WorldWideScience

Sample records for laser imaging diagnosis

  1. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Zabarylo, U.; Minet, O.

    2010-01-01

    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  2. Design of a novel pulsed laser diode induced photoacoustic imaging system for tumor diagnosis

    Science.gov (United States)

    Ren, Zhong; Zeng, Lvming; Liu, Guodong; Huang, Zhen

    2012-03-01

    The tumors are one of most dangerous diseases in lots of diseases Expect for the actively treating of antitumor, the early detection of tumors is a key important step in the course of tumor treatment. Since some drawbacks existed in the traditional methods of tumor detection, such as ultrasound imaging, X radiography, CT imaging, OCT and MRI, etc, a novel hybrid and promising imaging method, that is, photoacoustic imaging (PAI) technology, is used to the tumors diagnosis(TD) in this work. This novel method has higher resolution, contrast and penetration depth due to the merits combination of ultrasonic with optics. And the detected photoacoustic signal not only reflects the structural characteristic of tissue but also the metabolic and pathological changes. So, the novel TD based on the PAI is proposed in this paper. Meanwhile, a novel single pulsed laser diode with 905nm wavelength is used as the light source, and a focused ultrasonic transducer with the forward-mode is used to acquire the photoacoustic signal. Finally, PA images were reconstructed with the improved filtered back projection algorithm. Experimental results show the signal acquisition time is less than 0.2 s in each scan of 128 averages. And it is proved that the photoacoustic imaging system for TD with a high-power pulsed laser diode is available. Therefore, this system has the potential value in the biomedical research fields.

  3. The time factor in the LDI (Laser Doppler Imaging) diagnosis of burns.

    Science.gov (United States)

    Štětinský, Jiří; Klosová, Hana; Kolářová, Hana; Šalounová, Dana; Bryjová, Iveta; Hledík, Stanislav

    2015-02-01

    The not quite rare occurrence of inaccurate clinical diagnoses of burns in early post-burn days leads to an inappropriate conservative treatment strategy, or unnecessary surgery. LDI (Laser Doppler Imaging) objectively evaluates skin blood circulation, which correlates with the depth of the burn and the length of healing. The aim of this work was to suggest cutoff values for detecting burns without healing potential within 3 weeks, which should have undergone surgery. The burned area's average blood perfusion of 148 burns was measured on 115 patients, using the Laser Doppler Imager PIM III. A total of 268 measurements were performed from the one to the ninth post-burn day (PBD). The perfusion values were compared to the healing time or histology in the case of the surgical treatment. Cutoff values indicating surgery were investigated in various post-burn days; the ROC analysis was used. This work suggest statistically significant increasing cutoff values for indication to surgery (P = 0.05). From the third to the fifth day 148.5 perfusion units (PU), from the sixth to the seventh day 186.0 PU, from the eighth to the ninth PBD 269.5 PU. The cutoff value is not possible to establish until the second day. LDI is a useful method for wound healing prediction and an indication of the necessity of surgery. We have demonstrated that the diagnosis of the healing capacity of LDI needs to take into account the factor of time. © 2015 Wiley Periodicals, Inc.

  4. Lasers In Dental Diagnosis

    Science.gov (United States)

    Everse, K. E.; Sinor, T. W.; Menzel, E. R.

    1987-01-01

    We have investigated the potential of lasers for real time in situ dental diagnosis via transillumination of teeth and gums and via fluorescence. Not surprisingly, absorption and/or scattering of light by teeth was found to be insensitive to light color. However, monochromatic transillumination revealed detail better than white light. Transillumination of gums was best performed with orange-red light because of tissue absorption. Illumination of oral structures by 488 nm Ar-laser light was effective in revealing diagnosis detail by fluorescence. Incipient caries and fine tooth fracture lines that are generally not revealed by radiography were observable by laser.

  5. Body imaging: Diagnosis

    African Journals Online (AJOL)

    smart phone or mobile device to read online. Read online: We congratulate Dr Ian Haynes from Pietermaritzburg for his spot-on diagnosis for which he will receive the prize of R1000 sponsored by RSSA. Drs Misser et al. elaborate on the findings and provide a brief discussion. FIGURE 1: Sagittal B-mode sonar image.

  6. The effect of compression on clinical diagnosis of glaucoma based on non-analyzed confocal scanning laser ophthalmoscopy images

    NARCIS (Netherlands)

    Abramoff, M.D.

    2006-01-01

    Knowledge of the effect of compression of ophthalmic images on diagnostic reading is essential for effective tele-ophthalmology applications. It was therefore with great anticipation that I read the article “The Effect of Compression on Clinical Diagnosis of Glaucoma Based on Non-analyzed Confocal

  7. Optimized parametric skin modelling for diagnosis of skin abnormalities by combining light back-scatter and laser speckle imaging.

    Science.gov (United States)

    Orun, A B; Goodyer, E; Seker, H; Smith, G; Uslan, V; Chauhan, D

    2014-11-01

    Optical and parametric skin imaging methods which can efficiently identify invisible sub-skin features or subtle changes in skin layers are very important for accurate optical skin modelling. In this study, a hybrid method is introduced that helps develop a parametric optical skin model by utilizing interdisciplinary techniques including light back-scatter analysis, laser speckle imaging, image-texture analysis and Bayesian inference methods. The model aims to detect subtle skin changes and hence very early signs of skin abnormalities/diseases. Light back-scatter and laser speckle image textural analysis are applied onto the normal and abnormal skin regions (lesions) to generate set of attributes/parameters. These are then optimized by Bayesian inference method in order to build an optimized parametric model. The attributes selected by Bayesian inference method in the optimization stage were used to build an optimized model and then successfully verified. It was clearly proven that Bayesian inference based optimization process yields good results to build an optimized skin model. The outcome of this study clearly shows the applicability of this hybrid method in the analysis of skin features and is therefore expected to lead development of non-invasive and low-cost instrument for early detection of skin changes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Lymphangioma: Imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pui, M.H.; Li, Z.P.; Chen, W.; Chen, J.H. [First Affiliated Hospital of Sun Yat-Sen University of Medical Sciences, Guangzhou, (China)

    1997-11-01

    Lymphangiomas are congenital malformations of the lymphatics that are curable by extirpation. Accurate delineation of lesion extension is important for pre-operative diagnosis, surgical planning, and assessing recurrence. The radiologic findings were retrospectively evaluated to determine the imaging appearance of these benign tumours. The plain radiographs, barium meal, ultrasound, CT, and MR images of 18 patients with one or more pathologically proved Iymphangiomas were reviewed. Plain radiography and barium study showed masses displacing adjacent organs. Ultrasound examination showed uni- or multilocular cystic masses with smooth, thin or irregular, thick walls. Enhancement of the cyst wall was variable on CT and MR studies. The CT density of the fluid ranged from -4 to 34 HU depending on the lipid content and the presence of hemorrhage. The cysts were isointense to muscle on T1-weighted and hyperintense to fat on T2-weighted MR images. The MR imaging delineated the tumour lesion extension more clearly than ultrasound and CT scans. Ultrasound, CT, and MR imaging are valuable for evaluating Iymphangiomas. Magnetic resonance imaging allows accurate determination of lesion extension. (authors). 26 refs., 4 figs.

  9. Laser Doppler Imaging of Microflow

    CERN Document Server

    Gross, Michel; Leng, Jacques

    2013-01-01

    We report a pilot study with a wide-field laser Doppler detection scheme used to perform laser Doppler anemometry and imaging of particle seeded microflow. The optical field carrying the local scatterers (particles) dynamic state, as a consequence of momentum transfer at each scattering event, is analyzed in the temporal frequencies domain. The setup is based on heterodyne digital holography, which is used to map the scattered field in the object plane at a tunable frequency with a multipixel detector. We show that wide-field heterodyne laser Doppler imaging can be used for quantitative microflow diagnosis; in the presented study, maps of the first-order moment of the Doppler frequency shift are used as a quantitative and directional estimator of the Doppler signature of particles velocity.

  10. Diagnostic performance of narrowed spectrum endoscopy, autofluorescence imaging, and confocal laser endomicroscopy for optical diagnosis of colonic polyps: a meta-analysis.

    Science.gov (United States)

    Wanders, Linda K; East, James E; Uitentuis, Sanne E; Leeflang, Mariska M G; Dekker, Evelien

    2013-12-01

    Novel endoscopic technologies could allow optical diagnosis and resection of colonic polyps without histopathological testing. Our aim was to establish the sensitivity, specificity, and real-time negative predictive value of three types of narrowed spectrum endoscopy (narrow-band imaging [NBI], image-enhanced endoscopy [i-scan], and Fujinon intelligent chromoendoscopy [FICE]), confocal laser endomicroscopy (CLE), and autofluorescence imaging for differentiation between neoplastic and non-neoplastic colonic lesions. We identified relevant studies through a search of Medline, Embase, PubMed, and the Cochrane Library. Clinical trials and observational studies were eligible for inclusion when the diagnostic performance of NBI, i-scan, FICE, autofluorescence imaging, or CLE had been assessed for differentiation, with histopathology as the reference standard, and for which a 2 × 2 contingency table of lesion diagnosis could be constructed. We did a random-effects bivariate meta-analysis using a non-linear mixed model approach to calculate summary estimates of sensitivity and specificity, and plotted estimates in a summary receiver-operating characteristic curve. We included 91 studies in our analysis: 56 were of NBI, ten of i-scan, 14 of FICE, 11 of CLE, and 11 of autofluorescence imaging (more than one of the investigated modalities assessed in eight studies). For NBI, overall sensitivity was 91·0% (95% CI 88·6-93·0), specificity 85·6% (81·3-89·0), and real-time negative predictive value 82·5% (75·4-87·9). For i-scan, overall sensitivity was 89·3% (83·3-93·3), specificity 88·2% (80·3-93·2), and real-time negative predictive value 86·5% (78·0-92·1). For FICE, overall sensitivity was 91·8% (87·1-94·9), specificity 83·5% (77·2-88·3), and real-time negative predictive value 83·7% (77·5-88·4). For autofluorescence imaging, overall sensitivity was 86·7% (79·5-91·6), specificity 65·9% (50·9-78·2), and real-time negative predictive value 81

  11. Paediatric neuro-imaging: Diagnosis

    Directory of Open Access Journals (Sweden)

    S.K. Misser

    2013-06-01

    Full Text Available We congratulate Professor Savvas Andronikou of the Department of Radiology, University of Pretoria, for his spot-on diagnosis, for which he receives the award of R1 000 from the RSSA. Dr Misser elaborates below on the images and findings. Please refer to page 45 of the March 2013 issue of the SAJR for the investigative images.

  12. Laser therapy (image)

    Science.gov (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  13. MALDI imaging: beyond classic diagnosis

    Directory of Open Access Journals (Sweden)

    Laura Denise Manzanares-Meza

    2017-05-01

    Full Text Available Mass spectrometry has been the focus of technology development and application for imaging for several decades. Imaging mass spectrometry using matrix-assisted laser desorption ionization is a new and effective tool for molecular studies of complex biological samples such as tissue sections. As histological features remain intact throughout the analysis of a section, distribution maps of multiple analytes can be correlated with histological and clinical features. Spatial molecular arrangements can be assessed without the need for target-specific reagents, allowing the discovery of diagnostic and prognostic markers of different cancer types and enabling the determination of effective therapies.

  14. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  15. Computer Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma

    DEFF Research Database (Denmark)

    Ştefănescu, Daniela; Streba, Costin; Cârţână, Elena Tatiana

    2016-01-01

    INTRODUCTION: Confocal laser endomicroscopy (CLE) is becoming a popular method for optical biopsy of digestive mucosa for both diagnostic and therapeutic procedures. Computer aided diagnosis of CLE images, using image processing and fractal analysis can be used to quantify the histological......-free endomicroscopy images, obtained during CLE examinations from normal mucosa (356 images) and tumor regions (679 images). The images were processed using a computer aided diagnosis (CAD) medical imaging system in order to obtain an automatic diagnosis. The CAD application includes image reading and processing.......14, validation: 17.42, testing: 15.48. The diagnosis accuracy error was 15.5%. CONCLUSIONS: Computed aided diagnosis via fractal analysis of glandular structures can complement the traditional histological and minimally invasive imaging methods. A larger dataset from colorectal and other pathologies should...

  16. The extended tentacles of laser - From diagnosis to treatment in orthodontics: An overview

    Science.gov (United States)

    Milling Tania, S. D.; Sathiasekar, Cynthia; Anison, Job Jacob; Samyukta Reddy, B. V.

    2015-01-01

    Since the introduction of lasers in dentistry in the mid-1990's, research in laser supported dental therapies is progressing at a rapid pace. Orthodontics is no exception. In orthodontics, lasers have many diagnostic, therapeutic, and biomodulating applications. To update the various applications of lasers in orthodontics. Lasers work by delivering energy in the form of light. Laser, striking the biological tissues can either get reflected, absorbed or scattered depending on several factors. Depending on the fate of the emitted laser, it can be applied for different diagnostic, therapeutic and surgical procedures. The knowledge and understanding of different types of lasers and its specific applications is a prerequisite before it can be applied beneficially. In Orthodontics, the versatility of laser has expanded into bonding, curing, debonding, imaging, growth modification, pain reduction, etc. Definitely laser has extended its tentacles from diagnosis to treatment in orthodontics. PMID:26538884

  17. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  18. Laser transillumination for diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Boerner, E.; Podbielska, H.; Bauer, J.; Dmochowska, L.; Dziewięcka, M.

    2006-02-01

    In this work, the special portable apparatus was constructed for performing the transillumination examination on interphalangeal joints of patients suffering from rheumatoid arthritis. It consisted of He-Ne laser with optics for collimated illumination, special holder for placing the finger (perpendicular to optical axis, dorsal site towards camera), and CCD camera with memory stick. The captured images in JPEG format with 1152x864 resolution were converted into the gray level pictures and analyzed by means of image processing program from OPTIMAS. 35 ill patients and 11 healthy volunteers were examined. The histograms and 35 luminances were calculated. The average function was applied in order to calculate the mean gray level values in images of corresponding fingers of healthy subjects. These values were compared with values calculated for ill persons. We proved that that transillumination images may have a diagnostic value. For RA suffering patients the corresponding transillumination images represented the lower gray level values than the average value of finger of health volunteers. For II finger of left hand 96% images of ill persons have lower gray level and in case of right hand it was 93%. This proves that basing in transillumination one can diagnose with high probability the patient with rheumatoid arthritis.

  19. Optimal laser wavelength for photoacoustic imaging of breast microcalcifications

    Science.gov (United States)

    Kang, Jeeun; Kim, Eun-Kyung; Young Kwak, Jin; Yoo, Yangmo; Song, Tai-Kyong; Ho Chang, Jin

    2011-10-01

    This paper presents photoacoustic imaging (PAI) for real-time detection of micro-scale calcifications (e.g., breast, which are an indicator of the cancer occurrence. Optimal wavelength of incident laser for the microcalcification imaging was ascertained through ex vivo experiments with seven breast specimens of volunteers. In the ex vivo experiments, the maximum amplitude of photoacoustic signals from the microcalcifications occurred when the laser wavelength ranged from 690 to 700 nm. This result demonstrated that PAI can serve as a real-time imaging and guidance tool for diagnosis and biopsy of the breast microcalcifications.

  20. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  1. Role of imaging in glaucoma diagnosis and follow-up

    Directory of Open Access Journals (Sweden)

    Vizzeri Gianmarco

    2011-12-01

    Full Text Available The purpose of the review is to provide an update on the role of imaging devices in the diagnosis and follow-up of glaucoma with an emphasis on techniques for detecting glaucomatous progression and the newer spectral domain optical coherence tomography instruments. Imaging instruments provide objective quantitative measures of the optic disc and the retinal nerve fiber layer and are increasingly utilized in clinical practice. This review will summarize the recent enhancements in confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography with an emphasis on how to utilize these techniques to manage glaucoma patients and highlight the strengths and limitations of each technology. In addition, this review will briefly describe the sophisticated data analysis strategies that are now available to detect glaucomatous change overtime.

  2. Clinical use of lasers in caries diagnosis and therapy.

    Science.gov (United States)

    Chan, Ambrose

    2008-06-01

    Laser technology is now ubiquitous in science, business, the arts, the military, industry, telecommunications, entertainment and medicine. It is increasingly finding a useful place in dentistry to offer the potential for practical solutions to managing difficult clinical problems. Research into the clinical use of lasers in diagnostic and therapeutic dental procedures has escalated rapidly in recent years. Laser technology has revolutionized the treatment of dental caries. This article reviews the role of laser technology in the clinical management of caries, early caries diagnosis and treatment planning decision making, caries prevention, soft tissue management, fluorescence aided caries elimination and fluorescence feedback-controlled selective caries removal. Laser technology plays a vital role in enhancing caries diagnosis and therapy.

  3. Application of imaging plates to x-ray imaging and spectroscopy in laser plasma experiments (invited)

    Science.gov (United States)

    Izumi, N.; Snavely, R.; Gregori, G.; Koch, J. A.; Park, H.-S.; Remington, B. A.

    2006-10-01

    We report recent progress in x-ray diagnosis of laser-plasma experiments using imaging plates. Imaging plates are photostimulable phosphor screens [BaF(Br0.85,I0.15):Eu2+] deposited on flexible metal or plastic substrates. We applied imaging plates to x-ray microscopy of inertial confinement fusion experiments. Self-emission x-ray images of imploded cores were obtained successfully with high-magnification, target-mounted pinholes using imaging plates as detectors. Imaging plates were also used in ultraintense laser experiments at the Rutherford Appleton Laboratory, where small samarium foils were irradiated by high intensity laser pulses from the Vulcan laser system. K-shell x rays from the foil (˜40keV) were used as a line x-ray source for one-dimensional microscopic radiography, and the performance of imaging plates on high-energy x-ray backlit radiography experiments was demonstrated by imaging sinusoidal grooves of 6μm amplitude on a Au foil. Detailed K-shell spectra from Cu targets were also obtained by coupling an imaging plate with a highly ordered pyrolytic graphite crystal spectrometer. The performance of the imaging plates as evaluated in actual laser plasma experiments is presented.

  4. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  5. Imaging in the diagnosis of chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Vasile D. Balaban

    2014-12-01

    Full Text Available Chronic pancreatitis is characterised by progressive and irreversible damage of the pancreatic parenchyma and ductal system, which leads to chronic pain, loss of endocrine and exocrine functions. Clinically, pancreatic exocrine insufficiency becomes apparent only after 90% of the parenchima has been lost. Despite the simple definition, diagnosing chronic pancreatitis remains a challenge, especially for early stage disease. Because pancreatic function tests can be normal until late stages and have significant limitations, there is an incresing interest in the role of imaging techniques for the diagnosis of chronic pancreatitis. In this article we review the utility and accuracy of different imaging methods in the diagnosis of chronic pancreatitis, focusing on the role of advanced imaging (magnetic resonance imaging, endoscopic retrograde cholangiopancreatography and endoscopic ultrasound.

  6. [Lasers in dentistry 2. Diagnosis of dental caries with lasers].

    Science.gov (United States)

    Verdonschot, E H; van der Veen, M H

    2002-04-01

    When enamel, dentine and substances in caries lesions are exposed to (laser) light of a specific colour, fluorescence may be induced. This principle is at the basis of two caries diagnostic methods, DIAGNOdent and Quantitative Laser (Light-induced) Fluorescence (QLF). Only the DIAGNOdent is commercially available. Bacterial porphyrins evoke fluorescence when illuminated with red light and the intensity of the emitted light is related to the size of the caries lesion. Published research indicates that the DIAGNOdent is particularly suitable for detecting small bacteria containing caries lesions, and to monitor such lesions. QLF is based on the fluorescence decrease in demineralised enamel upon exposure to blue-violet (laser) light. The intensity of the emitted light is related to the amount of mineral loss in the caries lesion. Using QLF the mineral loss in caries lesions can be measured quantitatively. Like the DIAGNOdent, QLF is particularly suitable to monitor caries lesions.

  7. Imaging aspects of the diagnosis of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, Paolo [University of Modena and Reggio Emilia, Center for Rare Lung Diseases, Respiratory Disease Unit, Department of Oncology Haematology and Respiratory Diseases, Modena (Italy); Sverzellati, Nicola [University of Parma, Department of Surgical Sciences, section of Radiology, Parma (Italy); Wells, Athol U. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2014-04-15

    Sarcoidosis is a systemic granulomatous disorder of unknown aetiology with a wide spectrum of radiological appearances and almost invariably pulmonary involvement. Lung involvement accounts for most of the morbidity and much of the mortality associated with sarcoidosis. Imaging contributes significantly to the diagnosis and management of patients with sarcoidosis. In typical cases, chest radiography may be sufficient to establish the diagnosis with little margin of error and CT is not necessary. However, CT can play a critical role in several clinical settings: atypical clinical and/or radiographic findings; normal or near-normal chest radiograph but clinical suspicion of sarcoidosis; and detection of complications. Moreover, in many patients, CT findings are atypical and unfamiliar to most radiologists (e.g. sarcoidosis mimicking other lung diseases and vice versa), and in these cases histological confirmation of the diagnosis is recommended. CT is also useful in assessing disease extent and may help to discriminate between reversible and irreversible lung disease, thus providing critical prognostic information. This review concentrates on the more difficult imaging aspects of sarcoidosis, in particular differential diagnosis and disease complications. (orig.)

  8. Imaging diagnosis of orbital Wegener granulomatosis

    Science.gov (United States)

    Yang, Bin; Yin, Zhijian; Chen, Shuai; Yuan, Feng; Zhao, Wei; Yang, Yaying

    2017-01-01

    Abstract Introduction: Wegener granulomatosis (WG) is a rare idiopathic autoimmune disease causing necrotizing granulomatous vasculitis. Whether as the first symptom or as part of systemic changes, ocular manifestations in WG patients are not specific. Any part of the eyes can be affected, with the anterior segment and orbit most commonly involved. So, early diagnosis and treatment are essential for controlling the progression of the disease and improving the quality of life for patients. Clinical findings/Patient concerns: Here we present a rare case of orbital WG of a 22-year-old woman was admitted to the hospital because of intense pain associated with decreased visual acuity in her right eye since 1 day. She had been previously diagnosed with WG at our hospital. Imaging diagnosis: Orbital computed tomography imaging showed diffuse swelling of intraorbital muscles, and space-occupying lesions were present in both eyes. Most postnasal anatomical structures were absent, appearing as a massive cavity shadow. Orbital magnetic resonance imaging showed a shadow of orbital soft tissues. Conclusion: WG is a serious, fatal disease. Early diagnosis and treatment are essential for controlling the progression of the disease and improving the quality of life for patients. PMID:28591026

  9. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    Science.gov (United States)

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  10. Imaging diagnosis of bronchial asthma and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Fumikazu; Fujimura, Mikihiko; Kimura, Fumiko; Fujimura, Kaori; Hayano, Toshio; Nishii, Noriko; Machida, Haruhiko; Toda, Jo; Saito, Naoko [Tokyo Women' s Medical Coll. (Japan)

    2002-12-01

    We describe imaging features of bronchial asthma and related diseases. The practical roles of imaging diagnosis are the evaluation of severity and complications of bronchial asthma and differential diagnosis of diseases showing asthmatic symptoms other than bronchial asthma. (author)

  11. Femtosecond Lasers in Ophthalmology: Surgery and Imaging

    Science.gov (United States)

    Bille, J. F.

    Ophthalmology has traditionally been the field with prevalent laser applications in medicine. The human eye is one of the most accessible human organs and its transparency for visible and near-infrared light allows optical techniques for diagnosis and treatment of almost any ocular structure. Laser vision correction (LVC) was introduced in the late 1980s. Today, the procedural ease, success rate, and lack of disturbing side-effects in laser assisted in-situ keratomileusis (LASIK) have made it the most frequently performed refractive surgical procedure (keratomileusis(greek): cornea-flap-cutting). Recently, it has been demonstrated that specific aspects of LVC can take advantage of unique light-matter interaction processes that occur with femtosecond laser pulses.

  12. Imaging Diagnosis of Splanchnic Venous Thrombosis

    Directory of Open Access Journals (Sweden)

    S. Rajesh

    2015-01-01

    Full Text Available Splanchnic vein thrombosis (SVT is a broad term that includes Budd-Chiari syndrome and occlusion of veins that constitute the portal venous system. Due to the common risk factors involved in the pathogenesis of these clinically distinct disorders, concurrent involvement of two different regions is quite common. In acute and subacute SVT, the symptoms may overlap with a variety of other abdominal emergencies while in chronic SVT, the extent of portal hypertension and its attendant complications determine the clinical course. As a result, clinical diagnosis is often difficult and is frequently reliant on imaging. Tremendous improvements in vascular imaging in recent years have ensured that this once rare entity is being increasingly detected. Treatment of acute SVT requires immediate anticoagulation. Transcatheter thrombolysis or transjugular intrahepatic portosystemic shunt is used in the event of clinical deterioration. In cases with peritonitis, immediate laparotomy and bowel resection may be required for irreversible bowel ischemia. In chronic SVT, the underlying cause should be identified and treated. The imaging manifestations of the clinical syndromes resulting from SVT are comprehensively discussed here along with a brief review of the relevant clinical features and therapeutic approach.

  13. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    Science.gov (United States)

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Laser-induced fluorescence as a method of early caries diagnosis

    Science.gov (United States)

    Mielczarek, Agnieszka; Wiewior, Piotr

    2001-07-01

    Use of lasers in dentistry dates back 20 years but is still not fully exploited, especially when concerning the hard dental tissues. Over the past many efforts and actions have been involved in testing and developing new methods for caries diagnosis. The implementation of these methods in general dental practice is unfortunately still limited because too little scientific evidence exists to support them. One of the age-old concerns for dentists is that decay is often discovered too late. Dentists commonly use x-ray imaging for early caries detection, but this method cannot reveal decay at a sufficiently early stage to avoid restorative methods. Generally, if a caries lesion si detected by x-ray, the mineral loss within the tooth is normally very high and will need invasive treatment. Several laser based techniques, as also other optical methods of detecting caries lesions at an early stage seem to be very promising. Fluorescence of tooth structure is observed when hard tissues are illuminated using laser light. Decayed areas appear dark and provide a contrast against the healthy background surrounding them, so discriminating sound and carious tissues. The aim of this study was to present the possibilities of using laser induced fluorescence in the diagnosis of early caries lesions. The current state-of-the-art is presented, as well as results of our investigations. In our studies an argon ion laser was used to illuminate the teeth and the fluorescence pictures were captured with a CCD camera and then analyzed. Results confirmed that laser induced fluorescence can be used as a sensitive method of caries diagnosis.

  15. Scheimpflug imaging for laser refractive surgery.

    Science.gov (United States)

    Ambrósio, Renato; Valbon, Bruno F; Faria-Correia, Fernando; Ramos, Isaac; Luz, Allan

    2013-07-01

    To review the principles and clinical applications of Scheimpflug corneal and anterior segment imaging with special relevance for laser refractive surgery. Computerized Scheimpflug imaging has been used for corneal and anterior segment tomography (CASTm) in different commercially available instruments. Such approach computes the three-dimensional image of the cornea and anterior segment, enabling the characterization of elevation and curvature of the front and back surfaces of the cornea, pachymetric mapping, calculation of the total corneal refractive power and anterior segment biometry. CASTm represents a major evolution for corneal and anterior segment analysis, beyond front surface corneal topography and single point central corneal thickness measurements. This approach enhances the diagnostic abilities for screening ectasia risk as well as for planning, evaluating the results, managing complications of refractive procedures, and selecting intraocular lens power, type, and design. In addition, dynamic Scheimpflug imaging has been recently introduced for in-vivo corneal biomechanical measurements and has also been used for anterior segment imaging of femtocataract surgery. Scheimpflug imaging has an important role for laser refractive surgery with different applications, which continuously improve due to advances in technology.

  16. Portable laser speckle perfusion imaging system based on digital signal processor.

    Science.gov (United States)

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  17. Rheumatic diseases of the spine: imaging diagnosis.

    Science.gov (United States)

    Narváez, J A; Hernández-Gañán, J; Isern, J; Sánchez-Fernández, J J

    2016-04-01

    Spinal involvement is common both in the spondyloarthritides and in rheumatoid arthritis, in which the cervical segment is selectively affected. Rheumatoid involvement of the cervical spine has characteristic radiologic manifestations, fundamentally different patterns of atlantoaxial instability. Magnetic resonance imaging (MRI) is the technique of choice for evaluating the possible repercussions of atlantoaxial instability on the spinal cord and/or nerve roots in patients with rheumatoid arthritis as well as for evaluating parameters indicative of active inflammation, such as bone edema and synovitis. Axial involvement is characteristic in the spondyloarthritides and has distinctive manifestations on plain-film X-rays, which reflect destructive and reparative phenomena. The use of MRI has changed the conception of spondyloarthritis because it is able to directly detect the inflammatory changes that form part of the disease, making it possible to establish the diagnosis early in the disease process, when plain-film X-ray findings are normal (non-radiographic axial spondyloarthritis), to assess the prognosis of the disease, and to contribute to treatment planning. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  18. Extracellular Matrix Biomarkers for Diagnosis, Prognosis, Imaging, and Targeting

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0240 TITLE: Extracellular Matrix Biomarkers for Diagnosis, Prognosis, Imaging, and Targeting PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Extracellular Matrix Biomarkers for Diagnosis, Prognosis, Imaging, and Targeting 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14...the management and treatment of metastatic breast cancer. 15. SUBJECT TERMS Breast Cancer, Metastasis, Extracellular Matrix , Tumor Microenvironment

  19. Multispectral laser imaging for advanced food analysis

    Science.gov (United States)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  20. Final Report - DOE Center for Laser Imaging and Cancer Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R.; Koutcher, Jason A.

    2002-10-31

    This Final Report summarizes the significant progress made by the researchers, students and staff of the Center for Laser Imaging and Cancer Diagnostics (CLICD) from January 1998 through May 2002. During this period, the Center supported several projects. Most projects were proposed initially, some were added subsequently as their relevance and importance to the DOE mission became evident. DOE support has been leveraged to obtain continuing funding for some projects. Leveraged funds come from various sources, including NIH, Army, NSF and the Air Force. The goal of the Center was to develop laser-based instruments for use in the detection and diagnosis of major diseases, with an emphasis on detection and diagnosis of various cancers. Each of the supported projects is a collaborative effort between physicists and laser scientists and the City College of New York and noted physicians, surgeons, pathologists, and biologists located at medical centers in the Metropolitan area. The participating institutions were: City College of New York Institute for Ultrafast Lasers and Spectroscopy, Hackensack University Medical Center, Lawrence Livermore National Laboratory, Memorial Sloan Kettering Cancer Center, and New York Eye and Ear Institute. Each of the projects funded by the Center is grouped into one of four research categories: a) Disease Detection, b) Non-Disease Applications, c) New Diagnostic Tools, and, d) Education, Training, Outreach and Dissemination. The progress achieved by the multidisciplinary teams was reported in 51 publications and 32 presentations at major national conferences. Also, one U.S. patent was obtained and six U.S. patent applications have been filed for innovations resulting from the projects sponsored by the Center.

  1. Quasi-resonance enhancement of laser-induced-fluorescence diagnosis of endometriosis

    Science.gov (United States)

    Hill, Ralph H., Jr.; Vancaillie, Thierry G.

    1990-05-01

    Endometriosis, a common disease in women in the reproductive age group, is defined pathologically by the presence of endometrial tissue (inner lining of the uterus) outside the uterus. The displaced tissue is histologically identical to endometrium. In addition to being a highly prevalent disease, this disease is associated with many distressing and debilitating symptoms. Motivated by the need to improve diagnosis by endoscopic imaging instrumentation, we have previously used several drugs to cause selective laser-induced fluorescence of active surgically induced endometriosis in the rabbit model in vivo using ultraviolet-wavelength (351.1 and 363.8 nm) excitation from an argon-ion laser. In the present study we have investigated methods of enhancing differentiation between normal and abnormal tissue by using other excitation wavelengths. In addition to an enhanced capability for detecting abnormal tissue, there are several other advantages associated with using visible-wavelength excitation, such as deeper penetration into the tissue, as well as increased equipment performance, reliability, versatility, and availability. The disadvantage is that because only wavelengths longer than the excitation wavelength can be used for detection, some of the spectral information is lost. Because human endomeiriosis samples were somewhat limited in quantity, as well as specimen size, we used normal ovarian tissue for the laser-induced-fluorescence differentiation-enhancement studies. Positive enhancement of the laser-induced- fluorescence differentiation was found in human ovarian tissue in vitro utilizing 514.5-nm excitation from an argonion laser. Additionally, preliminary verification of this concept was accomplished in active surgically induced endometriosis in the rabbit model in vivo with visible argon-ion laser excitation of two tetracycline-based drugs. Future experiments with other drug treatments and excitation/detection parameters are planned.

  2. Laser imaging in liquid-liquid flows

    Science.gov (United States)

    Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota

    2016-11-01

    In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  3. Imaging in the diagnosis of pediatric urolithiasis

    Energy Technology Data Exchange (ETDEWEB)

    Colleran, Gabrielle C.; Callahan, Michael J.; Paltiel, Harriet J.; Chow, Jeanne S. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Nelson, Caleb P.; Cilento, Bartley G. [Boston Children' s Hospital, Department of Urology, Boston, MA (United States); Baum, Michelle A. [Boston Children' s Hospital, Department of Nephrology, Boston, MA (United States)

    2017-01-15

    Pediatric urolithiasis is an important and increasingly prevalent cause of pediatric morbidity and hospital admission. Ultrasound (US) is the recommended primary imaging modality for suspected urolithiasis in children. There is, however, widespread use of CT as a first-line study for abdominal pain in many institutions involved in pediatric care. The objective of this review is to outline state-of-the-art imaging modalities and methods for diagnosing urolithiasis in children. The pediatric radiologist plays a key role in ensuring that the appropriate imaging modality is performed in the setting of suspected pediatric urolithiasis. Our proposed imaging algorithm starts with US, and describes the optimal technique and indications for the use of CT. We emphasize the importance of improved communication with a greater collaborative approach between pediatric and general radiology departments so children undergo the appropriate imaging evaluation. (orig.)

  4. Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope

    OpenAIRE

    von Ruckmann, A.; Fitzke, F.; Gregor, Z.

    1998-01-01

    AIM—To demonstrate the usefulness of a recently developed technique of imaging fundus autofluorescence and to compare it with the results of fluorescein angiography in the diagnosis and staging of macular holes.
METHODS—The intensity and distribution of fundus autofluorescence was studied in 51 patients with idiopathic macular holes and pseudoholes using a confocal laser scanning ophthalmoscope (cLSO) and the images were compared with those obtained by fundus fluorescein angiography.
RESULTS—...

  5. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  6. Alexander disease: diagnosis with MR imaging

    NARCIS (Netherlands)

    van der Knaap, M. S.; Naidu, S.; Breiter, S. N.; Blaser, S.; Stroink, H.; Springer, S.; Begeer, J. C.; van Coster, R.; Barth, P. G.; Thomas, N. H.; Valk, J.; Powers, J. M.

    2001-01-01

    To date, the demonstration of Rosenthal fibers on brain biopsy or autopsy specimens is considered a prerequisite for a definitive diagnosis of Alexander disease. We initiated a multiinstitutional survey of MR abnormalities in both presumed and confirmed cases of Alexander disease to assess the

  7. Alexander disease : Diagnosis with MR imaging

    NARCIS (Netherlands)

    van der Knaap, MS; Naidu, S; Breiter, SN; Blaser, S; Stroink, H; Spinger, S; Begeer, JC; van Coster, R; Barth, PG; Thomas, NH; Powers, JM; Valk, J.

    BACKGROUND AND PURPOSE: To date, the demonstration of Rosenthal fibers on brain biopsy or autopsy specimens is considered a prerequisite for a definitive diagnosis of Alexander disease. We initiated a multiinstitutional survey of MR abnormalities in both presumed and confirmed cases of Alexander

  8. Imaging diagnosis of ketamine-induced uropathy

    Directory of Open Access Journals (Sweden)

    Shu-Huei Shen

    2015-09-01

    Full Text Available With growing ketamine abuse, ketamine-induced uropathy (KIU has become a vital health issue in recent years. Although the lower urinary tract is the primary affected site, involvement of the upper urinary tract is common, and KIU may progress rapidly. The main objective of a baseline imaging study is evaluating the extent and complications of KIU after excluding other causes of uropathy. A comprehensive strategy for KIU evaluation through imaging is essential for effectively managing complications and preventing further renal function deterioration. In this study, we describe the imaging presentation of KIU and examine the role of various imaging modalities, such as ultrasound, intravenous urography, and computed tomography, in diagnosing patients with KIU.

  9. CT and MR image fusion for CSF leak diagnosis

    Science.gov (United States)

    Hu, Yangqiu; Haynor, David R.; Maravilla, Kenneth R.

    2008-03-01

    The diagnosis of CSF leak using MR images alone is difficult due to the inherently poor bony information on MR images. While CT images show bones exquisitely, they lack the soft tissue contrast that is important for detecting CSF leak. For these reasons, CT cisternography has been the preferred modality for CSF leak diagnosis despite its invasiveness. We propose a method to fuse the CT and MR images to combine the complementary information from each modality, which we believe will help with the diagnosis and surgical planning for patients with CSF leak, and potentially reduce/replace the use of CT cisternography. In the first step, the user identifies three roughly corresponding points on both the CT and MR images. A GUI was designed that allows the user to quickly navigate through the images by reslicing the volumes interactively. After finding the CT and MR slices at approximately the same anatomical position, the user places three markers to represent the same spatial location. In the second step, a generalized Procrustes transform is used to compute an initial transformation that aligns the CT and MR, which is then optimized using mutual information maximization. The CT is registered with the MR using the optimal transformation found, and the bony masks determined from thresholding CT intensity are blended with MR images. Initial results suggest that CT/MR fusion images are superior to unprocessed CT and MR images in diagnosing CSF leak, and a formal clinical evaluation is being planned to assess the efficacy of fusion images.

  10. Diagnosis of breast cancer biopsies using quantitative phase imaging

    Science.gov (United States)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  11. Nuclear medicine imaging diagnosis in infectious bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Young [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2006-08-15

    Infectious and inflammatory bone diseases include a wide range of disease process, depending on the patient's age, location of infection, various causative organisms, duration from symptom onset, accompanied fracture or prior surgery, prosthesis insertion, and underlying systemic disease such as diabetes, etc. Bone infection may induce massive destruction of bones and joints, results in functional reduction and disability. The key to successful management is early diagnosis and proper treatment. Various radionuclide imaging methods including three phase bone scan, Ga-67 scan, WBC scan, and combined imaging techniques such as bone/Ga-67 scan, WBC/bone marrow scan add complementary role to the radiologic imaging modalities including plain radiography, CT and MRI. F-18 FDG PET imaging also has recently been introduced in diagnosis of infected prosthesis and chronic active osteomyelitis. Selection of proper nuclear medicine imaging method will improve the diagnostic accuracy of infections and inflammatory bone diseases, based on understanding of pathogenesis and radiologic imaging findings.

  12. Dynamic mask: new approach to laser engraving of halftone images

    Science.gov (United States)

    Kadan, Victor N.; Pekarik, Alexander S.; Estrela Liopis, Rafael V.

    1997-03-01

    New approach to laser engraving of half tone images has been proposed and tested. Combining two basic approaches to laser engraving -- single pulse mask imaging and raster element construction by pack of laser pulses -- the new system constructs every individual raster element by imaging on the workpiece surface a dynamic mask of controlled size. The dynamic mask shape corresponds to the required raster element shape. This approach offers several important advantages over the conventional ones: (1) analog control of the mask shape provides gray level continuum, thus ensuring the image quality, unattainable by other means; (2) raster element marking by single laser pulse provides very good marking rate. It takes only one scan of the writing laser head to mark raster line. Much more powerful laser pulses can be used to engrave complete raster element by single pulse instead of its point-by-point construction by consecutive laser pulses; (3) the influence of laser beam quality parameters, such as beam divergence, and power instabilities on the gray level has been greatly reduced because raster element shape primarily depends on the mask shape and not on the power level and beam divergence. Dynamic mask system can be used both with cw and pulsed laser. Gray scale tones can be reproduced by the linear raster line width in the first case. Advantages of the new device have been demonstrated by engravings on stone, wood, etc. made with 50 W carbon-dioxide laser.

  13. Modelling laser speckle photographs of decayed teeth by applying a digital image information technique

    Science.gov (United States)

    Ansari, M. Z.; da Silva, L. C.; da Silva, J. V. P.; Deana, A. M.

    2016-09-01

    We report on the application of a digital image model to assess early carious lesions on teeth. When decay is in its early stages, the lesions were illuminated with a laser and the laser speckle images were obtained. Due to the differences in the optical properties between healthy and carious tissue, both regions produced different scatter patterns. The digital image information technique allowed us to produce colour-coded 3D surface plots of the intensity information in the speckle images, where the height (on the z-axis) and the colour in the rendering correlate with the intensity of a pixel in the image. The quantitative changes in colour component density enhance the contrast between the decayed and sound tissue, and visualization of the carious lesions become significantly evident. Therefore, the proposed technique may be adopted in the early diagnosis of carious lesions.

