser light energy induces denaturation of proteins and thermocoagulation of irradiated tissue. Recently, MRI-guided laser coagulation in combination with MR thermometry was reported as a treatment of liver tumours. In the present study ultrasonographic imaging was evaluated for its suitability in laser induced tissue thermocoagulation. Fresh porcine livers were used for ex vivo examinations. Placement of the laser catheter and tissue coagulation during laser light emission were online monitored by ultrasonography. Nd:YAG laser-induced tissue damage was evaluated by macroscopical and microscopical examinations of histological sections. During laser light emission a marked hyperdense signal enhancement was observed by ultrasonography which strongly correlated with the extent of macroscopic tissue damage. The size of laser-induced coagulation zone depended on both the power setting and total energy delivered. Carbonization of the tissue surrounding the laser tip is a limiting factor because of laser light absorption. However our data indicate that using appropriate laser energy and exposure time prevent carbonization although carbonization can not be visualized by ultrasonography. It is concluded from the present ex vivo studies that laser coagulation can be effectively performed under ultrasonographic guidance.

  13. Bladder cancer diagnosis with fluorescence-image-guided optical coherence tomography

    Science.gov (United States)

    Wang, Z. G.; Durand, D. B.; Adler, H.; Pan, Y. T.

    2006-02-01

    A fluorescence-image-guided OCT (FIG-OCT) system is described, and its ability to enhance the sensitivity and specificity is examined in an animal bladder cancer model. Total 97 specimens were examined by fluorescence imaging, OCT and histological microscopy. The sensitivity and specificity of FIG-OCT is 100% and 93% respectively, compared to 79% and 53% for fluorescence imaging, while the OCT examination time has been dramatically decreased by 3~4 times. In combination of endoscopic OCT, FIG-OCT is a promising technique for effective early bladder cancer diagnosis.

  14. Computer-Aided Characterization and Diagnosis of Diffuse Liver Diseases Based on Ultrasound Imaging: A Review.

    Science.gov (United States)

    Bharti, Puja; Mittal, Deepti; Ananthasivan, Rupa

    2016-04-19

    Diffuse liver diseases, such as hepatitis, fatty liver, and cirrhosis, are becoming a leading cause of fatality and disability all over the world. Early detection and diagnosis of these diseases is extremely important to save lives and improve effectiveness of treatment. Ultrasound imaging, a noninvasive diagnostic technique, is the most commonly used modality for examining liver abnormalities. However, the accuracy of ultrasound-based diagnosis depends highly on expertise of radiologists. Computer-aided diagnosis systems based on ultrasound imaging assist in fast diagnosis, provide a reliable "second opinion" for experts, and act as an effective tool to measure response of treatment on patients undergoing clinical trials. In this review, we first describe appearance of liver abnormalities in ultrasound images and state the practical issues encountered in characterization of diffuse liver diseases that can be addressed by software algorithms. We then discuss computer-aided diagnosis in general with features and classifiers relevant to diffuse liver diseases. In later sections of this paper, we review the published studies and describe the key findings of those studies. A concise tabular summary comparing image database, features extraction, feature selection, and classification algorithms presented in the published studies is also exhibited. Finally, we conclude with a summary of key findings and directions for further improvements in the areas of accuracy and objectiveness of computer-aided diagnosis. © The Author(s) 2016.

  15. The analysis of imaging diagnosis and misdiagnosis of vertebral eosinophilic granuloma

    International Nuclear Information System (INIS)

    Liang Weiqiang; Li Sheng

    2007-01-01

    Objective: To analyze the imaging features of vertebral eosinophilic granuloma and the reasons of misdiagnosis, so as to improve the diagnosis accuracy of the disease. Methods: The clinical materials and images findings of 10 patients with vertebral eosinophilic granuloma proved by surgery and histopathology were analyzed retrospectively. Results: Of all the cases, 3 of them were located in cervical vertebra, 5 in thoracic vertebra and 2 in lumbar vertebra. 8 lesions were single and 2 involved the adjacent 2 vertebrae. 4 lesions showed obvious sinking and flattening of the vertebra body, with widening anteroposterior and transverse diameters, 4 cases showed wedge-shaped appearance, 2 cases showed well-defined oval deossification. The appendix of vertebrae in 3 lesions were destroyed with surrounding mass. The intervertebral spaces were normal in 7 cases, slightly widened in 2 cases and slightly narrowed in 1 case. 6 cases showed paravertebra soft tissue swelling or soft tissue mass formation. Conclusion: Though there are some imaging features of vertebral eosinophilic granuloma, close combination with clinical dates and careful analysis of imaging findings can effectively improved the diagnosis accuracy. (authors)

  16. Quantitative assessment for pneumoconiosis severity diagnosis using 3D CT images

    Science.gov (United States)

    Hino, Koki; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Kato, Katsuya; Kishimoto, Takumi; Ashizawa, Kazuto

    2018-02-01

    Pneumoconiosis is an occupational respiratory illness that occur by inhaling dust to the lungs. 240,000 participants are screened for diagnosis of pneumoconiosis every year in Japan. Radiograph is used for staging of severity rate in pneumoconiosis worldwide. CT imaging is useful for the differentiation of requirements for industrial accident approval because it can detect small lesions in comparison with radiograph. In this paper, we extracted lung nodules from 3D pneumoconiosis CT images by two manual processes and automatic process, and created a database of pneumoconiosis CT images. We used the database to analyze, compare, and evaluate visual diagnostic results of radiographs and quantitative assessment (number, size and volume) of lung nodules. This method was applied to twenty pneumoconiosis patients. Initial results showed that the proposed method can assess severity rate in pneumoconiosis quantitatively. This study demonstrates effectiveness on diagnosis and prognosis of pneumoconiosis in CT screening.

  17. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun [Dept. of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process.

  18. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    International Nuclear Information System (INIS)

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun

    2016-01-01

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process

  19. Neural network diagnosis of avascular necrosis from magnetic resonance images

    Science.gov (United States)

    Manduca, Armando; Christy, Paul S.; Ehman, Richard L.

    1993-09-01

    We have explored the use of artificial neural networks to diagnose avascular necrosis (AVN) of the femoral head from magnetic resonance images. We have developed multi-layer perceptron networks, trained with conjugate gradient optimization, which diagnose AVN from single sagittal images of the femoral head with 100% accuracy on the training data and 97% accuracy on test data. These networks use only the raw image as input (with minimal preprocessing to average the images down to 32 X 32 size and to scale the input data values) and learn to extract their own features for the diagnosis decision. Various experiments with these networks are described.

  20. Computer-aided diagnosis workstation and telemedicine network system for chest diagnosis based on multislice CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2009-02-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and

  1. Laser induced autofluorescence for diagnosis of non-melanoma skin cancer

    Science.gov (United States)

    Drakaki, E.; Makropoulou, M.; Serafetinides, A. A.; Merlemis, N.; Kalatzis, I.; Sianoudis, I. A.; Batsi, O.; Christofidou, E.; Stratigos, A. J.; Katsambas, A. D.; Antoniou, Ch.

    2015-01-01

    Non melanoma skin cancer is one of the most frequent malignant tumors among humans. A non-invasive technique, with high sensitivity and high specificity, would be the most suitable method for basal cell carcinoma (BCC) or other malignancies diagnostics, instead of the well established biopsy and histopathology examination. In the last decades, a non-invasive, spectroscopic diagnostic method was introduced, the laser induced fluorescence (LIF), which could generate an image contrast between different states of skin tissue. The noninvasiveness consists in that this biophotonic method do not require tissue sample excision, what is necessary in histopathology characterization and biochemical analysis of the skin tissue samples, which is worldwide used as an evaluation gold standard. The object of this study is to establish the possibilities of a relatively portable system for laser induced skin autofluorescence to differentiate malignant from nonmalignant skin lesions. Unstained human skin samples, excised from humans undergoing biopsy examination, were irradiated with a Nd:YAG-3ω laser (λ=355 nm, 6 ns), used as an excitation source for the autofluorescence measurements. A portable fiber-based spectrometer was used to record fluorescence spectra of the sites of interest. The ex vivo results, obtained with this spectroscopic technique, were correlated with the histopathology results. After the analysis of the fluorescence spectra of almost 60 skin tissue areas, we developed an algorithm to distinguish different types of malignant lesions, including inflammatory areas. Optimization of the data analysis and potential use of LIF spectroscopy with 355 nm Nd:YAG laser excitation of tissue autofluorescence for clinical applications are discussed.

  2. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    Science.gov (United States)

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  3. Implementation of a dedicated digital projectional radiographic system in thoracic imaging

    International Nuclear Information System (INIS)

    Aberle, D.R.; Batra, P.; Hayrapetian, A.S.; Brown, K.; Morioka, C.A.; Steckel, R.J.

    1988-01-01

    An integrated digital radiographic system was evaluated with respect to image quality and impact on diagnosis relative to conventional chest radiographs for a variety of focal and diffuse lung processes. Digital images were acquired with a stimulable phosphor plate detector that was scanned by a semiconductor laser for immediate digitalization to a 2,048 X 2,464 X 10-bit image. Digital images were displayed on a 2,048-line monitor and printed on 14 X 17-inch film with use of a laser film printer (Kodak). Preliminary results with this system, including the effects of user interaction with the display monitor, inverse intensity display, and regional magnification techniques, indicate that it may be successfully implemented for thoracic imaging

  4. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; Vincentis, G. De

    2016-01-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  5. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  6. Computer-aided diagnosis in medical imaging: historical review, current status and future potential.

    Science.gov (United States)

    Doi, Kunio

    2007-01-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. In this article, the motivation and philosophy for early development of CAD schemes are presented together with the current status and future potential of CAD in a PACS environment. With CAD, radiologists use the computer output as a "second opinion" and make the final decisions. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral chest images has the potential to improve the overall performance in the detection of lung nodules when combined with another CAD scheme for PA chest images. Because vertebral fractures can be detected reliably by computer on lateral chest radiographs, radiologists' accuracy in the detection of vertebral fractures would be improved by the use of CAD, and thus early diagnosis of osteoporosis would become possible. In MRA, a CAD system has been developed for assisting radiologists in the detection of intracranial aneurysms. On successive bone scan images, a CAD scheme for detection of interval changes has been developed by use of temporal subtraction images. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for chest CAD may include the computerized detection of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes in chest radiographs as well as the computerized classification of benign and malignant nodules and the differential diagnosis of

  7. Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images

    International Nuclear Information System (INIS)

    Lee, Jin Soo; Ko, Seong Jin; Kang, Se Sik; Kim, Jung Hoon; Choi, Seok Yoon; Kim, Chang Soo; Park, Hyung Hu

    2012-01-01

    Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70-98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

  8. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    Science.gov (United States)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  9. LED induced autofluorescence (LIAF) imager with eight multi-filters for oral cancer diagnosis

    Science.gov (United States)

    Huang, Ting-Wei; Cheng, Nai-Lun; Tsai, Ming-Hsui; Chiou, Jin-Chern; Mang, Ou-Yang

    2016-03-01

    Oral cancer is one of the serious and growing problem in many developing and developed countries. The simple oral visual screening by clinician can reduce 37,000 oral cancer deaths annually worldwide. However, the conventional oral examination with the visual inspection and the palpation of oral lesions is not an objective and reliable approach for oral cancer diagnosis, and it may cause the delayed hospital treatment for the patients of oral cancer or leads to the oral cancer out of control in the late stage. Therefore, a device for oral cancer detection are developed for early diagnosis and treatment. A portable LED Induced autofluorescence (LIAF) imager is developed by our group. It contained the multiple wavelength of LED excitation light and the rotary filter ring of eight channels to capture ex-vivo oral tissue autofluorescence images. The advantages of LIAF imager compared to other devices for oral cancer diagnosis are that LIAF imager has a probe of L shape for fixing the object distance, protecting the effect of ambient light, and observing the blind spot in the deep port between the gumsgingiva and the lining of the mouth. Besides, the multiple excitation of LED light source can induce multiple autofluorescence, and LIAF imager with the rotary filter ring of eight channels can detect the spectral images of multiple narrow bands. The prototype of a portable LIAF imager is applied in the clinical trials for some cases in Taiwan, and the images of the clinical trial with the specific excitation show the significant differences between normal tissue and oral tissue under these cases.

  10. Image-guided urologic surgery: intraoperative optical imaging and tissue interrogation (Conference Presentation)

    Science.gov (United States)

    Liao, Joseph C.

    2017-02-01

    Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.

  11. Radionuclide imaging in diagnosis and therapy of the diabetic foot

    International Nuclear Information System (INIS)

    Zhu Cansheng

    2000-01-01

    Early and accurate diagnosis of angiopathy or infection of the diabetic foot is the key to the successful management. Radionuclide imaging is very useful in detecting diabetic microangiopathy, assessing the prognosis of foot ulcers, and diagnosing the osteomyelitis

  12. Magnetic resonance imaging markers for early diagnosis of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Silvia Marino; Rosella Ciurleo; Giuseppe Di Lorenzo; Marina Barresi; Simona De Salvo; Sabrina Giacoppo; Alessia Bramanti; Pietro Lanzafame; Placido Bramanti

    2012-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective and progressive degeneration, as well as loss of dopaminergic neurons in the substantia nigra. In PD, approximately 60-70% of nigrostriatal neurons are degenerated and 80% of content of the striatal dopamine is reduced before the diagnosis can be established according to widely accepted clinical diagnostic criteria. This condition describes a stage of disease called "prodromal", where non-motor symptoms, such as olfactory dysfunction, constipation, rapid eye movement behaviour disorder, depression, precede motor sign of PD. Detection of prodromal phase of PD is becoming an important goal for determining the prognosis and choosing a suitable treatment strategy. In this review, we present some non-invasive instrumental approaches that could be useful to identify patients in the prodromal phase of PD or in an early clinical phase, when the first motor symptoms begin to be apparent. Conventional magnetic resonance imaging (MRI) and advanced MRI techniques, such as magnetic resonance spectroscopy imaging, diffusion-weighted and diffusion tensor imaging and functional MRI, are useful to differentiate early PD with initial motor symptoms from atypical parkinsonian disorders, thus, making easier early diagnosis. Functional MRI and diffusion tensor imaging techniques can show abnormalities in the olfactory system in prodromal PD.

  13. Specific diagnosis of hepatocellular carcinoma by delayed hepatobiliary imaging

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Nakano, S.; Ibuka, K.

    1986-01-01

    For assessment of the value of delayed hepatobiliary imaging with technetium 99m (/sup 99m/Tc)-(Sn)-N-pyridoxyl-5-methyltryptophan (/sup 99m/Tc-PMT) for specific diagnosis of hepatocellular carcinoma, 88 patients with various malignant and benign liver diseases (49 with hepatocellular carcinoma, 4 with cholangiocellular carcinoma, 10 with metastatic liver carcinoma, 2 with liver cysts, 2 with liver hemangioma, 1 with liver abscess, 2 with intrahepatic lithiasis, 12 with liver cirrhosis, and 6 with chronic hepatitis) were studied. In 20 (41%) of the 49 patients with hepatocellular carcinoma, greater uptake of /sup 99m/Tc-PMT by the tumor than by the surrounding liver tissue was seen in delayed hepatobiliary images, whereas in eight patients (16%), equilibrated uptake was seen. No increased uptake of the radioisotope by hepatic lesions was seen in 21 patients with localized liver diseases other than hepatoma. Moreover, in 18 patients with diffuse liver diseases, no focal accumulation of the radioisotope was seen in delayed /sup 99m/Tc-PMT images. In addition, of 28 patients with hepatocellular carcinoma in whom the serum alpha-fetoprotein level showed little or no increase, 12 showed increased uptake of /sup 99m/Tc-PMT by the tumor. In assessing delayed /sup 99m/Tc-PMT images, however, it was necessary to consider following complications: accumulation of tracer in obstructed and dilated biliary trees; retention of radioactivity in nonneoplastic liver tissues; difficulties in evaluating /sup 99m/Tc-PMT uptake by small hepatic tumors; overlapping of radioactivity in the gut and gallbladder in delayed /sup 99m/Tc-PMT images of tumors. This study indicates that delayed /sup 99m/Tc-PMT images can be useful in the diagnosis of hepatocellular carcinoma

  14. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    Science.gov (United States)

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  15. Diagnosis and differential diagnosis of hydrocephalus in adults

    International Nuclear Information System (INIS)

    Langner, Soenke; Mensel, Birger; Kuehn, Jens Peter; Kirsch, Michael; Fleck, Steffen; Baldauf, Joerg

    2017-01-01

    Hydrocephalus is caused by an imbalance of production and absorption of cerebrospinal fluid (CSF) or obstruction of its pathways, resulting in ventricular dilatation and increased intracranial pressure. Imaging plays a crucial role in the diagnosis, differential diagnosis and planning of treatment. This review article presents the different types of hydrocephalus und their typical imaging appearance, describes imaging techniques, and discusses differential diagnoses of the different forms of hydrocephalus. Imaging plays a central role in the diagnosis of hydrocephalus. While magnetic resonance (MR) imaging is the first-line imaging modality, computed tomography (CT) is often the first-line imaging test in emergency patients.

  16. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  17. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease

    DEFF Research Database (Denmark)

    George, Richard T; Mehra, Vishal C; Chen, Marcus Y

    2014-01-01

    %, respectively, for SPECT. CONCLUSION: The overall performance of myocardial CT perfusion imaging in the diagnosis of anatomic CAD (stenosis ≥50%), as demonstrated with the Az, was higher than that of SPECT and was driven in part by the higher sensitivity for left main and multivessel disease.......PURPOSE: To compare the diagnostic performance of myocardial computed tomographic (CT) perfusion imaging and single photon emission computed tomography (SPECT) perfusion imaging in the diagnosis of anatomically significant coronary artery disease (CAD) as depicted at invasive coronary angiography....... MATERIALS AND METHODS: This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise...

  18. The contribution of chemical shift imaging with digital subtracting images to the diagnosis of steatohepatitis

    International Nuclear Information System (INIS)

    Guo Xinghua; Wang Juanping; Zhang Chongjie; Zheng Guofang; Fan Ruiqiang; Zhu Sumei; Liu Qiwang

    2006-01-01

    Objective: To investigate the diagnosis value of chemical shift imaging with digital subtracting in steatohepatitis. Methods: The in-phase images were subtracted by the out-phase ones in 34 cases of steatohepatitis, and the CNR were measured on these subtracted images to estimate the steatosis of the liver. The relationship of CT grade of steatohepatitis and CNR from the subtracted images was analyzed to evaluate the relationship between CNR and the degree of hepatic steatosis. The sensitivity and specificity of the subtracting and eyeballing methods were compared with chi-square test. Results: On the subtracted images, the liver and spleen were seen nearly the same aspects as low signals, CNR=0.98±0.06, meanwhile the spongy vertebra and the subcutaneous or abdominal lipid were seen as obvious higher signals in 52 normal cases. On the 34 steatohepatitis, scattered high signals were seen in the liver, which made the signal of liver higher than that of spleen, CNR=3.25±0.91--14.35±6.10. There was positive correlation between CNR and CT grade in the 34 cases of steatohepatitis, r=0.893, P<0.01. The sensitivity and specificity of the subtracting method were 88.24% and 94. 23%, significantly higher than that of the eyeballing results, 32.35% and 80.77%, P<0.01 and P<0.05. Conclusion: Chemical shift imaging with digital subtracting is a sensitive, specific, objective method to diagnose steatohepatitis and it is of potential ability for quantitative diagnosis. (authors)

  19. Imaging techniques in the diagnosis of liver echinococcosis

    International Nuclear Information System (INIS)

    Lotritsch, K.H.; Goebel, N.

    1986-01-01

    Liver echinococcosis, the most frequently occuring form of parasitosis, is caused by the following two types of tapeworm: echinococcus granulosus and echinococcus multilocularis. Both types are to be found in Austria, the latter even being endemic. Imaging techniques such as computed tomography and sonography enable the diagnosis to be made easily, quickly and accurately, although the number of conditions to be considered in the differential diagnosis is considerable. A comparison of the two methods in 32 patients, 25 with echinococcus multilocularis and 7 with echinococcus granulosus demonstrates that ultrasound is slightly inferior to computed tomography. However, ultrasound should be the primary method of investigation and is of great importance in followup, whilst computed tomography is necessary pre-operatively to assess the extrahepatic involvement. (Author)

  20. Consultation system for image diagnosis: Report formation support system

    International Nuclear Information System (INIS)

    Ikeda, M.; Sakuma, S.; Ishigaki, T.; Suzuki, K.; Oikawa, K.

    1987-01-01

    The authors developed a consultation system for image diagnosis, involving artificial intelligence ideas. In this system, the authors proposed a new report formation support system and implemented it in lymphangiography. This support system starts with the input of image interpretation. The input process is made mainly by selecting items. This system encodes the input findings into the semantic network, which is represented as a directed graph, and it reserves them into the knowledge database in the above structure. Finally, the output (report) is made in the near natural language, which corresponds to the input findings

  1. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Restuccia, N.; Cuzzocrea, S.; Paterniti, I.; Ielo, I.; Pergolizzi, S.; Cutroneo, Mariapompea; Kováčik, L.

    2017-01-01

    Roč. 50, č. 1 (2017), s. 51-60 ISSN 0017-1557 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Au nanoparticles * Laser * X-ray diagnostic s * medical imaging * contrast medium Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.638, year: 2016

  2. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  3. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect

    International Nuclear Information System (INIS)

    Symes, D. R.; Wegner, U.; Ahlswede, H.-C.; Streeter, M. J. V.; Gallegos, P. L.; Divall, E. J.; Rajeev, P. P.; Neely, D.; Smith, R. A.

    2010-01-01

    Optical imaging is a versatile diagnostic for investigations of plasmas generated under intense laser irradiation. Electro-optic gating techniques operating on the >100 ps timescale are commonly used to reduce the amount of light detected from self-emission of hot plasma or improve the temporal resolution of the detector. The use of an optical Kerr gate enables a superior dynamic range and temporal resolution compared to electronically gated devices. The application of this method for enhanced imaging of laser produced plasmas with gate time ∼100 fs is demonstrated, and the possibility to produce a sub-10 fs, high dynamic range 'all optical' streak camera is discussed.

  4. SOME ASPECTS OF SCANNING LASER OPHTHALMOSCOPY IN THE DIAGNOSTICS OF OPHTHALMOPATHOLOGY

    Directory of Open Access Journals (Sweden)

    S. A. Kochergin

    2017-01-01

    Full Text Available The exact diagnosis of the fundus pathology requires the most modern equipment use. This is mandatory for the selection of the most complete therapy and monitoring of ongoing treatment. At present, the method of scanning laser ophthalmoscopy is widely spread. However, for the earliest detection of the smallest pathological changes, data of the normal ocular fundus state using a scanning laser ophthalmoscope is necessary. Thus, the purpose of our research becomes relevant. Purpose: to give a characteristic of the fundus in patients without concomitant pathology with using various modes of a scanning laser ophthalmoscope. Patients and methods. 116 people (232 eyes at the age from 17 to 71 years (mean age 32.5±12 years were examined. The patients were divided into two groups. Group I: 81 patients (162 eyes with different ophthalmopathology. Group II: 35 people (70 eyes — practically healthy and did not have an anamnesis of consulting an ophthalmologist. Diagnosis of the patients’ fundus was performed using a scanning laser ophthalmoscopy with retro-mode imaging and autofluorescence registration. Results. After the conducted research features and regularities of the reflectivity distribution of laser beams from the fundus structures are revealed. Also a characteristic of various anatomical formations and zones of the fundus in the normal conditions is given when examined by a scanning laser ophthalmoscope. An algorithm for examining patients and analyzing the images was developed. Conclusion. The use of scanning laser ophthalmoscopy made possible to take a fresh look at the algorithms of diagnosing patients with fundus pathology. Understanding the normal conditions ofundus allowed an earlier detection of the smallest pathological changes in the retina. 

  5. Imaging photoelectrons formed in strong laser fields

    International Nuclear Information System (INIS)

    Helm, H.; Dyer, M.J.; Saeed, M.; Huestis, D.L.

    1993-01-01

    An instrument capable of characterizing the angular correlation and energy distribution of products from photoionization of single atoms or molecules will be described. An external electric field is used to project individual charged particles generated in multiphoton ionization from the focal volume onto two-dimensional detectors. Digital images are recorded for each laser shot and summed. These images provide a direct view of the angular nodal plants of the photoelectrons and they can be analyzed to represent the spatial and energy distributions in the form of a polar plot, f(E,Θ). We discuss the application of this instrument to short pulse photoionization of rare gases and molecular hydrogen at visible and UV wavelengths at intensities ranging from 10 13 to 10 15 W/cm 2

  6. Computer assisted treatments for image pattern data of laser plasma experiments

    International Nuclear Information System (INIS)

    Yaoita, Akira; Matsushima, Isao

    1987-01-01

    An image data processing system for laser-plasma experiments has been constructed. These image data are two dimensional images taken by X-ray, UV, infrared and visible light television cameras and also taken by streak cameras. They are digitized by frame memories. The digitized image data are stored in disk memories with the aid of a microcomputer. The data are processed by a host computer and stored in the files of the host computer and on magnetic tapes. In this paper, the over view of the image data processing system and some software for data handling in the host computer are reported. (author)

  7. Evaluation of the usefulness and validity of imaging diagnosis for acute abdomen

    International Nuclear Information System (INIS)

    Sakai, Takehiro; Sudo, Yasuhiro

    2007-01-01

    We retrospectively evaluated the usefulness and validity of imaging diagnosis for acute abdomens. Sixty-one patients who had complained of acute abdominal pain upon hospital admittance were and divided into four groups according to the diagnostic imaging modalities that were used: X-ray alone (X-P group, n=11), ultrasonography (US group, n=12), computed tomography (CT group, n=14), and both ultrasonography and CT (US/CT group, n=24). The diagnosis made at the time of admission was also evaluated, and the patients were divided into three groups and analyzed statistically: bowel obstructions (bowel obstruction group, n=20), acute appendicitis or other diseases necessitating a differential diagnosis (appendicitis group, n=35), and perforations of the digestive tract (perforation group, n=6). X-ray and CT examinations were useful for making a diagnosis in the bowel obstruction and perforation groups. Ultrasonography was regarded as important in the appendicitis group. The accuracy of the diagnosis made upon admission was 95.0% in the bowel obstruction group, 88.6 % in the appendicitis group, and 100 % in the perforation group. Although a prospective evaluation is necessary, CT appears to be useful for diagnosing bowel obstructions and perforations of the digestive tract. Although ultrasonography is useful for diagnosing acute appendicitis, CT is recommended in patients in whom a differential diagnosis is difficult to obtain. (author)

  8. Gestational Trophoblastic Disease: A Multimodality Imaging Approach with Impact on Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Sunita Dhanda

    2014-01-01

    Full Text Available Gestational trophoblastic disease is a condition of uncertain etiology, comprised of hydatiform mole (complete and partial, invasive mole, choriocarcinoma, and placental site trophoblastic tumor. It arises from abnormal proliferation of trophoblastic tissue. Early diagnosis of gestational trophoblastic disease and its potential complications is important for timely and successful management of the condition with preservation of fertility. Initial diagnosis is based on a multimodality approach: encompassing clinical features, serial quantitative β-hCG titers, and pelvic ultrasonography. Pelvic magnetic resonance imaging (MRI is sometimes used as a problem-solving tool to assess the depth of myometrial invasion and extrauterine disease spread in equivocal and complicated cases. Chest radiography, body computed tomography (CT, and brain MRI have been recommended as investigative tools for overall disease staging. Angiography has a role in management of disease complications and metastases. Efficacy of PET (positron emission tomography and PET/CT in the evaluation of recurrent or metastatic disease has not been adequately investigated yet. This paper discusses the imaging features of gestational trophoblastic disease on various imaging modalities and the role of different imaging techniques in the diagnosis and management of this entity.

  9. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    Science.gov (United States)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  10. 3D imaging of hematoxylin and eosin stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based nonlinear microscopy (Conference Presentation)

    Science.gov (United States)

    Kao, Chien-Ting; Wei, Ming-Liang; Liao, Yi-Hua; Sun, Chi-Kuang

    2017-02-01

    Intraoperative assessment of excision tissues during cancer surgery is clinically important. The assessment is used to be guided by the examination for residual tumor with frozen pathology, while it is time consuming for preparation and is with low accuracy for diagnosis. Recently, reflection confocal microscopy (RCM) and nonlinear microscopy (NLM) were demonstrated to be promising methods for surgical border assessment. Intraoperative RCM imaging may enable detection of residual tumor directly on skin cancers patients during Mohs surgery. The assessment of benign and malignant breast pathologies in fresh surgical specimens was demonstrated by NLM. Without using hematoxylin and eosin (H and E) that are common dyes for histopathological diagnosis, RCM was proposed to image in vivo by using aluminum chloride for nuclear contrast on surgical wounds directly, while NLM was proposed to detect two photon fluorescence nuclear contrast from acrdine orange staining. In this paper, we propose and demonstrate 3D imaging of H and E stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based NLM. With a 1260 nm femtosecond Cr:forsterite laser as the excitation source, the hematoxylin will strongly enhance the third-harmonic generation (THG) signals, while eosin will illuminate strong fluorescence under three photon absorption. Compared with previous works, the 1260 nm excitation light provide high penetration and low photodamage to the exercised tissues so that the possibility to perform other follow-up examination will be preserved. The THG and three-photon process provides high nonlinearity so that the super resolution in 3D is now possible. The staining and the contrast of the imaging is also fully compatible with the current clinical standard on frozen pathology thus facilitate the rapid intraoperative assessment of excision tissues. This work is sponsored by National Health Research Institutes and supported by National Taiwan University

  11. The algorithm to generate color point-cloud with the registration between panoramic image and laser point-cloud

    International Nuclear Information System (INIS)

    Zeng, Fanyang; Zhong, Ruofei

    2014-01-01

    Laser point cloud contains only intensity information and it is necessary for visual interpretation to obtain color information from other sensor. Cameras can provide texture, color, and other information of the corresponding object. Points with color information of corresponding pixels in digital images can be used to generate color point-cloud and is conducive to the visualization, classification and modeling of point-cloud. Different types of digital cameras are used in different Mobile Measurement Systems (MMS).the principles and processes for generating color point-cloud in different systems are not the same. The most prominent feature of the panoramic images is the field of 360 degrees view angle in the horizontal direction, to obtain the image information around the camera as much as possible. In this paper, we introduce a method to generate color point-cloud with panoramic image and laser point-cloud, and deduce the equation of the correspondence between points in panoramic images and laser point-clouds. The fusion of panoramic image and laser point-cloud is according to the collinear principle of three points (the center of the omnidirectional multi-camera system, the image point on the sphere, the object point). The experimental results show that the proposed algorithm and formulae in this paper are correct

  12. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  13. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  14. Laser induced florescence: application to spectroscopy and new microscopy imaging methods

    International Nuclear Information System (INIS)

    Galaup, L. P.

    2012-01-01

    Laser induced fluorescence is one of the light using techniques which allows the highest sensitivity for atoms and molecules detection, up to the single atom or single molecule level. This field is much too large for an extensive review; therefor we have chosen to focus on two main points: 1- the observation of laser stimulated fluorescence in phthalocyanine and porphyrin like molecules in rare gas and nitrogen matrices at low temperatures. 2- the presentation of laser induced fluorescence techniques suitable for achieving ultra-high spatial resolution imaging, below the diffraction limit of conventional microscopy, thanks to highly fluorescent molecules to be used as biological markers. (Author)

  15. Spiral (Helical) computed tomographic imaging for the diagnosis of bile duct cancer. Vascular and pancreatic invasions

    International Nuclear Information System (INIS)

    Kon, Masanori

    1997-01-01

    The development of several imaging techniques for diagnosing bile duct cancer have improved, however, its diagnosis at the early stage is still difficult. We discuss the significance of the spiral (helical) computed tomography (SCT) imaging for the diagnosis of bile duct cancer at an early stage. We performed, as a preoperative examination, SCT under intravenous angiography (IV-SCT) for all cases, which included 233 cases of benign bile duct diseases, 42 cases of gallbladder cancer and 22 cases of bile duct cancer. The accuracy rate of diagnosis ability of 42 cases of gallbladder cancer by IV-SCT was 91%, and that of portal vein invasion was 91%. In the cases of bile duct cancer, IV-SCT showed destructive images of the bile duct wall and the tumor images invaded into the pancreatic parenchyma, in the cases of invasion at the splenic vein and confluence site of the portal vein, IV-SCT gave clearer 3D images than conventional angiography. The accuracy rate of diagnosing pancreatic invasion in bile duct cancer by IV-SCT was 80%. However, it is still difficult to determine completely the layer structures of the bile duct and the invasion into the walls along the long axis. As the future development of SCT for the diagnosis of bile duct cancer, we expect further progression of diagnosis ability of bile duct cancer and the invasion level by the applying high resolution thin-section CT images or endoscopical images of the luminal organs in examining the bile duct. (K.H.)

  16. The value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice

    International Nuclear Information System (INIS)

    Huang Zhi; Liu Zhang; Yang Chaoxiang; Lin Chengye; Zhang Li; Li Yuxiang; Ma Yunyan; Xiao Haisong; Lu Zhifeng; Wang Bo; Zhou Yunhong

    2009-01-01

    Objective: To approach the value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice in order to improve the correctness of the diagnosis. Methods: Analysis the cases' clinical manifestation and the CT images, who were diagnosed as obstructive jaundice by operation. All of cases had high-resolution computed tomograyhy scan. The thickness and the interval is 5mm, reconstructed the thickness and the interval to 1 mm and 1.5 mm, then send the images to the workstation and MRR were processed. Analysis the date with the pathology. Results: Spiral CT thin imaging reconstruction have 98% and 93% in the accuracy of location and characterization in the obstruction. Conclusion: The spiral CT thin imaging reconstruction is a good method to improve the accuracy of location and characterization in the obstructive jaundice. (authors)

  17. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    Science.gov (United States)

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  18. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamamoto

    2017-11-01

    Full Text Available Unmanned aerial vehicles (UAVs or drones are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  19. Usefulness of magnetic resonance imaging in diagnosis of varicocele

    International Nuclear Information System (INIS)

    Akiyama, Hironobu; Nagai, Atsushi; Ichikawa, Takaharu; Oeda, Tadashi; Nasu, Yasutomo; Ohmori, Hiroyuki; Togami, Izumi; Katoh, Katsuya; Hiraki, Yoshio

    1996-01-01

    Magnetic resonance imaging (MRI) was applied for diagnosis of varicocele testis. Twelve of fourteen patients with varicocele had positive findings on MRI. In addition, four of seven patients with clinically undetectable varicocele had positive findings on MRI. We think MRI is one of the useful means for detection of varicocele including subclinical form. (author)

  20. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard.

    Science.gov (United States)

    Spaeth, George L; Reddy, Swathi C

    2014-01-01

    Optic disk imaging is integral to the diagnosis and treatment of patients with glaucoma. We discuss the various forms of imaging the optic nerve, including ophthalmoscopy, photography, and newer imaging modalities, including optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy (HRT), and scanning laser polarimetry (GDx), specifically highlighting their benefits and disadvantages. We argue that ophthalmoscopy and photography remain the gold standard of imaging due to portability, ease of interpretation, and the presence of a large database of images for comparison. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  2. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  3. Uncommon presentations of intraosseous haemophilic pseudotumor in imaging diagnosis

    International Nuclear Information System (INIS)

    Santos, Marcel Koenigkam; Polezi, Mariana Basso; Pastorello, Monica Tempest; Simao, Marcelo Novelino; Engel, Edgard Eduard; Elias Junior, Jorge; Nogueira-Barbosa, Marcello Henrique

    2009-01-01

    Objective: The present study was aimed at describing uncommon presentations of intraosseous hemophilic pseudotumor in imaging diagnosis. Materials and methods: Retrospective study evaluating five hemophilic pseudotumors in bones of two patients with hemophilia A. Imaging findings were consensually evaluated by two musculoskeletal radiologists. Plain radiography, computed tomography and magnetic resonance imaging studies were analyzed. Results: At contrast-enhanced computed tomography images, one of the lesions on the left thigh was visualized with heterogeneously enhanced solid areas. This finding was later confirmed by anatomopathological study. Another uncommon finding was the identification of a healthy bone portion interposed between two intraosseous pseudotumors in the humerus. And, finally, a femoral pseudotumor with extension towards soft tissues and transarticular extension, and consequential tibial and patellar involvement. Conclusion: The above described imaging findings are not frequently reported in cases of intraosseous pseudotumors in hemophilic patients. It is important that radiologists be aware of these more uncommon presentations of intraosseous pseudotumors. (author)

  4. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics

    Directory of Open Access Journals (Sweden)

    Marion Semmler

    2017-06-01

    Full Text Available Recently, we reported on the in vivo application of a miniaturized measuring device for 3D visualization of the superior vocal fold vibrations from high-speed recordings in combination with a laser projection unit (LPU. As a long-term vision for this proof of principle, we strive to integrate the further developed laserendoscopy as a diagnostic method in daily clinical routine. The new LPU mainly comprises a Nd:YAG laser source (532 nm/CW/2 ω and a diffractive optical element (DOE generating a regular laser grid (31 × 31 laser points that is projected on the vocal folds. By means of stereo triangulation, the 3D coordinates of the laser points are reconstructed from the endoscopic high-speed footage. The new design of the laserendoscope constitutes a compromise between robust image processing and laser safety regulations. The algorithms for calibration and analysis are now optimized with respect to their overall duration and the number of required interactions, which is objectively assessed using binary classifiers. The sensitivity and specificity of the calibration procedure are increased by 40.1% and 22.3%, which is statistically significant. The overall duration for the laser point detection is reduced by 41.9%. The suggested semi-automatic reconstruction software represents an important stepping-stone towards potential real time processing and a comprehensive, objective diagnostic tool of evidence-based medicine.