  14. Hepatic hemangiosarcoma: imaging findings and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Rademaker, J.; Galanski, M. [Department of Radiology I, Medical School Hannover (Germany); Widjaja, A. [Department of Gastroenterology and Hepatology, Medical School Hannover (Germany)

    2000-01-01

    Primary hepatic angiosarcoma is a rare mesenchymal tumor of the liver that usually presents with nonspecific symptoms in elderly men. We present four cases of hepatic hemangiosarcoma and discuss the imaging characteristics of this entity. Our series shows that this tumor is not uncommon in younger patients with no associated risk factors such as previous exposure to thorotrast or vinyl chloride. Our experiences on a limited number of patients suggests that the combined use of angiography and dual-phase helical CT provides a better identification of the tumor and its complications. Analysis of imaging studies in patients with hepatic hemangiosarcoma reveals hypervascular lesions. Common complications were portal vein thrombosis, Budd-Chiari syndrome, as well as arterio-venous or arterio-portal shunts. Due to the vascularity of the tumor, percutaneous liver biopsy is hazardous. (orig.)

  15. Imaging diagnosis of ameloblastoma; Bildgebung bei Ameloblastomen

    Energy Technology Data Exchange (ETDEWEB)

    Esser, M.; Horger, M.; Ioanovicu, S.D.; Boesmueller, H.

    2015-10-15

    Ameloblastomas are ondontogenic tumors of the upper and lower jaw. The ameloblastomas are supposed to be benign with slow growth, but locally invasive growth is possible. Contrast agent enhanced CT seems to have the largest imaging potential to differentiate between benign and malign osteogenic processes. In general - dependent on localization, histological type and neighboring tissues - the radical resection with following plastic reconstruction seems to be the best therapeutic decision.

  16. Magnetic resonance imaging for the diagnosis of Parkinson's disease.

    Science.gov (United States)

    Heim, Beatrice; Krismer, Florian; De Marzi, Roberto; Seppi, Klaus

    2017-08-01

    The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, including advanced sequences at high- and ultra-high-field MRI and modern image analysis algorithms, in the diagnostic work-up of Parkinson's disease. This includes not only the exclusion of alternative diagnoses for Parkinson's disease such as symptomatic parkinsonism and atypical parkinsonism, but also the diagnosis of early, new onset, and even prodromal Parkinson's disease.

  17. Confocal laser endomicroscopy for the differential diagnosis of ulcerative colitis and Crohn's disease: a pilot study.

    Science.gov (United States)

    Tontini, Gian Eugenio; Mudter, Jonas; Vieth, Michael; Atreya, Raja; Günther, Claudia; Zopf, Yurdagül; Wildner, Dane; Kiesslich, Ralf; Vecchi, Maurizio; Neurath, Markus F; Neumann, Helmut

    2015-05-01

    The differential diagnosis of ulcerative colitis from Crohn's disease is of pivotal importance for the management of inflammatory bowel diseases, as both entities involve specific therapeutic management strategies. Confocal laser endomicroscopy (CLE) allows on-demand, in vivo characterization of architectural and cellular details during endoscopy. The aim of this study was to assess the efficacy of CLE to differentiate between ulcerative colitis and Crohn's disease. This was a prospective study involving consecutive patients with a well-established diagnosis of ulcerative colitis or Crohn's disease who underwent colonoscopy with fluorescein-aided confocal imaging. Overall, 79 patients were included (40 Crohn's disease, 39 ulcerative colitis). CLE findings in patients with Crohn's disease, showed significantly more discontinuous inflammation (87.5 % vs. 5.1 %), focal cryptitis (75.0 % vs. 12.8 %), and discontinuous crypt architectural abnormality (87.5 % vs. 10.3 %) than in ulcerative colitis (P Crohn's disease), decreased crypt density (79.5 % vs. 22.5 %), and frankly irregular surface (89.7 % vs. 17.5 %; P Crohn's disease. However, because of the limited penetration depth of CLE, submucosal details or granulomas were not visible. The new scoring system may allow in vivo diagnosis of ulcerative colitis or Crohn's disease. Trial registered at ClinicalTrials.gov: NCT 02238665. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Imaging and machine learning techniques for diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat

    2016-12-01

    Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.

  19. IMAGING AS AN AID TO THE DIAGNOSIS OF ACUTE APPENDICITIS

    Directory of Open Access Journals (Sweden)

    Lionel I Wijesuriya

    2007-01-01

    Full Text Available Acute appendicitis has been known as a disease entity for well over a century but a confident diagnosis before surgeryin all patients suspected of the condition is still not possible. Timely diagnosis is essential to minimise morbidity due topossible perforation of the inflamed organ in the event treatment is delayed; so much so that surgeons often preferredto operate at the slightest suspicion of the diagnosis in the past. This resulted in the removal of many normal appendixes.When the diagnosis of appendicitis is clear from the history and clinical examination, then no further investigation isnecessary and prompt surgical treatment is appropriate. Where there is doubt about the diagnosis however it is advisableto resort to imaging studies such as abdominal ultrasound or computed tomography to clear such suspicions beforesubjecting the patient to an appendicectomy. These studies would also help avoid delays in surgery in deservingpatients.

  20. Magnetic resonance imaging diagnosis of Herlyn-Werner-Wunderlich syndrome

    Directory of Open Access Journals (Sweden)

    Taruna Yadav

    2017-01-01

    Full Text Available Herlyn-Werner-Wunderlich syndrome (HWW is a triad of didelphys uterus, obstructed hemivagina, and ipsilateral renal agenesis. It is a combined anomaly of Mullerian and mesonephric ducts. It usually presents in adolescent females after menarche with nonspecific symptoms of pelvic pain, dysmenorrhea, and rarely a palpable pelvic mass. We report here, a case of an 18-year-old female presenting with complaints of lower abdominal pain and dysmenorrhea where magnetic resonance imaging (MRI confirmed the diagnosis of HWW syndrome. MRI is the imaging modality of choice for diagnosis of HWW syndrome and associated complications such as endometriosis.

  1. Computer-aided diagnosis and artificial intelligence in clinical imaging.

    Science.gov (United States)

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio

    2011-11-01

    Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and

  2. Portal cavernoma cholangiopathy: diagnosis, imaging, and intervention.

    Science.gov (United States)

    Moomjian, Lauren N; Winks, Sarah G

    2017-01-01

    The term portal cavernoma cholangiopathy refers to the biliary tract abnormalities that accompany extrahepatic portal vein obstruction (EHPVO) and subsequent cavernous transformation of the portal vein. EHPVO is a primary vascular disorder of the portal vein in children and adults manifested by longstanding thrombosis of the main portal vein. Nearly all patients with EHPVO have manifestations of portal cavernoma cholangiopathy, such as extrinsic indentation on the bile duct and mild bile duct narrowing, but the majority are asymptomatic. However, progressive portal cavernoma cholangiopathy may lead to severe complications, including secondary biliary cirrhosis. A spectrum of changes is seen radiologically in the setting of portal cavernoma cholangiopathy, including extrinsic indentation of the bile ducts, bile duct stricturing, bile duct wall thickening, angulation and displacement of the extrahepatic bile duct, cholelithiasis, choledocholithiasis, and hepatolithiasis. Radiologists must be aware of this disorder in order to provide appropriate imaging evaluation and interpretation, to facilitate appropriate treatment and to distinguish this entity from its potential radiologic mimics.

  3. Imaging diagnosis of dural and direct cavernous carotid fistulae*

    Science.gov (United States)

    dos Santos, Daniela; Monsignore, Lucas Moretti; Nakiri, Guilherme Seizem; Cruz, Antonio Augusto Velasco e; Colli, Benedicto Oscar; Abud, Daniel Giansante

    2014-01-01

    Arteriovenous fistulae of the cavernous sinus are rare and difficult to diagnose. They are classified into dural cavernous sinus fistulae or direct carotid-cavernous fistulae. Despite the similarity of symptoms between both types, a precise diagnosis is essential since the treatment is specific for each type of fistula. Imaging findings are remarkably similar in both dural cavernous sinus fistulae and carotid-cavernous fistulae, but it is possible to differentiate one type from the other. Amongst the available imaging methods (Doppler ultrasonography, computed tomography, magnetic resonance imaging and digital subtraction angiography), angiography is considered the gold standard for the diagnosis and classification of cavernous sinus arteriovenous fistulae. The present essay is aimed at didactically presenting the classification and imaging findings of cavernous sinus arteriovenous fistulae. PMID:25741093

  4. Imaging diagnosis of dural and direct cavernous carotid fistulae.

    Science.gov (United States)

    Dos Santos, Daniela; Monsignore, Lucas Moretti; Nakiri, Guilherme Seizem; Cruz, Antonio Augusto Velasco E; Colli, Benedicto Oscar; Abud, Daniel Giansante

    2014-01-01

    Arteriovenous fistulae of the cavernous sinus are rare and difficult to diagnose. They are classified into dural cavernous sinus fistulae or direct carotid-cavernous fistulae. Despite the similarity of symptoms between both types, a precise diagnosis is essential since the treatment is specific for each type of fistula. Imaging findings are remarkably similar in both dural cavernous sinus fistulae and carotid-cavernous fistulae, but it is possible to differentiate one type from the other. Amongst the available imaging methods (Doppler ultrasonography, computed tomography, magnetic resonance imaging and digital subtraction angiography), angiography is considered the gold standard for the diagnosis and classification of cavernous sinus arteriovenous fistulae. The present essay is aimed at didactically presenting the classification and imaging findings of cavernous sinus arteriovenous fistulae.

  5. Imaging diagnosis of dural and direct cavernous carotid fistulae

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela dos; Monsignore, Lucas Moretti; Nakiri, Guilherme Seizem; Cruz, Antonio Augusto Velasco e; Colli, Benedicto Oscar; Abud, Daniel Giansante, E-mail: danisantos2404@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    2014-07-15

    Arteriovenous fistulae of the cavernous sinus are rare and difficult to diagnose. They are classified into dural cavernous sinus fistulae or direct carotid-cavernous fistulae. Despite the similarity of symptoms between both types, a precise diagnosis is essential since the treatment is specific for each type of fistula. Imaging findings are remarkably similar in both dural cavernous sinus fistulae and carotid-cavernous fistulae, but it is possible to differentiate one type from the other. Amongst the available imaging methods (Doppler ultrasonography, computed tomography, magnetic resonance imaging and digital subtraction angiography), angiography is considered the gold standard for the diagnosis and classification of cavernous sinus arteriovenous fistulae. The present essay is aimed at didactically presenting the classification and imaging findings of cavernous sinus arteriovenous fistulae. (author)

  6. Diagnosis of endometriosis with imaging: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kinkel, Karen [Clinique et fondation des Grangettes, Institut de Radiologie, Chene-Bougeries/Geneva (Switzerland); Frei, Kathrin A. [University Hospital Bern, Department of Obstetrics and Gynaecology, Bern (Switzerland); Balleyguier, Corinne [Institut Gustave Roussy, Radiology Department, Villejuif (France); Chapron, Charles [Hopitaux de Paris, Service de Gynecologie Obstetrique II, Unite de Chirurgie, Paris (France)

    2006-02-01

    Endometriosis corresponds to ectopic endometrial glands and stroma outside the uterine cavity. Clinical symptoms include dysmenorrhoea, dyspareunia, infertility, painful defecation or cyclic urinary symptoms. Pelvic ultrasound is the primary imaging modality to identify and differentiate locations to the ovary (endometriomas) and the bladder wall. Characteristic sonographic features of endometriomas are diffuse low-level internal echos, multilocularity and hyperchoic foci in the wall. Differential diagnoses include corpus luteum, teratoma, cystadenoma, fibroma, tubo-ovarian abscess and carcinoma. Repeated ultrasound is highly recommended for unilocular cysts with low-level internal echoes to differentiate functional corpus luteum from endometriomas. Posterior locations of endometriosis include utero-sacral ligaments, torus uterinus, vagina and recto-sigmoid. Sonographic and MRI features are discussed for each location. Although ultrasound is able to diagnose most locations, its limited sensitivity for posterior lesions does not allow management decision in all patients. MRI has shown high accuracies for both anterior and posterior endometriosis and enables complete lesion mapping before surgery. Posterior locations demonstrate abnormal T2-hypointense, nodules with occasional T1-hyperintense spots and are easier to identify when peristaltic inhibitors and intravenous contrast media are used. Anterior locations benefit from the possibility of MRI urography sequences within the same examination. Rare locations and possible transformation into malignancy are discussed. (orig.)

  7. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    Science.gov (United States)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  8. Measurement of depth of burns by laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Droog, E.J.; Droog, E.J.; Steenbergen, Wiendelt; Sjöberg, F.

    2001-01-01

    Laser Doppler perfusion imaging (LDPI), is a further development in laser Doppler flowmetry (LDF). Its advantage is that it enables assessment of microvascular blood flow in a predefined skin area rather than, as for LDF, in one place. In many ways this method seems to be more promising than LDF in

  9. Automated diagnosis of retinopathy by content-based image retrieval.

    Science.gov (United States)

    Chaum, Edward; Karnowski, Thomas P; Govindasamy, V Priya; Abdelrahman, Mohamed; Tobin, Kenneth W

    2008-01-01

    To describe a novel computer-based image analysis method that is being developed to assist and automate the diagnosis of retinal disease. Content-based image retrieval is the process of retrieving related images from large database collections using their pictorial content. The content feature list becomes the index for storage, search, and retrieval of related images from a library based upon specific visual characteristics. Low-level analyses use feature description models and higher-level analyses use perceptual organization and spatial relationships, including clinical metadata, to extract semantic information. We defined, extracted, and tested a large number of region- and lesion-based features from a dataset of 395 retinal images. Using a statistical hold-one-out method, independent queries for each image were submitted to the system and a diagnostic prediction was formulated. The diagnostic sensitivity for all stratified levels of age-related macular degeneration ranged from 75% to 100%. Similarly, the sensitivity of detection and accuracy for proliferative diabetic retinopathy ranged from 75% to 91.7% and for nonproliferative diabetic retinopathy, ranged from 75% to 94.7%. The overall purity of the diagnosis (specificity) for all disease states in the dataset was 91.3%. The probabilistic nature of content-based image retrieval permits us to make statistically relevant predictions regarding the presence, severity, and manifestations of common retinal diseases from digital images in an automated and deterministic manner.

  10. An application of image processing to the diagnosis of diabetic ...

    African Journals Online (AJOL)

    This study focused on developing a new algorithm for segmenting lesions in retinal images, in order to prepare for lesion feature extraction, in the automatic diagnosis of Diabetic Retinopathy (DR) using computer vision. Tests conducted to evaluate algorithm performance included a sensitivity-and-specificity test, ...

  11. Imaging diagnosis of cardial chloroma; Bildgebung kardialer Chlorome

    Energy Technology Data Exchange (ETDEWEB)

    Esser, M.; Doerfel, D.; Mueller, I.; Horger, M.

    2016-06-15

    Cardiac chloroma are a seldom extramedullary manifestation of myeloproliferant and dysplastic diseases. An adequate imaging based on multimodal approaches is of importance for diagnosis. Perfusion CT allows identification of the extent of myocardial chlorome infiltration. The reliability of the method seems to be more efficient than cardiac MRT. For validation histological tests are unavoidable.

  12. Ultrasound imaging in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Christo Naveen Prince

    2012-01-01

    Full Text Available Background and Objectives: To assess the diagnostic capability of real-time ultrasound imaging, together with the application of color power Doppler in the identification and differential diagnosis of the periapical lesions. Materials and Methods: Fifteen patients with periapical lesions of pulpal origin, diagnosed with clinical and conventional radiographic examination, were examined further using ultrasonography. The results from the biopsies of the lesions were compared and statistically analyzed. Results: The differential diagnosis between periapical granulomas and cystic lesions, which were based on the ultrasonographic findings, were confirmed by the results of the histopathologic examination in 13 (86.7% of 15 cases, one being granuloma and 14 being cystic lesion. Interpretation and Conclusion: Ultrasound real-time imaging is a technique that may help make a differential diagnosis between cysts and granulomas by revealing the nature of the content of a bony lesion. This technique may have further applications in the study of other lesions of the jaws.

  13. Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation

    Science.gov (United States)

    Dhital, Dipesh; Lee, Jung Ryul; Park, Chan Yik; Flynn, Eric

    2012-04-01

    Various types of damages occur in aerospace, mechanical and many other engineering structures, and a reliable nondestructive evaluation technique is essential to detect any possible damage at the initiation phase. Ultrasound has been widely used but the conventional contact ultrasonic inspection techniques are not suitable for mass and couplant sensitive structures and are relatively slow. This study presents a fully non-contact hybrid laser ultrasonic generation and piezoelectric air-coupled transducer (ACT)/laser Doppler vibrometer (LDV) sensing technique combined with ultrasonic wave propagation imaging (UWPI), ultrasonic spectral imaging (USI) and wavelet-transformed ultrasonic propagation imaging (WUPI) algorithms to extract defect-sensitive features aimed at performing a thorough diagnosis of damage. Optimization enables improved performance efficiency of ACT and LDV to be used as receivers for non-contact hybrid laser ultrasonic propagation imaging (UPI) system as shown from the experimental results in this study. Real fatigue closed surface micro crack on metal structure was detected using hybrid laser ultrasonic generation/ACT sensing system, with size detection accuracy as high as 96%. Impact damages on carbon fiber reinforced plastic composite wing-box specimen were detected and localized using hybrid laser ultrasonic generation/LDV sensing system.

  14. Sparsity assisted approach for imaging from laser speckle

    Science.gov (United States)

    Vinu, R. V.; Gaur, Charu; Khare, Kedar; Singh, Rakesh Kumar

    2017-02-01

    A non-interferometric technique for imaging from laser speckle using speckle autocorrelation assisted with sparsity enhanced iterative phase reconstruction is proposed and demonstrated in this paper. The use of sparsity assisted approach in combination with speckle correlation provides the potential to retrieve the complex correlation function from random speckle pattern. Imaging through random scattering medium is demonstrated by recovery of a circular and an annular aperture from the laser speckle.

  15. Laser Imaging Video Camera Sees Through Fire, Fog, Smoke

    Science.gov (United States)

    2015-01-01

    Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.

  16. Characterization, diagnosis and ablation of human teeth using blue laser at 457 nm

    Science.gov (United States)

    El-Sherif, Ashraf F.; Gomaa, Walid; El-Sharkawy, Yasser H.

    2014-02-01

    The light interaction with tissue is governed by the specific wavelength of the laser used and the optical properties of target tissue. Absorption, scattering and fluorescence together can probably be used as the basis of quantitative diagnostic methods for teeth caries. The absorption coefficient of human teeth was determined from detached wet teeth (incisors and premolars). Laser absorption of these teeth was measured using compact blue laser source at wavelength of 457 nm and a high resolution spectrometer equipped with an integrating sphere. The average absorption coefficient of abnormal caries tissue of human teeth is observed to be higher than the normal ones. Detection and diagnosis of caries tissues were monitored by high resolution translational scanning of human teeth. We have a powerful tool to diagnosis a caries region of human teeth using blue laser at 457 nm. Ablations of caries region are investigated using higher power of blue laser at 457 nm.

  17. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging

    Science.gov (United States)

    Fredriksson, Ingemar; Larsson, Marcus

    2017-10-01

    Laser speckle-based techniques are frequently used to assess microcirculatory blood flow. Perfusion estimates are calculated either by analyzing the speckle fluctuations over time as in laser Doppler flowmetry (LDF), or by analyzing the speckle contrast as in laser speckle contrast imaging (LSCI). The perfusion estimates depend on the amount of blood and its speed distribution. However, the perfusion estimates are commonly given in arbitrary units as they are nonlinear and depend on the magnitude and the spatial distribution of the optical properties in the tissue under investigation. We describe how the spatial confinement of blood to vessels, called the vessel packaging effect, can be modeled in LDF and LSCI, which affect the Doppler power spectra and speckle contrast, and the underlying bio-optical mechanisms for these effects. As an example, the perfusion estimate is reduced by 25% for LDF and often more than 50% for LSCI when blood is located in vessels with an average diameter of 40 μm, instead of being homogeneously distributed within the tissue. This significant effect can be compensated for only with knowledge of the average diameter of the vessels in the tissue.

  18. Portable multispectral imaging system for oral cancer diagnosis

    Science.gov (United States)

    Hsieh, Yao-Fang; Ou-Yang, Mang; Lee, Cheng-Chung

    2013-09-01

    This study presents the portable multispectral imaging system that can acquire the image of specific spectrum in vivo for oral cancer diagnosis. According to the research literature, the autofluorescence of cells and tissue have been widely applied to diagnose oral cancer. The spectral distribution is difference for lesions of epithelial cells and normal cells after excited fluorescence. We have been developed the hyperspectral and multispectral techniques for oral cancer diagnosis in three generations. This research is the third generation. The excited and emission spectrum for the diagnosis are acquired from the research of first generation. The portable system for detection of oral cancer is modified for existing handheld microscope. The UV LED is used to illuminate the surface of oral cavity and excite the cells to produce fluorescent. The image passes through the central channel and filters out unwanted spectrum by the selection of filter, and focused by the focus lens on the image sensor. Therefore, we can achieve the specific wavelength image via fluorescence reaction. The specificity and sensitivity of the system are 85% and 90%, respectively.

  19. Magnetic resonance imaging for diagnosis of early Alzheimer's disease.

    Science.gov (United States)

    Colliot, O; Hamelin, L; Sarazin, M

    2013-10-01

    A major challenge for neuroimaging is to contribute to the early diagnosis of Alzheimer's disease (AD). In particular, magnetic resonance imaging (MRI) allows detecting different types of structural and functional abnormalities at an early stage of the disease. Anatomical MRI is the most widely used technique and provides local and global measures of atrophy. The recent diagnostic criteria of "mild cognitive impairment due to AD" include hippocampal atrophy, which is considered a marker of neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in the hippocampus and throughout the whole brain. Recent modalities such as diffusion-tensor imaging and resting-state functional MRI provide additional measures that could contribute to the early diagnosis but require further validation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  1. Laser induced fluorescence imaging system for localization of nasopharyngeal carcinoma

    Science.gov (United States)

    Liu, Lina; Xie, Shusen

    2007-11-01

    A laser induced fluorescence imaging system for localization of Nasopharyngeal Carcinoma is developed. In this fluorescence imaging system, the fluorescence intensity with information of detected objection is gained by an image intensifier, which makes color information of the fluorescence image eliminated and the result is a monochrome image of the fluorescence with thermally induced noise. The monochrome fluorescence image is sent to a CCD and captured by an image board, which is controlled by a computer. Image processing is carried out to improve the image quality and therefore improve the system's ability to differentiate carcinomas from normal tissue. Gaussian smoothing is implemented in order to reduce the noise. Image binarizing process is realized to obtain an optimal threshold of the image. Image pixels with grey value below this threshold are assigned as diseased and those above are normal. A pseudo color processing is then accomplished to get better visual perception and understanding of the image, greatly increasing the detail resolution of the grey image. The processed image is then displayed on the screen of the computer in real time. The real time laser induced fluorescence imaging system with the image processing methods developed is efficient for localization of the nasopharyngeal carcinoma.

  2. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO2 laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO2 laser. This development will enable an advance to the laser-driven proton cancer therapy.

  3. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  4. Multiplexed imaging in cancer diagnosis: applications and future advances.

    Science.gov (United States)

    Kobayashi, Hisataka; Longmire, Michelle R; Ogawa, Mikako; Choyke, Peter L; Kawamoto, Satomi

    2010-06-01

    The development of imaging technologies that have sufficient specificity and sensitivity to enable early, accurate detection of cancer and response to therapy has long been a goal in oncology. Various radiological techniques have been used for diagnosis and surveillance of disease recurrence and imaging has revolutionised oncology. However, despite the widespread use of technologies, the ability of currently available imaging methods to facilitate early detection, precise characterisation, and accurate localisation of malignant disease could be improved. The simultaneous use of two or more techniques, contrast reagents, signalling methods, or the coupling of agent and tissue properties to achieve so-called multiplexed imaging is a promising approach. In this review, we provide a broad overview of current and emerging multiplexed, imaging technologies. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Speckles in laser doppler perfusion imaging

    NARCIS (Netherlands)

    Rajan, V.V.

    2007-01-01

    Laser Doppler Flowmetry (LDF) is a noninvasive diagnostic method to measure blood flow in tissue [1]. The technique is based on measuring the Doppler shift induced by moving red blood cells to the illuminating coherent light. A laser Doppler instrument often gives output signals related to the flux,

  6. Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis.

    Science.gov (United States)

    Fang, S; McLaughlin, J; Fang, J; Huang, J; Autti-Rämö, I; Fagerlund, A; Jacobson, S W; Robinson, L K; Hoyme, H E; Mattson, S N; Riley, E; Zhou, F; Ward, R; Moore, E S; Foroud, T

    2008-08-01

    Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces.

  7. Research on Image processing in laser triangulation system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kai; Wang Qianqian; Wang Yang; Liu Chenrui, E-mail: qqwang@bit.edu.cn [School of Optoelectronics, Beijing Institute of Technology, 100081 Beijing (China)

    2011-02-01

    Laser Triangulation Ranging is a kind of displacement distance measurement method which is based on the principle of optical triangulation using laser as the light source. It is superior in simple structure, high-speed, high-accuracy, anti-jamming capability and adaptability laser triangulation ranging. Therefore it is widely used in various fields such as industrial production, road test, three-dimensional face detection, and so on. In current study the features of the spot images achieved by CCD in laser triangulation system were analyzed, and the appropriate algorithms for spot images were discussed. Experimental results showed that the precision and stability of the spot location were enhanced significantly after applying these image processing algorithms.

  8. Influence of laser ablation parameters on trueness of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaculovič, T.; Warchilová, T. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic); Čadková, Z.; Száková, J.; Tlustoš, P. [Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Praha 16521 (Czech Republic); Otruba, V. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Kanický, V., E-mail: viktork@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic)

    2015-10-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw{sub rel}) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw{sub rel} is strongly reduced (down to 2%) at low scan speed (10 μm s{sup −1}) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s{sup −1} within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake.

  9. Quantitative analysis of ultrasound images for computer-aided diagnosis.

    Science.gov (United States)

    Wu, Jie Ying; Tuomi, Adam; Beland, Michael D; Konrad, Joseph; Glidden, David; Grand, David; Merck, Derek

    2016-01-01

    We propose an adaptable framework for analyzing ultrasound (US) images quantitatively to provide computer-aided diagnosis using machine learning. Our preliminary clinical targets are hepatic steatosis, adenomyosis, and craniosynostosis. For steatosis and adenomyosis, we collected US studies from 288 and 88 patients, respectively, as well as their biopsy or magnetic resonanceconfirmed diagnosis. Radiologists identified a region of interest (ROI) on each image. We filtered the US images for various texture responses and use the pixel intensity distribution within each ROI as feature parameterizations. Our craniosynostosis dataset consisted of 22 CT-confirmed cases and 22 age-matched controls. One physician manually measured the vectors from the center of the skull to the outer cortex at every 10 deg for each image and we used the principal directions as shape features for parameterization. These parameters and the known diagnosis were used to train classifiers. Testing with cross-validation, we obtained 72.74% accuracy and 0.71 area under receiver operating characteristics curve for steatosis ([Formula: see text]), 77.27% and 0.77 for adenomyosis ([Formula: see text]), and 88.63% and 0.89 for craniosynostosis ([Formula: see text]). Our framework is able to detect a variety of diseases with high accuracy. We hope to include it as a routinely available support system in the clinic.

  10. Image Processing In Laser-Beam-Steering Subsystem

    Science.gov (United States)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  11. Multimodal imaging in handheld laser-induced maculopathy.

    Science.gov (United States)

    Bhavsar, Kavita V; Wilson, Deanna; Margolis, Ron; Judson, Peter; Barbazetto, Irene; Freund, K Bailey; Cunningham, Emmett T

    2015-02-01

    To describe the clinical and imaging findings in 3 patients with maculopathy secondary to handheld laser exposure. Retrospective, observational case series. We evaluated the multimodal imaging including fundus autofluorescence and spectral-domain optical coherence tomography (OCT) for 3 patients with histories of exposure to handheld lasers. An 18-year-old woman with a history of repetitive self-inflicted handheld laser exposure was found to have bilateral outer retinal streaks in the macula and the superior peripheral retina on both ophthalmoscopy and multimodal imaging. Initial spectral-domain OCT revealed vertical hyper-reflective bands at the level of the outer retina corresponding to the streaks. An 11-year-old boy who played with a green laser developed a yellow foveal lesion and outer retinal streaks in the superior macula. Spectral-domain OCT showed vertical hyper-reflective bands in the outer retina corresponding to the streaks. A 14-year-old boy developed bilateral focal foveal lesions and ellipsoid loss on spectral-domain OCT following peer-inflicted laser injury. In a series of 3 patients, outer retinal streaks were associated with self-inflicted handheld laser injury. In contrast, accidental and peer-inflicted laser injuries were found to result in focal foveal lesions. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Sensitivity of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; De Chatellus, Hugues Guillet

    2012-01-01

    In this paper we compare the sensitivity of two imaging configurations both based on Laser Optical Feedback Imaging (LOFI). The first one is direct imaging, which uses conventional optical focalisation on target and the second one is made by Synthetic Aperture (SA) Laser, which uses numerical focalisation. We show that SA configuration allows to obtain good resolutions with high working distance and that the drawback of SA imagery is that it has a worse photometric balance in comparison to conventional microscope. This drawback is partially compensated by the important sensitivity of LOFI. Another interest of SA relies on the capacity of getting a 3D information in a single x-y scan.

  13. Evaluation of laser prostatectomy devices by thermal imaging

    Science.gov (United States)

    Molenaar, David G.; van Vliet, Remco J.; van Swol, Christiaan F. P.; Boon, Tom A.; Verdaasdonck, Rudolf M.

    1994-12-01

    The treatment of benign prostatic hyperplasia (BPH) using Nd:YAG laser light has become an accepted alternative to TURP. However, there is no consensus to the dosimetry using the various laser devices. In our study, we evaluate the optical and thermal characteristics of 7 commercially available side firing laser probes. For the thermal analysis, an optical method was used based on `Schlieren' techniques producing color images of the temperature distribution around the laser probe in water. Absolute temperatures were obtained after calibration measurements with thermocouples. Laser probes using metal mirrors for beam deflection heated up entirely. The local temperature rose up to 100 degrees centigrade, thus inducing vapor bubble formation that interfered with the emitted beam. Laser devices, using total internal reflection for deflection, showed far less heating primarily at the exit window, though Fresnel reflections and secondary beams indirectly heated up the (metal) housing of the tip. After clinical application, the absorption at the probe surface and hence temperature increased due to probe deterioration. Color Schlieren imaging is a powerful method for the thermal evaluation of laser devices. The thermal behavior of laser probes can be used as a guidance for the method of application and as an indication of the lifetime of the probes.

  14. Recent advances in magnetic resonance imaging for stroke diagnosis

    Directory of Open Access Journals (Sweden)

    Radhika Rastogi

    2015-01-01

    Full Text Available In stroke, diagnosis and identification of the infarct core and the penumbra is integral to therapeutic determination. With advances in magnetic resonance imaging (MRI technology, stroke visualization has been radically altered. MRI allows for better visualization of factors such as cerebral microbleeds (CMBs, lesion and penumbra size and location, and thrombus identification; these factors help determine which treatments, ranging from tissue plasminogen activator (tPA, anti-platelet therapy, or even surgery, are appropriate. Current stroke diagnosis standards use several MRI modalities in conjunction, with T2- or T2FNx01- weighted MRI to rule out intracerebral hemorrhage (ICH, magnetic resonance angiography (MRA for thrombus identification, and the diffusion-weighted imaging (DWI and perfusion-weighted imaging (PWI mismatch for penumbral identification and therapeutic determination. However, to better clarify the neurological environment, susceptibility-weighted imaging (SWI for assessing oxygen saturation and the presence of CMBs as well as additional modalities, such as amide proton transfer (APT imaging for pH mapping, have emerged to offer more insight into anatomical and biological conditions during stroke. Further research has unveiled potential for alternative contrasts to gadolinium for PWI as well, as the contrast has contraindications for patients with renal disease. Superparamagnetic iron oxide nanoparticles (SPIONs as an exogenous contrast and arterial spin labeling (ASL as an endogenous contrast offer innovative alternatives. Thus, emerging MRI modalities are enhancing the diagnostic capabilities of MRI in stroke and provide more guidance for patient outcome by offering increased accessibility, accuracy, and information.

  15. Digital imaging in differential diagnosis of small choroidal melanoma.

    Science.gov (United States)

    Saari, Jukka M; Kivelä, Tero; Summanen, Paula; Nummelin, Kari; Saari, K Matti

    2006-12-01

    To assess the role of digital imaging and a new subtraction method for differential diagnosis of choroidal nevus and small choroidal melanoma. Of 241 consecutive patients referred to a tertiary referral center for suspected choroidal melanoma, 110 who underwent digital imaging of the ocular fundus were eligible for this study. Digital color, red-free and red light retinal images were evaluated in a randomized and masked manner and by the subtraction method for diagnosis of the fundus lesion. The reference standard was based on the combined results of ophthalmological examination, including mydriatic ophthalmoscopy, B scan ultrasonography, digital imaging and fluorescein angiography of the ocular fundus. Comparative use of digital color, red-free and red light imaging had 85.7% (95%CI 42.1-99.6) sensitivity, 99.0% (95%CI 94.7-99.9) specificity and 98.2% (95%CI 93.6-99.8) exact agreement versus reference standard in differentiation of small choroidal melanoma from pseudomelanoma. Direct comparison between use of digital images and the reference standard showed excellent agreement in detecting small choroidal melanoma from suspected choroidal lesions (K 0.847; 95%CI 0.639-1.0). The subtraction method was useful to show growth in four of 94 melanocytic choroidal tumors. The mean annual incidence of choroidal melanoma in Southwest Finland was 0.80 per 100.000 population. The most frequent choroidal pseudomelanomas were choroidal melanotic and amelanotic nevi, disciform lesions, congenital hypertrophy of the retinal pigment epithelium, and circumscribed choroidal hemangioma. Combined use of digital color, red-free and red light imaging was a suitable adjunct in differentiation of small choroidal melanoma from different pseudomelanomas. The subtraction method may reveal early growth of the melanotic choroidal tumors.

  16. [Echographic diagnosis of missed early miscarriage: Assessment of image quality].

    Science.gov (United States)

    Barthes, C; Mezan De Malartic, C; Baumann, C; Rousseaux, H; Morel, O

    2018-02-01

    Ultrasound examination plays a central role in case of suspected non-viable pregnancy. A wrong diagnosis might have major consequence in terms of inadequate care, especially in cases of false positive non-viable pregnancy diagnosis. Ultrasound criterions are today well defined. Our objective was to evaluate the feasibility and reproducibility of a novel image-quoting method of first-trimester non-viable pregnancy. Thirty images of non-viable pregnancy were twice evaluated with blinded proofreading. Two quotations were evaluated: the first for the images of gestational sacs without embryo (gestational sac score), the second for the images with embryo (embryo score). The ICC (interclass correlation coefficient) was>0.75 for inter- and intra-observer reproducibility both for the quotations of the gestational sac and for the embryo with a low variability. Reproducibility of quoting crown rump length measurements 0.75. The inter- and intra-observer reproducibility of our quoting methods is high with a low variability. They might be a useful tool in current practice in the future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Magnetic resonance imaging markers for early diagnosis of Parkinson's disease☆

    Science.gov (United States)

    Marino, Silvia; Ciurleo, Rosella; Di Lorenzo, Giuseppe; Barresi, Marina; De Salvo, Simona; Giacoppo, Sabrina; Bramanti, Alessia; Lanzafame, Pietro; Bramanti, Placido

    2012-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective and progressive degeneration, as well as loss of dopaminergic neurons in the substantia nigra. In PD, approximately 60-70% of nigrostriatal neurons are degenerated and 80% of content of the striatal dopamine is reduced before the diagnosis can be established according to widely accepted clinical diagnostic criteria. This condition describes a stage of disease called “prodromal”, where non-motor symptoms, such as olfactory dysfunction, constipation, rapid eye movement behaviour disorder, depression, precede motor sign of PD. Detection of prodromal phase of PD is becoming an important goal for determining the prognosis and choosing a suitable treatment strategy. In this review, we present some non-invasive instrumental approaches that could be useful to identify patients in the prodromal phase of PD or in an early clinical phase, when the first motor symptoms begin to be apparent. Conventional magnetic resonance imaging (MRI) and advanced MRI techniques, such as magnetic resonance spectroscopy imaging, diffusion-weighted and diffusion tensor imaging and functional MRI, are useful to differentiate early PD with initial motor symptoms from atypical parkinsonian disorders, thus, making easier early diagnosis. Functional MRI and diffusion tensor imaging techniques can show abnormalities in the olfactory system in prodromal PD. PMID:25745453

  18. Magnetic resonance imaging markers for early diagnosis of Parkinson's disease.

    Science.gov (United States)

    Marino, Silvia; Ciurleo, Rosella; Di Lorenzo, Giuseppe; Barresi, Marina; De Salvo, Simona; Giacoppo, Sabrina; Bramanti, Alessia; Lanzafame, Pietro; Bramanti, Placido

    2012-03-15

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective and progressive degeneration, as well as loss of dopaminergic neurons in the substantia nigra. In PD, approximately 60-70% of nigrostriatal neurons are degenerated and 80% of content of the striatal dopamine is reduced before the diagnosis can be established according to widely accepted clinical diagnostic criteria. This condition describes a stage of disease called "prodromal", where non-motor symptoms, such as olfactory dysfunction, constipation, rapid eye movement behaviour disorder, depression, precede motor sign of PD. Detection of prodromal phase of PD is becoming an important goal for determining the prognosis and choosing a suitable treatment strategy. In this review, we present some non-invasive instrumental approaches that could be useful to identify patients in the prodromal phase of PD or in an early clinical phase, when the first motor symptoms begin to be apparent. Conventional magnetic resonance imaging (MRI) and advanced MRI techniques, such as magnetic resonance spectroscopy imaging, diffusion-weighted and diffusion tensor imaging and functional MRI, are useful to differentiate early PD with initial motor symptoms from atypical parkinsonian disorders, thus, making easier early diagnosis. Functional MRI and diffusion tensor imaging techniques can show abnormalities in the olfactory system in prodromal PD.

  19. [Classification and imaging diagnosis of Lisfranc joint injuries].

    Science.gov (United States)

    Xi, Y; Hu, D J; Yao, W W; Li, M

    2016-07-05

    To accelerate the detection rate and accuracy of diagnosis in damage imaging of Lisfranc joint through research on the information of X-ray, CT, and MR imaging of tarsometatarsus joint (also called Lisfranc joint) damage. A total of 153 cases of tarsometratisus damage or Lisfranc ligamentous injury patients were chosen during November 2012 to November 2015. Lisfranc injuries were classified according to the Myerson fracture displacements classification and Nunley-Vertullo low-grade injury classification. All the treatment data was performed using SPSS 17.0 software. For Myerson fracture displacements, there were 16 cases in Myerson Ⅰ type (homolateral complete), 100 cases in Myerson Ⅱ type (homolateral incomplete), and 5 cases in Myerson Ⅲ type (divergent). For the low-grade injury, there were 7 cases, 24 cases, and 1 case in Nunley-Vertullo Ⅰ, Ⅱ, Ⅲ type respectively. The probability was 14.9% (18/121) for patients that the initial survey found negative by X-ray imaging diagnosis and was confirmed by subsequent CT or MRI. It was found that the distance between the base of first (M1) and second (M2) metatarsus which was larger than 2 mm was 69.4%(84/121)from the X-ray imaging; there were small chip fractures between the base of M1 and M2 was 47.1% (57/121), and 71.2% (37/52)of small chip fractures in the inside of base of M2 from CT. On MRI, ligament disruption showed the discontinue or normal signal disappearing, and there were 15 cases in the complete disruption condition. It should be suggested to take a CT or MRI check for the patients who have highly suspicious Lisfranc injure and the X-ray imaging diagnosis was negative, since there is a certain rate of missed diagnosis for the Lisfranc injure using X-ray imaging. For children and teenagers, the sports injuries and joint strain are common style, such as the injuries caused by jump from higher platform, football/skateboarding injures, etc. If the distance between the base of M1 and M2 is larger than

  20. Telematics techniques for image based diagnosis, therapy planning and monitoring.

    Science.gov (United States)

    Bidaut, L M; Scherrer, J R

    1998-01-01

    This paper is intended to describe and illustrate some of the actual use of telematics related techniques together with modern biomedical imaging capabilities for helping in diagnosis, as well as for the planning and monitoring of therapy. To this end, most current imaging modalities are initially introduced. Then it is shown how telematics related techniques are necessary to improve the outcome of current image-based protocols. Such techniques allow data, means, or competencies--which may intrinsically be of a complementary nature or distributed at many different locations--to be integrated together and transcend the simple sum of individual expectations. Examples of actual implementations are given in the fields of radio-oncology, neurosurgery and orthopedics. To conclude, the papers and posters presented in the corresponding session of the MIE'97 symposium are summarized to provide further telematics references for the reader.

  1. Analysis of imaging for laser triangulation sensors under Scheimpflug rule.

    Science.gov (United States)

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2013-07-29

    In this work a detailed analysis of the problem of imaging of objects lying in the plane tilted with respect to the optical axis of the rotationally symmetrical optical system is performed by means of geometrical optics theory. It is shown that the fulfillment of the so called Scheimpflug condition (Scheimpflug rule) does not guarantee the sharp image of the object as it is usually declared because of the fact that due to the dependence of aberrations of real optical systems on the object distance the image becomes blurred. The f-number of a given optical system also varies with the object distance. It is shown the influence of above mentioned effects on the accuracy of the laser triangulation sensors measurements. A detailed analysis of laser triangulation sensors, based on geometrical optics theory, is performed and relations for the calculation of measurement errors and construction parameters of laser triangulation sensors are derived.