  5. Ultrasonography and magnetic resonance imaging in the diagnosis of Morton's neuroma.

    Science.gov (United States)

    Fazal, Muhammad Ali; Khan, Ishrat; Thomas, Cherian

    2012-01-01

    Magnetic resonance imaging (MRI) and ultrasonography are used widely for the diagnosis of Morton's neuroma. The aim of this study was to assess the accuracy of these two modalities as diagnostic tools in Morton's neuroma. Fifty feet of 47 consecutive patients (39 women and 8 men; mean age, 46 years; age range, 36-64 years) who presented between January 1, 2005, and June 30, 2008, were included in the study. Twenty-five feet were investigated with ultrasonography and 25 with MRI. Morton's neuroma was confirmed surgically and histologically in all of the patients. A Student unpaired t test was applied. Twenty-two MRIs were diagnostic (sensitivity, 88%). Three patients with negative MRI findings underwent ultrasonography and were found to have a neuroma smaller than 5 mm. Twenty-four ultrasound scans demonstrated the neuroma (sensitivity, 96%), with five neuromas being smaller than 5 mm. Ultrasonography has a slightly higher sensitivity in the diagnosis of Morton's neuroma, particularly of neuromas smaller than 5 mm, and should be the preferred imaging modality in suspected cases, and MRI should be reserved for cases with equivocal diagnosis.

  6. Sclerosing cholangitis: Clinicopathologic features, imaging spectrum, and systemic approach to differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ni Eun [Dept. of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, So Yeon; Lee, Seung Soo; Byun, Jae Ho; Kim, Hyoung Jung; Kim, Jin Hee; Lee, Moon Gyu [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Sclerosing cholangitis is a spectrum of chronic progressive cholestatic liver disease characterized by inflammation, fibrosis, and stricture of the bile ducts, which can be classified as primary and secondary sclerosing cholangitis. Primary sclerosing cholangitis is a chronic progressive liver disease of unknown cause. On the other hand, secondary sclerosing cholangitis has identifiable causes that include immunoglobulin G4-related sclerosing disease, recurrent pyogenic cholangitis, ischemic cholangitis, acquired immunodeficiency syndrome-related cholangitis, and eosinophilic cholangitis. In this review, we suggest a systemic approach to the differential diagnosis of sclerosing cholangitis based on the clinical and laboratory findings, as well as the typical imaging features on computed tomography and magnetic resonance (MR) imaging with MR cholangiography. Familiarity with various etiologies of sclerosing cholangitis and awareness of their typical clinical and imaging findings are essential for an accurate diagnosis and appropriate management.

  7. Sclerosing Cholangitis: Clinicopathologic Features, Imaging Spectrum, and Systemic Approach to Differential Diagnosis.

    Science.gov (United States)

    Seo, Nieun; Kim, So Yeon; Lee, Seung Soo; Byun, Jae Ho; Kim, Jin Hee; Kim, Hyoung Jung; Lee, Moon-Gyu

    2016-01-01

    Sclerosing cholangitis is a spectrum of chronic progressive cholestatic liver disease characterized by inflammation, fibrosis, and stricture of the bile ducts, which can be classified as primary and secondary sclerosing cholangitis. Primary sclerosing cholangitis is a chronic progressive liver disease of unknown cause. On the other hand, secondary sclerosing cholangitis has identifiable causes that include immunoglobulin G4-related sclerosing disease, recurrent pyogenic cholangitis, ischemic cholangitis, acquired immunodeficiency syndrome-related cholangitis, and eosinophilic cholangitis. In this review, we suggest a systemic approach to the differential diagnosis of sclerosing cholangitis based on the clinical and laboratory findings, as well as the typical imaging features on computed tomography and magnetic resonance (MR) imaging with MR cholangiography. Familiarity with various etiologies of sclerosing cholangitis and awareness of their typical clinical and imaging findings are essential for an accurate diagnosis and appropriate management.

  8. Diagnosis of vertebral artery dissection with basiparallel anatomical scanning magnetic resonance imaging

    International Nuclear Information System (INIS)

    Katsuno, Makoto; Kobayashi, Shiro

    2011-01-01

    There is no consensus regarding the optimal method for diagnosing the dissection of intracranial arteries. We have developed a rapid and accurate examination method to diagnose vertebral artery dissection in the acute stage of cerebral infarction. Twenty-two patients with severe headache and neck pain and/or symptoms of brain stem or cerebellar ischemia underwent magnetic resonance imaging (MRI) with a 1.5-T scanner. Our protocol generated 3 contrast-weighted scans (T2-weighted, diffusion-weighted, and basi-parallel anatomical scanning [BPAS]-MRI) and conventional angiographs within 3 hours of the onset of symptoms. Then, we retrospectively analyzed the findings to identify the most reliable imaging method for diagnosing vertebral artery dissection in the acute stage of cerebral infarction. Based on the symptoms and the findings of T2-weighted imaging and conventional angiography, the initial diagnosis was dissection in 17 patients, lacunar infarction in 3 patients, and atherothrombosis in 2 patients. After follow-up studies the diagnosis was changed in 7 patients. The diagnosis based on symptoms and the findings of T2-weighted MRI and BPAS-MRI was dissection in 13 patients, atherothrombosis in 6 patients, and lacunar infarction in 3 patients. In 3 patients the diagnosis was changed during the follow-up phase. The diagnostic accuracy rate was higher with T2-weighted MRI and BPAS-MRI than with T2-weighted MRI and conventional angiography. We suggest that when intracranial vascular dissection is suspected, both the inner and outer contours of vessels must be inspected and that BPAS-MRI should be performed instead of conventional angiography to establish the definite diagnosis. (author)

  9. Assessment of radicular dentin permeability after irradiation with CO2 laser and endodontic irrigation treatments with thermal imaging

    Science.gov (United States)

    Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (Ptreatment increases permeability of radicular dentin.

  10. Information content of the space-frequency filtering of blood plasma layers laser images in the diagnosis of pathological changes

    Science.gov (United States)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Bodnar, G. B.; Kushnerick, L. Ya.; Savich, V. O.

    2013-12-01

    The bases of method of the space-frequency of the filtering phase allocation of blood plasma pellicle are given here. The model of the optical-anisotropic properties of the albumen chain of blood plasma pellicle with regard to linear and circular double refraction of albumen and globulin crystals is proposed. Comparative researches of the effectiveness of methods of the direct polarized mapping of the azimuth images of blood plasma pcllicle layers and space-frequency polarimetry of the laser radiation transformed by divaricate and holelikc optical-anisotropic chains of blood plasma pellicles were held. On the basis of the complex statistic, correlative and fracta.1 analysis of the filtered frcquencydimensional polarizing azimuth maps of the blood plasma pellicles structure a set of criteria of the change of the double refraction of the albumen chains caused by the prostate cancer was traced and proved.

  11. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yasuo Yamashita

    2009-07-01

    Full Text Available This paper reviews the basics and recent researches of computer-aided diagnosis (CAD systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimer's disease, vascular dementia, and multiple sclerosis (MS, in magnetic resonance (MR images. The CAD systems consist of image feature extraction based on image processing techniques and machine learning classifiers such as linear discriminant analysis, artificial neural networks, and support vector machines. We introduce useful examples of the CAD systems in the neuroradiology, and conclude with possibilities in the future of the CAD systems for brain diseases in MR images.

  12. Diagnosis and Differential Diagnosis of Hydrocephalus in Adults.

    Science.gov (United States)

    Langner, Sönke; Fleck, Steffen; Baldauf, Jörg; Mensel, Birger; Kühn, Jens Peter; Kirsch, Michael

    2017-08-01

    Purpose  Hydrocephalus is caused by an imbalance of production and absorption of cerebrospinal fluid (CSF) or obstruction of its pathways, resulting in ventricular dilatation and increased intracranial pressure. Imaging plays a crucial role in the diagnosis, differential diagnosis and planning of treatment. Methods  This review article presents the different types of hydrocephalus und their typical imaging appearance, describes imaging techniques, and discusses differential diagnoses of the different forms of hydrocephalus. Results and Conclusion  Imaging plays a central role in the diagnosis of hydrocephalus. While magnetic resonance (MR) imaging is the first-line imaging modality, computed tomography (CT) is often the first-line imaging test in emergency patients. Key points   · Occlusive hydrocephalus is caused by obstruction of CSF pathways.. · Malabsorptive hydrocephalus is caused by impaired CSF absorption.. · The MR imaging protocol should always include sagittal high-resolution T2-weighted images.. · When an inflammatory etiology is suspected, imaging with contrast agent administration is necessary.. Citation Format · Langner S, Fleck S, Baldauf J et al. Diagnosis and Differential Diagnosis of Hydrocephalus in Adults. Fortschr Röntgenstr 2017; 189: 728 - 739. © Georg Thieme Verlag KG Stuttgart · New York.

  13. FLAIR imaging for differential diagnosis of new cerebral microbleeds

    International Nuclear Information System (INIS)

    Watanabe, Akira

    2009-01-01

    It may be difficult to determine the time of appearance of cerebral microbleeds (MBs) in T2*-weighted MR imaging (MRI), because most MBs take more than several years to become absorbed. The presence of MBs is closely related to intracerebral hemorrhage, and it is important to detect new MBs in order to prevent intracerebral hemorrhage. We evaluated 108 patients on maintenance hemodialysis with MRI at least twice from May 2003 to May 2008. Seventy-two new MBs were detected and 59 MBs disappeared. Initial fluid-attenuated inversion recovery (FLAIR) imaging revealed 3 MBs with surrounding hyperintensity (SH), but follow-up FLAIR imaging demonstrated disappearance of the SH in all cases. Five of the 72 new MBs had SH, but follow-up FLAIR imaging demonstrated disappearance of the SH in all cases. In one case, SH with the enlarged MB disappeared in follow-up FLAIR images. In conclusion, we considered SH of new MBs to be vasogenic edema accompanying new intracerebral hemorrhage. It was useful to compare T2*-weighted MRI with FLAIR imaging to determine the differential diagnosis of new MBs. (author)

  14. A HWIL test facility of infrared imaging laser radar using direct signal injection

    Science.gov (United States)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  15. Multiphoton Laser Microscopy and Fluorescence Lifetime Imaging for the Evaluation of the Skin

    Directory of Open Access Journals (Sweden)

    Stefania Seidenari

    2012-01-01

    Full Text Available Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM, is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.

  16. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    International Nuclear Information System (INIS)

    Ma, T.; MacPhee, A.; Key, M.; Akli, K.; Mackinnon, A.; Chen, C.; Barbee, T.; Freeman, R.; King, J.; Link, A.; Offermann, D.; Ovchinnikov, V.; Patel, P.; Stephens, R.; VanWoerkom, L.; Zhang, B.; Beg, F.

    2007-01-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented

  17. Laser-induced fluorescence for medical diagnostics

    International Nuclear Information System (INIS)

    Andersson Engels, S.

    1989-12-01

    Laser-induced fluorescence as a tool for tissue diagnostics is discussed. Both spectrally and time-resolved fluorescence signals are studied to optimize the demarcation of diseased lesions from normal tissue. The presentation is focused on two fields of application: the identification of malignant tumours and atherosclerotic plaques. Tissue autofluorescence as well as fluorescence from administered drugs have been utilized in diseased tissue diagnosis. The fluorescence criterion for tissue diagnosis is, as far as possible, chosen to be independent of unknown fluorescence parameters, which are not correlated to the type of tissue investigated. Both a dependence on biological parameters, such as light absorption in blood, and instrumental characteristics, such as excitation pulse fluctuations and detection geometry, can be minimized. Several chemical compounds have been studied in animal experiments after intraveneous injection to verify their capacity as malignant tumour marking drugs under laser excitation and fluorescence detection. Another objective of these studies was to improve our understanding of the mechanism and chemistry behind the retention of the various drugs in tissue. The properties of a chemical which maximize its selective retention in tumours are discussed. In order to utilize this diagnostic modality, three different clinically adapted sets of instrumentation have been developed and are presented. Two of the systems are nitrogen-laser-based fluorosensors; one is a point-monitoring system with full spectral resolution and the other one is an imaging system with up to four simultaneously recorded images in different spectral bands. The third system is a low-cost point-monitoring mercury-lamp-based fluoroscence emission as well as reflection characteristics of tissue. (author)

  18. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  19. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  20. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  1. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  2. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    Science.gov (United States)

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  4. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To determine the clinical value of diffusion-weight- ed imaging (DWI) for the diagnosis of extrahepatic cholangiocarcinoma (EHCC) by comparing the diagnostic sensitivity of DWI and magnetic resonance cholan-giopancreatography (MRCP). METHODS: Magnetic resonance imaging examination was performed in 56 patients with suspected EHCC. T1- weighted imaging, T2-weighted imaging, MRCP and DWI sequence, DWI using single-shot spin-echo echoplanar imaging sequence with different b values (100, 300, 500, 800 and 1...

  5. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Science.gov (United States)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  6. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  7. A User-Centered Cooperative Information System for Medical Imaging Diagnosis.

    Science.gov (United States)

    Gomez, Enrique J.; Quiles, Jose A.; Sanz, Marcos F.; del Pozo, Francisco

    1998-01-01

    Presents a cooperative information system for remote medical imaging diagnosis. General computer-supported cooperative work (CSCW) problems addressed are definition of a procedure for the design of user-centered cooperative systems (conceptual level); and improvement of user feedback and optimization of the communication bandwidth in highly…

  8. An application of image processing to the diagnosis of diabetic ...

    African Journals Online (AJOL)

    This study focused on developing a new algorithm for segmenting lesions in retinal images, in order to prepare for lesion feature extraction, in the automatic diagnosis of Diabetic Retinopathy (DR) using computer vision. Tests conducted to evaluate algorithm performance included a sensitivity-and-specificity test, ...

  9. Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry

    Science.gov (United States)

    Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.

    2016-04-01

    We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.

  10. Whole Body Magnetic Resonance Imaging in the Diagnosis of Parsonage Turner Syndrome

    International Nuclear Information System (INIS)

    Ryan, M.; Twair, A.; Nelson, E.; Brennan, D.; Eustace, S.

    2004-01-01

    Purpose: To describe magnetic resonance imaging (MRI) findings in patients with suspected Parsonage Turner syndrome and to emphasize the value of an additional whole body MR scan to improve specificity of this diagnosis. Material and Methods: Three patients with proven Parsonage Turner syndrome referred for conventional MRI of the shoulder girdle and additional whole body turboSTIR MRI were included for study. Results: In each case, imaging revealed edema in the muscles of the shoulder girdle. Whole body turboSTIR MRI scan confirmed localized unilateral changes in each case improving specificity and confidence in the diagnosis of Parsonage Turner syndrome in each case. Conclusion: Whole body turboSTIR MR imaging is a useful diagnostic tool in the evaluation of patients with suspected Parsonage Turner syndrome. Inclusion of the brain, neck, brachial plexus, and extremity musculature at whole body imaging allows differentiation from polymyositis and elimination of additional causes of shoulder girdle pain and weakness including gross lesions in the brain, neck, and brachial plexus by a single non-invasive study

  11. Fetal magnetic resonance imaging in prenatal diagnosis of central nervous system abnormalities

    International Nuclear Information System (INIS)

    Morioka, Takato; Hashiguchi, Kimiaki; Kawamura, Tadao; Mihara, Futoshi; Hikino, Shunji; Nagata, Hideaki; Iwaki, Toru; Sasaki, Tomio

    2005-01-01

    The diagnostic value of fetal magnetic resonance imaging (MRI), performed in 42 pregnant women whose fetuses had structural abnormalities of the central nervous system identified with transabdominal ultrasonography from 1995 through 2002, was analyzed retrospectively. Half-Fourier acquisition single-shot turbo spin-echo (HASTE) T 2 -weighted imaging clearly delineated the cerebrospinal fluid (CSF) space and the malformed brain and spinal cord and provided valuable information for the diagnosis of structural abnormalities related to the CSF space, such as spina bifida with Chiari type II malformation (7 cases), colpocephaly with agenesis of the corpus callosum (7 cases), holoprosencephaly (6 cases), porencephaly (2 cases), lissencephaly with hydrocephalus (2 cases), and middle fossa arachnoid cyst (1 case). However, some difficulty was encountered in the diagnosis of rare pathologic conditions that were not related to the CSF space, such as epignathus, multiple arteriovenous fistulae, trapped suboccipital meningocele, and Turner syndrome. We conclude that HASTE T 2 -weighted imaging, which provides useful diagnostic images in a reasonable time, is a useful adjunct to ultrasonography to confirm or exclude certain abnormalities related to the CSF space. (author)

  12. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  13. NUCLEAR IMAGING IN THE DIAGNOSIS OF CARDIAC AMYLOIDOSIS

    Directory of Open Access Journals (Sweden)

    V. B. Sergienko

    2018-01-01

    Full Text Available Histological analysis of endomyocardial tissue is still the gold standard for the diagnosis of cardiac amyloidosis but has its limitations. Accordingly, there is a need for noninvasive techniques to cardiac amyloidosis diagnostics. Echocardiography and magnetic resonance imaging can show characteristics which may not be very specific for cardiac amyloid. Recently, new opportunities of nuclear imaging in risk stratification and assessment of prognosis for patients with cardiac amyloidosis have appeared. During the last two decades different classes of radiopharmaceuticals have been developed based on compounds tropic to the components of amyloid infiltrates. In this paper we describe the current possibilities and perspectives of nuclear medicine techniques in patients with cardiac amyloidosis, including osteotropic and neurotropic scintigraphy, single-photon and positron emission tomography

  14. MR imaging in the diagnosis of impingement syndrome

    International Nuclear Information System (INIS)

    Seeger, L.L.; Gold, R.H.; Bassett, L.W.; Ellman, H.

    1986-01-01

    The impingement syndrome is entrapment of the supraspinatus tendon by either the acromion, or a subacromial or acromioclavicular spur. Arthrography is normal during stages I (tendon inflammation) and II (fibrosis). The lack of objective findings often delays diagnosis until stage III (ischemic rotator cuff tear) is present. The purpose was to determine if MR imaging is useful in diagnosing this condition. T1-weighted surface coil scans were obtained on eight patients using a 0.3-T MR system. An axial scout allowed oblique alignment for imaging the osseous-soft tissue relationship and the supraspinatus tendon. MR is capable of displaying the specific pathologic anatomy of this disorder. Impinging spurs can be seen, and the adjacent tendon shows inferior displacement and abnormal signal intensity

  15. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  16. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    Science.gov (United States)

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence

    Science.gov (United States)

    Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas

    2018-04-01

    Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.

  18. Wavelength-Modulated Differential Photoacoustic (WM-DPA) imaging: a high dynamic range modality towards noninvasive diagnosis of cancer

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2016-03-01

    This study explores wavelength-modulated differential photo-acoustic (WM-DPA) imaging for non-invasive early cancer detection via sensitive characterization of functional information such as hemoglobin oxygenation (sO2) levels. Well-known benchmarks of tumor formation such as angiogenesis and hypoxia can be addressed this way. While most conventional photo-acoustic imaging has almost entirely employed high-power pulsed lasers, frequency-domain photo-acoustic radar (FD-PAR) has seen significant development as an alternative technique. It employs a continuous wave laser source intensity-modulated and driven by frequency-swept waveforms. WM-DPA imaging utilizes chirp modulated laser beams at two distinct wavelengths for which absorption differences between oxy- and deoxygenated hemoglobin are minimum (isosbestic point, 805 nm) and maximum (680 nm) to simultaneously generate two signals detected using a standard commercial array transducer as well as a single-element transducer that scans the sample. Signal processing is performed using Lab View and Matlab software developed in-house. Minute changes in total hemoglobin concentration (tHb) and oxygenation levels are detectable using this method since background absorption is suppressed due to the out-of-phase modulation of the laser sources while the difference between the two signals is amplified, thus allowing pre-malignant tumors to become identifiable. By regulating the signal amplitude ratio and phase shift the system can be tuned to applications like cancer screening, sO2 quantification and hypoxia monitoring in stroke patients. Experimental results presented demonstrate WM-DPA imaging of sheep blood phantoms in comparison to single-wavelength FD-PAR imaging. Future work includes the functional PA imaging of small animals in vivo.

  19. ToF-SIMS and Laser-SNMS Imaging of Heterogeneous Topographically Complex Polymer Systems.

    Science.gov (United States)

    Pelster, Andreas; Körsgen, Martin; Kurosawa, Takako; Morita, Hiromi; Arlinghaus, Heinrich F

    2016-10-04

    Heterogeneous polymer coatings, such as those used in organic electronics and medical devices, are of increasing industrial importance. In order to advance the development of these types of systems, analytical techniques are required which are able to determine the elemental and molecular spatial distributions, on a nanometer scale, with very high detection efficiency and sensitivity. The goal of this study was to investigate the suitability of laser postionization secondary neutral mass spectrometry (Laser-SNMS) with a 157 nm postionization laser beam to image structured polymer mixtures and compare the results with time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements using Bi 3 + primary ions. The results showed that Laser-SNMS is better suited than ToF-SIMS for unambiguous detection and submicrometer imaging of the wide range of polymers investigated. The data also showed that Laser-SNMS has the advantage of being much more sensitive (in general higher by more than an order of magnitude and peaking at up to 3 orders of magnitude) than ToF-SIMS while also showing superior performance on topographically complex structured insulating surfaces, due to significantly reduced field effects and a higher dynamic range as compared to ToF-SIMS. It is concluded that Laser-SNMS is a powerful complementary technique to ToF-SIMS for the analysis of heterogeneous polymers and other complex structured organic mixtures, providing submicrometer resolution and high sensitivity.

  20. Thermal imaging of high power diode lasers subject to back-irradiance

    Science.gov (United States)

    Li, C.; Pipe, K. P.; Cao, C.; Thiagarajan, P.; Deri, R. J.; Leisher, P. O.

    2018-03-01

    CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying the relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.

  1. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  2. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P

    2017-05-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.

  3. A clinical study and the diagnosis in magnetic resonance imaging of renal scarring

    International Nuclear Information System (INIS)

    Tsugaya, Masayuki; Hirao, Noriaki; Ohtaguro, Kazuo; Kato, Jiro.

    1989-01-01

    Twenty-nine kidneys of seventeen patients (nine boys and eight girls) with vesicoureteral reflux and repeated urinary tract infection were studied by magnetic resonance imaging for diagnosis of renal scarring and correlation between clinical data and the degree renal scarring. Renal scarring is classified into three types according to findings in magnetic resonance imaging. The degree of renal scarring are classified into five grades according to traditional grading of intravenous pyelogram. If a fine deformity of calyx is shown on intravenous pyelogram, magnetic resonance imaging demonstrates renal scarring. Magnetic resonance imaging without irradiation is exceedingly valuable for the diagnosis of renal scarring. The appearances of magnetic resonance imaging were supported by X-ray computed tomography. There is a substantial correlation between serum creatinine and the grades of renal scarring by magnetic resonance imaging. There is a substantial correlation between fever attacks and the grade of renal scarring, and there is a significant reverse correlation between the age of the onset of upper urinary tract infection and the grade of renal scarring. It is suggested that upper urinary tract infection is the most significant factor in scar formation. (author)

  4. Evaluation of the contribution of radiological imaging to the final diagnosis in medical case reports

    International Nuclear Information System (INIS)

    Wiesinger, Isabel; Scharf, Gregor; Platz, Natascha; Dendl, Lena M.; Stroszczynski, Christian; Schreyer, Andreas G.; Pawlik, Michael T.

    2015-01-01

    To evaluate the clinical value and impact of radiological imaging in published medial case reports. We analysed 671 consecutively published case reports of a peer-reviewed medical journal for case reports. The general use of radiological imaging as well as the specific imaging modality used in each case (ultrasound, x-ray, fluoroscopy, CT, MRI) was documented, and most importantly the 'final problem solver', i.e. the diagnostic modality giving the final clue to the patient's diagnosis, was identified. In 511 of 671 (76.1 %) analysed case reports at least one radiological modality was used in the diagnostic cascade. In 28.6 % of all cases the final diagnosis was achieved by radiological imaging. All other cases were solved by the patient's history and physical examination (15.2 %), histology (12.4 %), and blood analysis (9.6 %). When radiology was the 'final problem solver', it was mainly CT (51.6 %) and MRI (30.6 %). In 52.2 % of the case reports the radiological image was included in the article. In case reports published in a prominent general medical journal radiological imaging is an important key player in the diagnostic process. In many cases, it is also the diagnostic tool which ultimately leads to determining the final diagnosis. (orig.)

  5. Evaluation of the contribution of radiological imaging to the final diagnosis in medical case reports

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Isabel; Scharf, Gregor; Platz, Natascha; Dendl, Lena M.; Stroszczynski, Christian; Schreyer, Andreas G. [University Hospital Regensburg, Institute of Radiology, Regensburg (Germany); Pawlik, Michael T. [Intensive Care and Emergency Medicine, Institute of Anaesthesiology, Regensburg (Germany)

    2015-05-01

    To evaluate the clinical value and impact of radiological imaging in published medial case reports. We analysed 671 consecutively published case reports of a peer-reviewed medical journal for case reports. The general use of radiological imaging as well as the specific imaging modality used in each case (ultrasound, x-ray, fluoroscopy, CT, MRI) was documented, and most importantly the 'final problem solver', i.e. the diagnostic modality giving the final clue to the patient's diagnosis, was identified. In 511 of 671 (76.1 %) analysed case reports at least one radiological modality was used in the diagnostic cascade. In 28.6 % of all cases the final diagnosis was achieved by radiological imaging. All other cases were solved by the patient's history and physical examination (15.2 %), histology (12.4 %), and blood analysis (9.6 %). When radiology was the 'final problem solver', it was mainly CT (51.6 %) and MRI (30.6 %). In 52.2 % of the case reports the radiological image was included in the article. In case reports published in a prominent general medical journal radiological imaging is an important key player in the diagnostic process. In many cases, it is also the diagnostic tool which ultimately leads to determining the final diagnosis. (orig.)

  6. Image guided prostate cancer treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bard, Robert L. [Bard Cancer Center, Biofoundation for Angiogenesis Research and Development, New York, NY (United States); Fuetterer, Jurgen J. [Radboud Univ. Nijmegen, Medical Centre (Netherlands). Dept. of Radiology; Sperling, Dan (ed.) [Sperling Prostate Center, Alpha 3TMRI, New York, NY (United States)

    2014-07-01

    Systematic overview of the application of ultrasound and MRI in the diagnosis and treatment of diseases of the lower urinary tract. Detailed information on image-guided therapies, including focused ultrasound, photodynamic therapy, and microwave and laser ablation. Numerous high-quality illustrations based on high-end equipment. Represents the state of the art in Non Invasive Imaging and Minimally Invasive Ablation Treatment (MIAT). Image-Guided Prostate Cancer Treatments is a comprehensive reference and practical guide on the technology and application of ultrasound and MRI in the male pelvis, with special attention to the prostate. The book is organized into three main sections, the first of which is devoted to general aspects of imaging and image-guided treatments. The second section provides a systematic overview of the application of ultrasound and MRI to the diagnosis and treatment of diseases of the lower urinary tract. Performance of the ultrasound and MRI studies is explained, and the normal and abnormal pathological anatomy is reviewed. Correlation with the ultrasound in the same plane is provided to assist in understanding the MRI sequences. Biopsy and interventional procedures, ultrasound-MRI fusion techniques, and image-guided therapies, including focused ultrasound, photodynamic therapy, microwave and laser ablation, are all fully covered. The third section focuses on securing treatment effectiveness and the use of follow-up imaging to ensure therapeutic success and detect tumor recurrence at an early stage, which is vital given that prompt focal treatment of recurrence is very successful. Here, particular attention is paid to the role of Doppler ultrasound and DCE-MRI technologies. This book, containing a wealth of high-quality illustrations based on high-end equipment, will acquaint beginners with the basics of prostate ultrasound and MRI, while more advanced practitioners will learn new skills, means of avoiding pitfalls, and ways of effectively

  7. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  8. A new remote-imaging diagnosis system at Komazawa University

    International Nuclear Information System (INIS)

    Shimada, Morio; Kohda, Eiichi; Yoshikawa, Kohki

    2007-01-01

    We developed a remote-imaging diagnosis system that links the highly experienced radiologists at Komazawa University with Fuji Electric Hospital, where no such radiologists are present. MRI or CT images from Fuji Electric hospital are transmitted to Komazawa University via private line (INS64). The radiologists at Komazawa University then read the MRI or CT images, and relay the results to Fuji Electric Hospital. We describe the advantages and disadvantages of this system. MRI or CT imaging data from 80 cases were used. The data were stored in the imaging system server at Fuji Electric Hospital and were evaluated by experienced radiologists at Komazawa University. The images were sent one by one to the diagnostic support system server at Komazawa University through the private INS64 line. We examined transmission time per case and the security of transmission. Transmission of MRI or CT images from the 80 cases required a mean duration of 63 minutes 30 seconds per image. The quality of all images was highly satisfactory. In addition, there was no evidence of weaknesses in security. A physician at Fuji Electric Hospital was able to readily explain to the patient the results of the images by referring to the findings written by a radiologist at Komazawa University. We were able to transmit MRI or CT images by using this system safely and readily. The primary disadvantage of this system was the slow transmission speed. This will be improved by upgrading to an optical fibers. (author)

  9. Image and diagnosis quality of X-ray image transmission via cell phone camera: a project study evaluating quality and reliability.

    Directory of Open Access Journals (Sweden)

    Hans Goost

    Full Text Available INTRODUCTION: Developments in telemedicine have not produced any relevant benefits for orthopedics and trauma surgery to date. For the present project study, several parameters were examined during assessment of x-ray images, which had been photographed and transmitted via cell phone. MATERIALS AND METHODS: A total of 100 x-ray images of various body regions were photographed with a Nokia cell phone and transmitted via email or MMS. Next, the transmitted photographs were reviewed on a laptop computer by five medical specialists and assessed regarding quality and diagnosis. RESULTS: Due to their poor quality, the transmitted MMS images could not be evaluated and this path of transmission was therefore excluded. Mean size of transmitted x-ray email images was 394 kB (range: 265-590 kB, SD ± 59, average transmission time was 3.29 min ± 8 (CI 95%: 1.7-4.9. Applying a score from 1-10 (very poor - excellent, mean image quality was 5.8. In 83.2 ± 4% (mean value ± SD of cases (median 82; 80-89%, there was agreement between final diagnosis and assessment by the five medical experts who had received the images. However, there was a markedly low concurrence ratio in the thoracic area and in pediatric injuries. DISCUSSION: While the rate of accurate diagnosis and indication for surgery was high with a concurrence ratio of 83%, considerable differences existed between the assessed regions, with lowest values for thoracic images. Teleradiology is a cost-effective, rapid method which can be applied wherever wireless cell phone reception is available. In our opinion, this method is in principle suitable for clinical use, enabling the physician on duty to agree on appropriate measures with colleagues located elsewhere via x-ray image transmission on a cell phone.

  10. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    Science.gov (United States)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  11. High-energy laser-assisted imaging through vaporizing aerosols

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.

    1988-02-01

    The degradation of image quality due to multiple scattering in a turbid medium is analyzed various conditions of illumination. The emphasis is on the forward-peaked multiple scattering effects, which can adequately be described by the small-angle approximation. In the case of incoherent illumination, the modulation transfer function (MTF) can be given explicity both in the low- and high-frequency limits. For scattering with smaller degree of anisotropy, the MTF should be imputed numerically by considering numerical by considering solutions to the equation of radiative transfer with a line or point source. As the beam power increases, the turbid medium becomes modified by its interactions with the beam, thus affecting the image resolution. In this nonlinear transport regime (flux levels of the order of 10 6 Wcm 2 and higher) the propagation leads actually to beam narrowing. In the context of the imaging problem, an apparent paradosical situation in which the image of a point source narrows down as the high-energy laser (HEL) beam propagates is discussed. 14 refs., 12 figs

  12. Gestational Trophoblastic Disease: A Multimodality Imaging Approach with Impact on Diagnosis and Management

    International Nuclear Information System (INIS)

    Dhanda, S.; Ramani, S.; Dhanda, S.; Ramani, S.; Thakur, M.

    2014-01-01

    Gestational trophoblastic disease is a condition of uncertain etiology, comprised of hydatiform mole (complete and partial), invasive mole, choriocarcinoma, and placental site trophoblastic tumor. It arises from abnormal proliferation of trophoblastic tissue. Early diagnosis of gestational trophoblastic disease and its potential complications is important for timely and successful management of the condition with preservation of fertility. Initial diagnosis is based on a multimodality approach: encompassing clinical features, serial quantitative β-hCG titers, and pelvic ultrasonography. Pelvic magnetic resonance imaging (MRI) is sometimes used as a problem-solving tool to assess the depth of myometrial invasion and extra uterine disease spread in equivocal and complicated cases. Chest radiography, body computed tomography (CT), and brain MRI have been recommended as investigative tools for overall disease staging. Angiography has a role in management of disease complications and metastases. Efficacy of PET (positron emission tomography) and PET/CT in the evaluation of recurrent or metastatic disease has not been adequately investigated yet. This paper discusses the imaging features of gestational trophoblastic disease on various imaging modalities and the role of different imaging techniques in the diagnosis and management of this entity. 1. Introduction Gestational trophoblastic disease (GTD) refers to an abnormal trophoblastic proliferation composed of a broad spectrum of lesions ranging from benign, albeit pre malignant hydatiform mole (complete and partial), through to the aggressive invasive mole, choriocarcinoma

  13. Imaging diagnosis of meningiomas of ethmoid sinuses

    International Nuclear Information System (INIS)

    Lu Bingfeng; Liang Shuming; Li Mao

    2001-01-01

    Objective: To study the imaging features of meningiomas of ethmoid sinuses. Methods: Six cases of meningiomas of ethmoid sinuses verified pathologically were analyzed retrospectively. Results: CT scans of 6 cases exhibited huge cystic masses (n = 3), huge cystic-solid masses (n = 2), huge solid mass (n = 1). The cystic walls were remarkable osteosclerosis. The density of solid masses were homogeneous, or heterogeneous with calcifications and cystic changes, and prominent contrast-enhancement. MR images of 1 case (1/6) showed a cystic-solid mass, the cystic portion was high signal intensity on T 2 WI and low signal intensity on T 1 WI, while the solid mass was iso-signal intensity on T 1 WI and T 2 WI. The solid portion was enhanced. X-ray plain films of 3 cases (3/6) displayed ethmoid sinuses enlargement and high density. Conclusion: For the meningiomas of ethmoid sinuses, CT finding was specific, MRI was helpful in differential diagnosis, and X-ray plain films was of no qualitative value

  14. Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2016-11-01

    Full Text Available We present the results from a theoretical investigation of laser beam propagation in relay imaging multi-pass layouts, which recently found application in high-energy laser amplifiers. Using a method based on the well-known ABCD-matrix formalism and proven by ray tracing, it was possible to derive a categorization of such systems. Furthermore, basic rules for the setup of such systems and the compensation for low order aberrations are derived. Due to the introduced generalization and parametrization, the presented results can immediately be applied to any system of the investigated kinds for a wide range of parameters, such as number of round-trips, focal lengths and optics sizes. It is shown that appropriate setups allow a close-to-perfect compensation of defocus caused by a thermal lens and astigmatism caused by non-normal incidence on the imaging optics, as well. Both are important to avoid intensity spikes leading to damages of optics in multi-pass laser amplifiers.

  15. 3-D Imaging by Laser Radar and Applications in Preventing and Combating Crime and Terrorism

    National Research Council Canada - National Science Library

    Letalick, Dietmar; Ahlberg, Joergen; Andersson, Pierre; Chevalier, Tomas; Groenwall, Christina; Larsson, Hakan; Persson, Asa; Klasen, Lena

    2004-01-01

    This paper describes the ongoing research on 3-dimensional (3-D) imaging at FOI. Specifically, we address the new possibilities brought by laser radars, focusing on systems for high resolution 3-D imaging...