  2. Optoacoustic imaging of subcutaneous microvasculature with a class one laser.

    Science.gov (United States)

    Bost, Wolfgang; Lemor, Robert; Fournelle, Marc

    2014-09-01

    We developed a combined imaging platform allowing optoacoustic and ultrasound imaging based on a low energy laser and a handheld probe. The device is based on a sensitive single element 35-MHz focused transducer, a 2-D piezoscanner and a dual-wavelength switchable Nd:YAG laser. Acoustical detection and optical illumination are confocal for optimization of optoacoustic signal-to-noise ratio. The system allows to scan over a range up to 12 mm ×12 mm in xy-direction with an isotropic lateral resolution of about 90 μm. Although the device is a class 1 laser product having pulse energies in the range, in vivo images of subcutaneous microvasculature could be obtained from human skin with signal-to-noise levels as good as 20 dB.

  3. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  4. Specific diagnosis of hepatocellular carcinoma by delayed hepatobiliary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y.; Nakano, S.; Ibuka, K.; Hashizume, T.; Noguchi, A.; Sasaki, Y.; Imaoka, S.; Fujita, M.; Kawamoto, S.; Kasugai, H.

    1986-01-15

    For assessment of the value of delayed hepatobiliary imaging with technetium 99m (/sup 99m/Tc)-(Sn)-N-pyridoxyl-5-methyltryptophan (/sup 99m/Tc-PMT) for specific diagnosis of hepatocellular carcinoma, 88 patients with various malignant and benign liver diseases (49 with hepatocellular carcinoma, 4 with cholangiocellular carcinoma, 10 with metastatic liver carcinoma, 2 with liver cysts, 2 with liver hemangioma, 1 with liver abscess, 2 with intrahepatic lithiasis, 12 with liver cirrhosis, and 6 with chronic hepatitis) were studied. In 20 (41%) of the 49 patients with hepatocellular carcinoma, greater uptake of /sup 99m/Tc-PMT by the tumor than by the surrounding liver tissue was seen in delayed hepatobiliary images, whereas in eight patients (16%), equilibrated uptake was seen. No increased uptake of the radioisotope by hepatic lesions was seen in 21 patients with localized liver diseases other than hepatoma. Moreover, in 18 patients with diffuse liver diseases, no focal accumulation of the radioisotope was seen in delayed /sup 99m/Tc-PMT images. In addition, of 28 patients with hepatocellular carcinoma in whom the serum alpha-fetoprotein level showed little or no increase, 12 showed increased uptake of /sup 99m/Tc-PMT by the tumor. In assessing delayed /sup 99m/Tc-PMT images, however, it was necessary to consider following complications: accumulation of tracer in obstructed and dilated biliary trees; retention of radioactivity in nonneoplastic liver tissues; difficulties in evaluating /sup 99m/Tc-PMT uptake by small hepatic tumors; overlapping of radioactivity in the gut and gallbladder in delayed /sup 99m/Tc-PMT images of tumors. This study indicates that delayed /sup 99m/Tc-PMT images can be useful in the diagnosis of hepatocellular carcinoma.

  5. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    State-of-the-art optical fiber technology can contribute towards complex multi-element broadband terahertz imaging systems. Classical table-top terahertz imaging systems are generally limited to a single emitter/receiver pair, which constrains their imaging capability to tedious raster scanning...... imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  6. Prostate cancer diagnosis with fluorescence lifetime imaging (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Gandour-Edwards, Regina F.; Dall'Era, Marc; Marcu, Laura

    2017-02-01

    More than 1 million men in the United States undergo a prostate biopsy procedure annually and approximately 200,000 men receive a diagnosis of prostate cancer. 5-10% of these men have to undergo a repeat biopsy due to insufficient tissue sampling. We are studying the utility of a multi-spectral time resolved fluorescence spectroscopy (MS-TRFS) technique for real-time prostate cancer diagnosis. The MS-TRFS imaging setup, which includes a fiberoptic set-up with a 355nm excitation light source coupled with a blue (450nm) aiming beam, was used to image ex-vivo prostatectomy specimen. The prostate tissue from 11 patients was sectioned at 2mm thickness and the fluorescence lifetime information was overlaid spatially for histology and thus, diagnostic co-registration. Initial results show that fluorescence lifetime in the 390±40nm channel, which measures collagen and elastin signatures, is longer for glandular regions than in the stromal regions. Additionally, lifetime in the 452±45nm channel, corresponding to NAD redox state, is longer in the cancerous glandular region in comparison with the normal glandular regions. Current work is focused on developing real-time quantitative algorithms to combine the fluorescence signatures from the two channels for performing prostate cancer diagnosis on biopsies.

  7. Prenatal diagnosis of craniosynostosis: value of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fjoertoft, M. Irsutti; Sevely, A. [Centre Hospitalier Universitaire Purpan, Service de Neuroradiologie Diagnostique et Therapeutique, Toulouse Cedex 9 (France); Boetto, S. [Centre Hospitalier Universitaire Purpan, Service de Neurochirurgie, Toulouse Cedex 9 (France); Kessler, S.; Sarramon, M.F. [Hopital Paule de Viguier, Centre Pluridisciplinaire de Diagnostic Prenatal, Toulouse Cedex 9 (France); Rolland, M. [Hopital des Enfants, Service de Neonatalogie, Departement Medico-Chirurgical de Pediatrie, Toulouse Cedex 9 (France)

    2007-06-15

    The aim of our study was to assess the utility and reliability of magnetic resonance imaging (MRI) in antenatal diagnosis of craniosynostosis. We retrospectively reviewed the MRI examinations of the head of 15 fetuses requested over a period of 11 years on the basis of sonographic suspicion of craniosynostosis. The postnatal diagnosis was available for 14 neonates. No termination of pregnancy was performed. There were four neonates with sporadic multisuture craniosynostoses, three of which were syndromic, including one Crouzon and one Pfeiffer syndrome. Eight neonates were normal, two showed cranial vault deformities without synostosis, and one was lost to follow-up. MRI showed a high predictive value for craniosynostosis, as there were no false-negative or false-positive diagnoses. However, the severity of the abnormalities were underestimated in two neonates. We suggest that prenatal MRI has diagnostic value when synostosis is suspected on ultrasonography. Moreover, MRI is accurate in the detection of associated brain abnormalities, which is an important prognostic issue in this diagnosis. Prenatal diagnosis of craniosynostosis is difficult and could benefit from three-dimensional ultrasonography and three-dimensional CT. (orig.)

  8. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    -Pérot filters with dissimilar mirrors and the design of such Fabry-Pérot cavities for VCSELs. Fabrication of InGaAs multiple quantum wells with GaAsP strain balancing layers is covered together with the growth and wet chemical etching of InAlP. The fabrication of the proposed Fabry-Pérot filters and VCSELs......This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...

  9. Diagnosis of temporomandibular joint disorders: indication of imaging exams.

    Science.gov (United States)

    Ferreira, Luciano Ambrosio; Grossmann, Eduardo; Januzzi, Eduardo; de Paula, Marcos Vinicius Queiroz; Carvalho, Antonio Carlos Pires

    2016-01-01

    Knowledge of the different imaging tests and their appropriate indications is crucial to establish the diagnosis of temporomandibular disorders, especially in patients with overlapping signs and symptoms. To present and assess the main diagnostic imaging tests for temporomandibular disorders and rationally discuss their indication criteria, advantages, and disadvantages. Literature review in the Web of Knowledge, PubMed and SciELO databases, as well as manual search for relevant publications in reference lists of the selected articles. Computed tomography and magnetic resonance imaging were considered the gold standard assessments for the temporomandibular joint to evaluate hard and soft tissues, respectively. Each diagnostic method exhibited distinct sensitivity and specificity for the different subtypes of joint dysfunction. Selecting an evaluation examination based on its accuracy, safety, and clinical relevance is a rational decision that can help lead to an accurate diagnosis and an optimum treatment plan. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Deep Ultraviolet Laser Imaging for Biology

    Science.gov (United States)

    2008-08-15

    for a 1.25NA objective and a 0.8NA condenser). Although UV toxicity has hampered previous applications of UV microscopy in live cell imaging , we...beamsplitter plus several waveplates slightly polarized the excitation, but any affects on the OD were insignificant. For live cell imaging the stage was...for live - cell imaging . To determine spatial resolution a set of NIST traceable polystyrene microspheres with a mean diameter of 205.6±2.6 nm

  11. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  12. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features.

    Science.gov (United States)

    Choi, Jin-Young; Lee, Jeong-Min; Sirlin, Claude B

    2014-10-01

    Computed tomography (CT) and magnetic resonance (MR) imaging play critical roles in the diagnosis and staging of hepatocellular carcinoma (HCC). The second article of this two-part review discusses basic concepts of diagnosis and staging, reviews the diagnostic performance of CT and MR imaging with extracellular contrast agents and of MR imaging with hepatobiliary contrast agents, and examines in depth the major and ancillary imaging features used in the diagnosis and characterization of HCC. © RSNA, 2014.

  13. Imaging laser-induced thermal fields and effects

    Science.gov (United States)

    Verdaasdonck, Rudolf M.

    1995-05-01

    Laser light interaction with biological tissues is a combination of optical, thermal and mechanical effects depending on the energy applied per unit of volume per unit of time. Visualization of the phenomena with a high temporal and spatial resolution, contributes to a better understanding of the mechanism of action, especially when pulsed lasers are involved. For this goal, setups were developed based on Schlieren techniques to image the interaction of pulsed (CO2, Holmium and Excimer) and CW (CO2, Nd:YAG, Cu-vapor) lasers with physiological media and biological tissues. In a 'fast' Schlieren setup, images of shock waves and fast expanding and imploding vapor bubbles were captured using very short light flashes (10 ns-10 microseconds). These recordings suggest that these explosive vapor bubbles seem to be the main dynamism for tissue ablation. In a 'color' Schlieren setup, very small changes in optical density of the media induced by temperature gradients, were color coded. Calibration of the color images to absolute temperatures were performed by using calculated temperature distributions and by thermocouple measurements. Cameras with high speed shutters (0.1-50 ms) enabled the recording of dynamic images of the thermal relaxation and heat diffusion in tissues during variation of pulse length and repetition rate. Despite pulse lengths Schlieren techniques were applied to study the thermal characteristics of laser probes, e.g. for the treatment of Benign Prostatic Hyperplasia (BPH). In combination with thermal modeling an optimal therapy might be predicted. Schlieren techniques, generating high-speed and 'thermal' images, can provide a good understanding of the ablation mechanism and the thermo-dynamics during laser-tissue interaction with continuous wave and pulse lasers.

  14. Optical Imaging in Breast Cancer Diagnosis: The Next Evolution

    Directory of Open Access Journals (Sweden)

    Michel Herranz

    2012-01-01

    Full Text Available Breast cancer is one of the most common cancers among the population of the Western world. Diagnostic methods include mammography, ultrasound, and magnetic resonance; meanwhile, nuclear medicine techniques have a secondary role, being useful in regional assessment and therapy followup. Optical imaging is a very promising imaging technique that uses near-infrared light to assess optical properties of tissues and is expected to play an important role in breast cancer detection. Optical breast imaging can be performed by intrinsic breast tissue contrast alone (hemoglobin, water, and lipid content or with the use of exogenous fluorescent probes that target specific molecules for breast cancer. Major advantages of optical imaging are that it does not use any radioactive components, very high sensitivity, relatively inexpensive, easily accessible, and the potential to be combined in a multimodal approach with other technologies such as mammography, ultrasound, MRI, and positron emission tomography. Moreover, optical imaging agents could, potentially, be used as “theranostics,” combining the process of diagnosis and therapy.

  15. Machine Learning Based Diagnosis of Melanoma Using Macro Images.

    Science.gov (United States)

    Gautam, D; Ahmed, M; Meena, Y K; Haq, A U

    2017-12-20

    Cancer bears a poisoning threat to human society. Melanoma, the skin cancer originates from skin layers and penetrates deep into subcutaneous layers. There exists an extensive research in melanoma diagnosis using dermatoscopic images captured through dermatoscope. While designing a diagnostic model for general handheld imaging systems is an emerging trend. This article proposes a computer aided decision support system for macro images captured by a general purpose camera. The general imaging conditions are adversely affected by the non-uniform illumination which further effect the extraction of relevant information. To mitigate it, we process an image to define a smooth illumination surface using the multi-stage illumination compensation approach and the infected region is extracted using proposed multi-mode segmentation method. The lesion information is numerated as a feature set comprising of geometry, photometry, border series and texture measures. The redundancy in feature set is reduced using information theory methods, and a classification boundary is modeled to distinguish benign and malignant samples using Support Vector Machine(SVM), Random Forest(RF), Neural Network(NN) and Fast Discriminative Mixed Membership based Naive Bayesian classifier(FDMMNB). Moreover, the experimental outcome is supported by hypothesis testing and boxplot representation for classification losses. The simulation results prove the significance of proposed model that shows an improved performance as compared to competing arts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Multiphoton in vivo imaging with a femtosecond semiconductor disk laser.

    Science.gov (United States)

    Voigt, Fabian F; Emaury, Florian; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  17. Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

    Science.gov (United States)

    Voigt, Fabian F.; Emaury, Florian; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-01-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging. PMID:28717563

  18. Laser ultrasonic multi-component imaging

    Science.gov (United States)

    Williams, Thomas K [Federal Way, WA; Telschow, Kenneth [Des Moines, WA

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  19. A Selective Ensemble Classification Method Combining Mammography Images with Ultrasound Images for Breast Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Jinyu Cong

    2017-01-01

    Full Text Available Breast cancer has been one of the main diseases that threatens women’s life. Early detection and diagnosis of breast cancer play an important role in reducing mortality of breast cancer. In this paper, we propose a selective ensemble method integrated with the KNN, SVM, and Naive Bayes to diagnose the breast cancer combining ultrasound images with mammography images. Our experimental results have shown that the selective classification method with an accuracy of 88.73% and sensitivity of 97.06% is efficient for breast cancer diagnosis. And indicator R presents a new way to choose the base classifier for ensemble learning.

  20. Lipoma arborescens: diagnosis and image; Lipoma arborescens: diagnostico e imagem

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Marcela; Len, Claudio Arnaldo; Terreri, Maria Teresa Ramos Ascencao [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Setor de Reumatologia Pediatrica; Fernandes, Artur da Rocha Correa [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem; Hilario, Maria Odete Esteves [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Alergia, Imunologia e Reumatologia]. E-mail: odetehilario@terra.com.br

    2004-08-01

    Lipoma arborescens is an intraarticular lesion of unknown etiology, consisting of a chronic villous fat proliferation of the synovial membrane. The disease has occasionally been associated with diabetes mellitus, degenerative diseases, juvenile rheumatoid arthritis and also rheumatoid arthritis. The diagnosis relies on magnetic resonance imaging evaluation and synovial biopsy. We report a case of a 8-year-old girl with a two year history of bilateral swelling of the knees and elbows. The patient had improvement of the arthritis after starting treatment with conventional drugs. (author)

  1. Synchronous gynecologic cancer and the use of imaging for diagnosis.

    Science.gov (United States)

    Boaventura, Camila Silva; Galvão, José Lucas Scarpinetti; Soares, Giovanna Milanes Bego; Bitencourt, Almir Galvão Vieira; Chojniak, Rubens; Bringel, Shenia Lauanna Rezende; Brot, Louise De

    2016-04-01

    Endometrial and cervical cancers are the most prevalent gynecologic neoplasms. While endometrial cancer occurs in older women, cervical cancer is more prevalente in young subjects. The most common clinical manifestation in these two gynecological cancers is vaginal bleeding. In the first case, diagnosis is made based on histological and imaging evaluation of the endometrium, while cervical cancers are diagnosed clinically, according to the International Federation of Gynecology and Obstetrics (FIGO). The authors present a case of synchronous gynecological cancer of the endometrium and cervix diagnosed during staging on MRI and confirmed by histological analysis of the surgical specimen.

  2. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  3. All-optical Photoacoustic and laser-ultrasound imaging of fixed arterial tissue (Conference Presentation)

    Science.gov (United States)

    Johnson, Jami L.; van Wijk, Kasper; Merrilees, Mervyn

    2017-03-01

    Arterial tissue imaging and characterization is important for disease diagnosis, treatment planning and monitoring, and research into disease processes. The high optical contrast of photoacoustic imaging can distinguish molecules with unique optical spectra from surrounding arterial tissue, while ultrasound is sensitive to variations in acoustic properties. Combining photoacoustics with ultrasonics provides more comprehensive diagnostic information by extracting molecular information from photoacoustics and structural information from ultrasound. Furthermore, ultrasound may be able to distinguish molecules with indistinct optical spectra but strong acoustic properties, such as calcification. In this work we will present our results applying our recently developed all-optical, multi-channel photoacoustic and laser-ultrasound imaging techniques to arterial tissue ex-vivo. We first apply redatuming techniques to remove reverberation artifacts, and subsequently image with time-reversal.

  4. Computer-Assisted Diagnosis System for Breast Cancer in Computed Tomography Laser Mammography (CTLM)

    National Research Council Canada - National Science Library

    Jalalian, Afsaneh; Mashohor, Syamsiah; Mahmud, Rozi; Karasfi, Babak; Iqbal Saripan, M; Ramli, Abdul Rahman

    2017-01-01

    ... to the structural complexity in appearance. The purpose of this study is to develop a computer-aided diagnosis framework to enhance the performance of radiologist in the interpretation of CTLM images...

  5. Ewing sarcoma versus osteomyelitis: differential diagnosis with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, B.; Glodny, B.; Rudisch, A.; Trieb, T.; Loizides, A.; Judmaier, W.; Schocke, M.F. [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Putzer, D. [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2013-08-15

    To find and evaluate characteristic magnetic resonance imaging (MRI) patterns for the differentiation between Ewing sarcoma and osteomyelitis. We identified 28 consecutive patients referred to our department for MRI (1.5 T) of an unclear bone lesion with clinical symptoms suggestive of Ewing sarcoma or osteomyelitis. MRI scans were re-evaluated by two experienced radiologists, typical MR imaging features were documented and a diagnostic decision between Ewing sarcoma and osteomyelitis was made. Statistical significance of the association between MRI features and the biopsy-based diagnosis was assessed using Fisher's exact test. The most clear-cut pattern for determining the correct diagnosis was the presence of a sharp and defined margin of the bone lesion, which was found in all patients with Ewing sarcoma, but in none of the patients with osteomyelitis (P < 0.0001). Contrast enhancing soft tissue was present in all cases with Ewing sarcoma and absent in 4 patients with osteomyelitis (P = 0.0103). Cortical destruction was found in all patients with Ewing sarcoma, 4 patients with osteomyelitis did not present any cortical reaction (P = 0.0103). Cystic or necrotic areas were identified in 13 patients with Ewing sarcoma and in 1 patient with osteomyelitis (P = 0.004). Interobserver reliability was very good (kappa = 1) in Ewing sarcoma and moderate (kappa = 0.6) in patients with osteomyelitis. A sharp and defined margin, optimally visualized on T1-weighted images in comparison to short tau inversion recovery (STIR) images, is the most significant feature of Ewing sarcoma in differentiating from osteomyelitis. (orig.)

  6. Imaging Laser Ultrasonics Measurement of the Elastodynamic Properties of Paper

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert

    2001-10-01

    Many sheet and plate material industries (e.g. paper) desire knowledge of the anisotropic stiffness properties of their material to optimize the manufacturing process. A determination of the anisotropic elastic matrix would be very beneficial for determination of parameters, such as as microstructural texture, fiber or grain orientation and stiffness. The propagation of ultrasonic waves in plates is a method for determining the anisotropic elastic properties in a nondestructive manner. Laser ultrasonics offes a noncontacting means to implement these measurements in the workplace by employing pulsed or modulated light to excite symmetric and antisymmetric plate waves concurrent with optical interferometric detection. Measurements can then be performed along the machine and cross directions to obtain parameters that are used empirically for process monitoring. Recently, the INEEL has developed a full-field view laser based ultrasonic imaging method that allows simultaneous measurement of plate wave motion in all planar directions within a single image without scanning. The imaging measurements are based on dynamic holography using photorefractive materials for interferometric deteciton and are operated as normal video rates. Results from this laser based imaging approach are presented that record Lamb wave mode wavefronts in all planar directions from localized sources in a single image. Specific numerical predictions for flexural wave propagation in distinctly different types of paper accounting fully for orthotropic anisotropy are presented and compared with direct imaging measurements. Very good agreement with theoretical calculations is obtained for the lowest antisymmetric plate mode in all planar directions using paper properties independently determined by others.

  7. Laser Doppler perfusion monitoring and imaging: novel approaches

    NARCIS (Netherlands)

    Humeau, Anne; Steenbergen, Wiendelt; Nilsson, Henrik; Strömberg, Tomas

    2007-01-01

    Laser Doppler flowmetry (LDF) is a non invasive method enabling the monitoring of microvascular blood flow, a very important marker of tissue health. This article gives an overview on the concept of LDF for microvascular perfusion monitoring and imaging. It first describes the theoretical background

  8. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning

    2006-01-01

    are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges...

  9. Achievement report for fiscal 1999 on research and development of technologies for medical welfare equipment. Chromosome image analysis and diagnosis device with confocal scanning laser microscope; 1999 nendo iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Kyoshoten laser kenbikyo ni yoru zensenshokutai gazo kaiseki shindan sochi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The device is now satisfactorily capable of all image processing functions (bi-levelling, color deviation, brilliance adjustment, etc.) with the exception the karyotyping function. A substance that emits fluorescence by laser excitation is developed (for labelling the probe). A direct labelling method is studied, in which nucleic acid probes (nucleic acid labelled for chromosomal identification) will prove to be remarkably high in sensitivity. A new fluorescent reagent is synthesized, which is a BHHCT-4-dUTP to act as a nucleic acid probe. It is found that the new substance is superior to the conventional fluorescent substances in terms of stability and that all chromosomes may be forced into hybridization (selective combination of a probe with a peculiar chromosome) when various probes are labelled by this substance. A programing unit is constructed for a chromosomal aberration database. Items needed relative to chromosomes and parameters relative to chromosomal aberration data are appropriately arranged, and conditions to satisfy for their development into a database are studied. A rough design of an interface is complete. (NEDO)

  10. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  11. CRAFT: Multimodality confocal skin imaging for early cancer diagnosis.

    Science.gov (United States)

    Peng, Tong; Xie, Hao; Ding, Yichen; Wang, Weichao; Li, Zhiming; Jin, Dayong; Tang, Yuanhe; Ren, Qiushi; Xi, Peng

    2012-05-01

    Although histological analysis serves as a gold standard to cancer diagnosis, its application on skin cancer detection is largely prohibited due to its invasive nature. To obtain both the structural and pathological information in situ, a Confocal Reflectance/Auto-Fluorescence Tomography (CRAFT) system was established to examine the skin sites in vivo with both reflectance and autofluorescence modes simultaneously. Nude mice skin with cancerous sites and normal skin sites were imaged and compared with the system. The cellular density and reflective intensity in cancerous sites reflects the structural change of the tissue. With the decay coefficient analysis, the corresponding NAD(P)H decay index for cancerous sites is 1.65-fold that of normal sites, leading to a 97.8% of sensitivity and specificity for early cancer diagnosis. The results are verified by the followed histological analysis. Therefore, CRAFT may provide a novel method for the in vivo, non-invasive diagnosis of early cancer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Imaging in diagnosis of acute pancreatitis and its complications].

    Science.gov (United States)

    Bertini, L; Casciani, E; Campagnano, S; Valentini, C; De Cicco, M L; Polettini, E; Gualdi, G F

    2009-01-01

    Pancreatitis is a flogistic disease, caused by activation and digestion of pancreas by its enzymes. Diagnosis is based on integrated evaluation of clinical and laboratoristic data and morphological imaging. To evaluate the severity of pancreatitis there is a clinical classification in interstitial--mild pancreatitis and severe--necrotic one. The evaluation of severity is basic, because it is strictly correlated to the prognosis of the patient. CT has revealed the best method for diagnosis, staging and for evaluate the complications and follow-up and in some cases it is useful for therapeutic change.The abdomen X-Ray in orthostatism is performed in every situation suspected for acute abdominal disease, also if aspecific; the ultrasound can be used as first instance method in patient with clinical suspect of acute pancreatitis; the MR has actually a secondary role for the diagnosis, with only except for dubious cases to exclude primitive tumor of pancreas and pancreatic shock, but it represents, instead, first instance method in patients with adverse reaction to contrast medium. The CPRE has, like angiography, a selective indication.

  13. Development of radiodiagnostics for image diagnosis of intracerebral dopamine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Motoi; Kitamura, Hideaki; Nakajima, Takashi [Saigata, National Hospital, Niigata (Japan)

    1998-02-01

    Single photon emission tomography (SPECT) able to evaluate the local blood flow in the brain is a safety and effective system for clinical diagnosis and pathological evaluation of incurable neulopsychotic diseases. Development of receptor imaging agents for SPECT, which has not been approved are progressing now. Using gerbits as an animal model for cerebrovascular diseases, an investigation was made on {sup 125}I-Iomazenil (Ro16-0154), an antagonist of benzodiazepin receptor in CNS as well as dopamine receptor ligands. {sup 125}I-Iomazenil was found to markedly accumulate in the regions; cerebral cortex (especially, layer VI and V), amygdala, thalamus, hypothalamus, nigra, cerebellar cortex, etc., where benzodiazepin is specifically localized. The accumulation was inhibited by preadministered flumazenil, indicating that {sup 125}I-Iomazenil can bind to the benzodiazepin receptor in CNS. The present study demonstrated that the late images of {sup 123}I-Iomazenil-SPECT are useful for detecting a lesion in the crebral cortex and cerabellar one, but it was unable to image out a lesion in the dentate-red nuclei due to DRPLA or Joseph disease. Therefore, {sup 123}I-Iomazenil was thought to be a valuable radiomedicine for imaging out and pathological evaluation. (M.N.)

  14. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    Science.gov (United States)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-10-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.

  15. Imaging diagnosis of orbital Wegener granulomatosis: A rare case report.

    Science.gov (United States)

    Yang, Bin; Yin, Zhijian; Chen, Shuai; Yuan, Feng; Zhao, Wei; Yang, Yaying

    2017-06-01

    Wegener granulomatosis (WG) is a rare idiopathic autoimmune disease causing necrotizing granulomatous vasculitis. Whether as the first symptom or as part of systemic changes, ocular manifestations in WG patients are not specific. Any part of the eyes can be affected, with the anterior segment and orbit most commonly involved. So, early diagnosis and treatment are essential for controlling the progression of the disease and improving the quality of life for patients. Here we present a rare case of orbital WG of a 22-year-old woman was admitted to the hospital because of intense pain associated with decreased visual acuity in her right eye since 1 day. She had been previously diagnosed with WG at our hospital. Orbital computed tomography imaging showed diffuse swelling of intraorbital muscles, and space-occupying lesions were present in both eyes. Most postnasal anatomical structures were absent, appearing as a massive cavity shadow. Orbital magnetic resonance imaging showed a shadow of orbital soft tissues. WG is a serious, fatal disease. Early diagnosis and treatment are essential for controlling the progression of the disease and improving the quality of life for patients.

  16. Diagnosis of Female Diverticula Using Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Sima Porten

    2008-01-01

    Full Text Available We investigate the ability of physical exam to diagnose urethral diverticula with or without magnetic resonance imaging (MRI and exclusive of invasive modalities. A retrospective chart review of all women undergoing urethral diverticulectomy at our institution since 1999 was performed. We identified 28 female patients with a mean age at diagnosis of 42.6 years (range 18–66. Common presenting symptoms included dyspareunia, urgency, and frequency. Physical exam revealed a suspected urethral diverticulum in 26 (92.9% patients, which was confirmed postoperatively in 17 of the 20 (85% women who underwent surgical resection. Noninvasive imaging modalities (MRI or CT were available for review in 20 (71% cases and made the correct diagnosis of urethral diverticulum (presence or absence in 19 (95% patients. In those patients with symptoms of stress or urge incontinence (11, 39%, voiding cystourethrogram (VCUG was performed. Urethral diverticula are often easily diagnosed on physical exam. MRI can be a useful adjunct for defining diverticular extent in surgical planning, especially for proximal and complex diverticula, and should be the modality of choice if clinical suspicion is high based on patient symptoms and physical exam.

  17. Automatic diagnosis of vulvovaginal candidiasis from Pap smear images.

    Science.gov (United States)

    Momenzadeh, M; Sehhati, M; Mehri Dehnavi, A; Talebi, A; Rabbani, H

    2017-09-01

    Vulvovaginal candidiasis (VVC) is the most common genital infections that are seen every day in clinics. This infection is due to excessive growth of Candida that are normally present in the vagina in small numbers. Diagnosis of VVC is routinely done by direct microscopy of Pap smear samples and searching for the Candida in the Pap smear glass slides. This manual method is subjective, time consuming, labour-intensive and tedious. This study presents a computer-aided diagnostic (CAD) method to improve human diagnosis of VVC. The proposed CAD method reduces the diagnostic time and also can be worked as a second objective opinion for pathologists. Our main objective is detection and extraction of mycelium and conidium of Candida fungus from microscopic images of Pap smear samples. In this regard, the proposed method is composed of three main phases, namely preprocessing, segmentation, feature extraction and classification. At the first phase, bottom-hat filtering is used for elimination of the cervical cells and separating the background. Then decorrelation stretching and colour K-means clustering are used for Candida segmentation. Finally the extracted features used by a decision tree classifier to detect Candida from other parts of smear. The proposed method was evaluated on 200 Pap smear images and showed specificity of 99.83% and 99.62% and sensitivity of 92.18% and 94.53% for detection of mycelium and conidium, respectively. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. DELM image processing for skin-melanoma early diagnosis

    Science.gov (United States)

    Fiorini, Rodolfo A.; Crivellini, M.; Codagnone, G.; Dacquino, G. F.; Libertini, M.; Morresi, A.

    1997-10-01

    Among the various skin diseases skin tumors are the most serious ones and skin Melanoma is particularly dangerous. Its malignant evolution lasts about 5 or 6 years and ends with the death of the patient. Early diagnosis is a powerful means of preventing this evolution allowing sudden intervention, which increases probability or recover and survival. Aim of the paper is to present the result of an active support system for early diagnosis of melanoma and related skin diseases. The system is based upon a digital acquisition camera with a dedicated illumination system digitally controlled in order to achieve best performance in color and feature discrimination reaching best signal to noise ratio especially in blue band. A polarization framework allows for reflected ray rejection maximization. A new classification approach is presented. It allows for a quantification of morphological patterns and standard parameters in order to implement a computer aided dermatological system. The image information extraction is based on minimal descriptor set of parameters in order to classify chromatic texture and morphological features. The results obtained allow for determination of standard reference grids for pathological cases and reliable and objective classification procedure. We adopt, as reference, the approach used by Stanganelli and Kenet. Through a bioengineering analysis we can organize reference grids that offer the possibility to extract the maximum information content from dermatological data. The classification takes into account the spread and intrinsic descriptors and correspond to the best operative description. Therefore these grids are the more suitable tools for applications which requires active support system for diagnosis. In fact it is possible to obtain quantitative evaluations too. We propose a method based on geometrical synthetical descriptors. All that permits a reliable early diagnosis of melanotic disease and to follow its evolution in time. The

  19. Imaging tests for accurate diagnosis of acute biliary pancreatitis

    Science.gov (United States)

    Surlin, Valeriu; Săftoiu, Adrian; Dumitrescu, Daniela

    2014-01-01

    Gallstones represent the most frequent aetiology of acute pancreatitis in many statistics all over the world, estimated between 40%-60%. Accurate diagnosis of acute biliary pancreatitis (ABP) is of outmost importance because clearance of lithiasis [gallbladder and common bile duct (CBD)] rules out recurrences. Confirmation of biliary lithiasis is done by imaging. The sensitivity of the ultrasonography (US) in the detection of gallstones is over 95% in uncomplicated cases, but in ABP, sensitivity for gallstone detection is lower, being less than 80% due to the ileus and bowel distension. Sensitivity of transabdominal ultrasonography (TUS) for choledocolithiasis varies between 50%-80%, but the specificity is high, reaching 95%. Diameter of the bile duct may be orientative for diagnosis. Endoscopic ultrasonography (EUS) seems to be a more effective tool to diagnose ABP rather than endoscopic retrograde cholangiopancreatography (ERCP), which should be performed only for therapeutic purposes. As the sensitivity and specificity of computerized tomography are lower as compared to state-of-the-art magnetic resonance cholangiopancreatography (MRCP) or EUS, especially for small stones and small diameter of CBD, the later techniques are nowadays preferred for the evaluation of ABP patients. ERCP has the highest accuracy for the diagnosis of choledocholithiasis and is used as a reference standard in many studies, especially after sphincterotomy and balloon extraction of CBD stones. Laparoscopic ultrasonography is a useful tool for the intraoperative diagnosis of choledocholithiasis. Routine exploration of the CBD in cases of patients scheduled for cholecystectomy after an attack of ABP was not proven useful. A significant rate of the so-called idiopathic pancreatitis is actually caused by microlithiasis and/or biliary sludge. In conclusion, the general algorithm for CBD stone detection starts with anamnesis, serum biochemistry and then TUS, followed by EUS or MRCP. In the end

  20. Imaging tests for accurate diagnosis of acute biliary pancreatitis.

    Science.gov (United States)

    Şurlin, Valeriu; Săftoiu, Adrian; Dumitrescu, Daniela

    2014-11-28

    Gallstones represent the most frequent aetiology of acute pancreatitis in many statistics all over the world, estimated between 40%-60%. Accurate diagnosis of acute biliary pancreatitis (ABP) is of outmost importance because clearance of lithiasis [gallbladder and common bile duct (CBD)] rules out recurrences. Confirmation of biliary lithiasis is done by imaging. The sensitivity of the ultrasonography (US) in the detection of gallstones is over 95% in uncomplicated cases, but in ABP, sensitivity for gallstone detection is lower, being less than 80% due to the ileus and bowel distension. Sensitivity of transabdominal ultrasonography (TUS) for choledocolithiasis varies between 50%-80%, but the specificity is high, reaching 95%. Diameter of the bile duct may be orientative for diagnosis. Endoscopic ultrasonography (EUS) seems to be a more effective tool to diagnose ABP rather than endoscopic retrograde cholangiopancreatography (ERCP), which should be performed only for therapeutic purposes. As the sensitivity and specificity of computerized tomography are lower as compared to state-of-the-art magnetic resonance cholangiopancreatography (MRCP) or EUS, especially for small stones and small diameter of CBD, the later techniques are nowadays preferred for the evaluation of ABP patients. ERCP has the highest accuracy for the diagnosis of choledocholithiasis and is used as a reference standard in many studies, especially after sphincterotomy and balloon extraction of CBD stones. Laparoscopic ultrasonography is a useful tool for the intraoperative diagnosis of choledocholithiasis. Routine exploration of the CBD in cases of patients scheduled for cholecystectomy after an attack of ABP was not proven useful. A significant rate of the so-called idiopathic pancreatitis is actually caused by microlithiasis and/or biliary sludge. In conclusion, the general algorithm for CBD stone detection starts with anamnesis, serum biochemistry and then TUS, followed by EUS or MRCP. In the end

  1. Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer

    Directory of Open Access Journals (Sweden)

    Ivan Keogh

    2011-07-01

    Full Text Available Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD, laser confocal endomicroscopy (LCE, surface enhanced Raman spectroscopy (SERS, optical coherence tomography (OCT and confocal reflectance microscopy (CRM in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness.

  2. Scannerless laser range imaging using loss modulation

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, John V [Albuquerque, NM

    2011-08-09

    A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate in the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.

  3. Multimodal imaging documentation of rapid evolution of retinal changes in handheld laser-induced maculopathy.

    Science.gov (United States)

    Dhrami-Gavazi, Elona; Lee, Winston; Balaratnasingam, Chandrakumar; Kayserman, Larisa; Yannuzzi, Lawrence A; Freund, K Bailey

    2015-01-01

    To use multimodal imaging to document the relatively rapid clinical evolution of handheld laser-induced maculopathy (HLIM). To demonstrate that inadvertent ocular injury can result from devices mislabeled with respect to their power specifications. The clinical course of a 17-year-old male who sustained self-inflicted, central macular damage from a 20-25 s direct stare at a red-spectrum, handheld laser pointer ordered from an internet retailer is provided. Retrospective review of multimodal imaging that includes fundus photography, fluorescein angiography, MultiColor reflectance, eye-tracked spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence, and microperimetry is used to describe the evolving clinical manifestations of HLIM in the first 3 months. Curvilinear bands of dense hyperreflectivity extending from the outer retina and following the Henle fibers were seen on SD-OCT immediately after injury. This characteristic appearance had largely resolved by 2 weeks. There was significant non-uniformity in the morphological characteristics of HLIM lesions between autofluorescence and reflectance images. The pattern of lesion evolution was also significantly different between imaging modalities. Analysis of the laser device showed its wavelength to be correctly listed, but the power was found to be 102.5-105 mW, as opposed to the laser -induced maculopathy, this finding can undergo rapid resolution in the span of several days. In the absence of this finding, other multimodal imaging clues and a careful history may aid in recognizing this diagnosis. A greater awareness regarding inaccurate labeling on some of these devices could help reduce the frequency of this preventable entity.

  4. Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis

    Science.gov (United States)

    Mah, J.; Claire, S.; Steve, M.

    2009-05-01

    Laser imaging has recently been identified as a potential tool for rock mass characterization. This contribution focuses on the application of triangulation based, short-range laser imaging to determine fracture orientation and surface texture. This technology measures the distance to the target by triangulating the projected and reflected laser beams, and also records the reflection intensity. In this study, we acquired 3D laser images of rock faces using the Laser Camera System (LCS), a portable instrument developed by Neptec Design Group (Ottawa, Canada). The LCS uses an infrared laser beam and is immune to the lighting conditions. The maximum image resolution is 1024 x 1024 volumetric image elements. Depth resolution is 0.5 mm at 5 m. An above ground field trial was conducted at a blocky road cut with well defined joint sets (Kingston, Ontario). An underground field trial was conducted at the Inco 175 Ore body (Sudbury, Ontario) where images were acquired in the dark and the joint set features were more subtle. At each site, from a distance of 3 m away from the rock face, a grid of six images (approximately 1.6 m by 1.6 m) was acquired at maximum resolution with 20% overlap between adjacent images. This corresponds to a density of 40 image elements per square centimeter. Polyworks, a high density 3D visualization software tool, was used to align and merge the images into a single digital triangular mesh. The conventional method of determining fracture orientations is by manual measurement using a compass. In order to be accepted as a substitute for this method, the LCS should be capable of performing at least to the capabilities of manual measurements. To compare fracture orientation estimates derived from the 3D laser images to manual measurements, 160 inclinometer readings were taken at the above ground site. Three prominent joint sets (strike/dip: 236/09, 321/89, 325/01) were identified by plotting the joint poles on a stereonet. Underground, two main joint

  5. Suppression of COTR in electron beam imaging diagnosis at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Minjie

    2012-05-15

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  6. Investigations in optoelectronic image processing in scanning laser microscopy

    Science.gov (United States)

    Chaliha, Hiranya Kumar

    A considerable amount of work has been done on scann-ing laser microscopy since its applications were first pointed out by Roberts and Young[1], Minsky [2] and Davidovits et al [3]. The advent of laser has made it possible to focus an intense beam of laser light in a scanning optical microscope (SOM) [4, 5] and hence explore regions of microscopy[6] uncovered by conven-tional microscopy. In the simple SOM [7, 8, 9], the upper spatial frequency in amplitude transmittance or reflectance of an object for which transfer function is nonzero is same as that in a conventional optical microscope. However, in Type II SOM [7] or confocal SOM that employs a coherent or a point detector, the spatial frequency bandwidth is twice that obtained in a conventional microscope. Besides this confocal set-up is found to be very useful in optical sectioning and consequently in 3-D image processing[10, 11, 12] specially of biological specimens. Such systems are also suitable for studies of semiconductor materials [13], super-resolution [14] and various imaginative ways of image processing[15, 16, 17] including phase imaging[18]. A brief survey of related advances in scanning optical microscopy has been covered in the chapter 1 of the thesis. The performance of SOM may be investigated by concent-rating also on signal derived by one dimensional scan of the object specimen. This simplified mode may also be adapted to give wealth of information for biological and semiconductor specimens. Hence we have investigated the design of a scanning laser system suited specifically for studies of line scan image signals of microscopic specimens when probed through a focused laser spot. An electro-mechanical method of scanning of the object specimen has been designed with this aim in mind. Chapter 2, Part A of the thesis deals with the design consider-ations of such a system. For analysis of scan signals at a later instant of time so as to facilitate further processing, an arrangement of microprocessor

  7. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    Science.gov (United States)

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  8. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    Science.gov (United States)

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500-1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths.

  9. SLAP lesions: Anatomy, clinical presentation, MR imaging diagnosis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Debra [University of California San Diego, Department of Radiology, 200 W. Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States); MedRay Imaging and Fraser Health Authority, Vancouver, BC (Canada)], E-mail: cbchung@ucsd.edu; Mohana-Borges, Aurea; Borso, Maya; Chung, Christine B. [University of California San Diego, Department of Radiology, 200 W. Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States)

    2008-10-15

    ABSTRACT: Superior labral anterior posterior (SLAP) tears are an abnormality of the superior labrum usually centered on the attachment of the long head of the biceps tendon. Tears are commonly caused by repetitive overhead motion or fall on an outstretched arm. SLAP lesions can lead to shoulder pain and instability. Clinical diagnosis is difficult thus imaging plays a key diagnostic role. The normal anatomic variability of the capsulolabral complex can make SLAP lesions a diagnostic challenge. Concurrent shoulder injuries are often present including rotator cuff tears, cystic changes or marrow edema in the humeral head, capsular laxity, Hill-Sachs or Bankart lesion. The relevant anatomy, capsulolabral anatomic variants, primary and secondary findings of SLAP tears including MR arthrography findings, types of SLAP lesions and a practical approach to labral lesions are reviewed.

  10. Acute pancreatitis: The role of imaging in diagnosis and management

    Energy Technology Data Exchange (ETDEWEB)

    Bharwani, Nishat, E-mail: nishat.bharwani@nhs.ne [Imaging Department, Barts and The London NHS Trust, St Bartholomew' s Hospital, Ground Floor, King George V Wing, London EC1A 7BE (United Kingdom); Patel, Shilpa; Prabhudesai, Shirish; Fotheringham, Tim; Power, Niall [Imaging Department, Barts and The London NHS Trust, St Bartholomew' s Hospital, Ground Floor, King George V Wing, London EC1A 7BE (United Kingdom)

    2011-02-15

    Acute pancreatitis is one of the more commonly encountered aetiologies in the emergency setting and its incidence is rising. Presentations range from a mild-self limiting condition which usually responds to conservative management to one with significant morbidity and mortality in its most severe forms. While clinical criteria are necessary to make the initial diagnosis, contrast-enhanced CT is the mainstay of imaging and has a vital role in assessing the extent and evolution of the disease and its associated complications. The purpose of this article is to summarise the natural course of acute severe pancreatitis, clarify confusing nomenclature, demonstrate the morphological stages in conjunction with radiological scoring systems and illustrate the complications. We will review and illustrate the increasing and significant role interventional radiology has in the management of these patients, which are often life-saving and surgery-sparing.

  11. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    Science.gov (United States)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  12. Hyperspectral laser-induced autofluorescence imaging of dental caries

    Science.gov (United States)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  13. Clinical diagnosis of fissure caries with conventional and laser-induced fluorescence techniques

    OpenAIRE

    Chu, CH; Lo, ECM; You, DSH

    2010-01-01

    We studied the in vivo validity of dentinal fissure caries diagnosis by visual examination, bitewing radiography, and use of a laser-induced fluorescence device (DIAGNOdent). A total of 144 and second molars with macroscopically intact occlusal surfaces in 41 Chinese young adults were examined visually, by bitewing radiography, and by DIAGNOdent. Visual examination after pit and fissure opening was used as the reference standard. The sensitivity and specificity of detecting caries that had ex...

  14. Imaging of community-acquired pneumonia: Roles of imaging examinations, imaging diagnosis of specific pathogens and discrimination from noninfectious diseases

    Science.gov (United States)

    Nambu, Atsushi; Ozawa, Katsura; Kobayashi, Noriko; Tago, Masao

    2014-01-01

    This article reviews roles of imaging examinations in the management of community-acquired pneumonia (CAP), imaging diagnosis of specific CAP and discrimination between CAP and noninfectious diseases. Chest radiography is usually enough to confirm the diagnosis of CAP, whereas computed tomography is required to suggest specific pathogens and to discriminate from noninfectious diseases. Mycoplasma pneumoniae pneumonia, tuberculosis, Pneumocystis jirovecii pneumonia and some cases of viral pneumonia sometimes show specific imaging findings. Peribronchial nodules, especially tree-in-bud appearance, are fairly specific for infection. Evidences of organization, such as concavity of the opacities, traction bronchiectasis, visualization of air bronchograms over the entire length of the bronchi, or mild parenchymal distortion are suggestive of organizing pneumonia. We will introduce tips to effectively make use of imaging examinations in the management of CAP. PMID:25349662

  15. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  16. Performance of laser-ultrasonic F-SAFT imaging.

    Science.gov (United States)

    Lévesque, D; Blouin, A; Néron, C; Monchalin, J-P

    2002-12-01

    The resolution and signal-to-noise ratio of laser-ultrasonics to detect small and buried defects can be greatly enhanced by using the synthetic aperture focusing technique (SAFT). Originally developed in the time domain, SAFT can also be implemented in the frequency domain (F-SAFT) using the angular spectrum approach for a significant reduction in processing time. In this paper, an F-SAFT based data processing method especially adapted to laser-ultrasonic data is presented. This method allows for further significant improvements towards laser-ultrasonic imaging of small defects. It includes temporal deconvolution of the waveform data, control for an optimal aperture and frequency bandwidth as well as spatial interpolation of the subsurface images. All the above operations are well adapted to the frequency domain calculations and embedded in the F-SAFT data processing. Also, the aperture control and spatial interpolation allow a reduction of sampling requirements to further decrease both inspection and processing times. The above improvements are illustrated using laser-ultrasonic data taken from an aluminum sample with flat-bottom holes.

  17. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    Science.gov (United States)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  18. Selective removal of demineralized enamel using a CO2 laser coupled with near-IR reflectance imaging

    Science.gov (United States)

    Tom, Henry; Chan, Kenneth H.; Saltiel, Daniel; Fried, Daniel

    2015-02-01

    Detection and diagnosis of early dental caries lesions can be difficult due to variable tooth coloration, staining of the teeth and poor contrast between sound and demineralized enamel. These problems can be overcome by using near-infrared (NIR) imaging. Previous studies have demonstrated that lasers can be integrated with NIR imaging devices, allowing image-guided ablation. The aim of this study was to demonstrate that NIR light at 1500 - 1700 nm can be used to guide a 9.3-μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. The occlusal surfaces of ten sound human molars were used in this in-vitro study. Shallow simulated caries lesions of varying depth and position were produced on tooth occlusal surfaces using a demineralization solution. Sequential NIR reflectance images at 1500 - 1700 nm were used to guide the laser for selective ablation of the lesion areas. Digital microscopy and polarization sensitive optical coherence tomography (PS-OCT) were used to assess the selectivity of removal. This study demonstrates that high contrast NIR reflectance images can be used for the image-guided laser ablation of early demineralization from tooth occlusal surfaces.

  19. An image processing technique for diagnosis of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Massoud Mahmoudian

    2009-08-01

    Full Text Available

    • BACKGROUND: Patients with Alzheimer's disease (AD reportedly hibit hypersensitivity to much diluted tropicam solution (0.005%, a M4 muscarinic receptor antagonist. Therefore aocular application of 0.005% tropicamide ma be useful for screening dementia. The aim of this study was to simplify the pupil response test by using a new image analyzing system, which consists of a cheap, simple, and easy to use web-camera and a computer.
    • METHODS: Intraocular tropicamide of 0.005% concentration was administered in 3 groups: Alzheimer's disease patients (n = 8, average age = 76 ± 5, non-Alzheimer's disease elderly (n = 6, average age = 65 ± 7, and young subjects (n = 8, average age = 28 ± 5. Every 5 minutes for 60 minutes, image of the eye's shape were taken, and the diameter of the pupils was measured.
    • RESULTS: The results showed that differences in pupil dilation rate between Alzheimer's disease and non-Alzheimer's disease subjects were statistically significant. ROC analysis showed that after 35 minutes the sensitivity and specificity of the test were 100%.
    • CONCLUSIONS: Based on our results, we concluded that this recording system might be an appropriate and reliable tool for pupil response diagnosis test of Alzheimer's disease.
    • KEYWORDS: Alzheimer’s Disease, Tropicamide, Pupil.

  20. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  1. Digital image analysis for diagnosis of skin tumors.

    Science.gov (United States)

    Blum, Andreas; Zalaudek, Iris; Argenziano, Giuseppe

    2008-03-01

    Between 1987 and 2007, different groups developed digital image analysis systems for the diagnosis of benign and malignant skin tumors. As the result of significant differences in the technical devices, the number, the nature and benign/malignant ratio of included skin tumors, different variables and statistical methods any comparison of these different systems and their results is difficult. For the use and comparison of the diagnostic performance of different digital image analysis systems in the future, some principle basic conditions are required: All used systems should have a standardized recording system and calibration. First, melanocytic and nonmelanocytic lesions should be included for the development of the diagnostic algorithms. Critical analyses of the results should answer the question if in future only melanocytic lesions should be analyzed or all pigmented and nonpigmented lesions. This will also lead to the answer if only dermatologists or all specialities of medical doctors will use such a system. All artifacts (eg, hairs, air bubbles) should be removed. The number of variables should be chosen according to the number of included melanomas. A high number of benign skin lesions should be included. Of all lesions only 10% or better less should be invasive melanomas. Each system should be developed by a training-set and controlled by an independent test-set. Each system should be controlled by the user with the final decision and responsibility and tested by independent users without any conflict of financial interest.

  2. Imaging modalities for the non-invasive diagnosis of endometriosis.

    Science.gov (United States)

    Nisenblat, Vicki; Bossuyt, Patrick M M; Farquhar, Cindy; Johnson, Neil; Hull, M Louise

    2016-02-26

    About 10% of women of reproductive age suffer from endometriosis. Endometriosis is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy, the gold standard diagnostic test for endometriosis, is expensive and carries surgical risks. Currently, no non-invasive tests that can be used to accurately diagnose endometriosis are available in clinical practice. This is the first review of diagnostic test accuracy of imaging tests for endometriosis that uses Cochrane methods to provide an update on the rapidly expanding literature in this field. • To provide estimates of the diagnostic accuracy of imaging modalities for the diagnosis of pelvic endometriosis, ovarian endometriosis and deeply infiltrating endometriosis (DIE) versus surgical diagnosis as a reference standard.• To describe performance of imaging tests for mapping of deep endometriotic lesions in the pelvis at specific anatomical sites.Imaging tests were evaluated as replacement tests for diagnostic surgery and as triage tests that would assist decision making regarding diagnostic surgery for endometriosis. We searched the following databases to 20 April 2015: MEDLINE, CENTRAL, EMBASE, CINAHL, PsycINFO, Web of Science, LILACS, OAIster, TRIP, ClinicalTrials.gov, MEDION, DARE, and PubMed. Searches were not restricted to a particular study design or language nor to specific publication dates. The search strategy incorporated words in the title, abstracts, text words across the record and medical subject headings (MeSH). We considered published peer-reviewed cross-sectional studies and randomised controlled trials of any size that included prospectively recruited women of reproductive age suspected of having one or more of the following target conditions: endometrioma, pelvic endometriosis, DIE or endometriotic lesions at specific intrapelvic anatomical locations. We included studies that compared the diagnostic test accuracy of one or more imaging modalities versus findings of surgical

  3. Shadowgraphic imaging of metal drilling with a long pulse excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.; Miyamoto, Isamu; Ostendorf, Andreas; Sugioka, Koji; Helvajian, Henry

    2003-01-01

    A shadowgraphic imaging technique is used for studying the interaction between the laser beam and the material during laser drilling. The used laser is a XeCl excimer laser with a nearly diffraction limited beam and 175 ns pulse length. We studied how and when the material is removed. Holes are

  4. Laser-induced electron diffraction for dynamic imaging of molecules

    Science.gov (United States)

    Lin, Chii-Dong

    2017-04-01

    Electron diffraction is the well-established tool for probing the structure of gas-phase molecules near the equilibrium geometry. To study chemical dynamics ultrashort electron pulses below a few tens of femtoseconds are needed. Laser-induced electron diffraction (LIED) is a method where molecules can be probed with femtosecond temporal resolution and sub-angstrom spatial resolution. In LIED, molecules are exposed to an intense femtosecond laser pulse. The electrons that have been previously removed by the laser field can be driven back later to rescatter with the parent molecular ion. Using diffraction images from large-angle backscattered events, sub-angstrom spatial resolution can be achieved with tens to hundreds eV electrons. Recent LIED experimental results showing bond breaking in molecules will be illustrated. Practical issues related to the retrieval of diffraction images from LIED on aligned molecules and possibilities of real-time imaging of dissociating molecules using LIED will be presented. US Department of Energy. This work is performed in collaboration with Anh Thu Le (Kansas State University) and the experimental group of Jens Biegert (ICFO, Barcelona).

  5. Impact-Induced Delamination Detection of Composites Based on Laser Ultrasonic Zero-Lag Cross-Correlation Imaging

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2016-01-01

    Full Text Available This paper presents impact-induced delamination visualization by zero-lag cross-correlation (ZLCC imaging computed using fully noncontact laser scanned ultrasonic wavefields. The proposed technique enables instantaneous visualizing of invisible delamination of composite materials without any sensor installation. Moreover, it provides robust damage diagnosis without comparing with baseline data obtained from the undamaged condition of a target structure, making it possible to minimize false alarms. First, the existence of internal delamination-induced standing waves is proven by employing a finite element analysis. Then, how ZLCC can physically isolate and visualize only the standing wave feature from the measured ultrasonic wavefields is shown. To experimentally validate the proposed technique, a fully noncontact laser ultrasonic imaging system is introduced, and the internal delamination is visualized by laser scanning in a graphite fiber composite plate. The experimental results reveal that hidden delamination is successfully and automatically visualized and quantified without any users’ intervention.

  6. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  7. Imaging of emission patterns in a T-shaped quantum wire laser

    OpenAIRE

    Takahashi, Yasushi; Watanabe, Shinichi; Yoshita, Masahiro; Itoh, Hirotake; Hayamizu, Yuhei; Akiyama, Hidefumi; Pfeiffer, Loren N.; West, Ken W.

    2003-01-01

    Spatially and spectrally resolved microscopic images of spontaneous and stimulated emissions are imaged at the mirror facets of a GaAs T-shaped quantum wire laser with high uniformity. Laser emission from the one-dimensional ground state reveals a circular image located at the core of a T-shaped optical waveguide but significantly smaller in area than the low power spontaneous emission from the same waveguide. These images unambiguously allow assignment of all spontaneous and laser emissions ...

  8. Image feature analysis of plasma spot produced from femtosecond laser ablation for silicon wafer

    Science.gov (United States)

    Wang, Fu-bin; Zhao, Li-hong; Tu, Paul; Liu, Yang; Chen, Jian-xiong

    2017-04-01

    When using a femtosecond laser to machine a single-crystal silicon wafer, it is accompanied with a diffraction spot of plasma. The existing literature reports that the brightness of the image of plasma can be used as an indicator to online measure the depth of the machined groove on a micrometer scale. Because the plasma spot is influenced by eruption and partial occlusion of ablated material, this method, which simply relies on the spot image brightness as a feedback parameter, is not reliable or accurate. The pixel area, perimeter, and brightness characteristics of the plasma spot image need to be comprehensively analyzed to provide a reliable and accurate feedback to establish close-loop micromachining technology. Therefore, we first analyze the chirped amplification principle of generating a femtosecond laser and the application of the diffraction spot of plasma during the micromachining processing using the femtosecond laser. Second, we experiment using femtosecond laser ablation with a piece of 10×10 mm and thickness of 650±10 μm single-crystal silicon wafer to obtain the corresponding relational data among parameters of laser processing power, processing speed, and laser spot image of plasma. Third, aiming at the characteristic of dim target of the laser spot image, the two-dimensional Otsu (maximum class square error method) is used to segment the laser spot image to improve the segmentation accuracy of the laser spot image. Finally, we analyze the relationship among area, perimeter of the laser spot image, and laser energy; the relationship among area, perimeter of the laser spot image, and the machined depth of groove; the relationship between brightness of the laser spot image and laser output power; and the relationship between brightness of laser spot image and machining speed.

  9. Accuracy of musculoskeletal imaging for the diagnosis of polymyalgia rheumatica: systematic review

    OpenAIRE

    Mackie, SL; Koduri, G.; Hill, CL; Wakefield, RJ; Hutchings, A.; Loy, C; Dasgupta, B; Wyatt, JC

    2015-01-01

    Objectives: To review the evidence for accuracy of imaging for diagnosis of polymyalgia rheumatica (PMR). Methods: Searches included MEDLINE, EMBASE and PubMed. Evaluations of diagnostic accuracy of imaging tests for PMR were eligible, excluding reports with

  10. Applications of laser wakefield accelerators for biomedical imaging

    Science.gov (United States)

    Najmudin, Zulfikar

    2014-10-01

    Laser-wakefield accelerators driven by high-intensity short-pulse lasers are a proven compact source of high-energy electron beams, with energy gains of ~GeV energy in centimetres of plasma demonstrated. One of the main proposed applications for these accelerators is to drive synchrotron light sources, in particular for x-ray applications. It has also been shown that the same plasma accelerator can also act as a wigglers, capable of the production of high brightness and spatially coherent hard x-ray beams. In this latest work, we demonstrate the application of these unique light-sources for biological and medical applications. The experiments were performed with the Astra Gemini laser at the Rutherford Appleton Laboratory in the UK. Gemini produces laser pulses with energy exceeding 10 J in pulse lengths down to 40 fs. A long focal length parabola (f / 20) is used to focus the laser down to a spot of size approximately 25 μ m (fwhm) into a gas-cell of variable length. Electrons are accelerated to energies up to 1 GeV and a bright beam of x-rays is observed simultaneously with the accelerated beam. The length of the gas cell was optimised to produce high contrast x-ray images of radiographed test objects. This source was then used for imaging a number of interesting medical and biological samples. Full tomographic imaging of a human trabecular bone sample was made with resolution easily exceeding the ~100 μm level required for CT applications. Phase-contrast imaging of human prostrate and mouse neonates at the micron level was also demonstrated. These studies indicate the usefulness of these sources in research and clinical applications. They also show that full 3D imaging can be made possible with this source in a fraction of the time that it would take with a corresponding x-ray tube. The JAI is funded by STFC Grant ST/J002062/1.

  11. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy

    NARCIS (Netherlands)

    Ocelik, V.; Furar, I.; De Hosson, J. Th. M.

    2010-01-01

    In this work orientation imaging microscopy (OIM), based on electron backscatter diffraction in scanning electron microscopy, was employed to examine in detail the relationship between laser cladding processing parameters and he properties and the microstructure of single and overlapping laser

  12. Laser speckle imaging in the spatial frequency domain.

    Science.gov (United States)

    Mazhar, Amaan; Cuccia, David J; Rice, Tyler B; Carp, Stefan A; Durkin, Anthony J; Boas, David A; Choi, Bernard; Tromberg, Bruce J

    2011-06-01

    Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm(-1)). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm(-1)) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm(-1)) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm(-1) versus 60% at 0 mm(-1) during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism.

  13. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.

    2015-01-01

    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  14. Design and implementation of range-gated underwater laser imaging system

    Science.gov (United States)

    Ge, Wei-long; Zhang, Xiao-hui

    2014-02-01

    A range-gated underwater laser imaging system is designed and implemented in this article, which is made up of laser illumination subsystem, photoelectric imaging subsystem and control subsystem. The experiment of underwater target drone detection has been done, the target of distance 40m far from the range-gated underwater laser imaging system can be imaged in the pool which water attenuation coefficient is 0.159m-1. Experimental results show that the range-gated underwater laser imaging system can detect underwater objects effectively.

  15. Glomus Tumors: Symptom Variations and Magnetic Resonance Imaging for Diagnosis

    Directory of Open Access Journals (Sweden)

    Ki Weon Ham

    2013-07-01

    Full Text Available BackgroundThe typical clinical symptoms of glomus tumors are pain, tenderness, and sensitivity to temperature change, and the presence of these clinical findings is helpful in diagnosis. However, the tumors often pose diagnostic difficulty because of variations in presentation and the nonspecific symptoms of glomus tumors. To the best of our knowledge, few studies have reported on the usefulness of magnetic resonance imaging (MRI in diagnosing glomus tumors in patients with unspecific symptoms.MethodsThe inclusion criteria of this study were: having undergone surgery for subungual glomus tumor of the hand, histopathologic confirmation of glomus tumor, and having undergone preoperative MRI. Twenty-one patients were enrolled. The characteristics of the tumors and the presenting symptoms including pain, tenderness, and sensitivity to temperature change were retrospectively reviewed.ResultsFive out of 21 patients (23% did not show the typical glomus tumor symptom triad because they did not complain of pain provoked by coldness. Nevertheless, preoperative MRI showed well-defined small soft-tissue lesions on T1- and T2-weighted images, which are typical findings of glomus tumors. The tumors were completely resected and confirmed as glomus tumor histopathologically.ConclusionsEarly occult lesions of glomus tumor in the hand may not be revealed by physical examination because of their barely detectable symptoms. Moreover, subungual lesions may be particularly difficult to evaluate on physical examination. Our cases showed that MRI offers excellent diagnostic information in clinically undiagnosed or misdiagnosed patients. Preoperative MRI can accurately define the character and extent of glomus tumor, even though it is impalpable and invisible.

  16. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    Science.gov (United States)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  17. High-resolution neutron imaging of laser imploded DT targets

    Energy Technology Data Exchange (ETDEWEB)

    Disdier, L. E-mail: laurent.disdier@cea.fr; Rouyer, A.; Wilson, D.C.; Fedotoff, A.; Stoeckl, C.; Bourgade, J.-L.; Glebov, V.Yu.; Garconnet, J.-P.; Seka, W

    2002-08-21

    Using a penumbral technique with a biconical aperture we have obtained neutron images with the highest spatial resolution ever achieved. Implosions at the Omega laser of deuterium-tritium-filled glass microballoons with 2.5 and 4.2 {mu}m thick walls produced images with full-width at half-maximums of 78 and 62 {mu}m recorded with a resolution of 60 and 45 {mu}m, respectively. Image sizes are in good agreement with calculations when the effects of noise are included. Higher geometrical spatial resolution and a new deconvolution technique improve the previous measurements of Ress et al. (Science 241 (1988) 956) obtained with a 80 {mu}m resolution.

  18. High-resolution neutron imaging of laser imploded DT targets

    CERN Document Server

    Disdier, L; Wilson, D C; Fedotoff, A; Stoeckl, C; Bourgade, J L; Glebov, V Yu; Garconnet, J P; Seka, W

    2002-01-01

    Using a penumbral technique with a biconical aperture we have obtained neutron images with the highest spatial resolution ever achieved. Implosions at the Omega laser of deuterium-tritium-filled glass microballoons with 2.5 and 4.2 mu m thick walls produced images with full-width at half-maximums of 78 and 62 mu m recorded with a resolution of 60 and 45 mu m, respectively. Image sizes are in good agreement with calculations when the effects of noise are included. Higher geometrical spatial resolution and a new deconvolution technique improve the previous measurements of Ress et al. (Science 241 (1988) 956) obtained with a 80 mu m resolution.

  19. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    2002-01-01

    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  20. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods

    Science.gov (United States)

    Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun

    2018-01-01

    Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.

  1. Holographic Imaging of Evolving Laser-Plasma Structures

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael [Univ. of Texas, Austin, TX (United States); Shvets, G. [Univ. of Texas, Austin, TX (United States)

    2014-07-31

    In the 1870s, English photographer Eadweard Muybridge captured motion pictures within one cycle of a horse’s gallop, which settled a hotly debated question of his time by showing that the horse became temporarily airborne. In the 1940s, Manhattan project photographer Berlin Brixner captured a nuclear blast at a million frames per second, and resolved a dispute about the explosion’s shape and speed. In this project, we developed methods to capture detailed motion pictures of evolving, light-velocity objects created by a laser pulse propagating through matter. These objects include electron density waves used to accelerate charged particles, laser-induced refractive index changes used for micromachining, and ionization tracks used for atmospheric chemical analysis, guide star creation and ranging. Our “movies”, like Muybridge’s and Brixner’s, are obtained in one shot, since the laser-created objects of interest are insufficiently repeatable for accurate stroboscopic imaging. Our high-speed photographs have begun to resolve controversies about how laser-created objects form and evolve, questions that previously could be addressed only by intensive computer simulations based on estimated initial conditions. Resolving such questions helps develop better tabletop particle accelerators, atmospheric ranging devices and many other applications of laser-matter interactions. Our photographic methods all begin by splitting one or more “probe” pulses from the laser pulse that creates the light-speed object. A probe illuminates the object and obtains information about its structure without altering it. We developed three single-shot visualization methods that differ in how the probes interact with the object of interest or are recorded. (1) Frequency-Domain Holography (FDH). In FDH, there are 2 probes, like “object” and “reference” beams in conventional holography. Our “object” probe surrounds the light-speed object, like a fleas swarming around a

  2. [Diagnosis and analysis of high power YAG laser and MAG arc hybrid source with spectral information].

    Science.gov (United States)

    Li, Zhi-yong; Wang, Wei; Wang, Xu-you; Li, Huan

    2010-11-01

    High power YAG laser and MAG are hybrid source is a promising material processing heat source for future industry application Diagnosis of the plasma state is critical for better understanding of the coupling effect, application of the source and optimization of the hybrid parameters. Through establishing a hollow probe spectral collecting system, Avaspec-Ft-2 high speed digital spectrometer was applied for collecting the spectral information of hybrid are plasma. The hollow probe scans the plasma body to acquire the spatial distribution of the YAG laser-MAG hybrid are spectrum. The radiation intensity in specific spectral zone was acquired for analysis of the radiation variation when the laser beam was hybrid with the MAG arc. High speed photo was also applied for comparison of the plasma with and without laser beam coupling. Furthermore, line spectra of Fe I were selected for calculating the electronic temperature of the hybrid plasma with Boltzmann plot method. The results show that energy of the hybrid plasma focused on the weld plate with high intensity and wider acting zone. The electronic temperature increased in the center of the hybrid plasma.

  3. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  4. Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract

    OpenAIRE

    Palma, Giovanni D De

    2009-01-01

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or “virtual biopsies” of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the app...

  5. Remote Colorimetric and Structural Diagnosis by RGB-ITR Color Laser Scanner Prototype

    Directory of Open Access Journals (Sweden)

    Massimiliano Guarneri

    2012-01-01

    Full Text Available Since several years ENEA's Artificial Vision laboratory is involved in electrooptics systems development. In the last period the efforts are concentrated on cultural heritage remote diagnosis, trying to develop instruments suitable for multiple purposes concerning restoration, cataloguing, and education. Since last five years a new 3D (three-dimensional laser scanner prototype (RGB-ITR based on three amplitude-modulated monochromatic laser sources mixed together by dichroic filters is under development. Five pieces of information per each sampled point (pixel are collected by three avalanche photodiodes and dedicated electronics: two distances and three target reflectivity signals for each channel, red, green, and blue. The combination of these pieces of information opens new scenarios for remote colorimetry allowing diagnoses without the use of scaffolds. Results concerning the use of RGB-ITR as colorimeter are presented.

  6. VISUALIZATION OF MACULAR PUCKER BY MULTICOLOR SCANNING LASER IMAGING.

    Science.gov (United States)

    Kilic Muftuoglu, Ilkay; Bartsch, Dirk-Uwe; Barteselli, Giulio; Gaber, Raouf; Nezgoda, Joseph; Freeman, William R

    2018-02-01

    To compare the visualization of the epiretinal membrane (ERM) using multicolor imaging (MCI) (Heidelberg Engineering, Carlsbad, CA) and conventional white light flood color fundus photography (FP) (Topcon). The paired images of patients with ERM who underwent same-day MCI and FP examinations were reviewed. Visibility of the ERM was graded using a scale (0: not visible, 1: barely visible, and 2: clearly visible) by masked readers, and surface folds were counted to quantify the membrane visibility for each method. Images from individual color channels in MCI (green, blue, and infrared) were also graded using the same method to further investigate MCI images. Forty-eight eyes of 42 patients were included. The average ERM visibility score was 1.8 ± 0.37 for MCI and 1.01 ± 0.63 for FP (P provided better detection of surface folds (5.54 ± 2.12) compared to blue reflectance (4.2 ± 2.34) and infrared reflectance (1.2 ± 0.9). Multicolor scanning laser imaging provides superior ERM detection and delineation of surface folds than conventional FP, primarily due to the green channel present in the combination-pseudocolor image in MCI.

  7. Multimodal imaging and diagnosis of myopic choroidal neovascularization in Caucasians

    Directory of Open Access Journals (Sweden)

    Milani P

    2016-09-01

    , and NIR features of mCNV are described in this study. Combination of SD-OCT and FA is recommendable for diagnosis. Keywords: myopic neovascularization, pathologic myopia, fluorescein angiography, SD-OCT, imaging, CNV

  8. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    Science.gov (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  9. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun [Dept. of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process.

  10. Seismic imaging in laboratory trough laser Doppler vibrometry

    Science.gov (United States)

    Brito, Daniel; Poydenot, Valier; Garambois, Stéphane; Diaz, Julien; Bordes, Clarisse; Rolando, Jean-Paul

    2016-04-01

    Mimic near-surface seismic field measurements at a small scale, in the laboratory, under a well-controlled environment, may lead to a better understanding of wave propagation in complex media such as in geological materials. Laboratory experiments can help in particular to constrain and refine theoretical and numerical modelling of physical phenomena occurring during seismic propagation, in order to make a better use of the complete set of measurements recorded in the field. We have developed a laser Doppler vibrometer (laser interferometry) platform designed to measure non-contact seismic displacements (or velocities) of a surface. This technology enables to measure displacements as small as a tenth of a nanometer on a wide range of frequencies, from a few tenths to a few megahertz. Our experimental set-up is particularly suited to provide high-density spatial and temporal records of displacements on the edge of any vibrating material. We will show in particular a study of MHz wave propagation (excited by piezoelectric transducers) in cylindrical cores of typical diameter size around 10 cm. The laser vibrometer measurements will be first validated in homogeneous materials cylinders by comparing the measurements to a direct numerical simulation. Special attention will be given to the comparison of experimental versus numerical amplitudes of displacements. In a second step, we will conduct the same type of study through heterogeneous carbonate cores, possibly fractured. Tomographic images of velocity in 2D slices of the carbonate core will be derived based upon on the time of first arrival. Preliminary attempts of tomographic attenuation maps will also be presented based on the amplitudes of first arrivals. Experimental records will be confronted to direct numerical simulations and tomographic images will be compared to x-ray scanner imaging of the cylindrical cores.

  11. Wavelet-analysis for Laser Images of Blood Plasma

    Directory of Open Access Journals (Sweden)

    ANGELSKY, A.-P.

    2011-05-01

    Full Text Available The possibilities of the local wavelet-analysis of polarization-inhomogeneous laser image of human blood plasma were considered. The set of statistics, correlation and fractal parameters of the distributions of wavelet-coefficients that are characterize different scales of the polarization maps of polycrystalline networks of amino acids of blood plasma were defined. The criteria for the differentiation of the transformation of birefringence optical-anisotropic structures of blood plasma at different scales of their geometric dimensions were determined.

  12. IMAGING DIAGNOSIS - MAGNETIC RESONANCE IMAGING OF INTRACRANIAL INFLAMMATORY FIBROSARCOMA IN A MIXED BREED DOG.

    Science.gov (United States)

    Scarpante, Elena; Palus, Viktor; Summers, Brian Alan; Caine, Abby; Cherubini, Giunio Bruto

    2016-01-01

    An 8-year-old mixed-breed dog presented with progressive behavioral changes and altered mentation. Magnetic resonance imaging (MRI) of the brain revealed an olfactory and frontal lobe extra-axial mass. The mass exhibited the following MRI signal intensity characteristics: T2W mixed, T1W iso- to hypointense, FLAIR hyperintense, and strong contrast enhancement. The mass was removed with cavitronic ultrasonic surgical aspirator (CUSA) assisted neurosurgery. Based on histopathological appearance and immunohistochemistry, the diagnosis of inflammatory fibrosarcoma was made. To our knowledge, this is the first report describing MRI characteristics of intracranial inflammatory fibrosarcoma in the veterinary literature. © 2015 American College of Veterinary Radiology.

  13. Collecting highly reproducible images to support dermatological medical diagnosis

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2006-01-01

    In this article, an integrated imaging system for acquisition of accurate standardized images is proposed. The system also aims at making highly reproducible images over time, so images taken at different times can be compared. The system is made up of an integrating intensity sphere illumination...

  14. Assessing laser-tissue damage with bioluminescent imaging.

    Science.gov (United States)

    Wilmink, Gerald J; Opalenik, Susan R; Beckham, Joshua T; Davidson, Jeffrey M; Jansen, E Duco

    2006-01-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (lambda=10.6 microm, 0.679 to 2.262 Wcm2, cw, unfocused Gaussian beam, omegaL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 Wcm2 activated the hsp70 response, and a higher irradiance of 2.262 Wcm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin

  15. Target plane imaging system for the Nova laser

    Energy Technology Data Exchange (ETDEWEB)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-12-12

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 ..mu..m, 0.53 ..mu..m, and 0.35 ..mu..m. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described.

  16. Real-time full field laser Doppler imaging

    Science.gov (United States)

    Leutenegger, Marcel; Harbi, Pascal; Thacher, Tyler; Raffoul, Wassim; Lasser, Theo

    2012-06-01

    We present a full field laser Doppler imaging instrument that enables real-time in vivo assessment of blood flow in dermal tissue and skin. The instrument monitors the blood perfusion in an area of about 50cm2 with 480 × 480 pixels per frame at a rate of 12-14 frames per second. Smaller frames can be monitored at much higher frame rates. We recorded the microcirculation in healthy skin before, during and after arterial occlusion. In initial clinical case studies, we imaged the microcirculation in burned skin and monitored the recovery of blood flow in a skin flap during reconstructive surgery indicating the high potential of LDI for clinical applications.

  17. Image compression for medical diagnosis using neural networks

    OpenAIRE

    Lanzarini, Laura Cristina; Vargas Camacho, María Teresa; Flores Badrán, Amado; De Giusti, Armando Eduardo

    2000-01-01

    Images compression is a widely studied topic. Conventional situations offer variable compression ratios depending on the image in question and, in general, do not yield good results for images that are rich in tones. This work is an application of images compression of patient s computed tomographies using neural networks, which allows to carry out both compression and decompression of the images with a fixed ratio of 8:1 and a loss of 2%. Facultad de Informática

  18. Magnetic resonance imaging in the diagnosis of the liver diseases; From CT to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shinichiro; Ohmoto, Kenji; Takatori, Keiko; Yamamoto, Ryosuke; Ideguchi, Seiji; Ohumi, Tsuneyo; Hino, Kazunari; Hirano, Yutaka (Kawasaki Medical School, Kurashiki, Okayama (Japan))

    1989-12-01

    To evaluate the usefulness of magnetic resonance (MR) imaging in the diagnosis of liver diseases, MR imaging was performed in 20 patients with liver diseases. MR imaging was carried out with a 0.5-Tesla superconducting magnet by a spin-echo technique, from which T{sub 1} and T{sub 2}-weighted images were obtained. Based on our more than ten years experience with CT diagnosis, the essentials and limits of CT diagnosis were summarized and compared with those of MR. CT and MR were almost equally effective in the diagnosis of liver diseases, but MR was especially useful in determining the extent of necrosis in liver cancer after TAE (transcatheter arterial embolization) or PEIT (percutaneous ethanol injection therapy). The diagnosis of hemangiomas and hemosiderosis, as well as the differentiation of small liver cancer and liver cyst, was superior to that using conventional X-ray CT. (author).

  19. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Airborne Laser Scanning and Image Processing Techniques for Archaeological Prospection

    Science.gov (United States)

    Faltýnová, M.; Nový, P.

    2014-06-01

    Aerial photography was, for decades, an invaluable tool for archaeological prospection, in spite of the limitation of this method to deforested areas. The airborne laser scanning (ALS) method can be nowadays used to map complex areas and suitable complement earlier findings. This article describes visualization and image processing methods that can be applied on digital terrain models (DTMs) to highlight objects hidden in the landscape. Thanks to the analysis of visualized DTM it is possible to understand the landscape evolution including the differentiation between natural processes and human interventions. Different visualization methods were applied on a case study area. A system of parallel tracks hidden in a forest and its surroundings - part of old route called "Devil's Furrow" near the town of Sázava was chosen. The whole area around well known part of Devil's Furrow has not been prospected systematically yet. The data from the airborne laser scanning acquired by the Czech Office for Surveying, Mapping and Cadastre was used. The average density of the point cloud was approximately 1 point/m2 The goal of the project was to visualize the utmost smallest terrain discontinuities, e.g. tracks and erosion furrows, which some were not wholly preserved. Generally we were interested in objects that are clearly not visible in DTMs displayed in the form of shaded relief. Some of the typical visualization methods were tested (shaded relief, aspect and slope image). To get better results we applied image-processing methods that were successfully used on aerial photographs or hyperspectral images in the past. The usage of different visualization techniques on one site allowed us to verify the natural character of the southern part of Devil's Furrow and find formations up to now hidden in the forests.

  1. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    National Research Council Canada - National Science Library

    Kyosuke Yamamoto; Takashi Togami; Norio Yamaguchi

    2017-01-01

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis...

  2. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...... molecules in water....

  3. Image analysis for ophthalmological diagnosis image processing of Corvis ST images using Matlab

    CERN Document Server

    Koprowski, Robert

    2016-01-01

    This monograph focuses on the use of analysis and processing methods for images from the Corvis® ST tonometer. The presented analysis is associated with the quantitative, repeatable and fully automatic evaluation of the response of the eye, eyeball and cornea to an air-puff. All the described algorithms were practically implemented in MATLAB®. The monograph also describes and provides the full source code designed to perform the discussed calculations. As a result, this monograph is intended for scientists, graduate students and students of computer science and bioengineering as well as doctors wishing to expand their knowledge of modern diagnostic methods assisted by various image analysis and processing methods.

  4. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    Science.gov (United States)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-09-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.

  5. Comparison of Optical Coherence Tomography Angiography and Laser Speckle Flowgraphy for the Diagnosis of Normal-Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Asuka Takeyama

    2018-01-01

    Full Text Available Purpose. To compare optical coherence tomography angiography (OCT-A and laser speckle flowgraphy (LSFG for the diagnosis of normal-tension glaucoma (NTG. Methods. Twenty-eight eyes of 28 patients with NTG and 25 eyes of 25 normal subjects matched for age, refractive errors, systemic blood pressure, and central corneal thickness were evaluated. OCT-A was used to measure whole image vessel density, inside disc vessel density, and peripapillary vessel density; using LSFG, mean blur rate (MBR inside the whole optic nerve head (ONH area (MBRA, and MBR of the vessel area (MBRV and tissue area (MBRT inside the ONH, were determined. Receiver operating characteristic (ROC curves and areas under the ROC (AUROC were used to assess the diagnostic ability of each variable. Results. The AUROC for OCT-A whole image vessel density (0.950 was significantly greater than that for OCT-A peripapillary vessel density (0.830 and for all LSFG parameters (MBRA = 0.793, MBRV = 0.601, and MBRT = 0.61 (P<0.001. The AUROC for OCT-A inside disc vessel density (0.931 was significantly greater than that for all LSFG parameters (P<0.005. Conclusions. OCT-A vessel density had a higher glaucoma diagnostic ability compared to all LSFG parameters in patients with NTG.

  6. CT of jejunal diverticulitis: imaging findings, differential diagnosis, and clinical management

    Energy Technology Data Exchange (ETDEWEB)

    Macari, M.; Faust, M.; Liang, H.; Pachter, H.L

    2007-01-15

    Aim: To describe the imaging findings of jejunal diverticulitis as depicted at contrast-enhanced computed tomography (CT) and review the differential diagnosis and clinical management. Materials and Methods: CT and pathology databases were searched for the diagnosis of jejunal diverticulitis. Three cases were identified and the imaging and clinical findings correlated. Results: Jejunal diverticulitis presents as a focal inflammatory mass involving the proximal small bowel. A trial of medical management with antibiotics may be attempted. Surgical resection may be required if medical management is unsuccessful. Conclusion: The imaging findings at MDCT may allow a specific diagnosis of jejunal diverticulitis to be considered and may affect the clinical management of the patient.

  7. Pulse laser imaging amplifier for advanced Ladar systems

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir; Tomov, Ivan; Murrell, David

    2017-03-01

    Coherent image amplification is an important and difficult task that has a wide range of applications including surveillance, detection, and imaging of biological species. Earlier approaches to achieve a high-gain low-noise coherent amplification were met with little success in regards to gain and image quality. These methods included direct coherent beam propagation through the gain medium with inverted population levels as well as two- and four-beam coupling. This paper discusses a high-gain intracavity laser image amplifier. The approach enables time synchronization of the incoming and amplifying signals with an accuracy ≤1 ns. Matching the spectrum of the incoming signal to the cavity modes is no longer necessary with this method and is an essential advantage of the amplifier. Instead, the incoming signal is accepted within the spectral band of the amplifier's gain material. We have gauged experimentally the performance of the amplifier with a 30-dB gain and an angle of view up to 30 mrad.

  8. Multi-wavelength laser sensor surface for high frame rate imaging refractometry (Conference Presentation)

    Science.gov (United States)

    Kristensen, Anders; Vannahme, Christoph; Sørensen, Kristian T.; Dufva, Martin

    2016-09-01

    A highly sensitive distributed feedback (DFB) dye laser sensor for high frame rate imaging refractometry without moving parts is presented. The laser sensor surface comprises areas of different grating periods. Imaging in two dimensions of space is enabled by analyzing laser light from all areas in parallel with an imaging spectrometer. Refractive index imaging of a 2 mm by 2 mm surface is demonstrated with a spatial resolution of 10 μm, a detection limit of 8 10-6 RIU, and a framerate of 12 Hz, limited by the CCD camera. Label-free imaging of dissolution dynamics is demonstrated.

  9. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis.