  16. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    Science.gov (United States)

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  18. Target plane imaging system for the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-01-01

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 μm, 0.53 μm, and 0.35 μm. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described

  19. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  20. Role of magnetic resonance imaging in the diagnosis of spontaneous spondylodiscitis

    International Nuclear Information System (INIS)

    Cusmano, F.; Calabrese, G.; Bassi, S.; Branislav, S.; Bassi, P.

    2000-01-01

    Purpose of this work is to report the Magnetic Resonance Imaging (MRI) features of acute and chronic spontaneous spondylodiscitis as well as any as well as any typical patterns which can be useful for the differential diagnosis between pyogenic and tuberculous forms. Eleven patients affected with spontaneous spondylodiscitis were selected for the study; they were 7 men and 4 women ranging in age 33-87 years (mean: 64). Patients with a superconductive magnet at 1.5, with the following sequences: sagittal PD and T2-weighted TSE, sagittal T1-weighted SE, axial PD and T2-weighted TSE for the lumbar spine, axial T2-weighted GRE for the cervical and dorsal spine and axial and sagittal T1-weighted SE after contrast agent (gadolinium DTPA) injection. MR images were reviewed by three experienced radiologists and morphological and signal intensity changes of vertebral body and disk were recorded on a standard form. In 9 patients it was possible to compare MR to CT findings. Three patients had infectious diseases in other organs and 2 were diabetics. Biopsy was performed in two cases only and demonstrated Staphylococcus aureus in one and Mycobacterium tuberculosis in the other patient. MRI, allowed the correct diagnosis to be made in all cases, demonstrating the pathological involvement of the paravertebral structures and into the spinal canal earlier and more accurately than CT. A common finding in pyogenic and tuberculous spondylodiscitis was the low signal of the subcortical bone marrow on T1-weighted sagittal images, which enhanced after Gd-DTPA administration and became intermediate or high on T2-weighted images. Moreover, the steady high signal intensity of the disk on T2-weighted images and its contrast enhancement on T1-weighted images is typical for an acute inflammatory process. Based on our personal experience an literature data, it is believed that MRI is the most sensitive technique for the diagnosis of spondylodiscitis in the acute phase, whereas it is

  1. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser plasma radiation

    International Nuclear Information System (INIS)

    Kado, M.; Richardson, M.C.; Gabel, K.; Torres, D.; Rajyaguru, J.; Muszynski, M.J.

    1995-01-01

    Detection for clinical diagnosis and study of microbial cell is performed by a combination of low magnification optical microscopy and direct and indirect labeling techniques. Visual ultrastructural studies on subcellular organelles are possible with variations of electron microscopy (thin section, scanning and freeze fracture), although specimen preparation steps such as fixation, dehydration, resin embedding, ultra-thin sectioning, coating and staining are very specialized, extensive and may introduce artifacts in the original sample. The development of high resolution x-ray microscopy is a new technique well suited to observe the intact structure of a biological specimen at high resolution without any artifacts. Here, x ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichia coli, and Lipopolysaccharide from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50 nm spatial resolutions are achieved and images are able to be discussed on the biological view

  2. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  3. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Hagelschuer, T. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Schrottke, L.; Biermann, K.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  4. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  5. Breast imaging using the Twente photoacoustic mammoscope (PAM): new clinical measurements

    Science.gov (United States)

    Heijblom, Michelle; Piras, Daniele; Ten Tije, Ellen; Xia, Wenfeng; van Hespen, Johan; Klaase, Joost; van den Engh, Frank; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2011-07-01

    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast cancer. Since photoacoustic imaging can visualize hemoglobin in tissue with optical contrast and ultrasound-like resolution, it is potentially an ideal method for early breast cancer imaging. The Twente Photoacoustic Mammoscope (PAM) has been developed specifically for breast imaging. Recently, a large clinical study has been started in the Medisch Spectrum Twente in Oldenzaal using PAM. In PAM, the breast is slightly compressed between a window for laser light illumination and a flat array ultrasound detector. The measurements are performed using a Q-switched Nd:YAG laser, pulsed at 1064 nm and a 1 MHz unfocused ultrasound detector array. Three-dimensional data are reconstructed using a delay and sum reconstruction algorithm. Those reconstructed images are compared with conventional imaging and histopathology. In the first phase of the study 12 patients with a malignant lesion and 2 patients with a benign cyst have been measured. The results are used to guide developments in photoacoustic mammography in order to pave the way towards an optimal technique for early diagnosis of breast cancer.

  6. Role of radionuclide imaging in the diagnosis of acute osteomyelitis

    International Nuclear Information System (INIS)

    Demopulos, G.A.; Bleck, E.E.; McDougall, I.R.

    1988-01-01

    Over the last decade, the role of nuclear medicine studies in the diagnosis of acute osteomyelitis has been discussed in depth in the literature. Yet, the respective roles played in this setting by each of the commonly used radionuclide studies often are confusing. In an attempt to develop a cogent diagnostic strategy, we reviewed the literature published within the last 12 years pertaining to the use of radiophosphate bone scintigraphy as well as gallium and indium WBC imaging in the diagnosis of this condition. Based on our findings, we propose an alternative approach to the evaluation of a patient with suspected acute osteomyelitis. 63 references

  7. All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery

    Directory of Open Access Journals (Sweden)

    Jami L. Johnson

    2018-03-01

    Full Text Available Photoacoustic (PA imaging may be advantageous as a safe, non-invasive imaging modality to image the carotid artery. However, calcification that accompanies atherosclerotic plaque is difficult to detect with PA due to the non-distinct optical absorption spectrum of hydroxyapatite. We propose reflection-mode all-optical laser-ultrasound (LUS imaging to obtain high-resolution, non-contact, non-ionizing images of the carotid artery wall and calcification. All-optical LUS allows for flexible acquisition geometry and user-dependent data acquisition for high repeatability. We apply all-optical techniques to image an excised human carotid artery. Internal layers of the artery wall, enlargement of the vessel, and calcification are observed with higher resolution and reduced artifacts with nonconfocal LUS compared to confocal LUS. Validation with histology and X-ray computed tomography (CT demonstrates the potential for LUS as a method for non-invasive imaging in the carotid artery. Keywords: Atherosclerosis, Photoacoustic imaging, Laser-ultrasound, Calcification, Reverse-time migration

  8. Clinical value of elasticity imaging and contrast-enhanced ultrasound in the diagnosis of papillary thyroid microcarcinoma.

    Science.gov (United States)

    Li, Fengsheng; Zhang, Jianlei; Wang, Yunmei; Liu, Liwen

    2015-09-01

    The present study aimed to evaluate the value of elasticity imaging and contrast-enhanced ultrasonography (CEUS) in the differential diagnosis of papillary thyroid microcarcinoma (TMC). In total, 73 patients exhibiting a total of 80 small thyroid nodules, which were difficult to diagnose using conventional ultrasonography, underwent elasticity imaging and CEUS. The diagnostic findings were subsequently clarified by intraoperative and pathological examination, and the accuracy of the 2 diagnostic methods was compared. The correct diagnostic rate of CEUS was 85% (68/80 nodules), of which 6 cases of TMC were misdiagnosed as benign lesions and 6 benign nodules were misdiagnosed as TMC. By contrast, the accuracy rate of the elasticity imaging, based on the 5-point diagnostic method, was 92.5% (74/80 nodules), of which 3 cases of TMC were misdiagnosed as benign nodules and 3 benign nodules were misdiagnosed as TMC. Furthermore, elasticity imaging in the diagnosis of TMC was determined to have sensitivity, specificity and accuracy rates of 94.0, 90.0 and 92.5%, respectively, whereas the corresponding rates for CEUS were 88.0, 80.0 and 85.0%, respectively. Thus, ultrasonographic elasticity imaging exhibited significant advantages in the diagnosis of TMC compared with CEUS (Padvantage in the diagnosis of TMC; however, an elasticity score of ≥3 is of high clinical value as a diagnostic criterion for TMC.

  9. Intradermal indocyanine green for in vivo fluorescence laser scanning microscopy of human skin: a pilot study.

    Directory of Open Access Journals (Sweden)

    Constanze Jonak

    Full Text Available BACKGROUND: In clinical diagnostics, as well as in routine dermatology, the increased need for non-invasive diagnosis is currently satisfied by reflectance laser scanning microscopy. However, this technique has some limitations as it relies solely on differences in the reflection properties of epidermal and dermal structures. To date, the superior method of fluorescence laser scanning microscopy is not generally applied in dermatology and predominantly restricted to fluorescein as fluorescent tracer, which has a number of limitations. Therefore, we searched for an alternative fluorophore matching a novel skin imaging device to advance this promising diagnostic approach. METHODOLOGY/PRINCIPAL FINDINGS: Using a Vivascope®-1500 Multilaser microscope, we found that the fluorophore Indocyanine-Green (ICG is well suited as a fluorescent marker for skin imaging in vivo after intradermal injection. ICG is one of few fluorescent dyes approved for use in humans. Its fluorescence properties are compatible with the application of a near-infrared laser, which penetrates deeper into the tissue than the standard 488 nm laser for fluorescein. ICG-fluorescence turned out to be much more stable than fluorescein in vivo, persisting for more than 48 hours without significant photobleaching whereas fluorescein fades within 2 hours. The well-defined intercellular staining pattern of ICG allows automated cell-recognition algorithms, which we accomplished with the free software CellProfiler, providing the possibility of quantitative high-content imaging. Furthermore, we demonstrate the superiority of ICG-based fluorescence microscopy for selected skin pathologies, including dermal nevi, irritant contact dermatitis and necrotic skin. CONCLUSIONS/SIGNIFICANCE: Our results introduce a novel in vivo skin imaging technique using ICG, which delivers a stable intercellular fluorescence signal ideal for morphological assessment down to sub-cellular detail. The application of

  10. Scoliosis circa 2000: radiologic imaging perspective. Pt. 1. Diagnosis and pretreatment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, A.E. [Radiology Department, Children`s Hospital Medical Center, Cincinnati, OH (United States); Young, L.W. [Department of Pediatric Radiology, Loma Linda University Children`s Hospital, CA (United States); Young Poussaint, T. [Department of Radiology, Children`s Hospital, Boston, MA (United States)

    1998-11-01

    Plain film imaging remains important for the diagnosis and surveillance of scoliosis, as well as for the detection of complications after surgery. Advances in CT and MR imaging have greatly improved the ability to detect or confirming nonidiopathic causes of scoliosis, including abnormalities within the spinal canal. Three-dimensional thinking has become more important in evaluating and understanding scoliosis. (orig.) With 11 figs., 3 tabs., 75 refs.

  11. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy

    DEFF Research Database (Denmark)

    Banzhaf, Christina A.; Wind, Bas S.; Mogensen, Mette

    2016-01-01

    Background and Objective Optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) offer high-resolution optical imaging of the skin, which may provide benefit in the context of laser-assisted drug delivery. We aimed to characterize postoperative healing of ablative fractional...... laser (AFXL)-induced channels and dynamics in their spatiotemporal closure using in vivo OCT and RCM techniques. Study design/Materials and Methods The inner forearm of healthy subjects (n = 6) was exposed to 10,600 nm fractional CO2 laser using 5 and 25% densities, 120 μm beam diameter, 5, 15, and 25 m......J/microbeam. Treatment sites were scanned with OCT to evaluate closure of AFXL-channels and RCM to evaluate subsequent re-epithelialization. Results OCT and RCM identified laser channels in epidermis and upper dermis as black, ablated tissue defects surrounded by characteristic hyper-and hyporeflective zones. OCT imaged...

  12. Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging.

    Science.gov (United States)

    Trim, Paul J; Djidja, Marie-Claude; Atkinson, Sally J; Oakes, Keith; Cole, Laura M; Anderson, David M G; Hart, Philippa J; Francese, Simona; Clench, Malcolm R

    2010-08-01

    A commercial hybrid quadrupole time-of-flight mass spectrometer has been modified for high-speed matrix-assisted laser desorption ionisation (MALDI) imaging using a short-pulse optical technology Nd:YVO(4) laser. The laser operating in frequency-tripled mode (lambda = 355 nm) is capable of delivering 1.5-ns pulses of energy at up to 8 microJ at 5-10 kHz and 3 microJ at 20 kHz. Experiments to improve beam homogeneity and reduce laser speckle by mechanical vibration of the fibre-optic laser delivery system are reported along with data from trial and tissue imaging experiments using the modified instrument. The laser appeared to yield best results for MALDI-MS imaging experiments when operating at repetition rates 5-10 kHz. Combining this with raster imaging allowed images of rat brain sections to be recorded in 37 min. Similarly, images of the distribution of peptides in "on-tissue" digest experiments from tumour tissues were recorded in 1 h and 30 min rather than the 8-h acquisition time previously used. A brief investigation of targeted protein analysis/imaging by multiple reaction monitoring experiments "on-tissue" is reported. A total of 26 transitions were recorded over a 3-s cycle time and images of abundant proteins were successfully recorded.

  13. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    OpenAIRE

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherenc...

  14. First Report of Preoperative Imaging Diagnosis of a Surgically Confirmed Case of Valentino′s Syndrome

    Directory of Open Access Journals (Sweden)

    Parag Suresh Mahajan

    2014-01-01

    Full Text Available Perforation of a duodenal ulcer (DU into the retroperitoneal space presenting with clinical features of acute appendicitis is known as Valentino′s syndrome. Post duodenal perforation, the gastric and duodenal fluids tend to settle in the right paracolic gutter causing peritonitis and clinically mimicking acute appendicitis. Only three cases of Valentino′s syndrome have been reported till date in the published literature and there is only one previous report of its preoperative imaging diagnosis. To our knowledge, this is the first reported case of preoperative imaging diagnosis in a surgically confirmed case of Valentino′s syndrome. In most cases, patients with undiagnosed Valentino′s syndrome are operated for acute appendicitis, and on finding a normal appendix, search is made for the cause of peritonitis, which then leads to retroperitoneal perforation of duodenum. The diagnosis of Valentino′s syndrome by computed tomography (CT imaging is easy and can help in avoiding the surgery or directing the surgeon directly to the repair of the duodenal perforation. It is, therefore, essential for emergency physicians, surgeons, and radiologists to know about this entity and consider it in the differential diagnosis.

  15. Ewing sarcoma versus osteomyelitis: differential diagnosis with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Henninger, B.; Glodny, B.; Rudisch, A.; Trieb, T.; Loizides, A.; Judmaier, W.; Schocke, M.F.; Putzer, D.

    2013-01-01

    To find and evaluate characteristic magnetic resonance imaging (MRI) patterns for the differentiation between Ewing sarcoma and osteomyelitis. We identified 28 consecutive patients referred to our department for MRI (1.5 T) of an unclear bone lesion with clinical symptoms suggestive of Ewing sarcoma or osteomyelitis. MRI scans were re-evaluated by two experienced radiologists, typical MR imaging features were documented and a diagnostic decision between Ewing sarcoma and osteomyelitis was made. Statistical significance of the association between MRI features and the biopsy-based diagnosis was assessed using Fisher's exact test. The most clear-cut pattern for determining the correct diagnosis was the presence of a sharp and defined margin of the bone lesion, which was found in all patients with Ewing sarcoma, but in none of the patients with osteomyelitis (P < 0.0001). Contrast enhancing soft tissue was present in all cases with Ewing sarcoma and absent in 4 patients with osteomyelitis (P = 0.0103). Cortical destruction was found in all patients with Ewing sarcoma, 4 patients with osteomyelitis did not present any cortical reaction (P = 0.0103). Cystic or necrotic areas were identified in 13 patients with Ewing sarcoma and in 1 patient with osteomyelitis (P = 0.004). Interobserver reliability was very good (kappa = 1) in Ewing sarcoma and moderate (kappa = 0.6) in patients with osteomyelitis. A sharp and defined margin, optimally visualized on T1-weighted images in comparison to short tau inversion recovery (STIR) images, is the most significant feature of Ewing sarcoma in differentiating from osteomyelitis. (orig.)

  16. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    Science.gov (United States)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  17. Collaborative Research: Tomographic imaging of laser-plasma structures

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael [University of Texas at Austin

    2018-01-18

    The interaction of intense short laser pulses with ionized gases, or plasmas, underlies many applications such as acceleration of elementary particles, production of energy by laser fusion, generation of x-ray and far-infrared “terahertz” pulses for medical and materials probing, remote sensing of explosives and pollutants, and generation of guide stars. Such laser-plasma interactions create tiny electron density structures (analogous to the wake behind a boat) inside the plasma in the shape of waves, bubbles and filaments that move at the speed of light, and evolve as they propagate. Prior to recent work by the PI of this proposal, detailed knowledge of such structures came exclusively from intensive computer simulations. Now “snapshots” of these elusive, light-velocity structures can be taken in the laboratory using dynamic variant of holography, the technique used to produce ID cards and DVDs, and dynamic variant of tomography, the technique used in medicine to image internal bodily organs. These fast visualization techniques are important for understanding, improving and scaling the above-mentioned applications of laser-plasma interactions. In this project, we accomplished three things: 1) We took holographic pictures of a laser-driven plasma-wave in the act of accelerating electrons to high energy, and used computer simulations to understand the pictures. 2) Using results from this experiment to optimize the performance of the accelerator, and the brightness of x-rays that it emits. These x-rays will be useful for medical and materials science applications. 3) We made technical improvements to the holographic technique that enables us to see finer details in the recorded pictures. Four refereed journal papers were published, and two students earned PhDs and moved on to scientific careers in US National Laboratories based on their work under this project.

  18. Calorimeters for diagnosis of laser-fusion experiments

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1976-01-01

    A variety of calorimeters have been developed for measuring ions, x-rays, and scattered radiation emanating from laser-pulse-imploded fusion targets. The ion and x-ray calorimeters use metal or glass absorbers to reflect or transmit most of the scattered laser radiation; the versions using metal absorbers also incorporate a differential construction to compensate for the fraction of the scattered laser radiation that is absorbed. The scattered-radiation calorimeters use colored glass to absorb the radiation and a transparent glass shield to remove ions and x rays. Most of the calorimeters use commercial semiconductor thermoelectric modules as the temperature sensors

  19. Imaging diagnosis of intraductal papillary mucinous tumor of the pancreas

    International Nuclear Information System (INIS)

    Zhang Huimao; Lai Ying; Yang Shuqin; Yang Haishan; Murakami, K.

    2005-01-01

    Objective: To explore the diagnostic value of intraductal papillary mucinous tumor (IPMT) of the pancreas, and to assess its clinical and characteristic radiological features. Methods: Thirty-six cases with IPMT who underwent CT and MRI with plain and contrast enhancement before operation were reviewed. The clinical presentation and characteristic imaging findings of main duct type (8 cases) and branch duct type (28 cases) were retrospectively reviewed. Results: Typical imaging findings of main duct type were segmental or diffuse dilation of MPD (diameter was over 9 mm) with enhanced mural nodules after contrast medium administration. MR cholangiopancreatography (MRCP) showed dilation of MPD with flat/nodule filling defects in 4 cases and MPD dilatation in the head side in 2 cases. Branch duct type was more frequently located in the head or uncinate. Typical imaging findings of branch duct type were unilocular or multilocular cystic tumors with septa, mural nodules, and MPD dilatation. MRCP showed septa in 24 cases, filling defects in 15 cases, and MPD dilatation in 8 cases. Communication between the cystic lesion and the MPD was demonstrated in 19 cases by MRCP. Conclusion: It is extremely important to accurately make the diagnosis of IPMT for planning the surgical strategy. MRCP is a noninvasive and useful method in detecting and making definite diagnosis of IPMT. (authors)

  20. Imaging diagnosis of acute pulmonary thromboembolism

    International Nuclear Information System (INIS)

    Mut, Fernando

    2005-01-01

    Pulmonary embolism (PE) is a frequent disease which requires an accurate diagnosis in order to establish an effective treatment considering that anticoagulant therapy may lead to complications. Lung ventilation / perfusion scintigraphy (LS V/Q) has been employed as the imaging meted of choice in patients with suspicion of PE. Pulmonary angiography is considered invasive, hence its utilization is usually reserved for otherwise unresolved cases. Other methods like venous Doppler ultrasound and echocardiography have a complementary role or are not widely indicated. The introduction of spiral CT (SCT), specially with multislice capabilities has made available a fast, relatively economic and efficient method for non-invasive diagnosis of PE. Availability of the technique is increasing and it has been included in some diagnostic algorithms for PE as the initial method of evaluation (and sometimes the only one). However, most research has been performed comparing this state-of-the-art technology with classical radionuclide protocols instead of using updated techniques such as SPECT and ultrafine radio aerosols. Moreover, SCT delivers much higher dose rates to the patient which must be taken into account specially in young individuals. In general, available evidence shows superior sensitivity of LS V/Q with higher specificity of SCT, within a context of similar overall accuracy provided optimized protocols are employed. Interpretation criteria for LS V/Q should be revised in an attempt to minimize indeterminate results, and together with the routine utilization of SPECT and novel ventilation systems should improve the performance of LS V/Q. The choice of the initial diagnostic modality should be guided by a correct determination of pre-test probability, clinical characteristics of the patient potentially influencing the efficacy and safety of the method, availability of the different techniques, relative costs and operator's experience. Such a selective and pragmatic

  1. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.

    Science.gov (United States)

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-02-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.

  2. Magnetic Resonance Imaging and Angiography for the Prerupture Diagnosis of Rudimentary Uterine Horn Pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Ozeren, S.; Caliskan, E.; Corakci, A.; Ozkan, S.; Demirci, A. [Kocaeli Univ., Faculty of Medicine, Kocaeli (Turkey). Dept. of Obstetrics and Gynecology

    2004-12-01

    Magnetic resonance (MR) imaging and MR angiography were used for the differential diagnosis and preoperative planning of a 17 weeks of age rudimentary horn pregnancy. A 26-year-old primigravida was referred to our hospital with a preliminary diagnosis of abdominal pregnancy. After an inconclusive ultrasound evaluation we were able to identify a rudimentary horn pregnancy, extent of the placental invasion, and the vascular supply via MR imaging and time of flight sequence MR angiography. The obtained data were also used for preoperative planning, which resulted in an uncomplicated, prerupture laparotomy for pregnancy termination and a healthy female.

  3. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2004-01-01

    In this paper, an image processing algorithm for computer-aided diagnosis of lung cancer by X-ray CT is described, which has been developed by my research group for these 10 years or so. CT lung images gathered at the mass screening stage are almost all normal, and lung cancer nodules will be found as the rate of less than 10%. To pick up such a very rare nodules with the high accuracy, a very sensitive detection algorithm is requested which is detectable local and very slight variation of the image. On the contrary, such a sensitive detection algorithm introduces a bad effect that a lot of normal shadows will be detected as abnormal shadows. In this paper I describe how to compromise this complicated subject and realize a practical computer-aided diagnosis tool by the image processing algorithm developed by my research group. Especially, I will mainly focus my description to the principle and characteristics of the Quoit filter which is newly developed as a high sensitive filter by my group. (author)

  4. Output of CT images and treatment planning data to a laser printer

    International Nuclear Information System (INIS)

    Kleinschmidt, C.; Gfirtner, H.; Goetzfried, M.

    1992-01-01

    We introduce a program for the digital output of CT images with overlaid isodose maps to a laser printer. The high quality prints permit the additional output of treatment planning data on the same sheet. (orig.) [de

  5. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  6. Endometriosis of the liver: Findings in imaging diagnosis

    International Nuclear Information System (INIS)

    Nakanishi, K.; Bohndorf, K.; Lindemann, F.; Leipprand, E.

    1994-01-01

    Endometriosis of the liver is an extremely rare disease. To our knowledge, no more than three such cases were so far mentioned in the relevant literature. Moreover, we understand that nmr findings to prove the presence of hepatic endometriosis have not yet been described. We consider nmr imaging to be a suitable tool to establish a presumptive, if not firm, diagnosis of hepatic endometriosis. A sign strongly suggestive of the disorder is the irregular pattern of blood constituents of different ages that can invariably be visualized using this method. Due to the great amounts of free methaemoglobin found in subacute haemorrhages in increase insignal intensity can be observed for T 1 -weighted and T 2 -weighted SE sequences. The residues of former bleedings into the stroma, which are histologically confirmed by haemosiderin deposits, account for the greatly diminished signal intensity in T 1 -weighted images. An unusual finding here was the comparatively high signal intensity observed for T 2 -weighted images in those areas, where signals were practically absent in T 1 -weighted images. In our opinion, this can be explained by scattered subacute bleedings, which are probably too small in amount to produce signals in T 1 -weighted pictures. (orig./MG) [de

  7. Laser speckle imaging based on photothermally driven convection

    Science.gov (United States)

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  8. Deep and optically resolved imaging through scattering media by space-reversed propagation.

    Science.gov (United States)

    Glastre, W; Jacquin, O; Hugon, O; Guillet de Chatellus, H; Lacot, E

    2012-12-01

    We propose a novel technique of microscopy to overcome the effects of both scattering and limitation of the accessible depth due to the objective working distance. By combining laser optical feedback imaging with acoustic photon tagging and synthetic aperture refocusing we demonstrate an ultimate shot noise sensitivity at low power (required to preserve the tissues) and a high resolution beyond the microscope working distance. More precisely, with a laser power of 10 mW, we obtain images with a micrometric resolution over approximately eight transport mean free paths, corresponding to 1.3 times the microscope working distance. Various applications such as biomedical diagnosis and research and development of new drugs and therapies can benefit from our imaging setup.

  9. Classification of MR brain images by combination of multi-CNNs for AD diagnosis

    Science.gov (United States)

    Cheng, Danni; Liu, Manhua; Fu, Jianliang; Wang, Yaping

    2017-07-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for development of future treatment. Magnetic resonance images (MRI) play important role to help understand the brain anatomical changes related to AD. Conventional methods extract the hand-crafted features such as gray matter volumes and cortical thickness and train a classifier to distinguish AD from other groups. Different from these methods, this paper proposes to construct multiple deep 3D convolutional neural networks (3D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. First, a number of local image patches are extracted from the whole brain image and a 3D-CNN is built upon each local patch to transform the local image into more compact high-level features. Then, the upper convolution and fully connected layers are fine-tuned to combine the multiple 3D-CNNs for image classification. The proposed method can automatically learn the generic features from imaging data for classification. Our method is evaluated using T1-weighted structural MR brain images on 428 subjects including 199 AD patients and 229 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 87.15% and an AUC (area under the ROC curve) of 92.26% for AD classification, demonstrating the promising classification performances.

  10. Magnetic resonance imaging in the head and neck tumor diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yasuyuki; Igarashi, Masahito; Miyata, Mamoru; Sonoda, Tetsushi; Miyoshi, Shunji; Hiraide, Fumihisa; Morita, Mamoru; Tanaka, Osamu

    1987-06-01

    MRI (magnetic resonance imaging) is a new diagnostic technique that is being applied to study disease processes that involve the upper aero-digestive tract and cranial nerves of interest to otolaryngologist. Seventy four patients with head and neck tumor were enrolled to study the diagnostic efficacy of MRI in comparison with X-ray computed tomography (X-ray CT). Five cases of head and neck tumors were presented. Characteristic findings of MRI were discussed. T2 weighted images are very useful in the diagnosis of head and neck tumors. Tumors in the areas surrounded by bone tissue were clearly imaged without such artifacts as recognized in X-ray CT. Information from mutiplane imaging, especially from coronal and sagittal sections, made it easier to determine the type and extent of the lesion. High signal linear parts which are in the periphery of the tumor offer important information that no adhesion is present.

  11. X-ray imaging of targets irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Serlin, V.; Sethian, J.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Foil targets irradiated by the Naval Research Laboratory Nike KrF laser were imaged in the x-ray region with two-dimensional spatial resolution in the 2 endash 10 μm range. The images revealed the smoothness of the emission from target and backlighter foils, the acceleration of the target foils, and the growth of Rayleigh endash Taylor instabilities that were seeded by patterns on the irradiated sides of CH foils

  12. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  13. Challenges With the Diagnosis and Treatment of Cerebral Radiation Necrosis

    International Nuclear Information System (INIS)

    Chao, Samuel T.; Ahluwalia, Manmeet S.; Barnett, Gene H.; Stevens, Glen H.J.; Murphy, Erin S.; Stockham, Abigail L.; Shiue, Kevin; Suh, John H.

    2013-01-01

    The incidence of radiation necrosis has increased secondary to greater use of combined modality therapy for brain tumors and stereotactic radiosurgery. Given that its characteristics on standard imaging are no different that tumor recurrence, it is difficult to diagnose without use of more sophisticated imaging and nuclear medicine scans, although the accuracy of such scans is controversial. Historically, treatment had been limited to steroids, hyperbaric oxygen, anticoagulants, and surgical resection. A recent prospective randomized study has confirmed the efficacy of bevacizumab in treating radiation necrosis. Novel therapies include using focused interstitial laser thermal therapy. This article will review the diagnosis and treatment of radiation necrosis

  14. Removal of a glowing spot from an image tube using laser radiation.

    Science.gov (United States)

    Gurski, T. R.

    1972-01-01

    A troublesome problem with the Kron electronograph has been the presence of a white glowing spot on the glass wall of the tube adjacent to the focus electrode. The procedure followed to eliminate the spot was to operate in the dark and apply voltage only to the focused electrode. Ruby laser radiation was unfocused, and its position was shifted on the electrode between laser shots until an effect was observed. This technique for removing the glowing spot should be applicable to other electronic image tubes.

  15. Potts disease: Diagnosis with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pursey, Jacqueline [MRI Department, Gartnavel General Hospitial, 1053 Great Western road, Glasgow G12 0YN (United Kingdom)], E-mail: Jacqueline.pursey@ggc.scot.nhs.uk; Stewart, Sharon [School of Health and Social Care, Caledonian University, Glasgow (United Kingdom)

    2010-02-15

    The eponymously named Potts disease is a relatively rare form of Tuberculosis (TB) which affects the spine. TB of the spine is one of the earliest diseases known to man and in the 20th century was thought to be a disease which had been defeated by the advent of antitubercular drugs. Over the last two decades there have been several reports which indicate a revival of TB in both the developing and developed world. Factors which may be contributing to this are the spread of the HIV virus, increased immigration and the emergence of drug resistant strains of the TB bacteria. Potts disease has an insidious onset and often the radiographic findings are far advanced when a diagnosis is finally reached. MRI is able to detect changes to the vertebrae in Potts disease earlier than radiographs. This case report outlines the clinical presentation of a young male with Potts disease who was HIV negative, and the important role that MRI plays in diagnosis and therefore in appropriate and timely intervention. The typical magnetic resonance (MR) imaging features and the radiographic hallmarks of the disease will also be discussed.

  16. Potts disease: Diagnosis with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pursey, Jacqueline; Stewart, Sharon

    2010-01-01

    The eponymously named Potts disease is a relatively rare form of Tuberculosis (TB) which affects the spine. TB of the spine is one of the earliest diseases known to man and in the 20th century was thought to be a disease which had been defeated by the advent of antitubercular drugs. Over the last two decades there have been several reports which indicate a revival of TB in both the developing and developed world. Factors which may be contributing to this are the spread of the HIV virus, increased immigration and the emergence of drug resistant strains of the TB bacteria. Potts disease has an insidious onset and often the radiographic findings are far advanced when a diagnosis is finally reached. MRI is able to detect changes to the vertebrae in Potts disease earlier than radiographs. This case report outlines the clinical presentation of a young male with Potts disease who was HIV negative, and the important role that MRI plays in diagnosis and therefore in appropriate and timely intervention. The typical magnetic resonance (MR) imaging features and the radiographic hallmarks of the disease will also be discussed.

  17. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  18. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented...... to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis...... scanning microscopy images can be used to provide information on the protein microstructure in yogurt products. For large numbers of microscopy images, subjective evaluation becomes a difficult or even impossible approach, if the images should be incorporated in any form of statistical analysis alongside...

  19. The application of image processing in the measurement for three-light-axis parallelity of laser ranger

    Science.gov (United States)

    Wang, Yang; Wang, Qianqian

    2008-12-01

    When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.

  20. Rat retinal vasomotion assessed by laser speckle imaging

    DEFF Research Database (Denmark)

    Neganova, Anastasiia Y; Postnov, Dmitry D; Sosnovtseva, Olga

    2017-01-01

    Vasomotion is spontaneous or induced rhythmic changes in vascular tone or vessel diameter that lead to rhythmic changes in flow. While the vascular research community debates the physiological and pathophysiological consequence of vasomotion, there is a great need for experimental techniques...... that can address the role and dynamical properties of vasomotion in vivo. We apply laser speckle imaging to study spontaneous and drug induced vasomotion in retinal network of anesthetized rats. The results reveal a wide variety of dynamical patterns. Wavelet-based analysis shows that (i) spontaneous...

  1. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  2. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    Science.gov (United States)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  3. Interferometric laser imaging for in-flight cloud droplet sizing

    International Nuclear Information System (INIS)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-01-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications. (paper)

  4. Quantitative phase imaging of living cells with a swept laser source

    Science.gov (United States)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  5. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  6. Clinical advances of SPECT rCBF and interventional imaging applied in the diagnosis of dementias

    International Nuclear Information System (INIS)

    Zhang Kaijun

    2002-01-01

    Brain perfusion SPECT is a functional and noninvasive neuroimaging technique that allow the investigation of physiological and physiopathologic events in the human brain, including cerebral perfusion and function. Interventional rCBF imaging can also evaluate cerebrovascular reserve. In clinically, rCBF imaging play an important role in the diagnosis and differential diagnosis of dementias, especially vascular and Alzheimer's dementia. If etiology of some types of dementias is determined so that it can be early diagnosed, treated and taken prevention; the partial patients with dementia can get recovery or remission

  7. Development of comprehensive image processing technique for differential diagnosis of liver disease by using multi-modality images. Pixel-based cross-correlation method using a profile

    International Nuclear Information System (INIS)

    Inoue, Akira; Okura, Yasuhiko; Akiyama, Mitoshi; Ishida, Takayuki; Kawashita, Ikuo; Ito, Katsuyoshi; Matsunaga, Naofumi; Sanada, Taizo

    2009-01-01

    Imaging techniques such as high magnetic field imaging and multidetector-row CT have been markedly improved recently. The final image-reading systems easily produce more than a thousand diagnostic images per patient. Therefore, we developed a comprehensive cross-correlation processing technique using multi-modality images, in order to decrease the considerable time and effort involved in the interpretation of a radiogram (multi-formatted display and/or stack display method, etc). In this scheme, the criteria of an attending radiologist for the differential diagnosis of liver cyst, hemangioma of liver, hepatocellular carcinoma, and metastatic liver cancer on magnetic resonance images with various sequences and CT images with and without contrast enhancement employ a cross-correlation coefficient. Using a one-dimensional cross-correlation method, comprehensive image processing could be also adapted for various artifacts (some depending on modality imaging, and some on patients), which may be encountered at the clinical scene. This comprehensive image-processing technique could assist radiologists in the differential diagnosis of liver diseases. (author)

  8. The efficacy of unenhanced MR imaging for the diagnosis of acute appendicitis: a performance comparison versus abdominal ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Ji Eun; Min, Seon Jeong; Cho, Seong Whi [Kandong Sacred Heart Hospital, Hallym University of Korea, Seoul (Korea, Republic of)] (and others)

    2008-02-15

    To evaluate the efficacy of unenhanced MR imaging compared to the diagnostic accuracy, advantage, and limitations of abdominal ultrasonography in the diagnosis of acute appendicitis. The study included 40 patients suspected of having acute appendicitis and who were subjected to an unenhanced MR image, as well as an abdominal ultrasonography. A T1 FLASH in an axial image, a chemical shift-selective fat suppressed T2 HASTE in an axial image, as well as a T2 HASTE in an axial and coronal image were obtained as unenhanced MR images. The diagnosis was established based on a surgical or clinical follow-up of the unenhanced MR results, which were then statistically compared to the ultrasonographic results. The surgical or clinical follow-up results revealed that 25 patients were positively diagnosed with appendicitis. Of these, 7 patients had symptoms of acute appendicitis with no pathologic diagnoses, whereas the 8 remaining patients were diagnosed with another condition. The sensitivity and accuracy of the unenhanced MR imaging was 92% and 90%, compared to ultrasonography which was 68% and 72.5% accurate, respectively. The differences in sensitivity and accuracy between the two methods were found to be statistically significant ({rho} < 0.05, chi-square test). Based on these results, unenhanced MR imaging was superior to sonography for the diagnosis of appendicitis. Unenhanced MR imaging may be a useful modality for the diagnosis of acute appendicitis, especially for suboptimal or nondiagnostic sonographies, as well as patients that are particularity sensitive to radiation exposure.