    Science.gov (United States)

    Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Campbell, J Peter; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir; Jonas, Karyn; Chan, R V Paul; Ostmo, Susan; Chiang, Michael F

    2015-11-01

    We developed and evaluated the performance of a novel computer-based image analysis system for grading plus disease in retinopathy of prematurity (ROP), and identified the image features, shapes, and sizes that best correlate with expert diagnosis. A dataset of 77 wide-angle retinal images from infants screened for ROP was collected. A reference standard diagnosis was determined for each image by combining image grading from 3 experts with the clinical diagnosis from ophthalmoscopic examination. Manually segmented images were cropped into a range of shapes and sizes, and a computer algorithm was developed to extract tortuosity and dilation features from arteries and veins. Each feature was fed into our system to identify the set of characteristics that yielded the highest-performing system compared to the reference standard, which we refer to as the "i-ROP" system. Among the tested crop shapes, sizes, and measured features, point-based measurements of arterial and venous tortuosity (combined), and a large circular cropped image (with radius 6 times the disc diameter), provided the highest diagnostic accuracy. The i-ROP system achieved 95% accuracy for classifying preplus and plus disease compared to the reference standard. This was comparable to the performance of the 3 individual experts (96%, 94%, 92%), and significantly higher than the mean performance of 31 nonexperts (81%). This comprehensive analysis of computer-based plus disease suggests that it may be feasible to develop a fully-automated system based on wide-angle retinal images that performs comparably to expert graders at three-level plus disease discrimination. Computer-based image analysis, using objective and quantitative retinal vascular features, has potential to complement clinical ROP diagnosis by ophthalmologists.

  10. Microscopic coherent Raman imaging using low-cost continuous wave lasers

    Science.gov (United States)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2013-06-01

    Significant effort is devoted to improving the instrumentation for stimulated Raman scattering (SRS) microscopy, which plays an important role in non-invasive biomedical optical imaging by providing a chemically specific contrast without relying on fluorescent markers. In this work we employ low-cost continuous wave lasers to achieve highly sensitive SRS imaging suitable for future application in biology, medicine and materials science. We perform microscopic imaging of dimethyl sulfoxide using two independent, commonly used lasers: a diode pumped, intracavity doubled 532 nm laser and a He-Ne laser operating at 632.8 nm. We further demonstrate that SRS imaging using cw laser sources (cwSRS) is advantageous over pulsed laser based SRS, as it eliminates the possibility of sample damage due to exposure to high-intensity light radiation, while substantially reducing the cost and complexity of the setup and keeping a sub-micron spatial resolution.

  11. Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS

    Science.gov (United States)

    Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard

    2014-06-01

    We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.

  12. Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment

    Science.gov (United States)

    Kuzmina, Ilona; Diebele, Ilze; Asare, Lasma; Kempele, Anna; Abelite, Anita; Jakovels, Dainis; Spigulis, Janis

    2010-11-01

    The paper investigates influence and efficacy of laser therapy on pigmented and vascular cutaneous malformations by multispectral imaging technique. Parameter mapping of skin pigmented and vascular lesions and monitoring of the laser therapy efficacy are performed by multispectral imaging in wavelength range 450-700nm by scanning step - 10nm. Parameter maps of the oxyhemoglobin deoxyhemoglobin and melanin derived from the images are presented. Possibility of laser therapy efficacy monitoring by comparison of the parameter maps before and after laser treatment has been demonstrated. As both cutaneous pigmented and vascular malformations are commonly found lesions, the parameter mapping would be a valuable method to use routinely.

  13. Agile beam laser radar using computational imaging for robotic perception

    Science.gov (United States)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  14. Interferometric laser imaging for in-flight cloud droplet sizing

    Science.gov (United States)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-12-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications.

  15. Anatomic and functional imaging in the diagnosis of spine metastases and response assessment after spine radiosurgery.

    Science.gov (United States)

    Soliman, Moaaz; Taunk, Neil K; Simons, Robert E; Osborne, Joseph R; Kim, Michelle M; Szerlip, Nicholas J; Spratt, Daniel E

    2017-01-01

    Spine stereotactic radiosurgery (SSRS) has recently emerged as an increasingly effective treatment for spinal metastases. Studies performed over the past decade have examined the role of imaging in the diagnosis of metastases, as well as treatment response following SSRS. In this paper, the authors describe and review the utility of several imaging modalities in the diagnosis of spinal metastases and monitoring of their response to SSRS. Specifically, we review the role of CT, MRI, and positron emission tomography (PET) in their ability to differentiate between osteoblastic and osteolytic lesions, delineation of initial bony pathology, detection of treatment-related changes in bone density and vertebral compression fracture after SSRS, and tumor response to therapy. Validated consensus guidelines defining the imaging approach to SSRS are needed to standardize the diagnosis and treatment response assessment after SSRS. Future directions of spinal imaging, including advances in targeted tumor-specific molecular imaging markers demonstrate early promise for advancing the role of imaging in SSRS.

  16. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Steenbergen, Wiendelt; van Leeuwen, Ton

    2006-01-01

    Photoacoustic imaging is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophores such as hemoglobin in blood. For this technique, usually large and costly Q-switched Nd:YAG lasers are used. These lasers provide a pulse

  17. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  18. Imaging of Brain Connectivity in Dementia: Clinical Implications for Diagnosis of its Underlying Diseases

    NARCIS (Netherlands)

    R. Meijboom (Rozanna)

    2017-01-01

    markdownabstractIn this thesis we investigated the use of advanced magnetic resonance imaging (MRI) techniques in identifying subtle brain abnormalities, associating brain abnormalities with disease symptomatology, and improving early (differential) diagnosis in several diseases underlying dementia.

  19. Magnetic resonance imaging for the diagnosis of Parkinson?s disease

    OpenAIRE

    Heim, Beatrice; Krismer, Florian; De Marzi, Roberto; Seppi, Klaus

    2017-01-01

    The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, i...

  20. Development of image diagnosis support system by Web3D. No.1

    Energy Technology Data Exchange (ETDEWEB)

    Kota, Akio [Tokai Univ., School of High-Technology for Human Welfare, Numazu, Shizuoka (Japan); Suto, Yasuzo; Tan, Gakuko; Otaki, Makoto; Horii, Minoru [Tokai Univ., Tokyo (Japan); Yamaguchi, Reo; Higuchi, Masasato [SACCO Co., Ltd., Tokyo (Japan)

    2003-07-01

    Virtual endoscopy image is the three-dimensional surface image, constructed by multi-sliced CT/MRI image for the inside of tuber organ such as stomach and intestine. The image is very useful for diagnosis and surgical support. However, the information volume is very large, then the manipulation such as dynamic viewing and navigation is relatively difficult under the network environment by internet and so on. We attempt to develop the effective virtual endoscopy system on web. (author)

  1. Development of image diagnosis support system by Web3D. No.2

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Reo; Higuchi, Masato [SACCO Co., Ltd., Tokyo (Japan); Kota, Akio; Suto, Yasuzo; Tan, Gakuko; Otaki, Makoto; Horii, Minoru [Tokai Univ., Tokyo (Japan)

    2003-07-01

    Virtual endoscopy image is three-dimensional surface images, constructed by multi-sliced CT/MRI image for the inside of tuber organ such as stomach and intestine. The image is very useful for diagnosis and surgical support. However, information volume is very large, then the manipulation such as dynamic viewing and navigation is relatively difficult under network environment by internet and so on. We attempt to develop effective virtual endoscopy system on web. (author)

  2. Spatial sub-Rayleigh imaging analysis via speckle laser illumination.

    Science.gov (United States)

    Wang, Yunlong; Wang, Feiran; Liu, Ruifeng; Chen, Dongxu; Gao, Hong; Zhang, Pei; Li, Fuli

    2015-11-15

    It is commonly accepted that optical sub-Rayleigh imaging has potential application in many fields. In this Letter, by confining the divergence of the optical field, as well as the size of the illumination source, we show that the first-order averaged intensity measurement via speckle laser illumination can make an actual breakthrough on the Rayleigh limit. For a high-order algorithm, it has been reported that the autocorrelation function can be utilized to achieve the sub-Rayleigh feature. However, we find that this sub-Rayleigh feature for the high-order algorithm is limited only to binary objects, and the image will be distorted when a gray object is placed. This property encourages us to find the physics behind the high-order correlation imaging algorithm. We address these explanations in this Letter and find that for different types of high-order algorithm, there is always a "seat" in the right place from the cross-correlation function.

  3. Lasers.

    Science.gov (United States)

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. [Lasers].

    Science.gov (United States)

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Scimitar Syndrome in an Asymptomatic Adult: Fortuitous Diagnosis by Imaging Technique

    Directory of Open Access Journals (Sweden)

    Miguel Angel Ramirez-Marrero

    2012-01-01

    Full Text Available Congenital cardiopathies in adults are a rare clinical entity in the cardiology consultations. Advances in imaging techniques allow the fortuitous diagnosis of mild forms of these congenital abnormalities. We describe a case of an asymptomatic 41-year-old man, with a medical history of recurrent pneumonia during childhood and an established diagnosis of scimitar syndrome by computed tomography.

  6. 78 FR 49520 - Scientific Information Request on Imaging Techniques for the Surveillance, Diagnosis, and Staging...

    Science.gov (United States)

    2013-08-14

    ... standards (e.g., explanted liver samples, histological diagnosis, or clinical and imaging followup)? ii. How..., number of lesions, tumor diameter, or cause of liver disease) or other factors (e.g., technical aspects... modified by use of various reference standards (e.g., explanted liver samples, histological diagnosis, or...

  7. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles

    Science.gov (United States)

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-07-01

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide

  8. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE

    Directory of Open Access Journals (Sweden)

    Dobler Jeremy

    2016-01-01

    Full Text Available Exelis has recently developed a novel laser-based instrument to aid in the autonomous real-time monitoring and mapping of CO2 concentration over a two-dimensional area. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE instrument uses two transceivers and a series of retroreflectors to continuously measure the differential transmission over a number of overlapping lines of sight or “chords”, forming a plane. By inverting the differential transmission measurements along with locally measured temperature (T, pressure (P and relative humidity (RH the average concentration of CO2 along each chord can be determined and, based on the overlap between chords, a 2D map of CO2 concentration over the measurement plane can be estimated. The GreenLITE system was deployed to the Zero Emissions Research and Technology (ZERT center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions, while utilizing a controlled release of CO2 into a segmented underground pipe [1]. The system demonstrated the ability to identify persistent CO2 sources at the test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, instrument design, and results from the deployment to the ZERT site.

  9. Development of an Image Processing System for Automatic Melanoma Diagnosis from Dermoscopic Images: Preliminary Sudy - Original Article

    Directory of Open Access Journals (Sweden)

    M. Emin Yüksel

    2008-12-01

    Full Text Available Objective: Design and implementation of a medical image processing system that will provide decision support to the clinician in the diagnosis of melanoma type skin cancers by performing the analysis of dermoscopic images.Methods: Visual features of pigmented lesions are converted into measurable numerical quantities by employing digital image processing methods and a classification regarding melanoma diagnosis is performed based on these quantitative data.Results: We achieved numerical results showing asymmetry, border and color features of the pigmentary lesions by using segmentation, image histogram, thresholding, convex hull, color clustering, color quantization and distribution methods. Conclusion: The system under development speeds up the decision process of the clinician. In addition, it allows the diagnosis to be based on more objective data.

  10. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...

  11. Matrix-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Zaima, Nobuhiro; Hayasaka, Takahiro; Goto-Inoue, Naoko; Setou, Mitsutoshi

    2010-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool that enables the simultaneous detection and identification of biomolecules in analytes. MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-mass spectrometric technique used to visualize the spatial distribution of biomolecules without extraction, purification, separation, or labeling of biological samples. MALDI-IMS has revealed the characteristic distribution of several biomolecules, including proteins, peptides, amino acids, lipids, carbohydrates, and nucleotides, in various tissues. The versatility of MALDI-IMS has opened a new frontier in several fields such as medicine, agriculture, biology, pharmacology, and pathology. MALDI-IMS has a great potential for discovery of unknown biomarkers. In this review, we describe the methodology and applications of MALDI-IMS for biological samples.

  12. [Role of imaging in the diagnosis of coma].

    Science.gov (United States)

    Aubin, M L; Molho, M

    1989-11-21

    Imaging has become one of the main methods to diagnose and monitor coma. CT is the technique of choice in the exploration of traumatic coma or spontaneous intracerebral haemorrhage, but MRI is better than CT to explore comas of ischaemic, infective, tumoral or toxic origin, as it provides earlier and more precise images.

  13. Real time laser speckle imaging monitoring vascular targeted photodynamic therapy

    Science.gov (United States)

    Goldschmidt, Ruth; Vyacheslav, Kalchenko; Scherz, Avigdor

    2017-02-01

    Laser speckle imaging is a technique that has been developed to non-invasively monitor in vivo blood flow dynamics and vascular structure, at high spatial and temporal resolution. It can record the full-field spatio-temporal characteristics of microcirculation and has therefore, often been used to study the blood flow in tumors after photodynamic therapy (PDT). Yet, there is a paucity of reports on real-time laser speckle imaging (RTLSI) during PDT. Vascular-targeted photodynamic therapy (VTP) with WST11, a water-soluble bacteriochlorophyll derivative, achieves tumor ablation through rapid occlusion of the tumor vasculature followed by a cascade of events that actively kill the tumor cells. WST11-VTP has been already approved for treatment of early/intermediate prostate cancer at a certain drug dose, time and intensity of illumination. Application to other cancers may require different light dosage. However, incomplete vascular occlusion at lower light dose may result in cancer cell survival and tumor relapse while excessive light dose may lead to toxicity of nearby healthy tissues. Here we provide evidence for the feasibility of concomitant RTLSI of the blood flow dynamics in the tumor and surrounding normal tissues during and after WST11-VTP. Fast decrease in the blood flow is followed by partial mild reperfusion and a complete flow arrest within the tumor by the end of illumination. While the primary occlusion of the tumor feeding arteries and draining veins agrees with previous data published by our group, the late effects underscore the significance of light dose control to minimize normal tissue impairment. In conclusion- RTSLI application should allow to optimize VTP efficacy vs toxicity in both the preclinical and clinical arenas.

  14. Diagnosis of Broiler Livers by Classifying Image Patches

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Fagertun, Jens; Moeslund, Thomas B.

    2017-01-01

    The manual health inspection are becoming the bottleneck at poultry processing plants. We present a computer vision method for automatic diagnosis of broiler livers. The non-rigid livers, of varying shape and sizes, are classified in patches by a convolutional neural network, outputting maps...

  15. Laser-induced fluorescence imaging of coronary arteries for open-heart surgery applications

    Science.gov (United States)

    Taylor, Roderick S.; Gladysz, D.; Brown, Derek W.; Higginson, Lyall A. J.

    1991-07-01

    A technique utilizing laser induced fluorescence has been developed to obtain direct real-time imaging of the coronary artery network for open heart surgery applications. Both excimer pumped dye and cw argon-ion laser radiation transmitted through a fused silica fiber were used as laser sources to irradiate swine, bovine, and human cadaver hearts whose coronary arteries had been injected with strongly fluorescent dyes. The laser induces fluorescence originating from within the coronary arteries and detected by the surgeon's eye, allows the entire coronary network to be directly viewed. A comparison between laser induced fluorescence and the use of direct visual inspection of arteries following injection of the dye Cardio-Green(R) as well as conventional thermal imaging is presented. The limitations imposed on each technique by layers of fat on top of the coronary arteries are also described. The possibility of using these techniques to detect mechanical or laser beam perforations during laser endarterectomy procedures is discussed.

  16. Early diagnosis of melanotic melanoma based on laser-induced melanin fluorescence

    Science.gov (United States)

    Eichhorn, Reinhold; Wessler, Gerd; Scholz, Matthias; Leupold, Dieter; Stankovic, Goran; Buder, Susanne; Stücker, Markus; Hoffmann, Klaus

    2009-05-01

    Because of the increasing incidence of skin cancer, interest in using the autofluorescence of skin tissue as a noninvasive tool for early diagnosis is enforced. Focus is especially on malignant melanotic melanoma. On the basis of a newly developed method to selectively excite melanin fluorescence of skin tissue by stepwise two-photon excitation with nanosecond laser pulses at 810 nm, we have investigated information from this melanin fluorescence with respect to the differentiation of pigmented lesions. A distinct difference in the melanin fluorescence spectrum of malignant melanoma (including melanoma in situ) when compared to that of benign melanocytic lesions (i.e., common nevi) has been found for freshly excised samples as well as for histopathological samples. There is also specific fluorescence from dysplastic nevi. In this way, early detection of malignant melanoma is possible.

  17. XeCl excimer laser-induced autofluorescence spectroscopy for human cerebral tumor diagnosis: preliminary study

    Science.gov (United States)

    Avrillier, Sigrid; Hor, Frederic; Desgeorges, Michel; Ettori, Dominique; Sitbon, Jean R.

    1993-09-01

    Three-hundred-eight nm laser-induced autofluorescence spectra of the normal human brain, astrocytoma grade IV and glioblastoma grade IV specimens, have been recorded in vitro two hours after surgical resection. Typical fluorescence spectra for normal (N) and malignant (M) tissue show 4 maxima at about 352, 362, 383, and 460 nm. These spectra are analyzed in detail. Subtle differences in normalized spectra of N and M tissues appear to be large enough for diagnosis. Several criteria such as maxima and minima absolute intensity and intensity ratios at typical wavelengths are computed and used to classify the tissue. This preliminary study shows that fluorescence spectroscopy with 308 nm UV excitation could be a valid technique for discriminating tumor types. However, it should be noted that these measurements are made in vitro. Living tissues may have different spectral characteristics, therefore future in vivo investigations must be performed.

  18. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  19. Images of the Laser Entrance Hole from the Static X-ray Imager at NIF

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Jones, O; Meezan, N; Milovich, J; Town, R; Alvarez, S; Beeler, R; Bradley, D; Celeste, J; Dixit, S; Edwards, M; Haugh, M; Kalantar, D; Kline, J; Kyrala, G; Landen, O; MacGowan, B; Michel, P; Moody, J; Oberhelman, S; Piston, K; Pivovaroff, M; Suter, L; Teruya, A; Thomas, C; Vernon, S; Warrick, A; Widman, K; Wood, R; Young, B

    2010-05-04

    The Static X-ray Imager (SXI) at the National Ignition Facility (NIF) is a pinhole camera using a CCD detector to obtain images of hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters combined with the CCD response allows recording images in the x-ray range of 3 to 5 keV with 60 {micro}m spatial resolution. The routines used to obtain the apparent size of the backlit LEH, and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition hohlraum) is discussed.

  20. Imaging and differential diagnosis of pediatric spinal tuberculosis

    Directory of Open Access Journals (Sweden)

    Xiao-ying Xing

    2015-03-01

    Conclusion: Pediatric spinal tuberculosis often occurs in the cervical and thoracic vertebrae with typical imaging findings. The cases with atypical manifestations should be differentiated from other diseases such as Langerhans cell histiocytosis and metastatic neoplasm.

  1. Magnetic Resonance Imaging (MRI Contrast Agents for Tumor Diagnosis

    Directory of Open Access Journals (Sweden)

    Weiren Cheng

    2013-01-01

    Full Text Available This review focuses on MRI contrast agents for tumor diagnosis. Several types of low molecular weight Gd3+-based complexes and dextran-coated superparamagnetic iron oxide (SPIO nanoparticles have been used for clinical tumor diagnosis as longitudinal relaxation time (T1 and transverse relaxation time (T2 MRI contrast agents, respectively. To further improve the sensitivity of MRI, new types of chelates for T1 MRI contrast agents and combination of low molecular weight T1 MRI contrast agents with different types of carriers have been investigated. Different types of materials for forming secure coating layers of SPIO and novel superparamagnetic particles with higher relaxivity values have been explored. Various types of ligands were applied to improve the capability to target tumor for both T1 and T2 contrast agents. Furthermore, MRI contrast agents for detection of tumor metabolism were also pursued.

  2. Clinical study of syringomyelia. Relation of neurological symptoms and imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ohga, Ritsu; Konishi, Yoshihiro; Higashi, Yasuto; Kawai, Kingo; Yasuda, Takeshi; Terao, Akira (Kawasaki Medical School, Kurashiki, Okayama (Japan))

    1988-12-01

    We discussed the relationship between neurological symptoms and the locations of syringes observed by CT and MRI (imaging diagnosis) in six cases of syringomyelia admitted to our department during the past five years. Neurological symptoms of the upper cervical and thoracic cords were found in six cases and five cases of them had symmetric distribution. Syringes were found in all cases by delayed CT (D-CT) and MRI. Five cases had laterality. The sites in the spinal cord exhibiting severe involvement of neurological symptoms corresponded with the sites of syringes in imaging diagnosis. The main asymmetric lesions of the syringes were located in the posterior horn. They indicated the relationship with the appearance of the neurological symptoms of the lesion. We compared with the width of the longitudinal level from neurological findings and imaging diagnosis. The rostral level of both corresponded in all cases, but the caudal level corresponded in only one case and neurological symptoms were broader than syringes in imaging diagnosis. It was difficult to identify small syringes when there was complicated scoliosis. The diagnosis of typical cases of syringomyelia is mainly based on such neurological symptoms as a bilateral segmental pattern of dissociated sensory impairment in the past, but imaging diagnosis has recently come to be regarded as very important. (J.P.N.).

  3. The role of imaging in the diagnosis of bronchiectasis: the key is in the distribution.

    Science.gov (United States)

    Bueno, J; Flors, L

    2017-08-03

    Diseases that involve the medium caliber airways (segmental and subsegmental bronchi) are common and present clinically with nonspecific respiratory symptoms such as cough, recurrent respiratory infections and occasionally, hemoptysis. The abnormal and irreversible dilation of bronchi is known as "bronchiectasis". The diagnosis can be challenging and the analysis of the regional distribution of the bronchiectasis is the most useful diagnostic guide. The objective of this manuscript is to describe the main imaging findings of bronchiectasis and their classification, review the diseases that most commonly present with this abnormality, and provide an approach to the diagnosis based on their imaging appearance and anatomic distribution. Bronchiectasis is a frequent finding that may result from a broad range of disorders. Imaging plays a paramount role in diagnosis, both in the detection and classification, and in the diagnosis of the underlying pathology. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    Science.gov (United States)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  5. Simultaneous laser speckle imaging and positron emission tomography

    Science.gov (United States)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, pICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  6. Clinical Nonlinear Laser Imaging of Human Skin: A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Cicchi

    2014-01-01

    Full Text Available Nonlinear optical microscopy has the potential of being used in vivo as a noninvasive imaging modality for both epidermal and dermal imaging. This paper reviews the capabilities of nonlinear microscopy as a noninvasive high-resolution tool for clinical skin inspection. In particular, we show that two-photon fluorescence microscopy can be used as a diagnostic tool for characterizing epidermal layers by means of a morphological examination. Additional functional information on the metabolic state of cells can be provided by measuring the fluorescence decay of NADH. This approach allows differentiating epidermal layers having different structural and cytological features and has the potential of diagnosing pathologies in a very early stage. Regarding therapy follow-up, we demonstrate that nonlinear microscopy could be successfully used for monitoring the effect of a treatment. In particular, combined two-photon fluorescence and second-harmonic generation microscopy were used in vivo for monitoring collagen remodeling after microablative fractional laser resurfacing and for quantitatively monitoring psoriasis on the basis of the morphology of epidermal cells and dermal papillae. We believe that the described microscopic modalities could find in the near future a stable place in a clinical dermatological setting for quantitative diagnostic purposes and as a monitoring method for various treatments.

  7. Overview of current multiparametric magnetic resonance imaging approach in the diagnosis and staging of prostate cancer

    Directory of Open Access Journals (Sweden)

    Hasan Aydın

    2015-04-01

    Full Text Available This article is primarily based on the utility and validity of multiparametric magnetic resonance imaging in the diagnosis and staging of prostate gland tumors. Multiparametric magnetic resonance imaging is an emerging, useful approach for evaluating and detecting prostate cancers. It also aids in the management of a tumor and improve the care and follow-up of patients.

  8. [Nephrologic diagnosis besides ultrasonography: which other imaging methods? Guideline on the use of radiologic methods].

    Science.gov (United States)

    Golfieri, Rita; Barone, Domenico

    2002-12-01

    The present paper represents an overview of the imaging methods which could integrate the first ultrasonographic approach to nephrologic diagnosis. It summarizes the clinical indications and the appropriate imaging protocols including conventional radiology, CT, MR and Nuclear Medicine in five different clinical scenarios: reno-vascular hypertension, hematuria, acute pyelonephritis, acute and chronic renal failure, and acute urinary colic.

  9. Meta-analysis of confocal laser endomicroscopy for the diagnosis of gastric neoplasia and adenocarcinoma.

    Science.gov (United States)

    Qian, Wei; Bai, Tao; Wang, Huan; Zhang, Lei; Song, Jun; Hou, Xiao Hua

    2016-06-01

    Confocal laser endomicroscopy (CLE) is a recently developed technique used to diagnose gastrointestinal diseases. The current meta-analysis aimed to systematically assess the ability of CLE to diagnose neoplasia and gastric adenocarcinoma. A comprehensive literature search was performed using PubMed, Embase and the Cochrane Library for endomicroscopy, gastric neoplasia and gastric adenocarcinoma. Sensitivity and specificity data on the diagnosis of neoplasia and gastric adenocarcinoma were pooled. A summary receiver operating characteristic (sROC) curve was performed and the area under the curve was calculated. In all, 13 studies were included in the current study. The pooled sensitivity and specificity assessing CLE as a method to diagnose gastric neoplasia were 0.81 and 0.98, respectively. For the diagnosis of gastric adenocarcinoma, the pooled sensitivity and specificity were 0.89 and 0.99, respectively. The pooled sensitivity and specificity were 0.82 and 0.95 when differentiating high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia. Additionally, the pooled sensitivity and specificity were 0.87 and 0.96, respectively, when distinguishing undifferentiated gastric adenocarcinoma from differentiated gastric adenocarcinoma. CLE has a high sensitivity and specificity for diagnosing gastric intraepithelial neoplasia and gastric adenocarcinoma; therefore, it could be considered an alternative to the endoscopic method used to diagnose gastric intraepithelial neoplasia and gastric adenocarcinoma. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  10. Coherence switching of a vertical-cavity semiconductor-laser for multimode biomedical imaging (Conference Presentation)

    Science.gov (United States)

    Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew

    2017-02-01

    Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.

  11. Diffusion-weighted MR images and pineoblastoma. Diagnosis and follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Gasparetto, Emerson L.; Cruz Junior, L. Celso Hygino; Doring, Thomas M.; Domingues, Romeu C. [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)]. E-mail: egasparetto@gmail.com; Araujo, Bertha; Dantas, Mario Alberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina. Dept. of Radiology; Chimelli, Leila [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina. Dept. of Pathology

    2008-07-01

    Pineoblastomas are uncommon pineal tumors, which demonstrate rapid growing and poor prognosis. We report the case of a 43-year-old man with an enhancing pineal region mass, which showed restriction of the diffusion on diffusion-weighted (DW) MR images. The surgical biopsy defined the diagnosis of pineoblastoma and the therapy was initiated with radiation and chemotherapy. Three months later, the follow-up MR imaging showed areas suggestive of necrosis and the DW images demonstrate no significant areas of restricted diffusion. The differential diagnosis of pineal region masses that could show restriction of diffusion is discussed. (author)

  12. The role of imaging in the diagnosis and management of hypertrophic cardiomyopathy.

    Science.gov (United States)

    Weissler-Snir, Adaya; Crean, Andrew; Rakowski, Harry

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy, affecting approximately 1:500 people. As the yield of genetic testing is only about 35-60%, the diagnosis of HCM is still clinical and based on the demonstration of unexplained and usually asymmetric left ventricular (LV) hypertrophy by imaging modalities. In the past, echocardiography was the sole imaging modality used for the diagnosis and management of HCM. However, in recent years other imaging modalities such as cardiac magnetic resonance have played a major role in the diagnosis, management and risk stratification of HCM, particularly when the location of left ventricular hypertrophy is atypical (apex, lateral wall) and when the echocardiographic imaging is sub-optimal. However, the most unique contribution of cardiac magnetic resonance is the quantification of myocardial fibrosis. Exercise stress echocardiography is the preferred provocative test for the assessment of LV outflow tract obstruction, which is detected only on provocation in one-third of the patients.

  13. Crops Diagnosis Using Digital Image Processing and Precision Agriculture Technologies

    Directory of Open Access Journals (Sweden)

    Andrés Fernando Jiménez López

    2015-01-01

    Full Text Available This paper presents the results of the design and implementation of a system for capturing and processing images of agricultural crops. The design includes the development of software and hardware for image acquisition using a model helicopter equipped with video cameras with a resolution of 640x480 pixels. A software application was developed for performing differential correction of errors generated by the Global Positioning System (GPS and for allowing the monitoring of the position of the helicopter in real time. A telemetry system consisting of an inertial measurement unit, a magnetometer, a pressure and altitude sensor, one GPS and two photo cameras were developed. Finally, image processing software was developed to determine some vegetation indexes and generation of three-dimensional maps of crops.

  14. Imaging Techniques for Diagnosis of Thoracic Aortic Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Wouter W. Jansen Klomp

    2016-01-01

    Full Text Available The most severe complications after cardiac surgery are neurological complications including stroke which is often caused by emboli merging from atherosclerosis in the ascending aorta to the brain. Information about the thoracic aorta is crucial in reducing the embolization risk for both surgical open and closed chest procedures such as transaortic heart valve implantation. Several techniques are available to screen the ascending aorta, for example, transesophageal echocardiography (TEE, epiaortic ultrasound, TEE A-view method, manual palpation, computed tomography, and magnetic resonance imaging. This paper provides a description of the advantages and disadvantages of these imaging techniques.

  15. Imaging Techniques for Diagnosis of Thoracic Aortic Atherosclerosis

    Science.gov (United States)

    Jansen Klomp, Wouter W.; Brandon Bravo Bruinsma, George J.; van 't Hof, Arnoud W.; Grandjean, Jan. G.; Nierich, Arno P.

    2016-01-01

    The most severe complications after cardiac surgery are neurological complications including stroke which is often caused by emboli merging from atherosclerosis in the ascending aorta to the brain. Information about the thoracic aorta is crucial in reducing the embolization risk for both surgical open and closed chest procedures such as transaortic heart valve implantation. Several techniques are available to screen the ascending aorta, for example, transesophageal echocardiography (TEE), epiaortic ultrasound, TEE A-view method, manual palpation, computed tomography, and magnetic resonance imaging. This paper provides a description of the advantages and disadvantages of these imaging techniques. PMID:26966580

  16. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud

    Science.gov (United States)

    Baldacchini, Giuseppe; di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-01

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  17. Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets

    DEFF Research Database (Denmark)

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna

    2012-01-01

    Morphology is important in industrial processes involving filamentous organisms because it affects the mixing and mass transfer and can be linked to productivity. Image analysis provides detailed information about the morphology but, in practice, it is often laborious including both collection...... distributions, i.e. unimodal or bimodal distributions. Both techniques produced similar estimations of the population means, whereas the estimates of the standard deviations were generally higher using laser diffraction compared to image analysis. Therefore, laser diffraction measurements are high quality...... and pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size...

  18. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis.

    Science.gov (United States)

    Sanchis-Sánchez, Enrique; Vergara-Hernández, Carlos; Cibrián, Rosa M; Salvador, Rosario; Sanchis, Enrique; Codoñer-Franch, Pilar

    2014-10-01

    Musculoskeletal injuries occur frequently. Diagnostic tests using ionizing radiation can lead to problems for patients, and infrared thermal imaging could be useful when diagnosing these injuries. A systematic review was performed to determine the diagnostic accuracy of infrared thermal imaging in patients with musculoskeletal injuries. A meta-analysis of three studies evaluating stress fractures was performed and found a lack of support for the usefulness of infrared thermal imaging in musculoskeletal injuries diagnosis.

  19. Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE)

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Jeremy [Exelis Inc., Fort Wayne, IN (United States); Zaccheo, T. Scott [Exelis Inc., Fort Wayne, IN (United States); Blume, Nathan [Exelis Inc., Fort Wayne, IN (United States); Pernini, Timothy [Exelis Inc., Fort Wayne, IN (United States); Braun, Michael [Exelis Inc., Fort Wayne, IN (United States); Botos, Christopher [Exelis Inc., Fort Wayne, IN (United States)

    2016-03-31

    This report describes the development and testing of a novel system, the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE), for Monitoring, Reporting and Verification (MRV) of CO2 at Geological Carbon Storage (GCS) sites. The system consists of a pair of laser based transceivers, a number of retroreflectors, and a set of cloud based data processing, storage and dissemination tools, which enable 2-D mapping of the CO2 in near real time. A system was built, tested locally in New Haven, Indiana, and then deployed to the Zero Emissions Research and Technology (ZERT) facility in Bozeman, MT. Testing at ZERT demonstrated the ability of the GreenLITE system to identify and map small underground leaks, in the presence of other biological sources and with widely varying background concentrations. The system was then ruggedized and tested at the Harris test site in New Haven, IN, during winter time while exposed to temperatures as low as -15 °CºC. Additional testing was conducted using simulated concentration enhancements to validate the 2-D retrieval accuracy. This test resulted in a high confidence in the reconstruction ability to identify sources to tens of meters resolution in this configuration. Finally, the system was deployed for a period of approximately 6 months to an active industrial site, Illinois Basin – Decatur Project (IBDP), where >1M metric tons of CO2 had been injected into an underground sandstone basin. The main objective of this final deployment was to demonstrate autonomous operation over a wide range of environmental conditions with very little human interaction, and to demonstrate the feasibility of the system for long term deployment in a GCS environment.

  20. Muscle ultrasound imaging in the diagnosis of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Yu. N. Rushkevich

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is the most common form of motor neuron disease. This pathology is characterized by the involvement of central and peripheral motor neurons in the pathological process. One  f the specific symptoms of ALS is fasciculations - involuntary muscle contractions that may occasionally precede the development of muscle weakness and atrophies. This paper summarizes the accumulated practical experience in using muscle ultrasound study in the diagnosis of fasciculations and their prevalence as an early sign of anterior corneal lesion in ALS.

  1. Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M; Daido, H; Yogo, A; Sagisaka, A; Ogura, K; Orimo, S; Mori, M; Ma, J; Pirozhkov, A S; Kiriyama, H; Kanazawa, S; Kondo, S; Yamamoto, Y; Shimoura, T; Tanoue, M; Nakai, Y; Akutsu, A; Nagashima, A; Bulanov, S V; Esirkepov, T Z [Advanced Photon Research Center, JAEA, Kizugawa-shi, Kyoto (Japan)], E-mail: nishiuchi.mamiko@jaea.go.jp (and others)

    2008-05-01

    We have performed simultaneous proton and X-ray imaging with an ultra-short and high-intensity Ti: Sap laser system. More than 10{sup 10} protons, whose maximum energy reaches 2.5 MeV, were delivered within a {approx}ps bunch. At the same time, keV X-ray is generated at almost the same place where protons are emitted. We have performed the simultaneous imaging of the copper mesh by using proton and x-ray beams, in practical use of the characteristics of the laser produced plasma that it can provide those beams simultaneously without any serious problems on synchronization.

  2. A review of computer-aided diagnosis in thoracic and colonic imaging

    Science.gov (United States)

    2012-01-01

    Medical imaging has been indispensable in medicine since the discovery of x-rays. Medical imaging offers useful information on patients’ medical conditions and on the causes of their symptoms and diseases. As imaging technologies advance, a large number of medical images are produced which physicians/radiologists must interpret. Thus, computer aids are demanded and become indispensable in physicians’ decision making based on medical images. Consequently, computer-aided detection and diagnosis (CAD) has been investigated and has been an active research area in medical imaging. CAD is defined as detection and/or diagnosis made by a radiologist/physician who takes into account the computer output as a “second opinion”. In CAD research, detection and diagnosis of lung and colorectal cancer in thoracic and colonic imaging constitute major areas, because lung and colorectal cancers are the leading and second leading causes, respectively, of cancer deaths in the U.S. and also in other countries. In this review, CAD of the thorax and colon, including CAD for detection and diagnosis of lung nodules in thoracic CT, and that for detection of polyps in CT colonography, are reviewed. PMID:23256078

  3. Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis.

    Science.gov (United States)

    Song, J M; Jagannathan, R; Stokes, D L; Kasili, P M; Panjehpour, M; Phan, M N; Overholt, B F; DeNovo, R C; Pan, X; Lee, R J; Vo-Dinh, T

    2003-12-01

    In this work, the development and applications of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo disease diagnosis including oral carcinoma are described. The optical diagnosis system was based on an OPO laser for multi-wavelength excitation and time-resolved detection. The pulsed Nd-YAG-pumped OPO laser system (6 ns, 20 Hz) is compact and has a rapid, broad, and uniform tuning range. Time-gated detection of intensified charge-coupled device (ICCD) making use of external triggering was used to effectively eliminate the laser scattering and contribute to the highly sensitive in vivo measurements. Artificial tissue-simulating phantoms consisting of polystyrene microspheres and tissue fluorophores were tested to optimize the gating parameters. 51-ns gate width and 39-ns gate delays were determined to be the optimal parameters for sensitive detection. In vivo measurements with the optical diagnosis system were applied to esophagus, stomach, and small intestine using an endoscope in canine animal studies. The rapid tuning capability of the optical diagnosis system contributed greatly to the optimization of wavelength for the observation of porphyrin in the small intestine. When the small intestine was thoroughly washed with water, the emission band which corresponds to porphyrin disappeared. Based on this observation, it was concluded that the detected signal was yielded by porphyrin-containing bile secretion. Also, multispectral analyses using multiple excitations from 415 to 480 nm at 5 nm intervals confirmed the porphyrin detection in the small intestine. The optical diagnosis system was also applied to the detection of human xenograft of oral carcinoma in mice using 5-aminolevulinic acid (5-ALA) which is a photodynamic therapy (PDT) drug. Significant differences in protoporphyrin IX fluorescence intensity between normal and tumor tissue could be obtained 2 hours after the injection of 5-ALA into mice due to the

  4. Computer-Aided Characterization and Diagnosis of Diffuse Liver Diseases Based on Ultrasound Imaging: A Review.

    Science.gov (United States)

    Bharti, Puja; Mittal, Deepti; Ananthasivan, Rupa

    2016-04-19

    Diffuse liver diseases, such as hepatitis, fatty liver, and cirrhosis, are becoming a leading cause of fatality and disability all over the world. Early detection and diagnosis of these diseases is extremely important to save lives and improve effectiveness of treatment. Ultrasound imaging, a noninvasive diagnostic technique, is the most commonly used modality for examining liver abnormalities. However, the accuracy of ultrasound-based diagnosis depends highly on expertise of radiologists. Computer-aided diagnosis systems based on ultrasound imaging assist in fast diagnosis, provide a reliable "second opinion" for experts, and act as an effective tool to measure response of treatment on patients undergoing clinical trials. In this review, we first describe appearance of liver abnormalities in ultrasound images and state the practical issues encountered in characterization of diffuse liver diseases that can be addressed by software algorithms. We then discuss computer-aided diagnosis in general with features and classifiers relevant to diffuse liver diseases. In later sections of this paper, we review the published studies and describe the key findings of those studies. A concise tabular summary comparing image database, features extraction, feature selection, and classification algorithms presented in the published studies is also exhibited. Finally, we conclude with a summary of key findings and directions for further improvements in the areas of accuracy and objectiveness of computer-aided diagnosis. © The Author(s) 2016.

  5. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  6. P-HPB-07: Needle-based confocal laser endomicroscopy for the diagnosis of pancreatic cystic lesions: An international external inter- and intra-observer study

    Science.gov (United States)

    Krishna, Somashekar; Brugge, William; Dewitt, John; Napoleon, Bertrand; Kongkam, Pradermchai; Tan, Damien; Robles-Medranda, Carol; Conwell, Darwin

    2017-01-01

    Background and Objectives: Endoscopic ultrasonography (EUS)-guided needle-based confocal laser endomicroscopy (nCLE) characteristics of common types of pancreatic cystic lesions (PCLs) although identified lacks external validation and surgical histopathology was available in a minority of subjects. We sought to externally validate EUS-nCLE images for differentiating PCLs in a larger series of subjects with a definitive diagnosis. Methods: Six expert endosonographers, blinded to clinical data, reviewed nCLE images of PCLs from 29 subjects with surgical (n = 23) or clinical (n = 6) correlation. After 2 weeks, the assessors reviewed the same images in a different sequence. The performance characteristics of nCLE and the kappa-statistic for interobserver agreement (IOA, 95% confidence interval [CI]) and intraobserver reliability (IOR, mean, standard deviation [SD]) for the identification of nCLE image patterns were calculated. Landis and Koch interpretation of kappa values was used. Results: A total of 29 (16 mucinous PCLs, 13 nonmucinous PCLs) nCLE patient videos were reviewed. The overall sensitivity, specificity, and accuracy for the diagnosis of mucinous PCLs were 95%, 94%, and 95%, respectively. The IOA and IOR (mean, SD) were κ = 0.81 (almost-perfect), 95% CI 0.71–0.90 and κ = 0.86, 0.11 (almost-perfect), respectively. The overall specificity, sensitivity, and accuracy for the diagnosis of serous cystadenomas were 99%, 98%, and 98%, respectively. The IOA and IOR (mean, SD) for recognizing characteristic image pattern of serous cystadenomas were κ = 0.83 (almost-perfect), 95% CI 0.73–0.92 and κ = 0.85, 0.11 (almost-perfect), respectively. Conclusion: EUS-nCLE can provide virtual histology of PCLs with a high degree of accuracy and inter- and intra-observer agreement in differentiating mucinous versus nonmucinous PCLs. These preliminary results support larger multicenter studies to evaluate EUS-nCLE.