  9. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  10. Magnetic resonance imaging in temporal lobe epilepsy. Usefulness for the etiological diagnosis of temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Mohamed, A.; Lueders, H.O.

    2000-01-01

    With improvement in magnetic resonance (MR) imaging techniques, the ability to identify lesions responsible for temporal lobe epilepsy has increased. MR imaging has also enabled the in vivo diagnosis of hippocampal sclerosis. Brain tumors are responsible for 2-4% of epilepsies in adult population and 10-20% of medically intractable epilepsy. The sensitivity of MR imaging in the diagnosis of tumors and other lesions of the temporal lobe (vascular malformations, etc.) is around 90%. Both hippocampal sclerosis and other temporal lobe lesions are amenable to surgical therapy with excellent postsurgical seizure outcome. In this article, we characterize and underline distinguishing features of the different pathological entities. We also suggest an approach to reviewing the MR images of an epileptic patient. (author)

  11. Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system

    Science.gov (United States)

    Ponticorvo, A.; Rowland, R.; Yang, B.; Lertsakdadet, B.; Crouzet, C.; Bernal, N.; Choi, B.; Durkin, A. J.

    2017-02-01

    Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the "Perfusion Unit" output of commercial systems.

  12. A comparative analysis of pulmonary ventilation-perfusion imaging with pulmonary angiography in the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Wang Jincheng; Mi Hongzhi; Wang Qian; Zhang Weijun; Lu Biao; Yang Hao; Ding Jian; Lu Yao

    2001-01-01

    Objective: To assess the value of ventilation-perfusion imaging in the diagnosis of pulmonary embolism (PE). Methods: Thirty consecutive patients with clinically suspected pulmonary embolism were studied, male: female 15:15, mean age was (36.2 +- 13.9) years. The chest radiograms were obtained in all 30 patients. All patients underwent radionuclide ventilation-perfusion imaging and pulmonary angiography. Results: Of the 30 patients, 22 with lobe, multiple segment or multi-subsegment perfusion defects and normal or nearly normal ventilation images were reported as PE. 20 of them were confirmed to be with PE by pulmonary angiography, 2 patients were not confirmed. Eight of 30 patients with multiple perfusion defects, ventilative abnormalities were reported as non-PE and the diagnoses were confirmed by pulmonary angiography. The sensitivity, specificity and accuracy of diagnosis of PE by ventilation-perfusion imaging was 100%, 80.0% and 93.3% respectively. Conclusions: (1) Ventilation-perfusion imaging is one of the most valuable methods in the diagnosis of PE. (2) The results suggest that pulmonary embolism can be diagnosed non-invasively in most patients on the basis of clinical manifestation, chest radiograms and ventilation-perfusion imaging findings. (3) Pulmonary angiography is required while clinical manifestation and ventilation-perfusion imaging findings are discordant with each other

  13. Infrared scanning laser ophthalmoscope imaging of the macula and its correlation with functional loss and structural changes in patients with stargardt disease.

    Science.gov (United States)

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2011-05-01

    To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Eighteen eyes of 10 patients with Stargardt disease were studied. Scanning laser ophthalmoscope infrared images were compared with corresponding spectral-domain optical coherence tomography scans. Additionally, scanning laser ophthalmoscope microperimetry was performed, and results were superimposed on scanning laser ophthalmoscope infrared images and in selected cases on fundus autofluorescence images. Seventeen of 18 eyes showed a distinct hyporeflective foveal and/or perifoveal area with distinct borders on scanning laser ophthalmoscope infrared images, which was less evident on funduscopy and incompletely depicted in fundus autofluorescence images. This hyporeflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium and disorganization or loss of the photoreceptor cell inner segment-outer segment junction and external-limiting membrane on spectral-domain optical coherence tomography. Scanning laser ophthalmoscope infrared fundus images are useful for depicting retinal structural changes in patients with Stargardt disease. A spectral-domain optical coherence tomography/scanning laser ophthalmoscope microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history.

  14. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Tang, Ho-Wai; Wong, Melody Yee-Man; Chan, Sharon Lai-Fung; Che, Chi-Ming; Ng, Kwan-Ming

    2011-01-01

    Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.

  15. Laser-sheet imaging of HE-driven interfaces

    International Nuclear Information System (INIS)

    Benjamin, R.F.; Rightley, P.M.; Kinkead, S.; Martin, R.A.; Critchfield, R.; Sandoval, D.L.; Holmes, R.; Gorman, T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors made substantial progress in developing the MILSI (Multiple Imaging of Laser-Sheet Illumination) technique for high explosive (HE)-driven fluid interfaces. They observed the instability, but have not yet measured the instability growth rate. They developed suitable sample containers and optical systems for studying the Rightmyer-Meshkov instability of perturbed water/bromoform interfaces and they successfully fielded the new MILSI diagnostic at two firing-site facilities. The problem continues to be of central importance to the inertial confinement fusion (ICF) and weapons physics communities

  16. Statistical and fractal analysis of autofluorescent myocardium images in posthumous diagnostics of acute coronary insufficiency

    Science.gov (United States)

    Boichuk, T. M.; Bachinskiy, V. T.; Vanchuliak, O. Ya.; Minzer, O. P.; Garazdiuk, M.; Motrich, A. V.

    2014-08-01

    This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections of the myocardium). The polarized structure of autofluorescence imaging layers of biological tissues was detected and investigated. Proposed the model of describing the formation of polarization inhomogeneous of autofluorescence imaging biological optically anisotropic layers. On this basis, analytically and experimentally tested to justify the method of laser polarimetry autofluorescent. Analyzed the effectiveness of this method in the postmortem diagnosis of infarction. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections myocardium were defined. The operational characteristics (sensitivity, specificity, accuracy) of these technique were determined.

  17. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    Science.gov (United States)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  18. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation.

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  19. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  20. Deep learning and three-compartment breast imaging in breast cancer diagnosis

    Science.gov (United States)

    Drukker, Karen; Huynh, Benjamin Q.; Giger, Maryellen L.; Malkov, Serghei; Avila, Jesus I.; Fan, Bo; Joe, Bonnie; Kerlikowske, Karla; Drukteinis, Jennifer S.; Kazemi, Leila; Pereira, Malesa M.; Shepherd, John

    2017-03-01

    We investigated whether deep learning has potential to aid in the diagnosis of breast cancer when applied to mammograms and biologic tissue composition images derived from three-compartment (3CB) imaging. The dataset contained diagnostic mammograms and 3CB images (water, lipid, and protein content) of biopsy-sampled BIRADS 4 and 5 lesions in 195 patients. In 58 patients, the lesion manifested as a mass (13 malignant vs. 45 benign), in 87 as microcalcifications (19 vs. 68), and in 56 as (focal) asymmetry or architectural distortion (11 vs. 45). Six patients had both a mass and calcifications. For each mammogram and corresponding 3CB images, a 128x128 region of interest containing the lesion was selected by an expert radiologist and used directly as input to a deep learning method pretrained on a very large independent set of non-medical images. We used a nested leave-one-out-by-case (patient) model selection and classification protocol. The area under the ROC curve (AUC) for the task of distinguishing between benign and malignant lesions was used as performance metric. For the cases with mammographic masses, the AUC increased from 0.83 (mammograms alone) to 0.89 (mammograms+3CB, p=.162). For the microcalcification and asymmetry/architectural distortion cases the AUC increased from 0.84 to 0.91 (p=.116) and from 0.61 to 0.87 (p=.006), respectively. Our results indicate great potential for the application of deep learning methods in the diagnosis of breast cancer and additional knowledge of the biologic tissue composition appeared to improve performance, especially for lesions mammographically manifesting as asymmetries or architectural distortions.

  1. Laser physics and a review of laser applications in dentistry for children.

    Science.gov (United States)

    Martens, L C

    2011-04-01

    The aim of this introduction to this special laser issue is to describe some basic laser physics and to delineate the potential of laser-assisted dentistry in children. A brief review of the available laser literature was performed within the scope of paediatric dentistry. Attention was paid to soft tissue surgery, caries prevention and diagnosis, cavity preparation, comfort of the patient, effect on bacteria, long term pulpal vitality, endodontics in primary teeth, dental traumatology and low level laser therapy. Although there is a lack of sufficient evidence taking into account the highest standards for evidence-based dentistry, it is clear that laser application in a number of different aetiologies for soft tissue surgery in children has proven to be successful. Lasers provide a refined diagnosis of caries combined with the appropriate preventive adhesive dentistry after cavity preparation. This will further lead to a new wave of micro-dentistry based on 'filling without drilling'. It has become clear from a review of the literature that specific laser applications in paediatric dentistry have gained increasing importance. It can be concluded that children should be considered as amongst the first patients for receiving laser-assisted dentistry.

  2. APASL and AASLD Consensus Guidelines on Imaging Diagnosis of Hepatocellular Carcinoma: A Review

    Directory of Open Access Journals (Sweden)

    Cher Heng Tan

    2011-01-01

    Full Text Available Consensus guidelines for radiological diagnosis of hepatocellular carcinoma (HCC have been drafted by several large international working groups. This article reviews the similarities and differences between the most recent guidelines proposed by the American Association for Study of Liver Diseases and the Asian Pacific Association for the Study of the Liver. Current evidence for the various imaging modalities for diagnosis of HCC and their relevance to the consensus guidelines are reviewed.

  3. Laser speckle imaging: a novel method for detecting dental erosion.

    Directory of Open Access Journals (Sweden)

    Nelson H Koshoji

    Full Text Available Erosion is a highly prevalent condition known as a non-carious lesion that causes progressive tooth wear due to chemical processes that do not involve the action of bacteria. Speckle images proved sensitive to even minimal mineral loss from the enamel. The aim of the present study was to investigate the use of laser speckle imaging analysis in the spatial domain to quantify shifts in the microstructure of the tooth surface in an erosion model. 32 fragments of the vestibular surface of bovine incisors were divided in for groups (10 min, 20 min. 30 min and 40 min of acid etching immersed in a cola-based beverage (pH approximately 2.5 twice a day during 7 days to create an artificial erosion. By analyzing the laser speckle contrast map (LASCA in the eroded region compared to the sound it was observed that the LASCA map shifts, proportionally to the acid each duration, by: 18%; 23%; 39% and 44% for the 10 min; 20 min; 30 min and 40 min groups, respectively. To the best of our knowledge, this is the first study to demonstrate the correlation between speckle patterns and erosion progression.

  4. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  5. Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging

    Directory of Open Access Journals (Sweden)

    Millar A Harvey

    2011-07-01

    Full Text Available Abstract Matrix-Assisted Laser Desorption/Ionisation (MALDI mass spectrometry imaging (MSI uses the power of high mass resolution time of flight (ToF mass spectrometry coupled to the raster of lasers shots across the cut surface of tissues to provide new insights into the spatial distribution of biomolecules within biological tissues. The history of this technique in animals and plants is considered and the potential for analysis of proteins by this technique in plants is discussed. Protein biomarker identification from MALDI-MSI is a challenge and a number of different approaches to address this bottleneck are discussed. The technical considerations needed for MALDI-MSI are reviewed and these are presented alongside examples from our own work and a protocol for MALDI-MSI of proteins in plant samples.

  6. Diagnosis of thyroid multinodular goiter using diffraction-enhanced imaging

    International Nuclear Information System (INIS)

    Rocha, H.S.; Lopes, R.T.; Valiante, P.M.; Tirao, G.; Mazzaro, I.; Hoennicke, M.G.; Cusatis, C.; Giles, C.

    2005-01-01

    Diffraction-enhanced images (DEI) have been obtained using two silicon crystals. A first channel-cut silicon crystal using the Si(3 3 3) reflection is employed to reduce the divergence of the pre-monochromated Si(1 1 1) beam of the light line to 60 microradian (12 arcsec). A second channel-cut Si(3 3 3) crystal was used as a Bragg analyzer to obtain bright and dark field images by changing its angular position. This technique is ideally suited for soft-tissue imaging or objects with the same absorption coefficient interfaces. DEI was developed at the XRD-2 beamline at the Brazilian Synchrotron (LNLS) in Campinas-Brazil. Feasibility tests on acquired images, which allow the diagnosis of thyroid nodular goiter, were performed. This disease is ordinary. The tissue developed on the cervical area causes compression of the nearby structures and undesirable aesthetic deformities with worldwide distribution. DEI of the tissues were taken to observe their morphology and to compare with the microscopic analysis (histopathological). This technique allows cutting sections a hundred times thicker than conventional histological techniques allowing a complete vision of the disease morphology. DEI show details not clearly seen with conventional techniques

  7. Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging.

    Science.gov (United States)

    Wang, Yejun; Capps, Cade; Kulatilaka, Waruna D

    2017-02-15

    Ultrashort-pulse (femtosecond-duration) two-photon laser-induced fluorescence (fs-TPLIF) of an inert gas tracer krypton (Kr) is investigated. A detailed spectroscopic study of fluorescence channels followed by the 5p'←←4p excitation of Kr at 204.1 nm is reported. The experimental line positions in the 750-840 nm emission region agree well with the NIST Atomic Spectra Database. The present work provides an accurate listing of relative line strengths in this spectral region. In the range of laser pulse energies investigated, a quadratic dependence was observed between the Kr-TPLIF signal and the laser pulse energy. The single-laser-shot 2D TPLIF images recorded in an unsteady jet demonstrate the potential of using fs excitation at 204.1 nm for mixing and flow diagnostic studies using Kr as an inert gas tracer.

  8. Imaging Diagnosis of Neonatal Anemia: Report of Two Unusual Etiologies

    Directory of Open Access Journals (Sweden)

    Shabnam Bhandari Grover

    2013-01-01

    Full Text Available Anemia in neonatal period is rare, with the common causes being Rh and ABO blood group incompatibility, hemorrhagic disease of newborn, congenital hemolytic anemia, hemoglobinopathies, and TORCH (toxoplasmosis, rubella, cytomegalovirus, herpes virus infections. Congenital leukemia and infantile osteopetrosis (OP are among the rare causes of neonatal anemia. A review of the literature shows approximately 200 reported cases of congenital leukemia. Articles describing the imaging features of congenital leukemia are still rarer. Infantile OP, another rare disorder with a reported incidence of 1 in 250,000 has characteristic imaging features, which are diagnostic of the disease. We report a case each, of two rare diseases: Congenital leukemia and infantile osteopetrosis. Additionally, our report highlights the radiological and imaging features of congenital leukemia and infantile OP and their crucial role in arriving at an early diagnosis.

  9. Validation of organ procurement and transplant network (OPTN)/united network for organ sharing (UNOS) criteria for imaging diagnosis of hepatocellular carcinoma.

    Science.gov (United States)

    Fowler, Kathryn J; Karimova, E Jane; Arauz, Anthony R; Saad, Nael E; Brunt, Elizabeth M; Chapman, William C; Heiken, Jay P

    2013-06-27

    Imaging diagnosis of hepatocellular carcinoma (HCC) presents an important pathway for transplant exception points and priority for cirrhotic patients. The purpose of this retrospective study is to evaluate the validity of the new Organ Procurement and Transplant Network (OPTN) classification system on patients undergoing transplantation for HCC. One hundred twenty-nine patients underwent transplantation for HCC from April 14, 2006 to April 18, 2011; a total of 263 lesions were reported as suspicious for HCC on pretransplantation magnetic resonance imaging. Magnetic resonance imaging examinations were reviewed independently by two experienced radiologists, blinded to final pathology. Reviewers identified major imaging features and an OPTN classification was assigned to each lesion. Final proof of diagnosis was pathology on explant or necrosis along with imaging findings of ablation after transarterial chemoembolization. Application of OPTN imaging criteria in our population resulted in high specificity for the diagnosis of HCC. Sensitivity in diagnosis of small lesions (≥1 and based on preoperative imaging but would not have met criteria under the new system. Eleven percent of the patients not meeting OPTN criteria were found to have T2 stage tumor burden on pathology. The OPTN imaging policy introduces a high level of specificity for HCC but may decrease sensitivity for small lesions. Management may be impacted in a number of patients, potentially requiring longer surveillance periods or biopsy to confirm diagnosis.

  10. Markerless laser registration in image-guided oral and maxillofacial surgery.

    Science.gov (United States)

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  11. Utility of ultrasound and magnetic resonance imaging in prenatal diagnosis of placenta accreta: A prospective study

    International Nuclear Information System (INIS)

    Satija, Bhawna; Kumar, Sanyal; Wadhwa, Leena; Gupta, Taru; Kohli, Supreethi; Chandoke, Rajkumar; Gupta, Pratibha

    2015-01-01

    Placenta accreta is the abnormal adherence of the placenta to the uterine wall and the most common cause for emergency postpartum hysterectomy. Accurate prenatal diagnosis of affected pregnancies allows optimal obstetric management. To summarize our experience in the antenatal diagnosis of placenta accreta on imaging in a tertiary care setup. To compare the accuracy of ultrasound (USG) with color Doppler (CDUS) and magnetic resonance imaging (MRI) in prenatal diagnosis of placenta accreta. Prospective study in a tertiary care setup. A prospective study was conducted on pregnant females with high clinical risk of placenta accreta. Antenatal diagnosis was established based on CDUS and MRI. The imaging findings were compared with final diagnosis at the time of delivery and/or pathologic examination. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for both CDUS and MRI. The sensitivity and specificity values of USG and MRI were compared by the McNemar test. Thirty patients at risk of placenta accreta underwent both CDUS and MRI. Eight cases of placenta accreta were identified (3 vera, 4 increta, and 1 percreta). All patients had history of previous cesarean section. Placenta previa was present in seven out of eight patients. USG correctly identified the presence of placenta accreta in seven out of eight patients (87.5% sensitivity) and the absence of placenta accreta in 19 out of 22 patients (86.4% specificity). MRI correctly identified the presence of placenta accreta in 6 out of 8 patients (75.0% sensitivity) and absence of placenta accreta in 17 out of 22 patients (77.3% specificity). There were no statistical differences in sensitivity (P = 1.00) and specificity (P = 0.687) between USG and MRI. Both USG and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. Both modalities have complimentary

  12. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.

    Science.gov (United States)

    Leffler, Tomas; Brackmann, Christian; Aldén, Marcus; Li, Zhongshan

    2017-06-01

    Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.