  7. Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-07-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.

  8. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    Science.gov (United States)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  9. Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract.

    Science.gov (United States)

    De Palma, Giovanni D

    2009-12-14

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the application of this technique in clinical gastroenterology. This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future, particularly in the screening or surveillance of gastrointestinal neoplasia.

  10. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available The mouse model of laser-induced choroidal neovascularization (CNV has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.

  11. The first demonstration of laser computed tomography achieved by Coherent Detection Imaging method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toida, Masahiro; Ichimura, Tsutomu (Research Development Corp. of Japan (JRDC), Sendai (Japan). Inaba Biophoton Project); Inaba, Humio

    1991-06-01

    The first successful imaging by laser absorption computed tomography of in vitro specimens has been achieved by means of the Coherent Detection Imaging (CDI) method realized with the optical heterodyne detection technique and image reconstruction from back projection of the data obtained via optical absorption measurements in a parallel beam geometry. (author).

  12. Imaging diagnosis of alveolar echinococcosis in young patients

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, F. [1. Dept. of Surgery, Hokkaido Univ. School of Medicine, Sapporo (Japan); Ohkawa, Y. [1. Dept. of Surgery, Hokkaido Univ. School of Medicine, Sapporo (Japan); Sato, N. [1. Dept. of Surgery, Hokkaido Univ. School of Medicine, Sapporo (Japan); Uchino, J. [1. Dept. of Surgery, Hokkaido Univ. School of Medicine, Sapporo (Japan); Hata, Y. [Kushiro Rosai Hospital, Hokkaido (Japan)

    1997-01-01

    We review the imaging findings in seven children with alveolar echinococcosis of the liver. Calcification was seen on plain abdominal films in five of seven patients (66.6 %); the calcifications were small or coarse with irregular margins. Ultrasound was performed in four cases, identifying the lesions in all four as small calcifications with or without cysts. Computed tomography (CT) was performed in four cases and showed small calcifications, calcifications surrounding a cyst, or an aggregate of calcifications. Angiography was performed in all seven patients and showed changes of intrahepatic arterial stretching, overgrowth of small arteries, and a honeycomb pattern in the capillary phase. Venography revealed compression of the inferior vena cava in two patients. Serum screening together with ultrasonography and CT are useful for diagnostic imaging of alveolar echinococcosis. (orig.). With 3 figs., 2 tabs.

  13. Feasibility of Prostate Cancer Diagnosis by Transrectal Photoacoustic Imaging

    Science.gov (United States)

    2014-05-01

    DOT. PA techniques can potentially be used for imaging cancers in human breast, prostate, skin , thyroid, neck, head, and others areas.4 PA techniques...Cole, Cengage Learning, 2013). 30. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267...this pair is directly linked to the oxidized form of nicotinamide adenine dinucleotide, which is a major electron acceptor. In its reduced form, it

  14. Confocal laser endomicroscopy and narrow-band imaging-aided endoscopy for in vivo imaging of colitis and colon cancer in mice.

    Science.gov (United States)

    Waldner, Maximilian J; Wirtz, Stefan; Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2011-09-01

    New endoscopic techniques such as narrow-band imaging (NBI) and confocal laser endomicroscopy (CLE) have improved the in vivo diagnosis of human gastrointestinal diseases in the colon. Whereas NBI may facilitate the identification of neoplastic lesions, CLE permits real-time histology of the inflamed or neoplastic colonic mucosa through the use of fluorescent dyes. These techniques have been recently adopted for use during ongoing endoscopy in mice. This protocol, which can be completed in 2 h, provides a detailed description of NBI and CLE in the mouse colon. In contrast to other techniques, this approach does not require laparotomy, and it allows direct CLE analysis of lesions identified by NBI. Mice exposed to models of colitis or colorectal cancer are anesthetized and examined with a miniaturized NBI endoscope, which provides an increased contrast of the vasculature. Upon identification of suspicious areas by NBI and the administration of fluorescent dyes, a confocal laser probe can be directed to the area of interest through the endoscope and confocal images can be obtained. Through the use of various fluorescent dyes, different aspects of the mucosa can be assessed. In addition, fluorescence-labeled antibodies can be used for molecular imaging of mice in vivo. Mouse NBI endoscopy and CLE represent reliable and fast high-quality techniques for the endoscopic characterization and molecular imaging of the mucosa in colitis and colon cancer.

  15. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    OpenAIRE

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-01-01

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images...

  16. An experimental study on imaging diagnosis of cerebral sparganosis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Hyun; Han, Moon Hee; Goo, Jin Mo; Kim, Chong Jai; Chi, Je G; Hong, Sung Tae [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Ghi Jai [Inje University College of Medicine, Seoul (Korea, Republic of)

    1995-08-15

    The purpose of this experimental study was to evaluate early CT and MRI findings of cerebral sparganosis, to correlate the imaging findings with histopathologic findings, and to determine capability of CT and MRI to differentiate live worm from the dead. After scolices of three to four spargana, which were obtained from naturally infected snakes, were introduced into cerebral hemispheres of 21 mongrel cats, sequential brain CT and MRI were performed at the 2nd, 4th, 8th and 12th week, and the imaging findings were analyzed and compared with the histopathologic findings. Spargana were found in 16 sites of 10 cat brains (48%); they were located in basal ganglia (5 cases), periventricular white matter and centrum semiovale (4 cases), subdural (2 cases) or subarachnoid spaces (1 case), and lateral ventricle (2 cases). The larvae were also observed in the contralateral hemisphere (3 cases). The lesions without larvae (presumably tracts) were found in 22 sites of 14 cat brains (67%); they were located in periventricular white matter and centrum semiovale (11 cases), basal ganglia (5 cases), midbrain (3 cases) and frontal lobe (2 cases). The lesions without larvae were also found in the contralateral hemi-sphere (7 cases). On CT, the lesions with larvae showed high density in 75% (9/12) and were enhanced in 38% (3/8) as a nodular pattern. On MRI they showed iso-(7/11) or low signal intensity (4/11) on T1-weighted images, mainly isosignal intensity on proton density-weighted images, and variable signal intensity on T2-weighted images. Contrast enhancement of variable shapes was seen in 50% (4/8). The lesions without larvae showed iso-(14/22) or low density (6/22) on CT and were rarely enhanced (2/17). On MRI they mostly showed isosignal intensity on both T1-weighted and proton density-weighted images, and variable signal intensity on T2-weighted images. They were enhanced in 29% (5/17) on contrast-enhanced MRI. Dilatation of ipsilateral ventricle was found in 43% (9

  17. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture.

    Science.gov (United States)

    Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio

    2017-11-06

    Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  18. Super-Resolution of Plant Disease Images for the Acceleration of Image-based Phenotyping and Vigor Diagnosis in Agriculture

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamamoto

    2017-11-01

    Full Text Available Unmanned aerial vehicles (UAVs or drones are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.

  19. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging.

    Science.gov (United States)

    Hieta, Juha-Pekka; Vaikkinen, Anu; Auno, Samuli; Räikkönen, Heikki; Haapala, Markus; Scotti, Gianmario; Kopra, Jaakko; Piepponen, Petteri; Kauppila, Tiina J

    2017-06-01

    In mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm. This way, only the collimated center of the divergent laser beam is directed on the focusing lens, which results in better focusing of the beam. Part of the laser energy is lost at longer distance, but this is compensated by focusing of the radiation to a smaller area on the sample surface. The long distance can also be achieved by a set of mirrors, between which the radiation travels before it is directed to the focusing lens and the sample. This method for improving the spatial resolution can be utilized in mass spectrometry imaging of tissues by techniques that utilize IR laser ablation, such as laser ablation electrospray ionization, laser ablation atmospheric pressure photoionization, and matrix-assisted laser desorption electrospray ionization. Graphical Abstract ᅟ.

  20. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging

    Science.gov (United States)

    Hieta, Juha-Pekka; Vaikkinen, Anu; Auno, Samuli; Räikkönen, Heikki; Haapala, Markus; Scotti, Gianmario; Kopra, Jaakko; Piepponen, Petteri; Kauppila, Tiina J.

    2017-06-01

    In mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm. This way, only the collimated center of the divergent laser beam is directed on the focusing lens, which results in better focusing of the beam. Part of the laser energy is lost at longer distance, but this is compensated by focusing of the radiation to a smaller area on the sample surface. The long distance can also be achieved by a set of mirrors, between which the radiation travels before it is directed to the focusing lens and the sample. This method for improving the spatial resolution can be utilized in mass spectrometry imaging of tissues by techniques that utilize IR laser ablation, such as laser ablation electrospray ionization, laser ablation atmospheric pressure photoionization, and matrix-assisted laser desorption electrospray ionization. [Figure not available: see fulltext.

  1. Evaluation of the effectiveness of laser crust removal on granites by means of hyperspectral imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pozo-Antonio, J.S., E-mail: santiago.pozo@udc.es [Laboratorio de Aplicacións Industriais do Láser, Centro de Investigacións Tecnolóxicas (CIT), Departamento de Enxeñaría Industrial II, Escola Politécnica Superior, Universidade de Coruña (UDC), Campus Ferrol, 15403 Ferrol (Spain); Fiorucci, M.P.; Ramil, A.; López, A.J. [Laboratorio de Aplicacións Industriais do Láser, Centro de Investigacións Tecnolóxicas (CIT), Departamento de Enxeñaría Industrial II, Escola Politécnica Superior, Universidade de Coruña (UDC), Campus Ferrol, 15403 Ferrol (Spain); Rivas, T. [Departamento de Enxeñaría dos Recursos Naturais e Medioambiente, Escola Superior de Minas, Universidade de Vigo, 36310 Vigo (Spain)

    2015-08-30

    Highlights: • Hyperspectral imaging techniques for determining the degree of crust removal on granites used in Cultural Heritage. • Hyperspectral imaging techniques allow to in situ evaluate of the effectiveness of the laser cleaning. • Hyperspectral imaging data are consistent with the information obtained by conventional techniques about the cleaning effectiveness. - Abstract: In this paper, we present a study of the application of the hyperspectral imaging technique in order to non-destructively evaluate the laser cleaning of the biogenic patina and the sulphated black crust developed on a fine-grained granite used in the construction of Cultural Heritage in NW Spain. The grained polymineral texture of the granite hinders the adjustment of laser irradiation parameters during the cleaning, and therefore the in situ process control. The cleaning was performed with a nanosecond pulsed Nd:YVO{sub 4} laser at 355 nm. A hyperspectral camera was used to in situ assess the effectiveness of cleaning by recording images of the rock surfaces before and during the laser treatment. Different analytical techniques were used to test the ability of the hyperspectral imaging technique to evaluate the cleaning process of the granite samples: optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM - EDX), Fourier transform infrared spectroscopy (FTIR) and spectrophotometer colour measurements. The results indicated that hyperspectral imaging technique is a reliable and more affordable technique to in situ evaluate the process of laser cleaning of the biogenic patina and the sulphated black crust in fine-grained granites.

  2. The use of infrared thermal imaging in the diagnosis of deep vein thrombosis

    Science.gov (United States)

    Kacmaz, Seydi; Ercelebi, Ergun; Zengin, Suat; Cindoruk, Sener

    2017-11-01

    The diagnosis of Deep Vein Thrombosis is of vital importance, especially in emergency situations where there is a lack of time and the patient's condition is critical. Late diagnosis causes cost increase, long waiting time, and improper treatment. Today, with the rapidly developing technology, the cost of thermal cameras is gradually decreasing day by day. Studies have shown that many diseases are associated with heat. As a result, infrared images are thought to be a tool for diagnosing various diseases. In this study, it has been shown that infrared thermal imaging can be used as a pre-screening test in the diagnosis of Deep Vein Thrombosis with the developed computer aided software. In addition, a sample combination is shown for applications that utilize emergency services to perform diagnosis and treatment of Deep Vein Thrombosis as soon as possible.

  3. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.

    Science.gov (United States)

    Singh, Anushikha; Dutta, Malay Kishore

    2017-12-01

    The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Clinical comparative study between the use of lasers and conventional methods of diagnosis and treatment in deciduous teeth with presence of carious lesion; Estudo clinico comparativo entre o uso de lasers e metodos convencionais de diagnostico e tratamento em dentes deciduos da presenca de lesao cariosa

    Energy Technology Data Exchange (ETDEWEB)

    Pulga, Fabiane Galvao

    2001-07-01

    The aim of this work was to evaluate the efficiency of deciduous tooth cavity preparation by the Er:YAG laser in comparison with the conventional burr rotary instrument. Besides, we have used the laser fluorescence technique (DIAGNOdent equipment) for diagnosis and compared it to the usual tactile and visual examination as well as X-ray diagnosis. For this purpose, 20 chronic occlusal carious deciduous molar teeth from children with the ages between 5 to 10 years old were selected. Selection was ma de according to visual inspection, X-ray periapical image and measures of the DIAGNOdent. For treatment the teeth were divided in two groups, 10 to be treated by the Er:YAG laser and 10 with conventional burr. For enamel, the laser energy used was in the interval from 200 to 300 mJ; for the dentine the range was from 100 mJ to 200 mJ. In both cases, the laser frequency was in the range from 2 to 4 Hz. The results have shown that the laser treatment was more accepted by the children than the conventional burro Clinical evaluation of the cavity preparation indicates that the Er:YAG laser treatment is recommend. The DIAGNOdent evaluation method was very effective for diagnosis of carious tissue for initial detection. After successful removal of the carious tissue, confirmed by visual inspection, the DIAGNOdent evaluation method was only effective for the treatment with conventional burro For evaluation of the tooth after cavity preparation with the Er:YAG laser, the measurements oscillate covering the full range of the equipment. Therefore, the use of the DIAGNOdent equipment is indicated only for initial caries diagnosis. (author)

  5. Diffusion-weighted Magnetic Resonance Imaging in the Early Diagnosis of Neonatal Adrenoleukodystrophy

    Directory of Open Access Journals (Sweden)

    R Nuri Sener

    2011-01-01

    Full Text Available A newborn baby girl developed seizures right after birth. On the fourth day, the baby was examined using diffusion sequence magnetic resonance imaging (MRI and diagnosed to have neonatal adrenoleukodystrophy. Laboratory findings confirmed the diagnosis. This is the first case of neonatal adrenoleukodystrophy (NALD where diffusion MRI sequence helped in the diagnosis. We find association of NALD with seizures at birth is an extremely rare occurrence, and so far, only one case has been mentioned in the literature.

  6. Fatigue stress fractures of the sacrum: diagnosis with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahovuo, J.A. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Kiuru, M.J. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Research Inst. of Military Medicine, Helsinki (France); Vusuri, T. [Central Military Hospital, Helsinki (Finland). Dept. of Surgery

    2004-03-01

    The aim of this study was to describe the MRI findings and clinical observations in a fatigue stress fracture of the sacrum. In this retrospective study, 380 conscripts (53 women, 327 men; age range 18-29 years, mean age 20.7 years) who suffered from stress-related hip pain were studied with MRI of the pelvis. The findings of MRI were evaluated with regard to stress fracture of the sacrum. Thirty-one (8%) patients had MRI changes in signal intensity of the cranial part of the sacrum, extending to the first and second sacral foramina. The MRI changes in signal intensity were intermediate on T1-weighted images, and high on short tau inversion recovery or T2-weighted fat-suppressed images. A linear signal void fracture line was also seen. Multiple stress injuries to the pelvic bones were also seen in 7 of 31 (23%) patients. Five patients (16%) had bilateral sacral stress fracture. Fatigue sacral stress fractures appeared more commonly in women than in men (p<0.001). During recovery time 20 of the 31 patients underwent control MRI, and fatty marrow conversion was seen in 8 (40%) cases as high signal intensity on T1-weighted images, which disappeared 5-6 months after the onset of symptoms. Fatigue sacral stress fractures are associated with stress-related hip pain. These fractures were more common in women than in men. Other stress injuries of the pelvis may be seen simultaneously with sacral stress fractures. Signal intensity of the sacrum was normal after 5-6 months.

  7. Imaging clues in the prenatal diagnosis of syndromes and aneuploidy

    Energy Technology Data Exchange (ETDEWEB)

    Estroff, Judy A. [Harvard Medical School, Fetal-Neonatal Radiology, Boston, MA (United States); Children' s Hospital Boston, Advanced Fetal Care Center, Department of Radiology, Boston, MA (United States)

    2012-01-15

    Advances in fetal sonography and MRI have increased both the range and diagnostic accuracy of detectable fetal anomalies, with many anomalies detectable earlier in pregnancy. The presence of structural anomalies greatly raises the risk that the fetus has a syndrome or abnormal karyotype. In addition, new techniques in maternal serum screening have greatly increased the ability to identify pregnant patients at risk for anomalies and syndromes. This paper reviews maternal first- and second-trimester serum screening and imaging and covers many of the most common fetal karyotypic and structural anomalies. (orig.)

  8. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    Science.gov (United States)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  9. High-Resolution In Vivo Imaging of Regimes of Laser Damage to the Primate Retina

    Directory of Open Access Journals (Sweden)

    Ginger M. Pocock

    2014-01-01

    Full Text Available Purpose. To investigate fundamental mechanisms of regimes of laser induced damage to the retina and the morphological changes associated with the damage response. Methods. Varying grades of photothermal, photochemical, and photomechanical retinal laser damage were produced in eyes of eight cynomolgus monkeys. An adaptive optics confocal scanning laser ophthalmoscope and spectral domain optical coherence tomographer were combined to simultaneously collect complementary in vivo images of retinal laser damage during and following exposure. Baseline color fundus photography was performed to complement high-resolution imaging. Monkeys were perfused with 10% buffered formalin and eyes were enucleated for histological analysis. Results. Laser energies for visible retinal damage in this study were consistent with previously reported damage thresholds. Lesions were identified in OCT images that were not visible in direct ophthalmoscopic examination or fundus photos. Unique diagnostic characteristics, specific to each damage regime, were identified and associated with shape and localization of lesions to specific retinal layers. Previously undocumented retinal healing response to blue continuous wave laser exposure was recorded through a novel experimental methodology. Conclusion. This study revealed increased sensitivity of lesion detection and improved specificity to the laser of origin utilizing high-resolution imaging when compared to traditional ophthalmic imaging techniques in the retina.

  10. Fault Diagnosis for Rolling Bearing under Variable Conditions Based on Image Recognition

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2016-01-01

    Full Text Available Rolling bearing faults often lead to electromechanical system failure due to its high speed and complex working conditions. Recently, a large amount of fault diagnosis studies for rolling bearing based on vibration data has been reported. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper proposes a fault diagnosis method based on image recognition for rolling bearings to realize fault classification under variable working conditions. The proposed method includes the following steps. First, the vibration signal data are transformed into a two-dimensional image based on recurrence plot (RP technique. Next, a popular feature extraction method which has been widely used in the image field, scale invariant feature transform (SIFT, is employed to extract fault features from the two-dimensional RP and subsequently generate a 128-dimensional feature vector. Third, due to the redundancy of the high-dimensional feature, kernel principal component analysis is utilized to reduce the feature dimensionality. Finally, a neural network classifier trained by probabilistic neural network is used to perform fault diagnosis. Verification experiment results demonstrate the effectiveness of the proposed fault diagnosis method for rolling bearings under variable conditions, thereby providing a promising approach to fault diagnosis for rolling bearings.

  11. Adrenocorticotrophin-dependent hypercortisolism: Imaging versus laboratory diagnosis

    Directory of Open Access Journals (Sweden)

    Tančić-Gajić Milina

    2012-01-01

    Full Text Available Introduction. Cushing’s syndrome results from inappropriate exposure to excessive glucocorticoids. Untreated, it has significant morbidity and mortality. Case Outline. A 38-year-old woman with a typical appearance of Cushing’s syndrome was admitted for further evaluation of hypercortisolism. The serum cortisol level was elevated without diurnal rhythm, without adequate suppression of cortisol after 1 mg dexamethasone suppression test. 24-hour urinaryfree cortisol level was elevated. Differential diagnostic testing indicated adrenocorticotrophin (ACTH- dependent lesion of the pituitary origin. Pituitary abnormalities were not observed during repeated MRI scanning. Inferior petrosal sinus sampling (IPSS was performed: 1 Baseline ratio ACTH inferior petrosal sinus/peripheral was <2; 2 Corticotropin-releasing hormone (CRH stimulated ratio ACTH inferior petrosal sinus/peripheral was <3; 3 Baseline intersinus ratio of ACTH was <1.4; 4 Increase in inferior petrosal sinus and peripheral ACTH of more than 50 percent above basal level after CRH; 5 Baseline ratio ACTH vena jugularis interna/peripheral was >1.7. Transsphenoidal exploration and removal of the pituitary tumor was performed inducing iatrogenic hypopituitarism. Postoperative morning serum cortisol level was less than 50 nmol/l on adequate replacement therapy with hydrocortisone, levothyroxine and estro-progestagen. Conclusion. No single test provides absolute distinction, but the combined results of several tests generally provide a correct diagnosis of Cushing’s syndrome.

  12. Image processing of liver computed tomography angiographic (CTA) images for laser induced thermotherapy (LITT) planning

    Science.gov (United States)

    Li, Yue; Gao, Xiang; Tang, Qingyu; Gao, Shangkai

    2012-02-01

    Analysis of patient images is highly desired for simulating and planning the laser-induced thermotherapy (LITT) to study the cooling effect of big vessels around tumors during the procedure. In this paper, we present an image processing solution for simulating and planning LITT on liver cancer using computed tomography angiography (CTA) images. This includes first performing a 3D anisotropic filtering on the data to remove noise. The liver region is then segmented with a level sets based contour tracking method. A 3D level sets based surface evolution driven by boundary statistics is then used to segment the surfaces of vessels and tumors. Then the medial lines of vessels were extracted by a thinning algorithm. Finally the vessel tree is found on the thinning result, by first constructing a shortest path spanning tree by Dijkstra algorithm and then pruning the unnecessary branches. From the segmentation and vessel skeletonization results, important geometric parameters of the vessels and tumors are calculated for simulation and surgery planning. The proposed methods was applied to a patient's image and the result is shown.

  13. Magnetic resonance imaging and bone scintigraphy in the differential diagnosis of unclassified arthritis

    DEFF Research Database (Denmark)

    Duer, Anne; Østergaard, M; Hørslev-Petersen, K

    2008-01-01

    OBJECTIVES: To investigate the value in clinical practice of hand magnetic resonance imaging (MRI) and whole body bone scintigraphy in the differential diagnosis of patients with unclassified arthritis. METHODS: 41 patients with arthritis (> or = 2 swollen joints, > 6 months' duration) which...... joints of the most symptomatic hand and whole body bone scintigraphy were performed. Two rheumatologists agreed on the most likely diagnosis and the patients were treated accordingly. A final diagnosis was made by another specialist review 2 years later. RESULTS: Tentative diagnoses after MRI and bone...

  14. Diagnosis of uveo-parotid fever by /sup 67/Ga-citrate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oren, V.O.; Uszler, J.M.; White, J.

    1978-04-01

    /sup 67/Ga-citrate scan from skull to mid-abdomen showed increased uptake in both parotid glands, mediastinum, lungs, uvei and/or enlarged lacrimal glands. The differential diagnosis of the positive radiogallium scan is discussed with emphasis on the value of the extrathoracic findings. Tissue diagnosis confirmed the imaging diagnosis of sarcoidosis. The case illustrates the usefulness of double radionuclide study - /sup 67/Ga and 99mTc-MAA - and of the tomographic scanner in defining the spread of the active granulomatous disease.

  15. Intravascular ultrasound imaging as a novel tool for the diagnosis of endofibrosis

    Directory of Open Access Journals (Sweden)

    Danielle Campbell, MD

    2016-06-01

    Full Text Available Given the rise of high-intensity sport athletes and the paucity of literature on endofibrosis, we describe a novel adjunctive imaging technique to aid in diagnosis. A 41-year-old female triathlete presented with exercise-limiting claudication. Results of lower extremity magnetic resonance angiography, provocative Doppler, angiogram, and digital subtraction angiography with papaverine were nondiagnostic. Intravascular ultrasound imaging was able to delineate an abnormal segment of the proximal external iliac artery with intimal hypertrophy. We report intravascular ultrasound imaging as a superior imaging modality to definitively diagnose endofibrosis and assist proper planning and operative treatment of patients with endofibrosis.

  16. Imaging diagnosis-an atypical presentation of diffuse idiopathic skeletal hyperostosis (dish) in a dog.

    Science.gov (United States)

    Ciepluch, Michael F; da Costa, Ronaldo C; Russell, Duncan

    2015-01-01

    A 10-year-old female spayed Dalmatian was evaluated for progressive cervical scoliosis and stiffness. This imaging report describes the imaging and postmortem findings for this patient. A diagnosis of an atypical manifestation of diffuse idiopathic skeletal hyperostosis (DISH) was made based on imaging and additional diagnostics. This report serves to increase awareness of DISH in the veterinary community, as well as to describe a unique presentation of the disease with atypical lesion distribution and severity. In addition, this report contrasts the pathophysiology and imaging characteristics of DISH with spondylosis deformans, which can appear comparable radiographically. © 2013 American College of Veterinary Radiology.

  17. Cerebral vascular malformations: Applications of magnetic resonance imaging to differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Imakita, S.; Nishimura, T.; Yamada, N.; Naito, H.; Takamiya, M.; Yamada, Y.; Kikuchi, H.; Yonekawa, Y.; Sawada, T.; Yamaguchi, T.

    1989-09-01

    Twelve patients with cerebral vascular malformations (5 cavernous angiomas, 1 thrombosed arteriovenous malformation, and 6 venous angiomas) were studied with magnetic resonance (MR) imaging. All lesions were clearly depicted. Characteristic MR findings were obtained mainly on T2-weighted images: A markedly low intensity area was always seen. The margins of arteriovenous malformation (AVM) and venous angioma were irregular while those of cavernous angioma were smooth in all planes on T2-weighted images. Gradient-echo (GrE) pulse sequence were more sensitive than T2-weighted spin echo (SE) in AVM detection. MR imaging could play an important role in the differential diagnosis of cerebral vascular malformations. (orig.).

  18. Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration.

    Science.gov (United States)

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively.

  19. [A new laser scan system for video ophthalmoscopy. Initial clinical experiences also in relation to digital image processing].

    Science.gov (United States)

    Fabian, E; Mertz, M; Hofmann, H; Wertheimer, R; Foos, C

    1990-06-01

    The clinical advantages of a scanning laser ophthalmoscope (SLO) and video imaging of fundus pictures are described. Image quality (contrast, depth of field) and imaging possibilities (confocal stop) are assessed. Imaging with different lasers (argon, He-Ne) and changes in imaging rendered possible by confocal alignment of the imaging optics are discussed. Hard copies from video images are still of inferior quality compared to fundus photographs. Methods of direct processing and retrieval of digitally stored SLO video fundus images are illustrated by examples. Modifications for a definitive laser scanning system - in regard to the field of view and the quality of hard copies - are proposed.

  20. Application of cross-sectional imaging in the differential diagnosis of apical radiolucency.

    Science.gov (United States)

    Harris, I R; Brown, J E

    1997-07-01

    A case is described in which exact localization of a cystic lesion associated with the apices of the maxillary central incisor teeth was sought to aid diagnosis and presurgical planning. The area was imaged using cross-sectional tomographic slices in the sagittal plane produced by a Scanora multimodal tomographic unit (Orion Corporation Soredex, Helsinki, Finland). The images demonstrated the cystic lesion arising within the incisive canal, conforming a diagnosis of naso-palatine duct cyst. Surgery was therefore performed via a palatal approach giving direct access to the cyst. Histological examination of the enucleated cyst confirmed a nasopalatine duct cyst.

  1. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    Science.gov (United States)

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  2. Laser marking of contrast images for optical read-out systems

    Science.gov (United States)

    Yulmetova, O. S.; Tumanova, M. A.

    2017-11-01

    In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.

  3. Recent advances in imaging diagnosis of pancreatic neoplasma; With special reference to early diagnosis of the cancer

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hideo; Horiguchi, Yuji; Sekoguchi, Bon (Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan)) (and others)

    1994-02-01

    Recent advance in various diagnostic imagings has enabled the early diagnosis of pancreatic tumors. In pancreatic cancer, the tumor-demonstrability by US, CT, and MRI has reached 80% in the recent 6 years, which is superior to the rate in the past decade from 1978 and 1987. However, the prognosis of pancreatic cancer is still poor even if the cancer can be resected. To improve the outcome of surgical intervention, early detection of small cancers ([<=]2cm in diameter) and appropriate intervention based on preoperative diagnosis of the tumor extension are proposed. The tumor detectability of small pancreatic cancer by US, CT, MRI was 67%, 25%, 20%, respectively, and thus US was the most valuable tool. In the prediction of tumor extension of serosal invasion (S factor), retroperitoneal invasion (Rp factor) and vessel invasion (PV factor), both US and CT were efficacious with an accuracy of more than 70%. In conclusion, recently-advanced imaging seems to be useful for detecting a small pancreatic cancer and evaluating the tumor extension, but it remains difficult to diagnose in situ; a truly early cancer. (author).

  4. Dua-energy virtual noncontrast imaging in diagnosis of cervical metastasis lymph nodes

    Directory of Open Access Journals (Sweden)

    Fei Fu

    2015-01-01

    Full Text Available Objective: The aim of this study was to evaluate the clinical value of dua-energy virtual noncontrast imaging (DVNCT in the diagnosis of cervical metastasis lymph nodes. Materials and Methods: From February 2014 to January 2015, 41 patients with 98 enlarged cervical lymph nodes were recruited in this study. All the enlarged lymph nodes were pathology confirmed. The patients received DVNCT and conventional noncontrast scan. The difference of average computed tomography (CT value, signal to noise ratio, a contrast to noise ratio, image subjective assessment, and lesion detectability between virtual noncontrast imaging and conventional noncontrast scan were compared. The radiation dose of virtual noncontrast imaging and real noncontrast imaging of cervical lymph node were also compared. The diagnostic sensitivity and specificity for DVNCT was also evaluated. Results: No statistical difference of average CT value, signal to noise ratio, a contrast to noise ratio, image subjective assessment, and radiation dosage between virtual noncontrast imaging and conventional noncontrast scan were found. However, the radiation dosage of DVNCT was significant lower than that of conventional noncontrast scan (P < 0.05. The diagnostic sensitivity and specificity for malignant metastasis lymph node were 88.6% and 70.3% by DVNCT. Conclusion: DVNCT combined with contrast imaging can provide clear images in the diagnosis of enlarged cervical lymph nodes and reduce radiation dosage.

  5. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes

    Science.gov (United States)

    Hariri, Ali; Fatima, Afreen; Mohammadian, Nafiseh; Mahmoodkalayeh, Sadreddin; Ansari, Mohammad Ali; Bely, Nicholas; Avanaki, Mohammad R. N.

    2017-07-01

    With the growing application of photoacoustic imaging (PAI) in medical fields, there is a need to make them more compact, portable, and affordable. Therefore, we designed very low-cost PAI systems by replacing the expensive and sophisticated laser with a very low-energy laser diode. We implemented photoacoustic (PA) microscopy, both reflection and transmission modes, as well as PA computed tomography systems. The images obtained from tissue-mimicking phantoms and biological samples determine the feasibility of using a very low-energy laser diode in these configurations.

  6. Magnetic resonance imaging in temporal lobe epilepsy. Usefulness for the etiological diagnosis of temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.; Lueders, H.O. [Cleveland Clinic Foundation, OH (United States)

    2000-01-01

    With improvement in magnetic resonance (MR) imaging techniques, the ability to identify lesions responsible for temporal lobe epilepsy has increased. MR imaging has also enabled the in vivo diagnosis of hippocampal sclerosis. Brain tumors are responsible for 2-4% of epilepsies in adult population and 10-20% of medically intractable epilepsy. The sensitivity of MR imaging in the diagnosis of tumors and other lesions of the temporal lobe (vascular malformations, etc.) is around 90%. Both hippocampal sclerosis and other temporal lobe lesions are amenable to surgical therapy with excellent postsurgical seizure outcome. In this article, we characterize and underline distinguishing features of the different pathological entities. We also suggest an approach to reviewing the MR images of an epileptic patient. (author)

  7. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play.

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-05-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  8. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    Science.gov (United States)

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  9. Differential diagnosis of choroidal melanomas and nervi using scanning laser ophthalmoscopical indocyanine green angiography

    DEFF Research Database (Denmark)

    Andersen, Mads V. Nis; Scherfig, Erik; Prause, J.U.

    1995-01-01

    Ophthalmology, choroidal melanoma, choroidal nevus, fluorescein angiography, indocyanine green (ICG), scanning laser ophthalmoscope (SLO), angiography......Ophthalmology, choroidal melanoma, choroidal nevus, fluorescein angiography, indocyanine green (ICG), scanning laser ophthalmoscope (SLO), angiography...

  10. Automatic Construction of Hypotheses for Linear Objects in Digital and Laser Scanning Images

    Directory of Open Access Journals (Sweden)

    Quintino Dalmolin

    2004-12-01

    Full Text Available This paper presents an automatic road hypotheses approach using digital image and laser scanning image combining various Digital Image Processing techniques. The semantic objects, in this work, are linear features, such as, roads and streets. The aim of this paper is extract automatically road hypotheses on image space and object space for use the information in automatic absolute orientation process. The results show that methodology is efficiency and the roads hypotheses are generate and validate.

  11. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    Science.gov (United States)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by

  12. Diagnosis value of NMR imaging in recurring postoperative sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Frocrain, L.; Duvauferrier, R.; Chales, G.; Ramee, A.; Pawlotsky, Y.

    1987-05-01

    Twelve patients who had a subsequent lumbar sciatica after surgery were evaluated with computerized tomography (C.T.) and magnetic resonance imaging (M.R.I.). The M.R.I. was performed with a 0.35 T whole body superconducting unit using spin echo technique. Two pulse sequences were realized varying the repetition time (TR) from 500 to 2,000 ms and the echo time (TE) from 28 to 60 ms. For the longer pulse, the twice echo were interpreted. The slide obtained with a surface-coil were performed in sagittal plane for the twice pulse sequences and in transaxial plane for the shorter pulse sequence. In seven cases, the results obtained with C.T. and M.R.I. were correlated. In two cases, the C.T. showed a scar formation, the M.R.I. showed a recurrent disk herniation. In three times, C.T. was unable to differentiate clearly between recurrent disk herniation and scar formation, the M.R.I. showed unequivocally on one case a scar formation and on two cases a recurrent disk herniation.

  13. Diagnosis of neonatal neuroblastoma with postmortem magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    James Davis, MD

    2017-03-01

    Full Text Available Postmortem magnetic resonance imaging (MRI is emerging as a valuable tool to accompany traditional autopsy and has potential for use in cases when traditional autopsy is not possible. This case report will review the use of postmortem MRI with limited tissue sampling to differentiate between metastatic neuroblastoma and hepatoblastoma which could not be clearly differentiated with prenatal ultrasound, prenatal MRI, or emergent postnatal ultrasound. The mother presented to our institution at 27 weeks gestation after an obstetric ultrasound at her obstetrician's office identified a large abdominal mass. Fetal ultrasonography and MRI confirmed the mass but were unable to differentiate between neuroblastoma and multifocal hepatoblastoma. The baby was delivered by cesarean section after nonreassuring heart tones led to an emergent cesarean section. The baby underwent decompressive laparotomy to relieve an abdominal compartment syndrome; however, the family eventually decided to withdraw life support. At this time, we performed a whole body postmortem MRI which further characterized the mass as an adrenal neuroblastoma which was confirmed with limited tissue sampling. Postmortem MRI was especially helpful in this case, as the patient’s family declined traditional autopsy.

  14. Colouring fabrics with excimer lasers to simulate encoded images: the case of the Shroud of Turin

    Science.gov (United States)

    Di Lazzaro, P.; Baldacchini, G.; Fanti, G.; Murra, D.; Santoni, A.

    2008-10-01

    The faint body image embedded into the Turin Shroud has not yet explained by traditional science. We present experimental results of excimer laser irradiation (wavelengths 308 nm and 193 nm) of a raw linen fabric and of a linen cloth, seeking for a possible mechanism of image formation. The permanent coloration of both linens is a threshold effect on the laser beam intensity and it can be achieved only in a surprisingly narrow range of irradiation parameters: the shorter the wavelength, the narrower the range. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after a laser irradiation that at first did not generate a clear image. The results are compared to the characteristics of the Turin Shroud, commenting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  15. Hyperspectral Imaging: A New Approach to the Diagnosis of Hemorrhagic Shock

    Science.gov (United States)

    2006-05-01

    infrared spectroscopy versus compartment pressure for the diagnosis of lower extremity compartmental syndrome using electromyography- determined...oxygen in subcutaneous tissue, muscle, and/or brain, and has been used for patient monitoring in hemorrhagic shock, in extremity compartment syndrome , and...time series from near-infrared imaging of forearm ischemia. Comput Med Imaging Graph. 1997;21:299–308. 21. Prall S. Optical absorption of hemoglobin

  16. Infectious diseases of the brain: imaging and differential diagnosis; Infektioese Hirnerkrankungen: Bildgebung und differenzialdiagnostische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, S.; Seitz, A. [Abt. Neuroradiologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany); Storch-Hagenlocher, B. [Abt. Neurologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany)

    2006-09-15

    Infectious diseases of the central nervous system have to be considered in differential diagnosis particularly in immunocompromised persons. Neuro-imaging, specifically advanced techniques such as diffusion weighted MRI and perfusion MRI contribute much to the differentiation of brain infections and for differentiating brain infections from other, for instance, neoplastic diseases. In this review we present the imaging criteria of the most important brains infections in adults and in pediatric patients and discuss differential diagnostic aspects in detail. (orig.)

  17. Extracting relevant information for cancer diagnosis from dynamic full field OCT through image processing and learning

    Science.gov (United States)

    Apelian, Clément; Gastaud, Clément; Boccara, A. Claude

    2017-02-01

    For a large number of cancer surgeries, the lack of reliable intraoperative diagnosis leads to reoperations or bad outcomes for the patients. To deliver better diagnosis, we developed Dynamic Full Field OCT (D-FFOCT) as a complement to FFOCT. FFOCT already presents interesting results for cancer diagnosis e.g. Mohs surgery and reaching 96% accuracy on prostate cancer. D-FFOCT accesses the dynamic processes of metabolism and gives new tools to diagnose the state of a tissue at the cellular level to complement FFOCT contrast. We developed a processing framework that intends to maximize the information provided by the FFOCT technology as well as D-FFOCT and synthetize this as a meaningful image. We use different time processing to generate metrics (standard deviation of time signals, decorrelation times and more) and spatial processing to sort out structures and the corresponding imaging modality, which is the most appropriate. Sorting was achieved through quadratic discriminant analysis in a N-dimension parametric space corresponding to our metrics. Combining the best imaging modalities for each structure leads to a rich morphology image. This image displaying the morphology is then colored to represent the dynamic behavior of these structures (slow or fast) and to be quickly analyzed by doctors. Therefore, we achieved a micron resolved image, rich of both FFOCT ability of imaging fixed and highly backscattering structures as well as D-FFOCT ability of imaging low level scattering cellular level details. We believe that this morphological contrast close to histology and the dynamic behavior contrast will push forward the limits of intraoperative diagnosis further on.

  18. Multiphoton versus single-photon excitation of photosensitizers for laser-induced fluorescence diagnosis and photodynamic therapy of cancer cells

    Science.gov (United States)

    Roelofs, Theo A.; Graschew, Georgi; Schneider, Marc; Rakowsky, Stefan; Sinn, Hanns-joerg; Schlag, Peter M.