  13. Magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer: initial experience

    International Nuclear Information System (INIS)

    Melo, Homero Jose de Farias e; Abdala, Nitamar; Goldman, Suzan Menasce; Szejnfeld, Jacob

    2009-01-01

    Objective: to report an experiment involving the introduction of a protocol utilizing commercially available three-dimensional 1H magnetic resonance spectroscopy imaging (3D 1H MRSI) method in patients diagnosed with prostatic tumors under suspicion of neoplasm. Materials and methods: forty-one patients in the age range between 51 and 80 years (mean, 67 years) were prospectively evaluated. The patients were divided into two groups: patients with one or more biopsies negative for cancer and high specific-prostatic antigen levels (group A), and patients with cancer confirmed by biopsy (group B). The determination of the target area (group A) or the known cancer extent (group B) was based on magnetic resonance imaging and MRSI studies. Results: the specificity of MRSI in the diagnosis of prostate cancer was lower than the specificity reported in the literature (about 47%). On the other hand, for tumor staging, it corresponded to the specificity reported in the literature. Conclusion: the introduction and standardization of 3D 1H MRSI has allowed the obtention of a presumable diagnosis of prostate cancer, by a combined analysis of magnetic resonance imaging and metabolic data from 3D 1H MRSI. (author)

  14. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  15. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging

    OpenAIRE

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-01-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed dur...

  16. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    International Nuclear Information System (INIS)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A.; Shivanna, Kiran H.; Magnotta, Vincent A.; Grosland, Nicole M.

    2008-01-01

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  17. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A. [The University of Iowa, Department of Biomedical Engineering, Center for Computer Aided Design, Iowa City, IA (United States); Shivanna, Kiran H. [The University of Iowa, Center for Computer Aided Design, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Department of Radiology, Center for Computer Aided Design, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Center for Computer Aided Design, Iowa City, IA (United States)

    2008-01-15

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  18. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    International Nuclear Information System (INIS)

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-01-01

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10 -3 W/cm 2 was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer

  19. Probe-based confocal laser endomicroscopy (pCLE) - a new imaging technique for in situ localization of spermatozoa.

    Science.gov (United States)

    Trottmann, Matthias; Stepp, Herbert; Sroka, Ronald; Heide, Michael; Liedl, Bernhard; Reese, Sven; Becker, Armin J; Stief, Christian G; Kölle, Sabine

    2015-05-01

    In azoospermic patients, spermatozoa are routinely obtained by testicular sperm extraction (TESE). However, success rates of this technique are moderate, because the site of excision of testicular tissue is determined arbitrarily. Therefore the aim of this study was to establish probe-based laser endomicroscopy (pCLE) a noval biomedical imaging technique, which provides the opportunity of non-invasive, real-time visualisation of tissue at histological resolution. Using pCLE we clearly visualized longitudinal and horizontal views of the tubuli seminiferi contorti and localized vital spermatozoa. Obtained images and real-time videos were subsequently compared with confocal laser scanning microscopy (CLSM) of spermatozoa and tissues, respectively. Comparative visualization of single native Confocal laser scanning microscopy (CLSM, left) and probe-based laser endomicroscopy (pCLE, right) using Pro Flex(TM) UltraMini O after staining with acriflavine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Confocal fluorescence microscopy for minimal-invasive tumor diagnosis

    International Nuclear Information System (INIS)

    Zenzinger, M.; Bille, J.

    2000-01-01

    The goal of the project ''stereotactic laser-neurosurgery'' is the development of a system for careful and minimal-invasive resection of brain tumors with ultrashort laser pulses through a thin probe. A confocal laser-scanning-microscope is integrated in the probe. In this paper, the simulation of its optical properties by a laboratory setup and the expansion by the ability for fluorescence microscopy are reported. For a valuation of the imaging properties, the point-spread-function in three dimensions and the axial depth-transfer-function were measured and thus, among other things, the resolving power and the capacity for depth discrimination were analysed. The microscope will enable intra-operative detection of tumor cells by the method of immunofluorescence. As a first model of the application in the brain, cell cultures, that fluorescein-labelled antibodies were bound to specifically, were used in this work. Due to the fluorescence signal, it was possible to detect and identify clearly the areas that had been marked in this manner, proving the suitability of the setup for minimal-invasive tumor diagnosis. (orig.)

  1. Automatic Vertebral Fracture Assessment System (AVFAS) for Spinal Pathologies Diagnosis Based on Radiograph X-Ray Images

    Science.gov (United States)

    Mustapha, Aouache; Hussain, Aini; Samad, Salina Abd; Bin Abdul Hamid, Hamzaini; Ariffin, Ahmad Kamal

    Nowadays, medical imaging has become a major tool in many clinical trials. This is because the technology enables rapid diagnosis with visualization and quantitative assessment that facilitate health practitioners or professionals. Since the medical and healthcare sector is a vast industry that is very much related to every citizen's quality of life, the image based medical diagnosis has become one of the important service areas in this sector. As such, a medical diagnostic imaging (MDI) software tool for assessing vertebral fracture is being developed which we have named as AVFAS short for Automatic Vertebral Fracture Assessment System. The developed software system is capable of indexing, detecting and classifying vertebral fractures by measuring the shape and appearance of vertebrae of radiograph x-ray images of the spine. This paper describes the MDI software tool which consists of three main sub-systems known as Medical Image Training & Verification System (MITVS), Medical Image and Measurement & Decision System (MIMDS) and Medical Image Registration System (MIRS) in term of its functionality, performance, ongoing research and outstanding technical issues.

  2. The value of imaging examinations in diagnosis and curative effect evaluation of breast cancer

    International Nuclear Information System (INIS)

    Xia Xiaotian; Zhang Yongxue

    2010-01-01

    Breast cancer is a serious impact on women's physical and mental health and a life-threatening common disease. Imaging examinations have great significances in diagnosing and evaluating curative effect on breast cancer. This article aims to introduce and comprehensive the value of diagnosis and curative effect evaluation of breast cancer in the context of imaging examinations (ultrasonography, mammography, breast CT, breast MRI, breast 99 Tc m -MIBI imaging, PET, PET-CT, etc). (authors)

  3. Computed Tomography Perfusion Usefulness in Early Imaging Diagnosis of Herpes Simplex Virus Encephalitis

    International Nuclear Information System (INIS)

    Marco de Lucas, E.; Mandly, Gonzalez A.; Gutierrez, A.; Sanchez, E.; Arnaiz, J.; Piedra, T.; Rodriguez, E.; Diez, C.

    2006-01-01

    An early diagnosis is crucial in herpes simplex virus encephalitis patients in order to institute acyclovir therapy and reduce mortality rates. Magnetic resonance imaging (MRI) is considered the gold standard for evaluation of these patients, but is frequently not available in the emergency setting. We report the first case of a computed tomography (CT) perfusion study that helped to establish a prompt diagnosis revealing abnormal increase of blood flow in the affected temporoparietal cortex at an early stage

  4. Movement disorders: role of imaging in diagnosis.

    Science.gov (United States)

    Mascalchi, Mario; Vella, Alessandra; Ceravolo, Roberto

    2012-02-01

    Magnetic resonance imaging (MRI and single-photon emission computed tomography (SPECT) have a considerable role in the diagnosis of the single patient with movement disorders. Conventional MRI demonstrates symptomatic causes of parkinsonism but does not show any specific finding in Parkinson's disease (PD). However, SPECT using tracers of the dopamine transporter (DAT) demonstrates an asymmetric decrease of the uptake in the putamen and caudate from the earliest clinical stages. In other degenerative forms of parkinsonism, including progressive supranuclear palsy (PSP), multisystem atrophy (MSA), and corticobasal degeneration (CBD), MRI reveals characteristic patterns of regional atrophy combined with signal changes or microstructural changes in the basal ganglia, pons, middle and superior cerebellar peduncles, and cerebral subcortical white matter. SPECT demonstrates a decreased uptake of tracers of the dopamine D2 receptors in the striata of patients with PSP and MSA, which is not observed in early PD. MRI also significantly contributes to the diagnosis of some inherited hyperkinetic conditions including neurodegeneration with brain iron accumulation and fragile-X tremor/ataxia syndrome by revealing characteristic symmetric signal changes in the basal ganglia and middle cerebellar peduncles, respectively. A combination of the clinical features with MRI and SPECT is recommended for optimization of the diagnostic algorithm in movement disorders. Copyright © 2011 Wiley Periodicals, Inc.

  5. Study on 3D gamma-ray imaging for medical diagnosis with coded aperture

    International Nuclear Information System (INIS)

    Horiki, Kazunari; Shimazoe, Kenji; Ohno, Masashi; Takahashi, Hiroyuki; Kobashi, Keiji; Moro, Eiji

    2014-01-01

    The conventional methods for medical imaging have several disadvantages such as restriction on the energy and detection efficiency. Coded aperture imaging can be used for medical imagings without restriction on the energy, which makes it possible to use multiple tracers in diagnosis. The detection efficiency of Coded aperture imaging is ten times better than that of the pinhole collimator. First, simulations of the coded aperture imaging have been done to confirm M-array's effectiveness. Second, two experiments have been done with low-energy gamma-ray (122 keV( 57 Co)) and with high-energy gamma-ray (662 keV( 137 Cs)). In both cases reconstructed image was successfully acquired. The measured spatial resolution in the experiment using 57 Co is 4.3 mm (FWHM). (author)

  6. MR imaging, CT and CEA scintigraphy in the diagnosis of local recurrence of rectal carcinoma

    International Nuclear Information System (INIS)

    Blomqvist, L.; Holm, T.; Goeranson, H.; Jacobsson, H.; Ohlsen, H.; Larsson, S.A.

    1996-01-01

    Purpose: To compare advanced imaging techniques in the diagnosis of recurrent rectal cancer. Material and Methods: Twenty-five consecutive patients with either suspected or verified recurrence were examined by CT (n=25), MR with phased-array capabilities (n=24) and CEA scintigraphy (n=16). Three experienced radiologists (who were blinded to results obtained at surgery and histopathology) independently evaluated the films, one observer for each modality. Results: The MR radiologist arrived at a correct diagnosis in 87.5% of the examinations, the CT radiologist in 76% and the CEA radiologist in 75%. The MR radiologist's results correlated more often with reported pathology than did those of the CT radiologist with regard to the relation of recurrent tumor to surrounding structures in the pelvis. Conclusion: MR imaging is the most effective of the 3 modalities in the diagnosis of recurrent rectal cancer. (orig.)

  7. Advanced femtosecond lasers enable new developments in non-linear imaging and functional studies in neuroscience, biology and medical applications (Conference Presentation)

    Science.gov (United States)

    Arrigoni, Marco; McCoy, Darryl

    2016-03-01

    In the last few years Multiphoton Excitation Microscopy witnessed a mutation from tool for imaging cellular structures in living animals deeper than other high-resolution techniques, into an instrument for monitoring functionality and even stimulating or inhibiting inter-cellular signalling. This paradigm shift has been enabled primarily by the development of genetically encoded probes like Ca indicators (GECI) and Opsins for optogenetics inhibition and stimulation. These developments will hopefully enable the understanding of how local network of hundreds or thousands of neurons operate in response to actual tasks or induced stimuli. Imaging, monitoring signals and activating neurons, all on a millisecond time scale, requires new laser tools providing a combination of wavelengths, higher powers and operating regimes different from the ones traditionally used for classic multiphoton imaging. The other key development in multiphoton techniques relates to potential diagnostic and clinical applications where non-linear imaging could provide all optical marker-free replacement of H and E techniques and even intra-operative guidance for procedures like cancer surgery. These developments will eventually drive the development of specialized laser sources where compact size, ease of use, beam delivery and cost are primary concerns. In this talk we will discuss recent laser product developments targeting the various applications of multiphoton imaging, as fiber lasers and other new type of lasers gradually gain popularity and their own space, side-by-side or as an alternative to conventional titanium sapphire femtosecond lasers.

  8. MRI diagnosis of ACL bundle tears: value of oblique axial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Alex W.H.; Griffith, James F.; Hung, Esther H.Y. [Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR (China); Law, Kan Yip; Yung, Patrick S.H. [Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR (China)

    2013-02-15

    To investigate the diagnostic accuracy of oblique axial intermediate weighting MR imaging in detecting partial thickness anterior cruciate ligament (ACL) bundle tears. The study protocol was approved by the institutional ethics committee. Sixty-one subjects (43 male, 18 female; mean age 27.4 years; range 9 to 57 years) with clinically suspected ACL tear or meniscal tear between September 2009 and January 2011 were studied with MRI and arthroscopy. Detection of partial tear for the ACL as a whole and for each ACL bundle by protocol A (standard orthogonal sequences) and protocol B (standard orthogonal sequences plus oblique axial intermediate weighted imaging) was compared in a blinded fashion. Performance characteristics for protocol A and protocol B were compared using sensitivity, specificity, accuracy and ROC curves. A two-tailed p value of <0.05 indicated statistical significance. Fifteen (24.6%) normal, 15 (24.6%) partial and 31 complete tears were diagnosed by arthroscopy. Sensitivity, specificity and accuracy of protocol A for the diagnosis of partial tear of the ACL was 33%, 87% and 74%, while for protocol B the values were 87%, 87% and 87% respectively. The area under the curve (AUC) for the diagnosis of partial ACL tear and individual bundle tear was higher for protocol B, although this difference did not reach statistical significance (p > 0.05). The addition of oblique axial imaging to standard MR imaging improves diagnostic accuracy for detecting partial tears of the ACL as well as individual bundle tears of the ACL. (orig.)

  9. Autofluorescence Imaging and Spectroscopy of Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2016-12-01

    Full Text Available Lung cancer is one of the most common cancers, with high mortality rate worldwide. Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for cancer detection. In this study, lung tissue sections excised from patients were detected by laser scan confocal microscopy and spectroscopy. The autofluorescence images demonstrated the cellular morphology and tissue structure, as well as the pathology of stained images. Based on the spectra study, it was found that the majority of the patients showed discriminating fluorescence in tumor tissues from normal tissues. Therefore, autofluorescence imaging and spectroscopy may be a potential method for aiding the diagnosis of lung cancer.

  10. Urinary tract infection in children: Diagnosis, treatment, imaging - Comparison of current guidelines.

    Science.gov (United States)

    Okarska-Napierała, M; Wasilewska, A; Kuchar, E

    2017-12-01

    Urinary tract infection (UTI) is a frequent disorder of childhood, yet the proper approach for a child with UTI is still a matter of controversy. The objective of this study was to critically compare current guidelines for the diagnosis and management of UTI in children, in light of new scientific data. An analysis was performed of the guidelines from: American Academy of Pediatrics (AAP), National Institute for Health and Care Excellence (NICE), Italian Society of Pediatric Nephrology, Canadian Paediatric Society (CPS), Polish Society of Pediatric Nephrology, and European Association of Urology (EAU)/European Society for Pediatric Urology (ESPU). Separate aspects of the approach for a child with UTI, including diagnosis, treatment and further imaging studies, were compared, with allowance for recent research in each field. The analyzed guidelines tried to reconcile recent reports about diagnosis, treatment, and further diagnostics in pediatric UTI with prior practices and opinions, and economic capabilities. There was still a lack of sufficient data to formulate coherent, unequivocal guidelines on UTI management in children, with imaging tests remaining the main area of controversy. As a result, the authors formulated their own proposal for UTI management in children. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  11. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...

  12. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    NARCIS (Netherlands)

    M.J. Hop (M. Jenda); J. Hiddingh (J.); C.M. Stekelenburg (C.); H.C. Kuipers (Hester); E. Middelkoop (Esther); M. Nieuwenhuis (Marianne); S. Polinder (Suzanne); M.E. van Baar (Margriet)

    2013-01-01

    textabstractBackground: Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate.Laser Doppler imaging (LDI) is a technique with which

  13. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    Science.gov (United States)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  14. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    Science.gov (United States)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  15. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    Science.gov (United States)

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  16. Critical analysis of the images methods in detection and diagnosis in breast cancer

    International Nuclear Information System (INIS)

    Mendonca, Maria H.S.

    1995-01-01

    The female breast cancer is a relevant health issue among female population, due its incidence and remarkable effects in the biological, psychological and social levels. Its early diagnosis is important because it allows more effective treatments and enhances changes of cure, even allowing conservative surgical procedures. To make this possible it is essential the periodic breast imaging exams. The available imaging methods to date are: mammography, ultrasonography, thermography, nuclear medicine, computed tomography and MRI. All these methods have their advantages and disadvantages, applications and limitations and some are even in experimental stages. These methods must exercised in association to become more effective. Mammography is still, beyond and doubt the elected breast exam. even though imperfect. It must be performed repeatedly at periodic intervals depending upon the intrinsic conditions of the patient. The other methods complement the mammographic findings, clearing some of them. In this paper, the imaging methods available in our environmental for detected diagnosis of the early breast cancer are analyzed with emphasis in mammography and ultrasonography. Their advantages, disadvantages, indications and limitations are discussed. (author)

  17. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  18. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  19. Imaging diagnosis of accessory and cavitated uterine mass, a rare mullerian anomaly

    Directory of Open Access Journals (Sweden)

    Nishchint Jain

    2014-01-01

    Full Text Available Accessory and Cavitated Uterine Mass (ACUM is a rare form of developmental Mullerian anomaly seen in young females, which presents as chronic recurrent pelvic pain and severe dysmenorrhea. It is an accessory cavity lying within an otherwise normal uterus. It is lined by functional endometrium and surrounded by myometrium-like smooth muscle cells; hence, it bears striking macroscopic and microscopic resemblance to the uterus. Hysterosalpingography (HSG, Ultrasonography (USG, and Magnetic Resonance Imaging (MRI form the mainstay of diagnostic imaging. The entity is often under diagnosed; therefore, a high index of suspicion combined with HSG and MRI imaging can help in making an accurate diagnosis.

  20. Imaging diagnosis of accessory and cavitated uterine mass, a rare mullerian anomaly

    International Nuclear Information System (INIS)

    Jain, Nishchint; Verma, Ritu

    2014-01-01

    Accessory and Cavitated Uterine Mass (ACUM) is a rare form of developmental Mullerian anomaly seen in young females, which presents as chronic recurrent pelvic pain and severe dysmenorrhea. It is an accessory cavity lying within an otherwise normal uterus. It is lined by functional endometrium and surrounded by myometrium-like smooth muscle cells; hence, it bears striking macroscopic and microscopic resemblance to the uterus. Hysterosalpingography (HSG), Ultrasonography (USG), and Magnetic Resonance Imaging (MRI) form the mainstay of diagnostic imaging. The entity is often under diagnosed; therefore, a high index of suspicion combined with HSG and MRI imaging can help in making an accurate diagnosis