    2001-04-01

    In laser-induced fluorescence diagnosis and photodynamic therapy of cancer the applied photosensitizers (PS) are often covalently derivatized with macromolecules to improve their selective accumulation in the cancerous tissue, while maintaining its single-photon excited photophysical properties. In this contribution methoxy-polyethylene glycol (MPEG, MW ~5 kDa) and human serum albumin (HSA, MW ~60 kDa) are used as PS carriers. Multiphoton (MP) excitation of the PS is favorable as compared to single-photon excitation because the penetration depth of the laser light is improved (>5 mm) due to the longer wavelength of the ~200 fs laser pulses used in this case (700-1050 nm). In this study cotton fibers and silica gel beads (quinone) do not exhibit multiphoton-induced fluorescence. Some derivatized PS (sulforhodamine B, erythrosin B, purpurin) exhibit MP-induced fluorescence, although no single-photon absorption band exists in the spectral region around half the excitation wavelength

  19. Focal adhesive arachnoiditis of the spinal cord: Imaging diagnosis and surgical resolution

    Science.gov (United States)

    Morisako, Hiroki; Takami, Toshihiro; Yamagata, Toru; Chokyu, Isao; Tsuyuguchi, Naohiro; Ohata, Kenji

    2010-01-01

    Background: Although adhesive arachnoiditis of the spinal cord can cause progressive symptoms associated with syringomyelia or myelomalacia, its surgical resolution based on the imaging diagnosis is not well characterized. This study aims to describe the use of imaging for the diagnosis of focal adhesive arachnoiditis of the spinal cord and its surgical resolution using microsurgical arachnoidolysis. Materials and Methods: Four consecutive patients with symptomatic syringomyelia or myelomalacia caused by focal adhesive arachnoiditis underwent microsurgical arachnoidolysis. Comprehensive imaging evaluation using constructive interference in steady-state (CISS) magnetic resonance imaging (MRI) or myelographic MR imaging using true fast imaging with steady-state precession (TrueFISP) sequences was included before surgery to determine the surgical indication. Results: In all four patients a focal adhesion was identified at the cervical or thoracic level of the spinal cord, a consequence of infection or trauma. Three patients showed modest or minor improvement in neurological function, and one patient was unchanged after surgery. The syringomyelia or myelomalacia resolved after surgery and no recurrence was noted within the follow-up period, which ranged from 5 months to 30 months. Conclusions: MRI diagnosis of focal adhesive arachnoiditis is critical to determine the surgical indication. Microsurgical arachnoidolysis appears to be a straightforward method for stabilizing the progressive symptoms, though the procedure is technically demanding. PMID:21572630

  20. Focal adhesive arachnoiditis of the spinal cord: Imaging diagnosis and surgical resolution

    Directory of Open Access Journals (Sweden)

    Hiroki Morisako

    2010-01-01

    Full Text Available Background: Although adhesive arachnoiditis of the spinal cord can cause progressive symptoms associated with syringomyelia or myelomalacia, its surgical resolution based on the imaging diagnosis is not well characterized. This study aims to describe the use of imaging for the diagnosis of focal adhesive arachnoiditis of the spinal cord and its surgical resolution using microsurgical arachnoidolysis. Materials and Methods: Four consecutive patients with symptomatic syringomyelia or myelomalacia caused by focal adhesive arachnoiditis underwent microsurgical arachnoidolysis. Comprehensive imaging evaluation using constructive interference in steady-state (CISS magnetic resonance imaging (MRI or myelographic MR imaging using true fast imaging with steady-state precession (TrueFISP sequences was included before surgery to determine the surgical indication. Results: In all four patients a focal adhesion was identified at the cervical or thoracic level of the spinal cord, a consequence of infection or trauma. Three patients showed modest or minor improvement in neurological function, and one patient was unchanged after surgery. The syringomyelia or myelomalacia resolved after surgery and no recurrence was noted within the follow-up period, which ranged from 5 months to 30 months. Conclusions: MRI diagnosis of focal adhesive arachnoiditis is critical to determine the surgical indication. Microsurgical arachnoidolysis appears to be a straightforward method for stabilizing the progressive symptoms, though the procedure is technically demanding.

  1. Quantitative diagnosis of bladder cancer by morphometric analysis of HE images

    Science.gov (United States)

    Wu, Binlin; Nebylitsa, Samantha V.; Mukherjee, Sushmita; Jain, Manu

    2015-02-01

    In clinical practice, histopathological analysis of biopsied tissue is the main method for bladder cancer diagnosis and prognosis. The diagnosis is performed by a pathologist based on the morphological features in the image of a hematoxylin and eosin (HE) stained tissue sample. This manuscript proposes algorithms to perform morphometric analysis on the HE images, quantify the features in the images, and discriminate bladder cancers with different grades, i.e. high grade and low grade. The nuclei are separated from the background and other types of cells such as red blood cells (RBCs) and immune cells using manual outlining, color deconvolution and image segmentation. A mask of nuclei is generated for each image for quantitative morphometric analysis. The features of the nuclei in the mask image including size, shape, orientation, and their spatial distributions are measured. To quantify local clustering and alignment of nuclei, we propose a 1-nearest-neighbor (1-NN) algorithm which measures nearest neighbor distance and nearest neighbor parallelism. The global distributions of the features are measured using statistics of the proposed parameters. A linear support vector machine (SVM) algorithm is used to classify the high grade and low grade bladder cancers. The results show using a particular group of nuclei such as large ones, and combining multiple parameters can achieve better discrimination. This study shows the proposed approach can potentially help expedite pathological diagnosis by triaging potentially suspicious biopsies.

  2. Near-infrared image-guided laser ablation of dental decay

    Science.gov (United States)

    Tao, You-Chen; Fried, Daniel

    2009-09-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries.

  3. Image quality assessment of digital intraoral radiography – perception to caries diagnosis

    Directory of Open Access Journals (Sweden)

    Kazunori Yoshiura

    2012-02-01

    Full Text Available The radiological diagnostic process is composed of the three major phases, psychophysical, psychological and nosological. An apparent improvement in image quality in the psychophysical phase does not necessarily imply an increased diagnostic performance. This may be true for the general diagnostic processes, but may not for the caries diagnosis, because psychophysical phase is of most significance in such special and relatively simplified task. In this article the processes to correlate perception to approximal caries diagnosis are reviewed using the Perceptibility Curve (PC tests and Receiver Operating Characteristic (ROC curve tests. The PC test was developed to represent the psychophysical property of the radiographic imaging system. Since physical properties are shown to be closely correlated with psychophysical properties, it is possible to theoretically calculate psychophysical properties of the radiographic systems from their physical properties. In a similar manner, observers' low contrast detectability in the psychophysical phase can be predicted from some physical parameters of the radiographic system. observers' low contrast detectability is also correlated with the diagnostic performance obtained from ROC curve in the task of approximal caries diagnosis. Thus, considerably high correlation between psychophysical properties and diagnostic accuracy indicates close relationship between perception and approximal caries diagnosis. It implies that an improvement in the physical image quality leads to increased diagnostic performance to some extent in the approximal caries diagnosis.

  4. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  5. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  6. Widely tunable, high peak power ultrafast laser sources in biological imaging (Conference Presentation)

    Science.gov (United States)

    Klein, Julien

    2017-02-01

    Widely tunable ultrafast lasers have enabled a large number of biological imaging techniques including point scanning multiphoton excited fluorescence (MPEF), SHG/THG and stimulated Raman imaging. Tunable ultrafast lasers offer spectral agility, covering the entire relative transparency window in live tissue (700-1300nnm) and flexibility with multi-color, synchronized outputs to support sophisticated label free techniques (e.g. stimulated Raman modalities). More recently newly available high peak power lasers based on Ytterbium technology drive advances in two-photon light-sheet, 3 photon excited fluorescence and holographic patterning for optogenetics photo-stimulation. These laser platforms offer a unique blend of compactness, ease of use and cost efficiency, and ideally complement tunable platforms typically based on Ti:Sapphire and IR optical parametric oscillators (OPO). We present various types of ultrafast laser architectures, link their optical characteristics to key bio-imaging requirements, and present relevant examples and images illustrating their impact in biological science. In particular we review the use of ultrafast lasers in optogenetics and fast in-vivo Calcium imaging deep in mouse brain.

  7. Illumination Effect of Laser Light in Foggy Objects Using an Active Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Ahn, Yong-Jin; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Active imaging techniques usually provide improved image information when compared to passive imaging techniques. Active vision is a direct visualization technique using an artificial illuminant. Range-gated imaging (RGI) technique is one of active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The Range-gated imaging is an emerging technology in the field of surveillance for security application, especially in the visualization of darken night or foggy environment. Although RGI viewing was discovered in the 1960's, this technology is currently more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. Especially, this system can be adopted in robot-vision system by virtue of the compact system configuration. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated range imaging based on range-gated imaging. Laser light having a short pulse width is usually used for the range-gated imaging system. In this paper, an illumination effect of laser light in foggy objects is studied using a range-gated imaging system. The used imaging system consists of an ultra-short pulse (0.35 ns) laser light and a gated imaging sensor. The experiment is carried out to monitor objects in a box filled by fog. In this paper, the effects by fog particles in range-gated imaging technique are studied. Edge blurring and range distortion are the generated by fog particles.

  8. Diagnosis potential of near infrared Mueller Matrix imaging for colonic adenocarcinoma

    Science.gov (United States)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic adenocarcinoma detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and adenocarcinomaous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  9. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images

    Science.gov (United States)

    Ozkan, Murat; Cakiroglu, Murat; Kocaman, Orhan; Kurt, Mevlut; Yilmaz, Bulent; Can, Guray; Korkmaz, Ugur; Dandil, Emre; Eksi, Ziya

    2016-01-01

    Aim: The aim was to develop a high-performance computer-aided diagnosis (CAD) system with image processing and pattern recognition in diagnosing pancreatic cancer by using endosonography images. Materials and Methods: On the images, regions of interest (ROI) of three groups of patients (60) were extracted by experts; features were obtained from images using three different techniques and were trained separately for each age group with an Artificial Neural Network (ANN) to diagnose cancer. The study was conducted on endosonography images of 202 patients with pancreatic cancer and 130 noncancer patients. Results: 122 features were identified from the 332 endosonography images obtained in the study, and the 20 most appropriate features were selected by using the relief method. Images classified under three age groups (in years; 60) were tested via 200 random tests and the following ratios were obtained in the classification: accuracy: 92%, 88.5%, and 91.7%, respectively; sensitivity: 87.5%, 85.7%, and 93.3%, respectively; and specificity: 94.1%, 91.7%, and 88.9%, respectively. When all the age groups were assessed together, the following values were obtained: accuracy: 87.5%, sensitivity: 83.3%, and specificity: 93.3%. Conclusions: It was observed that the CAD system developed in the study performed better in diagnosing pancreatic cancer images based on classification by patient age compared to diagnosis without classification. Therefore, it is imperative to take patient age into consideration to ensure higher performance. PMID:27080608

  10. Classification of MR brain images by combination of multi-CNNs for AD diagnosis

    Science.gov (United States)

    Cheng, Danni; Liu, Manhua; Fu, Jianliang; Wang, Yaping

    2017-07-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for development of future treatment. Magnetic resonance images (MRI) play important role to help understand the brain anatomical changes related to AD. Conventional methods extract the hand-crafted features such as gray matter volumes and cortical thickness and train a classifier to distinguish AD from other groups. Different from these methods, this paper proposes to construct multiple deep 3D convolutional neural networks (3D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. First, a number of local image patches are extracted from the whole brain image and a 3D-CNN is built upon each local patch to transform the local image into more compact high-level features. Then, the upper convolution and fully connected layers are fine-tuned to combine the multiple 3D-CNNs for image classification. The proposed method can automatically learn the generic features from imaging data for classification. Our method is evaluated using T1-weighted structural MR brain images on 428 subjects including 199 AD patients and 229 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 87.15% and an AUC (area under the ROC curve) of 92.26% for AD classification, demonstrating the promising classification performances.

  11. Comparison of solar and laser macula retinal injury using scanning laser ophthalmoscopy spectral imaging

    Science.gov (United States)

    Zwick, Harry; Gagliano, Donald A.; Stuck, Bruce E.; Lund, David J.

    1994-07-01

    Both solar and laser sources may induce punctate foveal retinal damage. Unprotected viewing of the sun or bright blue sky represent potential solar radiation causes of photic maculopathy that may induce punctate foveal damage. Laser induced macular retinal damage is another more recent kind of photic maculopathy. Most documented cases of laser photic maculopathy have involved acute laser exposure generally from Q-switched visible or nonvisible near IR laser systems. In our comparison of these types of photic maculopathies, we have employed conventional as well as spectral and confocal scanning laser ophthalomoscopy to evaluate the depth of the photic maculopathy. Functionally, we have observed a tritan color vision loss present in nearly all photic maculopathies.

  12. 78 FR 52929 - Scientific Information Request on Imaging Tests for the Diagnosis and Staging of Pancreatic...

    Science.gov (United States)

    2013-08-27

    ... different imaging strategies on long-term survival and quality of life when used for staging? Question 3...-term survival and quality of life when used for diagnosis? Question 2 What is the comparative... pancreatic adenocarcinoma helpful: A list of completed studies your company has sponsored for this indication...

  13. Imaging diagnosis of the oral cavity; Diagnostico por imagem da cavidade oral

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ricardo Pires de; Paes Junior, Ademar Jose de Oliveira [Complexo Hospitalar Heliopolis, Sao Paulo, SP (Brazil). Servico de Diagnostico por Imagem]. E-mail: ricapires@ig.com.br; Pagotto, Silvia Regina; Rapoport, Abrao [Complexo Hospitalar Heliopolis, Sao Paulo, SP (Brazil). Curso de Pos-graduacao em Cirurgia de Cabeca e Pescoco; Soares, Aldemir Humberto [Hospital do Servidor Publico Estadual de Sao Paulo, Sao Paulo (Brazil). Servico de Diagnostico por Imagem

    2003-06-01

    Magnetic resonance imaging and computed tomography are important additional methods for the diagnosis of oral cavity diseases. The technical aspects of both methods are discussed including their advantages and limitations. The anatomy of the oral cavity is reviewed as well as some characteristics of squamous cell carcinoma, which is the most frequent neoplasia in this region. (author)

  14. POSSIBILITIES OF LOW-FIELD-STRENGTH MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF BLADDER NEOPLASMS

    OpenAIRE

    I. V. Chernyshov; P. E. Lutsenko; T. V. Bulanova

    2014-01-01

    The paper considers whether magnetic resonance imaging (MRI) can be used in the complex diagnosis of urinary bladder cancer. It analyzes the authors' data based on bladder MRI findings in 79 patients with histologically verified bladder neoplasms. The possibilities of lowfield- strength MRI are compared with those of high-field-strength MRI, transabdominal ultrasonography, and computed tomography.

  15. Primary cardiac lymphoma: utility of multimodality imaging in diagnosis and management.

    Science.gov (United States)

    Mato, Anthony R; Morgans, Alicia K; Roullet, Michele R; Bagg, Adam; Glatstein, Eli; Litt, Harold I; Downs, Lisa H; Chong, Elise A; Olson, Erin R; Andreadis, Charalambos; Schuster, Stephen J

    2007-12-01

    Primary cardiac lymphoma (PCL) is an extremely rare disease defined as a lymphoma strictly confined to the heart or pericardium without dissemination. We present the case of an 82 yr old male with newly diagnosed PCL and two years of subsequent follow up. This report highlights the utility of a multimodality imaging approach in the diagnosis and management of PCL.

  16. MR imaging in the diagnosis and management of inheritable musculoskeletal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoenacker, F.M.; De Schepper, A.M.; Gielen, J.L.; Parizel, P.M

    2005-02-01

    Although the initial identification of a congenital skeletal malformation is usually made by a combination of clinical examination, conventional radiology and genetic tests, this review illustrates the additional value of magnetic resonance imaging (MRI) in the diagnosis, determination of the extent of the disease, demonstration of associated abnormalities, therapy planning, disease monitoring and prognosis evaluation.

  17. Decision Making Based on Fuzzy Aggregation Operators for Medical Diagnosis from Dental X-ray images.

    Science.gov (United States)

    Ngan, Tran Thi; Tuan, Tran Manh; Son, Le Hoang; Minh, Nguyen Hai; Dey, Nilanjan

    2016-12-01

    Medical diagnosis is considered as an important step in dentistry treatment which assists clinicians to give their decision about diseases of a patient. It has been affirmed that the accuracy of medical diagnosis, which is much influenced by the clinicians' experience and knowledge, plays an important role to effective treatment therapies. In this paper, we propose a novel decision making method based on fuzzy aggregation operators for medical diagnosis from dental X-Ray images. It firstly divides a dental X-Ray image into some segments and identified equivalent diseases by a classification method called Affinity Propagation Clustering (APC+). Lastly, the most potential disease is found using fuzzy aggregation operators. The experimental validation on real dental datasets of Hanoi Medical University Hospital, Vietnam showed the superiority of the proposed method against the relevant ones in terms of accuracy.

  18. Comparison of ultrasound imaging and video otoscopy with cross-sectional imaging for the diagnosis of canine otitis media.

    Science.gov (United States)

    Classen, J; Bruehschwein, A; Meyer-Lindenberg, A; Mueller, R S

    2016-11-01

    Ultrasound imaging (US) of the tympanic bulla (TB) for diagnosis of canine otitis media (OM) is less expensive and less invasive than cross-sectional imaging techniques including computed tomography (CT) and magnetic resonance imaging (MRI). Video otoscopy (VO) is used to clean inflamed ears. The objective of this study was to investigate the diagnostic value of US and VO in OM using cross-sectional imaging as the reference standard. Client owned dogs with clinical signs of OE and/or OM were recruited for the study. Physical, neurological, otoscopic and otic cytological examinations were performed on each dog and both TB were evaluated using US with an 8 MHz micro convex probe, cross-sectional imaging (CT or MRI) and VO. Of 32 dogs enrolled, 24 had chronic otitis externa (OE; five also had clinical signs of OM), four had acute OE without clinical signs of OM, and four had OM without OE. Ultrasound imaging was positive in three of 14 ears, with OM identified on cross-sectional imaging. One US was false positive. Sensitivity, specificity, positive and negative predictive values and accuracy of US were 21%, 98%, 75%, 81% and 81%, respectively. The corresponding values of VO were 91%, 98%, 91%, 98% and 97%, respectively. Video otoscopy could not identify OM in one case, while in another case, although the tympanum was ruptured, the CT was negative. Ultrasound imaging should not replace cross-sectional imaging for the diagnosis of canine OM, but can be helpful, and VO was much more reliable than US. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Laser-assisted electron diffraction for femtosecond molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Yuya; Kanya, Reika [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamanouchi, Kaoru, E-mail: kaoru@chem.s.u-tokyo.ac.jp [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); NANOQUINE, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-02-14

    We report the observation of laser-assisted electron diffraction (LAED) through the collision of 1 keV electrons with gas-phase CCl{sub 4} molecules in a femtosecond near-infrared laser field. In the angular distribution of the scattered electrons with the energy shifts of ±ℏω, we observed clear diffraction patterns which reflect the geometrical structure of the molecules at the moment of laser irradiation. Our results demonstrate that ultrafast nuclear dynamics of molecules can be probed by LAED with the high temporal (<10 fs) and spatial (∼0.01 Å) resolutions.

  20. Imaging diagnosis of accessory and cavitated uterine mass, a rare mullerian anomaly

    Directory of Open Access Journals (Sweden)

    Nishchint Jain

    2014-01-01

    Full Text Available Accessory and Cavitated Uterine Mass (ACUM is a rare form of developmental Mullerian anomaly seen in young females, which presents as chronic recurrent pelvic pain and severe dysmenorrhea. It is an accessory cavity lying within an otherwise normal uterus. It is lined by functional endometrium and surrounded by myometrium-like smooth muscle cells; hence, it bears striking macroscopic and microscopic resemblance to the uterus. Hysterosalpingography (HSG, Ultrasonography (USG, and Magnetic Resonance Imaging (MRI form the mainstay of diagnostic imaging. The entity is often under diagnosed; therefore, a high index of suspicion combined with HSG and MRI imaging can help in making an accurate diagnosis.

  1. Focal Laser Ablation of Prostate Cancer: Feasibility of Magnetic Resonance Imaging-Ultrasound Fusion for Guidance.

    Science.gov (United States)

    Natarajan, Shyam; Jones, Tonye A; Priester, Alan M; Geoghegan, Rory; Lieu, Patricia; Delfin, Merdie; Felker, Ely; Margolis, Daniel J A; Sisk, Anthony; Pantuck, Allan; Grundfest, Warren; Marks, Leonard S

    2017-10-01

    Focal laser ablation is a potential treatment in some men with prostate cancer. Currently focal laser ablation is performed by radiologists in a magnetic resonance imaging unit (in bore). We evaluated the safety and feasibility of performing focal laser ablation in a urology clinic (out of bore) using magnetic resonance imaging-ultrasound fusion for guidance. A total of 11 men with intermediate risk prostate cancer were enrolled in this prospective, institutional review board approved pilot study. Magnetic resonance imaging-ultrasound fusion was used to guide laser fibers transrectally into regions of interest harboring intermediate risk prostate cancer. Thermal probes were inserted for real-time monitoring of intraprostatic temperatures during laser activation. Multiparametric magnetic resonance imaging (3 Tesla) was done immediately after treatment and at 6 months along with comprehensive fusion biopsy. Ten of 11 patients were successfully treated while under local anesthesia. Mean procedure time was 95 minutes (range 71 to 105). Posttreatment magnetic resonance imaging revealed a confined zone of nonperfusion in all 10 men. Mean zone volume was 4.3 cc (range 2.1 to 6.0). No CTCAE grade 3 or greater adverse events developed and no changes were observed in urinary or sexual function. At 6 months magnetic resonance imaging-ultrasound fusion biopsy of the treatment site showed no cancer in 3 patients, microfocal Gleason 3 + 3 in another 3 and persistent intermediate risk prostate cancer in 4. Focal laser ablation of prostate cancer appears safe and feasible with the patient under local anesthesia in a urology clinic using magnetic resonance imaging-ultrasound fusion for guidance and thermal probes for monitoring. Further development is necessary to refine out of bore focal laser ablation and additional studies are needed to determine appropriate treatment margins and oncologic efficacy. Copyright © 2017 American Urological Association Education and Research, Inc

  2. AN AUTOMATIC PROCEDURE FOR COMBINING DIGITAL IMAGES AND LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    W. Moussa

    2012-07-01

    Full Text Available Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM of a scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of accurate control information for the direct computation of absolute camera orientations with redundant information by means of accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an extended Helmert (seven-parameter transformation is introduced and its parameters are estimated. Precedent to that, in the second method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion (SaM reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the effectiveness of the presented procedures.

  3. MALDI mass spectrometry imaging in microscope mode with infrared lasers- bypassing the diffraction limits

    NARCIS (Netherlands)

    Soltwisch, J.; Göritz, G.; Jungmann, JH|info:eu-repo/dai/nl/351240020; Kiss, A.; Smith, D.F.; Ellis, S.R.; Heeren, R.M.A.|info:eu-repo/dai/nl/105188476

    2013-01-01

    This letter demonstrates the use of infrared matrix-assisted laser desorption/ionization coupled with microscope mode mass spectrometry imaging. It is aimed to explore the use of intrinsic water in tissue as a matrix for imaging at spatial resolutions below the diffraction limit of the employed IR

  4. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...

  5. QUANTITATIVE FLOW-ANALYSIS AROUND AQUATIC ANIMALS USING LASER SHEET PARTICLE IMAGE VELOCIMETRY

    NARCIS (Netherlands)

    STAMHUIS, EJ; VIDELER, JJ

    Two alternative particle image velocimetry (PIV) methods have been developed, applying laser light sheet illumination of particle-seeded flows around marine organisms, Successive video images, recorded perpendicular to a light sheet parallel to the main stream, were digitized and processed to map

  6. High-speed, image-based eye tracking with a scanning laser ophthalmoscope

    NARCIS (Netherlands)

    Sheehy, C.K.; Yang, Q.; Arathorn, D.W.; Teeruveedhula, P.; de Boer, J.F.; Roorda, A.J.

    2012-01-01

    We demonstrate a high-speed, image-based tracking scanning laser ophthalmoscope (TSLO) that can provide high fidelity structural images, real-time eye tracking and targeted stimulus delivery. The system was designed for diffraction-limited performance over an 8° field of view (FOV) and operates with

  7. An Approach to Fault Diagnosis for Gearbox Based on Image Processing

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available The gearbox is one of the most important parts of mechanical equipment and plays a significant role in many industrial applications. A fault diagnostic of rotating machinery has attracted attention for its significance in preventing catastrophic accidents and beneficially guaranteeing sufficient maintenance. In recent years, fault diagnosis has developed in the direction of multidisciplinary integration. This work addresses a fault diagnosis method based on an image processing method for a gearbox, which overcomes the limitations of manual feature selection. Differing from the analysis method in a one-dimensional space, the computing method in the field of image processing in a 2-dimensional space is applied to accomplish autoextraction and fault diagnosis of a gearbox. The image-processing-based diagnostic flow consists of the following steps: first, the vibration signal after noise reduction by wavelet denoising and signal demodulation by Hilbert transform is transformed into an image by bispectrum analysis. Then, speeded up robustness feature (SURF is applied to automatically extract the image feature points of the bispectrum contour map, and the feature dimension is reduced by principal component analysis (PCA. Finally, an extreme learning machine (ELM is introduced to identify the fault types of the gearbox. From the experimental results, the proposed method appears to be able to accurately diagnose and identify different types of faults of the gearbox.

  8. Computer-aided diagnosis of breast cancer using cytological images: A systematic review.

    Science.gov (United States)

    Saha, Monjoy; Mukherjee, Rashmi; Chakraborty, Chandan

    2016-10-01

    Cytological evaluation by microscopic image-based characterization [imprint cytology (IC) and fine needle aspiration cytology (FNAC)] plays an integral role in primary screening/detection of breast cancer. The sensitivity of IC and FNAC as a screening tool is dependent on the image quality and the pathologist's level of expertise. Computer-aided diagnosis (CAD) is used to assists the pathologists by developing various machine learning and image processing algorithms. This study reviews the various manual and computer-aided techniques used so far in breast cytology. Diagnostic applications were studied to estimate the role of CAD in breast cancer diagnosis. This paper presents an overview of image processing and pattern recognition techniques that have been used to address several issues in breast cytology-based CAD including slide preparation, staining, microscopic imaging, pre-processing, segmentation, feature extraction and diagnostic classification. This review provides better insights to readers regarding the state of the art the knowledge on CAD-based breast cancer diagnosis to date. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quantification of neuropathological findings by image data for the diagnosis of dementia in forensic autopsy cases.

    Science.gov (United States)

    Takayama, Mio; Kashiwagi, Masayuki; Matsusue, Aya; Waters, Brian; Hara, Kenji; Ikematsu, Natsuki; Kubo, Shin-ichi

    2016-01-01

    The aim of the present study was to quantify neuropathological findings using image analysis software for the diagnosis of dementia in deceased who underwent forensic autopsy. Of the autopsies performed within 48 hours of death and excluding those of patients with head injury, thermal injury, heat stroke, or intracranial lesions, 8 were of autopsy cases clinically diagnosed with dementia and thus included in the dementia group (D). The non-dementia group (non-D) consisted of 6 deceased without dementia. To compare the D and non-D groups, 6 regions and 7 types of pathological findings were observed semi-quantitatively using 4 conventional stainings. Quantitative analysis of collected image data was performed using image analysis software. Semiquantitative analysis of senile plaques and neurofibrillary tangles was performed with Bielschowsky-Hirano's silver staining image data. An easy, simple, and effective quantification method of the pathological findings was achieved. However, no significant differences were observed between the two groups, and diagnosis of dementia by the quantification of pathological findings was not successful. Diagnosis of dementia using image data may be possible in future studies with an increased number of autopsies, and by utilizing staining techniques with higher specificity and sensitivity, such as immunohistochemical staining.

  10. Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging

    Directory of Open Access Journals (Sweden)

    Hongyoon Choi

    2017-01-01

    Full Text Available Dopaminergic degeneration is a pathologic hallmark of Parkinson's disease (PD, which can be assessed by dopamine transporter imaging such as FP-CIT SPECT. Until now, imaging has been routinely interpreted by human though it can show interobserver variability and result in inconsistent diagnosis. In this study, we developed a deep learning-based FP-CIT SPECT interpretation system to refine the imaging diagnosis of Parkinson's disease. This system trained by SPECT images of PD patients and normal controls shows high classification accuracy comparable with the experts' evaluation referring quantification results. Its high accuracy was validated in an independent cohort composed of patients with PD and nonparkinsonian tremor. In addition, we showed that some patients clinically diagnosed as PD who have scans without evidence of dopaminergic deficit (SWEDD, an atypical subgroup of PD, could be reclassified by our automated system. Our results suggested that the deep learning-based model could accurately interpret FP-CIT SPECT and overcome variability of human evaluation. It could help imaging diagnosis of patients with uncertain Parkinsonism and provide objective patient group classification, particularly for SWEDD, in further clinical studies.

  11. Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging.

    Science.gov (United States)

    Choi, Hongyoon; Ha, Seunggyun; Im, Hyung Jun; Paek, Sun Ha; Lee, Dong Soo

    2017-01-01

    Dopaminergic degeneration is a pathologic hallmark of Parkinson's disease (PD), which can be assessed by dopamine transporter imaging such as FP-CIT SPECT. Until now, imaging has been routinely interpreted by human though it can show interobserver variability and result in inconsistent diagnosis. In this study, we developed a deep learning-based FP-CIT SPECT interpretation system to refine the imaging diagnosis of Parkinson's disease. This system trained by SPECT images of PD patients and normal controls shows high classification accuracy comparable with the experts' evaluation referring quantification results. Its high accuracy was validated in an independent cohort composed of patients with PD and nonparkinsonian tremor. In addition, we showed that some patients clinically diagnosed as PD who have scans without evidence of dopaminergic deficit (SWEDD), an atypical subgroup of PD, could be reclassified by our automated system. Our results suggested that the deep learning-based model could accurately interpret FP-CIT SPECT and overcome variability of human evaluation. It could help imaging diagnosis of patients with uncertain Parkinsonism and provide objective patient group classification, particularly for SWEDD, in further clinical studies.

  12. Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Soo; Ko, Seong Jin; Kang, Se Sik; Kim, Jung Hoon; Choi, Seok Yoon; Kim, Chang Soo [Dept. of Radiological Science, Catholic University of Pusan, Pusan (Korea, Republic of); Park, Hyung Hu [Dept. of Health Science, Graduate School of Kosin University, Pusan (Korea, Republic of)

    2012-09-15

    Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70-98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

  13. Speckle reduction approach for breast ultrasound image and its application to breast cancer diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Su Yanxin; Wang Hong; Wang Ying [Ultrasound Department, Second Affiliated Hospital, Key Laboratory of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, 148 Baojian Road, Harbin 150086, Heilongjiang (China); Guo Yanhui; Cheng Hengda; Zhang Yingtao [School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Tian Jiawei, E-mail: jwtian2004@yahoo.com.c [Ultrasound Department, Second Affiliated Hospital, Key Laboratory of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, 148 Baojian Road, Harbin 150086, Heilongjiang (China)

    2010-07-15

    Objectives: To retrospectively evaluate the effects of a speckle reduction algorithm on radiologists' diagnosis of malignant and benign breast lesions on ultrasound (US) images. Methods: Using a database of 603 breast (US) images of 211 cases (109 benign lesions and 102 malignant ones), the original and speckle-reduced images were assessed by five radiologists and final assessment categories were assigned to indicate the probability of malignancy according to BI-RADS-US. The diagnostic sensitivity and specificity were investigated by the areas (Az) under the receiver operating characteristic (ROC) curves. Results: The sensitivity and specificity of breast lesions on Ultrasound images improved from 88.7% to 94.3%, from 68.6% to 75.2%, respectively, and the area (Az) under ROC curve of diagnosis also increased from 0.843 to 0.939, Z = 4.969, there were significant differences in the Az between the original breast lesions and speckle-reduced ones on Ultrasound images (P < 0.001). The diagnostic accuracy of breast lesions had been highly improved from 78.67% to 92.73% after employing this algorithm. Conclusions: The results demonstrate the promising performance of the proposed speckle reduction algorithm in distinguishing malignant from benign breast lesions which will be useful for breast cancer diagnosis.

  14. Sclerosing cholangitis: Clinicopathologic features, imaging spectrum, and systemic approach to differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ni Eun [Dept. of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, So Yeon; Lee, Seung Soo; Byun, Jae Ho; Kim, Hyoung Jung; Kim, Jin Hee; Lee, Moon Gyu [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Sclerosing cholangitis is a spectrum of chronic progressive cholestatic liver disease characterized by inflammation, fibrosis, and stricture of the bile ducts, which can be classified as primary and secondary sclerosing cholangitis. Primary sclerosing cholangitis is a chronic progressive liver disease of unknown cause. On the other hand, secondary sclerosing cholangitis has identifiable causes that include immunoglobulin G4-related sclerosing disease, recurrent pyogenic cholangitis, ischemic cholangitis, acquired immunodeficiency syndrome-related cholangitis, and eosinophilic cholangitis. In this review, we suggest a systemic approach to the differential diagnosis of sclerosing cholangitis based on the clinical and laboratory findings, as well as the typical imaging features on computed tomography and magnetic resonance (MR) imaging with MR cholangiography. Familiarity with various etiologies of sclerosing cholangitis and awareness of their typical clinical and imaging findings are essential for an accurate diagnosis and appropriate management.

  15. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  16. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    High frame rate and highly sensitive imaging of refractive index changes on a surface is very promising for studying the dynamics of dissolution, mixing and biological processes without the need for labeling. Here, a highly sensitive distributed feedback (DFB) dye laser sensor for high frame rate...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...... coupled device (CCD) array. The orthogonal spatial position is obtained from the vertical spatial position on the spectrometer CCD array as in established spatially resolved spectroscopy. Here, the imaging technique is demonstrated by monitoring the motion of small sucrose molecules upon dissolution...

  17. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  18. Imaging diagnosis of temporomandibular disorders (TMD). MR imaging of the disk of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Tsukasa; Yamamoto, Mika; Sakuma, Katsuya [Showa Univ., Tokyo (Japan). School of Dentistry] [and others

    2001-03-01

    Since its introduction in the 1980s, magnetic resonance imaging has become the preferred method for diagnosing soft tissue abnormalities of temporomandibular joint (TMJ). MR imaging is non-invasive and more accurate than arthorography. In addition, it requires less operator skill and is well tolerated by patients. We are usually taking MR images of the TMJ with the fast spin echo technique that can simultaneously obtain both T2-weighted and proton density images. The purpose of this study was to determine the utility of T2-weighed and proton density images for diagnosing the disk status in TMJ, comparing the results with those obtained by T1-weighted images. We studied 104 TMJs in 52 patients with both T2-weighted and proton density images, and 80 TMJs in 40 patients with only T1-weighted images. The joints were evaluated by two oral radiologists who looked at three aspects of the joints-disk displacement, disk reduction and disk shape - giving ratings of good'' or ''fair'' in each category. Ratings of ''good'' were significant higher in all three categories in T2-weighted and proton density images than in T1-weighted images (p<0.01). Based on these results, we conclude that T2-weighted and proton density images taken with the fast spin echo technique are useful for diagnosing the disk status of the TMJ. (author)

  19. Shadowgraphic imaging of material removal during laser drilling with a long pulse eximer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.

    2005-01-01

    After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process

  20. Image-guided smart laser system for precision implantation of cells in cartilage

    Science.gov (United States)

    Katta, Nitesh; Rector, John A.; Gardner, Michael R.; McElroy, Austin B.; Choy, Kevin C.; Crosby, Cody; Zoldan, Janet; Milner, Thomas E.

    2017-03-01

    State-of-the-art treatment for joint diseases like osteoarthritis focus on articular cartilage repair/regeneration by stem cell implantation therapy. However, the technique is limited by a lack of precision in the physician's imaging and cell deposition toolkit. We describe a novel combination of high-resolution, rapid scan-rate optical coherence tomography (OCT) alongside a short-pulsed nanosecond thulium (Tm) laser for precise cell seeding in cartilage. The superior beam quality of thulium lasers and wavelength of operation 1940 nm offers high volumetric tissue removal rates and minimizes the residual thermal footprint. OCT imaging enables targeted micro-well placement, precise cell deposition, and feature contrast. A bench-top system is constructed using a 15 W, 1940 nm, nanosecond-pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30kHz repetition rate) for removing tissue, and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging, forming a combined Tm/OCT system - a "smart laser knife". OCT assists the smart laser knife user in characterizing cartilage to inform micro-well placement. The Tm laser creates micro-wells (2.35 mm diameter length, 1.5 mm width, 300 μm deep) and micro-incisions (1 mm wide, 200 μm deep) while OCT image-guidance assists and demonstrates this precision cutting and cell deposition with real-time feedback. To test micro-well creation and cell deposition protocol, gelatin phantoms are constructed mimicking cartilage optical properties and physiological structure. Cell viability is then assessed to illustrate the efficacy of the hydrogel deposition. Automated OCT feedback is demonstrated for cutting procedures to avoid important surface/subsurface structures. This bench-top smart laser knife system described here offers a new image-guided approach to precise stem cell seeding that can enhance the efficacy of articular cartilage repair.

  1. LED induced autofluorescence (LIAF) imager with eight multi-filters for oral cancer diagnosis

    Science.gov (United States)

    Huang, Ting-Wei; Cheng, Nai-Lun; Tsai, Ming-Hsui; Chiou, Jin-Chern; Mang, Ou-Yang

    2016-03-01

    Oral cancer is one of the serious and growing problem in many developing and developed countries. The simple oral visual screening by clinician can reduce 37,000 oral cancer deaths annually worldwide. However, the conventional oral examination with the visual inspection and the palpation of oral lesions is not an objective and reliable approach for oral cancer diagnosis, and it may cause the delayed hospital treatment for the patients of oral cancer or leads to the oral cancer out of control in the late stage. Therefore, a device for oral cancer detection are developed for early diagnosis and treatment. A portable LED Induced autofluorescence (LIAF) imager is developed by our group. It contained the multiple wavelength of LED excitation light and the rotary filter ring of eight channels to capture ex-vivo oral tissue autofluorescence images. The advantages of LIAF imager compared to other devices for oral cancer diagnosis are that LIAF imager has a probe of L shape for fixing the object distance, protecting the effect of ambient light, and observing the blind spot in the deep port between the gumsgingiva and the lining of the mouth. Besides, the multiple excitation of LED light source can induce multiple autofluorescence, and LIAF imager with the rotary filter ring of eight channels can detect the spectral images of multiple narrow bands. The prototype of a portable LIAF imager is applied in the clinical trials for some cases in Taiwan, and the images of the clinical trial with the specific excitation show the significant differences between normal tissue and oral tissue under these cases.

  2. Role of magnetic resonance imaging in the diagnosis of spontaneous spondylodiscitis; Diagnosi radiologica della spondilodiscite. Ruolo della Risonanza Magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Cusmano, F.; Calabrese, G.; Bassi, S.; Branislav, S.; Bassi, P. [Parma Univ., Parma (Italy). Ist. di Scienze Radiologiche

    2000-09-01

    Purpose of this work is to report the Magnetic Resonance Imaging (MRI) features of acute and chronic spontaneous spondylodiscitis as well as any as well as any typical patterns which can be useful for the differential diagnosis between pyogenic and tuberculous forms. Eleven patients affected with spontaneous spondylodiscitis were selected for the study; they were 7 men and 4 women ranging in age 33-87 years (mean: 64). Patients with a superconductive magnet at 1.5, with the following sequences: sagittal PD and T2-weighted TSE, sagittal T1-weighted SE, axial PD and T2-weighted TSE for the lumbar spine, axial T2-weighted GRE for the cervical and dorsal spine and axial and sagittal T1-weighted SE after contrast agent (gadolinium DTPA) injection. MR images were reviewed by three experienced radiologists and morphological and signal intensity changes of vertebral body and disk were recorded on a standard form. In 9 patients it was possible to compare MR to CT findings. Three patients had infectious diseases in other organs and 2 were diabetics. Biopsy was performed in two cases only and demonstrated Staphylococcus aureus in one and Mycobacterium tuberculosis in the other patient. MRI, allowed the correct diagnosis to be made in all cases, demonstrating the pathological involvement of the paravertebral structures and into the spinal canal earlier and more accurately than CT. A common finding in pyogenic and tuberculous spondylodiscitis was the low signal of the subcortical bone marrow on T1-weighted sagittal images, which enhanced after Gd-DTPA administration and became intermediate or high on T2-weighted images. Moreover, the steady high signal intensity of the disk on T2-weighted images and its contrast enhancement on T1-weighted images is typical for an acute inflammatory process. Based on our personal experience an literature data, it is believed that MRI is the most sensitive technique for the diagnosis of spondylodiscitis in the acute phase, whereas it is

  3. Computational Intelligence and Image Processing Methods for Applications in Skin Cancer Diagnosis

    Science.gov (United States)

    Ogorzałek, Maciej; Surówka, Grzegorz; Nowak, Leszek; Merkwirth, Christian

    Digital photography provides new powerful diagnostic tools in dermatology. Dermoscopy is a special photography technique which enables taking photos of skin lesions in chosen lighting conditions. Digital photography allows for seeing details of the skin changes under various enlargements and coloring. Computer-assisted techniques and image processing methods can be further used for image enhancement and analysis and for feature extraction and pattern recognition in the selected images. Special techniques used in skin-image processing are discussed in detail. Feature extraction methods and automated classification techniques based on statistical learning and model ensembling techniques provide very powerful tools which can assist the doctors in taking decisions. Performance of classifiers will be discussed in specific case of melanoma cancer diagnosis. The techniques have been tested on a large data set of images.

  4. Geodetic Imaging of Marsh Surface Elevation with Terrestrial Laser Scanning

    Science.gov (United States)

    Nguyen, C. T.; Starek, M. J.; Gibeaut, J. C.; Lord, A.

    2015-12-01

    The resilience of marshes to a rising sea is dependent on their elevation response. Given the level of precision required to measure minute changes in marsh elevation over time, survey methods have to be adapted to minimize impacts to the sediment surface. Current approaches include Surface Elevation Tables (SETs), which are used to monitor wetland surface change with respect to an in situ vertical benchmark. Although SETs have been proven as an effective technique to track subtle sedimentation rates (marsh elevation response away from the measurement site. Terrestrial Laser Scanning (TLS) offers potential for high definition monitoring of marsh surface evolution. However, several challenges must be overcome in the application of the technology for geodetic imaging of marsh surfaces. These challenges include surface occlusion by dense vegetation, error propagation due to scan co-registration and referencing across time, impacts of scan angle, and filtering of non-ground points. Researchers at Texas A&M University-Corpus Christi conducted a field-survey of a marsh within the Grand Bay National Estuarine Research Reserve using TLS and RTK GPS for comparison. Grand Bay in Mississippi USA is one of the most biologically productive estuarine ecosystems in the Gulf of Mexico. The study region is covered by dense and tall saw-grass that makes it a challenging environment for bare-earth mapping. For this survey, a Riegl VZ-400 TLS (1550 nm wavelength) was utilized. The system is capable of recording multiple returns per a transmitted pulse (up to 15) and provides full-waveform output for signal post-processing to extract returns. The objectives of the study are twofold: 1) examine impacts of TLS survey design, scan angle and scan density on marsh elevation mapping; 2) assess the capabilities of multiple-echo and full-waveform TLS data to extract the bare-earth surface below the dense vegetation. This presentation will present results of the study including the developed

  5. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Lance M.; Ellis, Wade C. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jones, Derick D. [Giesel School of Medicine, Hanover, NH 03755 (United States); Farnsworth, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2015-03-01

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions.

  6. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    Science.gov (United States)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  7. Computer-aided diagnosis software for vulvovaginal candidiasis detection from Pap smear images.

    Science.gov (United States)

    Momenzadeh, Mohammadreza; Vard, Alireza; Talebi, Ardeshir; Mehri Dehnavi, Alireza; Rabbani, Hossein

    2018-01-01

    Vulvovaginal candidiasis (VVC) is a common gynecologic infection and it occurs when there is overgrowth of the yeast called Candida. VVC diagnosis is usually done by observing a Pap smear sample under a microscope and searching for the conidium and mycelium components of Candida. This manual method is time consuming, subjective and tedious. Any diagnosis tools that detect VVC, semi- or full-automatically, can be very helpful to pathologists. This article presents a computer aided diagnosis (CAD) software to improve human diagnosis of VVC from Pap smear samples. The proposed software is designed based on phenotypic and morphology features of the Candida in Pap smear sample images. This software provide a user-friendly interface which consists of a set of image processing tools and analytical results that helps to detect Candida and determine severity of illness. The software was evaluated on 200 Pap smear sample images and obtained specificity of 91.04% and sensitivity of 92.48% to detect VVC. As a result, the use of the proposed software reduces diagnostic time and can be employed as a second objective opinion for pathologists. © 2017 Wiley Periodicals, Inc.

  8. Strip velocity measurements for gated x-ray imagers using short pulse lasers

    Science.gov (United States)

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time- resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  9. Relevant aspects of imaging in the diagnosis and management of gout.

    Science.gov (United States)

    De Avila Fernandes, Eloy; Bergamaschi, Samuel Brighenti; Rodrigues, Tatiane Cantarelli; Dias, Gustavo Coelho; Malmann, Ralff; Ramos, Germano Martins; Monteiro, Soraya Silveira

    Gout is an inflammatory arthritis characterized by the deposition of monosodium urate crystals in the synovial membrane, articular cartilage and periarticular tissues leading to inflammation. Men are more commonly affected, mainly after the 5th decade of life. Its incidence has been growing with the population aging. In the majority of the cases, the diagnosis is made by clinical criteria and synovial fluid analysis, in search for monosodium urate crystals. Nonetheless, gout may sometimes have atypical presentations, complicating the diagnosis. In these situations, imaging methods have a fundamental role, aiding in the diagnostic confirmation or excluding other possible differential diagnosis. Conventional radiographs are still the most commonly used method in gout patients' evaluation; nevertheless, this is not a sensitive method, since it detect only late alterations. In the last years, there have been several advances in imaging methods for gout patients. Ultrasound has shown a great accuracy in the diagnosis of gout, identifying monosodium urate deposits in the synovial membrane and articular cartilage, in detecting and characterizing tophi and in identifying tophaceous tendinopathy and enthesopathy. Ultrasound has also been able to show crystal deposition in patients with articular pain in the absence of a classical gout crisis. Computed tomography is an excellent method for detecting bone erosions, being useful in spine involvement. Dual-energy CT is a new method able to provide information about the chemical composition of tissues, with high accuracy in the identification of monosodium urate deposits, even in the early stages of the disease and in cases of difficult characterization. Magnetic resonance imaging is useful in the evaluation of deep tissues not accessible by ultrasound. Besides the diagnosis, with the emergence of new drugs that aim to reduce tophaceous burden, imaging methods have become useful tools in monitoring the treatment of patients with

  10. Relevant aspects of imaging in the diagnosis and management of gout

    Directory of Open Access Journals (Sweden)

    Eloy De Avila Fernandes

    Full Text Available ABSTRACT Gout is an inflammatory arthritis characterized by the deposition of monosodium urate crystals in the synovial membrane, articular cartilage and periarticular tissues leading to inflammation. Men are more commonly affected, mainly after the 5th decade of life. Its incidence has been growing with the population aging.In the majority of the cases, the diagnosis is made by clinical criteria and synovial fluid analysis, in search for monosodium urate crystals. Nonetheless, gout may sometimes have atypical presentations, complicating the diagnosis. In these situations, imaging methods have a fundamental role, aiding in the diagnostic confirmation or excluding other possible differential diagnosis. Conventional radiographs are still the most commonly used method in gout patients’ evaluation; nevertheless, this is not a sensitive method, since it detect only late alterations. In the last years, there have been several advances in imaging methods for gout patients. Ultrasound has shown a great accuracy in the diagnosis of gout, identifying monosodium urate deposits in the synovial membrane and articular cartilage, in detecting and characterizing tophi and in identifying tophaceous tendinopathy and enthesopathy. Ultrasound has also been able to show crystal deposition in patients with articular pain in the absence of a classical gout crisis. Computed tomography is an excellent method for detecting bone erosions, being useful in spine involvement. Dual-energy CT is a new method able to provide information about the chemical composition of tissues, with high accuracy in the identification of monosodium urate deposits, even in the early stages of the disease and in cases of difficult characterization. Magnetic resonance imaging is useful in the evaluation of deep tissues not accessible by ultrasound. Besides the diagnosis, with the emergence of new drugs that aim to reduce tophaceous burden, imaging methods have become useful tools in monitoring

  11. An Improved Local Equilibrium Contrast Enhancement Algorithm for Infrared Laser Images

    OpenAIRE

    Yuhong Li; Jianzhong Zhou; Wei Ding; Shan Ding

    2010-01-01

    An improved local equilibrium contrast enhancement algorithm based self-adaptive contrast enhancement algorithm is proposed for infrared laser images, in which the image pixel value histogram is divided into three parts: background and noise area, targets area, and uninterested area. The targets parts are highlighted, while the background and noise parts and the uninterested parts are restrained. A comprehensive qualitative and quantitative image enhancement performance evaluation is presente...

  12. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented...... to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis...

  13. Utility of ultrasound and magnetic resonance imaging in prenatal diagnosis of placenta accreta: A prospective study

    Directory of Open Access Journals (Sweden)

    Bhawna Satija

    2015-01-01

    Full Text Available Context: Placenta accreta is the abnormal adherence of the placenta to the uterine wall and the most common cause for emergency postpartum hysterectomy. Accurate prenatal diagnosis of affected pregnancies allows optimal obstetric management. Aims: To summarize our experience in the antenatal diagnosis of placenta accreta on imaging in a tertiary care setup. To compare the accuracy of ultrasound (USG with color Doppler (CDUS and magnetic resonance imaging (MRI in prenatal diagnosis of placenta accreta. Settings and Design: Prospective study in a tertiary care setup. Materials and Methods: A prospective study was conducted on pregnant females with high clinical risk of placenta accreta. Antenatal diagnosis was established based on CDUS and MRI. The imaging findings were compared with final diagnosis at the time of delivery and/or pathologic examination. Statistical Analysis Used: The sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV were calculated for both CDUS and MRI. The sensitivity and specificity values of USG and MRI were compared by the McNemar test. Results: Thirty patients at risk of placenta accreta underwent both CDUS and MRI. Eight cases of placenta accreta were identified (3 vera, 4 increta, and 1 percreta. All patients had history of previous cesarean section. Placenta previa was present in seven out of eight patients. USG correctly identified the presence of placenta accreta in seven out of eight patients (87.5% sensitivity and the absence of placenta accreta in 19 out of 22 patients (86.4% specificity. MRI correctly identified the presence of placenta accreta in 6 out of 8 patients (75.0% sensitivity and absence of placenta accreta in 17 out of 22 patients (77.3% specificity. There were no statistical differences in sensitivity (P = 1.00 and specificity (P = 0.687 between USG and MRI. Conclusions: Both USG and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta

  14. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review.

    Science.gov (United States)

    Al-Radaideh, Ali M; Rababah, Eman M

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's in elderly people. Different structural and functional neuroimaging methods play a great role in the early diagnosis of neurodegenerative diseases. This review discusses the role of magnetic resonance imaging (MRI) in the diagnosis of PD. MRI provides clinicians with structural and functional information of human brain noninvasively. Advanced quantitative MRI techniques have shown promise for detecting pathological changes related to different stages of PD. Collectively, advanced MRI techniques at high and ultrahigh magnetic fields aid in better understanding of the nature and progression of PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Low-cost photoacoustic imaging systems based on laser diode and light-emitting diode excitation

    Directory of Open Access Journals (Sweden)

    Qingkai Yao

    2017-07-01

    Full Text Available Photoacoustic imaging, an emerging biomedical imaging modality, holds great promise for preclinical and clinical researches. It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission. In order to generate photoacoustic signal efficiently, bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization. As an alternative, the miniaturized semiconductor laser system has the advantages of being inexpensive, compact, and robust, which makes a significant effect on production-forming design. It is also desirable to obtain a wavelength in a wide range from visible to near-infrared spectrum for multispectral applications. Focussing on practical aspect, this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.

  16. Multimodal imaging in a case of self-inflicted laser-induced maculopathy.

    Science.gov (United States)

    Combillet, France; Saunier, Valentine; Rougier, Marie Bénédicte; Delyfer, Marie Noëlle; Korobelnik, Jean-Francois

    2016-11-04

    To describe the clinical and imaging findings in a case of self-inflicted handheld laser exposure. We evaluated multimodal imaging including fundus autofluorescence, spectral-domain optical coherence tomography (SD-OCT), fluorescein angiography, and indocyanine green angiography for a 32-year-old man with a history of repetitive self-inflicted handheld laser exposure. Funduscopic examination revealed bilateral and asymmetric yellow macular linear streaks with a vertical pattern in the superior macula. Curvilinear bands of dense hyperreflectivity extending from the ellipsoid zone of the photoreceptors and ending at the level of the outer plexiform layer were seen on SD-OCT immediately after injury. After intravenous high-dose corticosteroids during 3 days, the lesions decreased slightly. The recognition of characteristic self-inflicted handheld laser-induced lesions is paramount as laser pointer misuse has been increasing over the years.

  17. Computer-aided diagnosis in radiological imaging: current status and future challenges

    Science.gov (United States)

    Doi, Kunio

    2009-10-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.

  18. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis.

    Science.gov (United States)

    Myburgh, Hermanus C; van Zijl, Willemien H; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-03-01

    Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations.

  19. Aerosol Imaging with a Soft X-ray Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

    2011-08-22

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  20. In-flight alignment calibration between a laser altimeter and an imaging system - Application to the BepiColombo mission

    Science.gov (United States)

    Stark, Alexander; Hussmann, Hauke; Steinbrügge, Gregor; Gläser, Philipp; Gwinner, Klaus; Oberst, Jürgen; Casasco, Massimo; Cremonese, Gabriele

    2017-04-01

    BepiColombo, the upcoming ESA mission to Mercury will be equipped with an imaging system (SIMBIO-SYS) and a laser altimeter (BELA). While the post-launch orientation of the imaging system can be determined by observations of bright stars, the in-flight alignment calibration of the laser altimeter to the reference frame of the spacecraft is a challenging task. The effect of launch load, zero-gravity offloading and thermal distortion in Mercury orbit can lead to an uncertainty in the knowledge of direction of the emitted laser pulse. Especially, at large ranging distances poor knowledge of the instrument orientation leads to large uncertainties in the coordinates of the laser footprints on the surface. Consequently, this results in a co-registration error when a laser profile is compared to an image or to other laser profiles. We propose the co-registration of laser profiles with images or digital terrain models derived from stereo images (stereo DTMs) for co-alignment calibration of the instruments. Previous studies have shown that laser profiles and stereo DTMs can be co-registered with high accuracy, on the order of the DTM grid size. Moreover, we propose to analyze simultaneous measurements by the laser altimeter and the imaging system, as the uncertainty of the spacecraft orientation and position becomes negligible in this case. Provided that simultaneous high-resolution images and laser altimeter measurements are available, such results warrant precise calibration of the co-alignment of the instruments.

  1. Gestational trophoblastic disease: a multimodality imaging approach with impact on diagnosis and management.

    Science.gov (United States)

    Dhanda, Sunita; Ramani, Subhash; Thakur, Meenkashi

    2014-01-01

    Gestational trophoblastic disease is a condition of uncertain etiology, comprised of hydatiform mole (complete and partial), invasive mole, choriocarcinoma, and placental site trophoblastic tumor. It arises from abnormal proliferation of trophoblastic tissue. Early diagnosis of gestational trophoblastic disease and its potential complications is important for timely and successful management of the condition with preservation of fertility. Initial diagnosis is based on a multimodality approach: encompassing clinical features, serial quantitative β-hCG titers, and pelvic ultrasonography. Pelvic magnetic resonance imaging (MRI) is sometimes used as a problem-solving tool to assess the depth of myometrial invasion and extrauterine disease spread in equivocal and complicated cases. Chest radiography, body computed tomography (CT), and brain MRI have been recommended as investigative tools for overall disease staging. Angiography has a role in management of disease complications and metastases. Efficacy of PET (positron emission tomography) and PET/CT in the evaluation of recurrent or metastatic disease has not been adequately investigated yet. This paper discusses the imaging features of gestational trophoblastic disease on various imaging modalities and the role of different imaging techniques in the diagnosis and management of this entity.

  2. Gestational Trophoblastic Disease: A Multimodality Imaging Approach with Impact on Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Sunita Dhanda

    2014-01-01

    Full Text Available Gestational trophoblastic disease is a condition of uncertain etiology, comprised of hydatiform mole (complete and partial, invasive mole, choriocarcinoma, and placental site trophoblastic tumor. It arises from abnormal proliferation of trophoblastic tissue. Early diagnosis of gestational trophoblastic disease and its potential complications is important for timely and successful management of the condition with preservation of fertility. Initial diagnosis is based on a multimodality approach: encompassing clinical features, serial quantitative β-hCG titers, and pelvic ultrasonography. Pelvic magnetic resonance imaging (MRI is sometimes used as a problem-solving tool to assess the depth of myometrial invasion and extrauterine disease spread in equivocal and complicated cases. Chest radiography, body computed tomography (CT, and brain MRI have been recommended as investigative tools for overall disease staging. Angiography has a role in management of disease complications and metastases. Efficacy of PET (positron emission tomography and PET/CT in the evaluation of recurrent or metastatic disease has not been adequately investigated yet. This paper discusses the imaging features of gestational trophoblastic disease on various imaging modalities and the role of different imaging techniques in the diagnosis and management of this entity.

  3. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  4. Laser range scanning for image-guided neurosurgery: investigation of image-to-physical space registrations.

    Science.gov (United States)

    Cao, Aize; Thompson, R C; Dumpuri, P; Dawant, B M; Galloway, R L; Ding, S; Miga, M I

    2008-04-01

    In this article a comprehensive set of registration methods is utilized to provide image-to-physical space registration for image-guided neurosurgery in a clinical study. Central to all methods is the use of textured point clouds as provided by laser range scanning technology. The objective is to perform a systematic comparison of registration methods that include both extracranial (skin marker point-based registration (PBR), and face-based surface registration) and intracranial methods (feature PBR, cortical vessel-contour registration, a combined geometry/intensity surface registration method, and a constrained form of that method to improve robustness). The platform facilitates the selection of discrete soft-tissue landmarks that appear on the patient's intraoperative cortical surface and the preoperative gadolinium-enhanced magnetic resonance (MR) image volume, i.e., true corresponding novel targets. In an 11 patient study, data were taken to allow statistical comparison among registration methods within the context of registration error. The results indicate that intraoperative face-based surface registration is statistically equivalent to traditional skin marker registration. The four intracranial registration methods were investigated and the results demonstrated a target registration error of 1.6 +/- 0.5 mm, 1.7 +/- 0.5 mm, 3.9 +/- 3.4 mm, and 2.0 +/- 0.9 mm, for feature PBR, cortical vessel-contour registration, unconstrained geometric/intensity registration, and constrained geometric/intensity registration, respectively. When analyzing the results on a per case basis, the constrained geometric/intensity registration performed best, followed by feature PBR, and finally cortical vessel-contour registration. Interestingly, the best target registration errors are similar to targeting errors reported using bone-implanted markers within the context of rigid targets. The experience in this study as with others is that brain shift can compromise extracranial

  5. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.

    Science.gov (United States)

    Singh, Anushikha; Dutta, Malay Kishore; ParthaSarathi, M; Uher, Vaclav; Burget, Radim

    2016-02-01

    Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Automated storage and retrieval of thin-section CT images to assist diagnosis: system description and preliminary assessment.

    Science.gov (United States)

    Aisen, Alex M; Broderick, Lynn S; Winer-Muram, Helen; Brodley, Carla E; Kak, Avinash C; Pavlopoulou, Christina; Dy, Jennifer; Shyu, Chi-Ren; Marchiori, Alan

    2003-07-01

    A software system and database for computer-aided diagnosis with thin-section computed tomographic (CT) images of the chest was designed and implemented. When presented with an unknown query image, the system uses pattern recognition to retrieve visually similar images with known diagnoses from the database. A preliminary validation trial was conducted with 11 volunteers who were asked to select the best diagnosis for a series of test images, with and without software assistance. The percentage of correct answers increased from 29% to 62% with computer assistance. This finding suggests that this system may be useful for computer-assisted diagnosis.

  7. Magnetic resonance imaging with rectal Gd-DTPA: new tool for the diagnosis of perianal fistula.

    Science.gov (United States)

    Sabir, N; Sungurtekin, U; Erdem, E; Nessar, M

    2000-11-01

    This study investigated the effectiveness of magnetic resonance imaging (MRI) with rectal administration of the enteral contrast agent gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) in the diagnosis of recurrent perianal fistulae, assessing the number, anatomical extent, location, and signal intensities of various lesions. Fistulas were examined by MRI before and after rectal administration of Gd-DTPA in 50 patients (excluding fistulas due to inflammatory bowel disease). Surgical findings were compared with both pre- and postcontrast T1-weighted, T2-weighted, and short T1 inversion recovery (STIR) sequences. Of the 68 fistulous tracts detected surgically, precontrast imaging identified 16 by T1-weighted images (hypointense), 27 by T2-weighted images (hyperintense or iso- to weakly hyperintense), and 54 by STIR. Postcontrast imaging identified 29 by T1-weighted images, 58 by T2-weighted, and 54 by STIR. MRI with rectal administration of Gd-DTPA thus facilitates determination of fistula tracts, which are better resolved by precontrast STIR than by either precontrast T1- or T2-weighted images. Postcontrast T2-weighted images were substantially superior to T1-weighted. Both noncontrast STIR and postcontrast T2-weighted sequences were adequate for classifying fistulas in ano, but in complex recurrent anal fistula postcontrast T2-weighted images were more helpful.

  8. Ratsnake: a versatile image annotation tool with application to computer-aided diagnosis.

    Science.gov (United States)

    Iakovidis, D K; Goudas, T; Smailis, C; Maglogiannis, I

    2014-01-01

    Image segmentation and annotation are key components of image-based medical computer-aided diagnosis (CAD) systems. In this paper we present Ratsnake, a publicly available generic image annotation tool providing annotation efficiency, semantic awareness, versatility, and extensibility, features that can be exploited to transform it into an effective CAD system. In order to demonstrate this unique capability, we present its novel application for the evaluation and quantification of salient objects and structures of interest in kidney biopsy images. Accurate annotation identifying and quantifying such structures in microscopy images can provide an estimation of pathogenesis in obstructive nephropathy, which is a rather common disease with severe implication in children and infants. However a tool for detecting and quantifying the disease is not yet available. A machine learning-based approach, which utilizes prior domain knowledge and textural image features, is considered for the generation of an image force field customizing the presented tool for automatic evaluation of kidney biopsy images. The experimental evaluation of the proposed application of Ratsnake demonstrates its efficiency and effectiveness and promises its wide applicability across a variety of medical imaging domains.

  9. Ratsnake: A Versatile Image Annotation Tool with Application to Computer-Aided Diagnosis

    Directory of Open Access Journals (Sweden)

    D. K. Iakovidis

    2014-01-01

    Full Text Available Image segmentation and annotation are key components of image-based medical computer-aided diagnosis (CAD systems. In this paper we present Ratsnake, a publicly available generic image annotation tool providing annotation efficiency, semantic awareness, versatility, and extensibility, features that can be exploited to transform it into an effective CAD system. In order to demonstrate this unique capability, we present its novel application for the evaluation and quantification of salient objects and structures of interest in kidney biopsy images. Accurate annotation identifying and quantifying such structures in microscopy images can provide an estimation of pathogenesis in obstructive nephropathy, which is a rather common disease with severe implication in children and infants. However a tool for detecting and quantifying the disease is not yet available. A machine learning-based approach, which utilizes prior domain knowledge and textural image features, is considered for the generation of an image force field customizing the presented tool for automatic evaluation of kidney biopsy images. The experimental evaluation of the proposed application of Ratsnake demonstrates its efficiency and effectiveness and promises its wide applicability across a variety of medical imaging domains.

  10. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    Science.gov (United States)

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous

  11. AI (artificial intelligence in histopathology--from image analysis to automated diagnosis.

    Directory of Open Access Journals (Sweden)

    Aleksandar Bogovac

    2010-02-01

    Full Text Available The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures and pixel based (texture measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and

  12. Body image in patients with mental disorders: Characteristics, associations with diagnosis and treatment outcome.

    Science.gov (United States)

    Scheffers, Mia; van Busschbach, Jooske T; Bosscher, Ruud J; Aerts, Liza C; Wiersma, Durk; Schoevers, Robert A

    2017-04-01

    Despite the increasing recognition in clinical practice of body image problems in other than appearance related mental disorders, the question remains how aspects of body image are affected in different disorders. The aim of this study was to measure body image in patients with a variety of mental disorders and to compare scores with those in the general population in order to obtain more insight in the relative disturbance of body image in the patients group compared to healthy controls. In a further exploration associations with self-reported mental health, quality of life and empowerment were established as well as the changes in body image in patients over time. 176 women and 91 men in regular psychiatric treatment completed the Dresden Body Image Questionnaire, the Outcome Questionnaire, the Manchester Short Assessment of Quality of Life and the Mental Health Confidence Scale. Measurements were repeated after four months. Patients with mental disorders, especially those with post-traumatic stress disorder (PTSD), scored significantly lower on body image, with large effect sizes, in comparison with the healthy controls. Scores of patients from different diagnostic groups varied across domains of body image, with body acceptance lowest in the group with eating disorders, and sexual fulfillment extremely low in PTSD. Vitality did not differ significantly between the various disorders. Gender differences were large for body acceptance and sexual fulfillment and small for vitality. Associations of body image with self-reported mental health, quality of life and empowerment were moderate to strong. After four months of treatment positive changes in body image were observed. Negative body image is a common problem occurring in most patients with mental disorders. Diagnosis-specific profiles emerge, with PTSD being the most affected disorder. Body acceptance and sexual fulfillment were the most differentiating aspects of body image between diagnoses. Changes in body

  13. High-power multi-beam diode laser transmitter for a flash imaging lidar

    Science.gov (United States)

    Holmlund, Christer; Aitta, Petteri; Kivi, Sini; Mitikka, Risto; Tyni, Lauri; Heikkinen, Veli

    2013-10-01

    VTT Technical Research Centre of Finland is developing the transmitter for the "Flash Optical Sensor for TErrain Relative NAVigation" (FOSTERNAV) multi-beam flash imaging lidar. FOSTERNAV is a concept demonstrator for new guidance, navigation and control (GNC) technologies to fulfil the requirements for landing and docking of spacecraft as well as for navigation of rovers. This paper presents the design, realisation and testing of the multi-beam continuous-wave (CW) laser transmitter to be used in a 256x256 pixel flash imaging lidar. Depending on the target distance, the lidar has three operation modes using either several beams with low divergence or one single beam with a large divergence. This paper describes the transmitter part of the flash imaging lidar with focus on the electronics and especially the laser diode drivers. The transmitter contains eight fibre coupled commercial diode laser modules with a total peak optical power of 32 W at 808 nm. The main requirement for the laser diode drivers was linear modulation up to a frequency of 20 MHz allowing, for example, low distortion chirps or pseudorandom binary sequences. The laser modules contain the laser diode, a monitoring photodiode, a thermo-electric cooler, and a thermistor. The modules, designed for non-modulated and low-frequency operation, set challenging demands on the design of the drivers. Measurement results are presented on frequency response, and eye diagrams for pseudo-random binary sequences.

  14. More Precise Imaging Analysis and Diagnosis of Moyamoya Disease and Moyamoya Syndrome Using High-Resolution Magnetic Resonance Imaging.

    Science.gov (United States)

    Yu, Le-Bao; He, Huan; Zhao, Ji-Zong; Wang, Rong; Zhang, Qian; Shi, Zhi-Yong; Shao, Jun-Shi; Zhang, Dong

    2016-12-01

    The diagnosis of moyamoya disease (MMD) is often uncertain. Moyamoya syndrome (MMS) is often misdiagnosed as MMD. High-resolution magnetic resonance imaging (HR-MRI) enables vessel wall assessment to obtain more precise diagnoses. The aim of this study was to determine the true etiologies of arterial steno-occlusion in patients with an angiographic diagnosis of MMD or MMS using HR-MRI. HR-MRI was performed in 21 adult patients with angiographically proven MMD or MMS. A definite diagnosis was based on the HR-MRI findings. The diagnoses made via the 2 different imaging technologies were compared, and significant findings were analyzed. A total of 21 patients were enrolled, including 7 patients with angiographically proven MMD and 14 patients with angiographically proven MMS. Among the 7 patients with MMD, HR-MRI confirmed the diagnosis of MMD in 6; the remaining patient was considered to have atherosclerosis in the bilateral distal internal carotid arteries (ICAs) and the left middle cerebral artery. Among the 14 patients with MMS, HR-MRI confirmed MMD in 6 patients (including 2 patients with unilateral MMD), atherosclerosis in 5 patients (including 3 patients with bilateral atherosclerosis and 2 with unilateral atherosclerosis), arterial dissection of the left ICA in 1 patient, and MMD in the left cerebral hemisphere with atherosclerosis in the right hemisphere in 2 patients. Differentiating MMD from MMS is difficult in certain situations, and HR-MRI may help provide a more in-depth understanding of MMD and MMS, thereby achieving a more reliable diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diagnosis of Nipple Discharge: Value of Magnetic Resonance Imaging and Ultrasonography in Comparison with Ductoscopy.

    Science.gov (United States)

    Yılmaz, Ravza; Bender, Ömer; Çelik Yabul, Fatma; Dursun, Menduh; Tunacı, Mehtap; Acunas, Gülden

    2017-04-05

    Pathologic nipple discharge, which is a common reason for referral to the breast imaging service, refers to spontaneous or bloody nipple discharge that arises from a single duct. The most common cause of nipple discharge is benign breast lesions, such as solitary intraductal papilloma and papillomatosis. Nevertheless, in rare cases, a malignant cause of nipple discharge can be found. To study the diagnostic value of ultrasonography, magnetic resonance imaging, and ductoscopy in patients with pathologic nipple discharge, compare their efficacy, and investigate the importance of magnetic resonance imaging in the diagnosis of intraductal pathologies. Diagnostic accuracy study. Fifty patients with pathologic nipple discharge were evaluated by ultrasonography and magnetic resonance imaging. Of these, 44 ductoscopic investigations were made. The patients were classified according to magnetic resonance imaging, ultrasonography, and ductoscopy findings. A total of 25 patients, whose findings were reported as intraductal masses, underwent surgery oincluding endoscopic excision for two endoscopic excision. Findings were compared with the pathology results that were accepted as the gold standard in the description of the aetiology of nipple discharge. In addition, magnetic resonance imaging, ultrasonography and ductoscopy findings were analysed comparatively in patients who had no surgery. Intraductal masses were reported in 26 patients, 20 of whom operated and established accurate diagnosis of 18 patients on magnetic resonance imaging. According to the ultrasonography, intraductal masses were identified in 22 patients, 17 of whom underwent surgery. Ultrasonography established accurate diagnoses in 15 patients. Intraductal mass was identified in 22 patients and ductoscopy established accurate diagnoses based on histopathologic results in 16 patients. The sensitivities of methods were 75% in ultrasonography, 90% in magnetic resonance imaging, and 94.6% in ductoscopy. The

  16. Automatic Registration of Low Altitude UAV Sequent Images and Laser Point Clouds

    Directory of Open Access Journals (Sweden)

    CHEN Chi

    2015-05-01

    Full Text Available It is proposed that a novel registration method for automatic co-registration of unmanned aerial vehicle (UAV images sequence and laser point clouds. Firstly, contours of building roofs are extracted from the images sequence and laser point clouds using marked point process and local salient region detection, respectively. The contours from each data are matched via back-project proximity. Secondly, the exterior orientations of the images are recovered using a linear solver based on the contours corner pairs followed by a co-planar optimization which is implicated by the matched lines form contours pairs. Finally, the exterior orientation parameters of images are further optimized by matching 3D points generated from images sequence and laser point clouds using an iterative near the point (ICP algorithm with relative movement threshold constraint. Experiments are undertaken to check the validity and effectiveness of the proposed method. The results show that the proposed method achieves high-precision co-registration of low-altitude UAV image sequence and laser points cloud robustly. The accuracy of the co-produced DOMs meets 1:500 scale standards.

  17. Datamining approach for automation of diagnosis of breast cancer in immunohistochemically stained tissue microarray images.

    Science.gov (United States)

    Prasad, Keerthana; Zimmermann, Bernhard; Prabhu, Gopalakrishna; Pai, Muktha

    2010-05-28

    Cancer of the breast is the second most common human neoplasm, accounting for approximately one quarter of all cancers in females after cervical carcinoma. Estrogen receptor (ER), Progesteron receptor and human epidermal growth factor receptor (HER-2/neu) expressions play an important role in diagnosis and prognosis of breast carcinoma. Tissue microarray (TMA) technique is a high throughput technique which provides a standardized set of images which are uniformly stained, facilitating effective automation of the evaluation of the specimen images. TMA technique is widely used to evaluate hormone expression for diagnosis of breast cancer. If one considers the time taken for each of the steps in the tissue microarray process workflow, it can be observed that the maximum amount of time is taken by the analysis step. Hence, automated analysis will significantly reduce the overall time required to complete the study. Many tools are available for automated digital acquisition of images of the spots from the microarray slide. Each of these images needs to be evaluated by a pathologist to assign a score based on the staining intensity to represent the hormone expression, to classify them into negative or positive cases. Our work aims to develop a system for automated evaluation of sets of images generated through tissue microarray technique, representing the ER expression images and HER-2/neu expression images. Our study is based on the Tissue Microarray Database portal of Stanford university at http://tma.stanford.edu/cgi-bin/cx?n=her1, which has made huge number of images available to researchers. We used 171 images corresponding to ER expression and 214 images corresponding to HER-2/neu expression of breast carcinoma. Out of the 171 images corresponding to ER expression, 104 were negative and 67 were representing positive cases. Out of the 214 images corresponding to HER-2/neu expression, 112 were negative and 102 were representing positive cases. Our method has 92

  18. Relationship between analysis of laser speckle image and Knoop hardness on softening enamel.

    Science.gov (United States)

    Koshoji, Nelson H; Prates, Renato A; Bussadori, Sandra K; Bortoletto, Carolina C; de Miranda Junior, Walter G; Librantz, André F H; Leal, Cintia Raquel Lima; Oliveira, Marcelo T; Deana, Alessandro M

    2016-09-01

    In this study is presented the correlation between laser speckle images and enamel hardness loss. In order to shift the enamel hardness, a dental demineralization model was applied to 32 samples of vestibular bovine teeth. After they were cleaned, cut and polished, the samples were divided into 4 groups and immersed in 30ml of a cola-based soft drink for 10, 20, 30 and 40min twice a day for 7 consecutive days with half the surface protected by two layers of nail polish. Each sample was analyzed by Knoop hardness and laser speckle imaging. Pearson's correlation analysis demonstrated that the laser speckle image technique presents a strong correlation with the hardness loss of the enamel (r=0.7085, phardness. Copyright © 2016. Published by Elsevier B.V.

  19. Zoom Reconstruction Tool: Evaluation of Image Quality and Influence on the Diagnosis of Root Fracture.

    Science.gov (United States)

    Queiroz, Polyane Mazucatto; Santaella, Gustavo Machado; Capelozza, Ana Lúcia Alvares; Rosalen, Pedro Luiz; Freitas, Deborah Queiroz; Haiter-Neto, Francisco

    2018-01-03

    This study evaluated the image quality and the diagnosis of root fractures when using the Zoom Reconstruction tool (J Morita, Kyoto, Japan). A utility wax phantom with a metal sample inside was used for objective evaluation, and a mandible with 27 single-rooted teeth (with and without obturation and with and without vertical or horizontal fractures) was used for diagnostic evaluation. The images were acquired in 3 protocols: protocol 1, field of view (FOV) of 4 × 4 cm and a voxel size of 0.08 mm; protocol 2, FOV of 10 × 10 cm and a voxel size of 0.2 mm; and protocol 3, Zoom Reconstruction of images from protocol 2 (FOV of 4 × 4 cm and a voxel size of 0.08 mm). The objective evaluation was achieved by measuring the image noise, and the diagnosis of fractures was performed by 3 evaluators. The area under the receiver operating characteristic curve was used to calculate accuracy, and analysis of variance compared the accuracy and image quality of the protocols. Regarding quality, protocol 1 was superior to protocol 2 (P 228) for the diagnosis of a vertical root fracture in filled teeth. The Zoom Reconstruction tool allows better accuracy for vertical root fracture detection in filled teeth, making it possible to obtain a higher-resolution image from a lower-resolution examination without having to expose the patient to more radiation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Defect detection for tire laser shearography image using curvelet transform based edge detector

    Science.gov (United States)

    Zhang, Yan; Li, Tao; Li, Qingling

    2013-04-01

    In this work, we approach the analysis and segmentation of tire laser shearography image by combining curvelet transform and Canny edge detection to detect defects in tire surface. We rely on the feature of curvelet that edge features can be represented with larger coefficients in sub-highest frequency band thus we modify curvelet coefficients to enhance image edges before further edge detection operations. Only the most important coefficients that contribute to rebuild edges are selected to reconstruct the image while most small coefficients are cut off. This would result in a reconstructed image more convenient for edge detection and the time complexity is reduced on the other hand. Furthermore, the eight-neighborhood bilinear interpolation non-maximum suppression method is introduced to improve the performance of Canny edge detection. Our detection results are evaluated on test laser shearography images using the proposed scheme and compare favorably to the state-of-the-art methods.

  1. Research on signal processing techniques for a chirped amplitude modulation imaging laser radar

    Science.gov (United States)

    Wang, Yang; Wang, Qianqian; Wang, Haiwei

    2010-11-01

    Due to some significant advantages such as high space resolution, three-dimensional imagery (including intensity image and range image) acquiring, and so on, an imaging laser radar is helpful to improve the correct recognition ratio being as a sensor in a target recognition system. A chirped amplitude modulation imaging ladar is based on the frequency modulation/continuous wave (FM/cw) technique. The target range is calculated by measuring the frequency difference between projected and returned laser signal. The design of a signal processing system for a FM/cw imaging ladar is introduced in this paper, which includes an acquiring block, a memory block, a communication block, and a FFT processor. The performance of this system is analyzed in detail in this paper.

  2. IMAGING DIAGNOSIS-MAGNETIC RESONANCE IMAGING FEATURES OF CRANIOMANDIBULAR OSTEOPATHY IN AN AIREDALE TERRIER.

    Science.gov (United States)

    Matiasovic, Matej; Caine, Abby; Scarpante, Elena; Cherubini, Giunio Bruto

    2016-05-01

    An Airedale Terrier was presented for evaluation of depression and reluctance to be touched on the head. Magnetic resonance (MR) imaging of the head was performed. The images revealed bone lesions affecting the calvarium at the level of the coronal suture and left mandibular ramus, with focal cortical destruction, expansion, and reactive new bone formation. Skull lesions were hypointense on T1-weighted sequences, hyperintense on T2-weighted sequences, and showed an intense and homogeneous enhancement after gadolinium administration. Reactive new bone formation and periosteal proliferation were confirmed histopathologically. The clinical signs, imaging findings, and histopathological examination were consistent with craniomandibular osteopathy. © 2015 American College of Veterinary Radiology.

  3. Computerized digital image analysis: an aid for melanoma diagnosis--preliminary investigations and brief review.

    Science.gov (United States)

    Sober, A J; Burstein, J M

    1994-11-01

    Both digital imaging and epiluminescence microscopy hold promise for improved early detection of cutaneous melanoma. Several centers have been actively working in these areas during the past decade. These experiences and preliminary work based on the image capture of 83 pigmented lesions at our center using a prototype digital imaging system (SKINVIEW) are described. This system is based, in part, on the analysis of lesional morphologic features, such as shape, border, and radii. Histopathologic correlation was matched against these features to assess the efficacy of diagnosis. At our center, these parameters alone were not sufficient to discriminate between benign and malignant lesions, in part, because the melanomas were, in general, early lesions and many of the nevi were sufficiently clinically atypical to require removal for discrimination from melanoma. In addition, technical improvements in the image capturing and processing mechanism are needed. Rapid progress in this area is anticipated.

  4. Evaluation of the effectiveness of laser crust removal on granites by means of hyperspectral imaging techniques

    Science.gov (United States)

    Pozo-Antonio, J. S.; Fiorucci, M. P.; Ramil, A.; López, A. J.; Rivas, T.

    2015-08-01

    In this paper, we present a study of the application of the hyperspectral imaging technique in order to non-destructively evaluate the laser cleaning of the biogenic patina and the sulphated black crust developed on a fine-grained granite used in the construction of Cultural Heritage in NW Spain. The grained polymineral texture of the granite hinders the adjustment of laser irradiation parameters during the cleaning, and therefore the in situ process control. The cleaning was performed with a nanosecond pulsed Nd:YVO4 laser at 355 nm. A hyperspectral camera was used to in situ assess the effectiveness of cleaning by recording images of the rock surfaces before and during the laser treatment. Different analytical techniques were used to test the ability of the hyperspectral imaging technique to evaluate the cleaning process of the granite samples: optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM - EDX), Fourier transform infrared spectroscopy (FTIR) and spectrophotometer colour measurements. The results indicated that hyperspectral imaging technique is a reliable and more affordable technique to in situ evaluate the process of laser cleaning of the biogenic patina and the sulphated black crust in fine-grained granites.

  5. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Workman, Jonathan B [Los Alamos National Laboratory; Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk [Los Alamos National Laboratory; Gautier, Donald C [Los Alamos National Laboratory; Montgomery, David S [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  6. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection.

    Science.gov (United States)

    Rostami, Ali; Karanis, Panagiotis; Fallahi, Shirzad

    2018-01-12

    Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.

  7. Diagnosis of hepatic hemangioma by parametric imaging using sonazoid-enhanced US.

    Science.gov (United States)

    Wakui, Noritaka; Takayama, Ryuji; Kamiyama, Naohisa; Takahashi, Masayoshi; Shiozawa, Kazue; Nagai, Hidenari; Watanabe, Manabu; Ishii, Koji; Iida, Kazunari; Igarashi, Yoshinori; Sumino, Yasukiyo

    2011-01-01

    Comparison of Parametric Imaging (PI) using Sonazoid-enhanced ultrasonography (US) and microflow imaging (MFI) to determine the possibility of hepatic hemangioma diagnosis using PI. Twenty-two hepatic hemangioma nodules (mean±SD diameter: 31.6±19.1mm) undergoing Sonazoid-enhanced US between February 2008 and March 2009. After Sonazoid-enhanced US, COMMUNE ultrasonographic image analysis software was used for analysis of tumor imaging dynamics in the vascular phase using PI and MFI. In PI, 0s was set as the time contrast agent reached the tumor. Imaging within the tumor after 0s was color-coded according to time, and the images were displayed in color. In MFI, 0s was set as the time contrast agent reached the tumor. The path of microbubbles as it flowed through blood vessels was superimposed on the original B-mode images. Three trained physicians used these methods to analyze tumor imaging dynamics. All physicians concluded all cases were hepatic hemangioma regardless of method used. However, compared to MFI, PI allowed determination of more detailed blood flow dynamics in high-flow hepatic hemangioma, where blood flow speed was faster than in normal hepatic hemangioma. It is possible to diagnose hepatic hemangioma using PI using sonazoid-enhanced US.

  8. Diagnosis of pericardial cysts using diffusion weighted magnetic resonance imaging: A case series

    Directory of Open Access Journals (Sweden)

    Mousavi Negareh

    2011-09-01

    Full Text Available Abstract Introduction Congenital pericardial cysts are benign lesions that arise from the pericardium during embryonic development. The diagnosis is based on typical imaging features, but atypical locations and signal magnetic resonance imaging sequences make it difficult to exclude other lesions. Diffusion-weighted magnetic resonance imaging is a novel method that can be used to differentiate tissues based on their restriction to proton diffusion. Its use in differentiating pericardial cysts from other pericardial lesions has not yet been described. Case presentation We present three cases (a 51-year-old Caucasian woman, a 66-year-old Caucasian woman and a 77-year-old Caucasian woman with pericardial cysts evaluated with diffusion-weighted imaging using cardiac magnetic resonance imaging. Each lesion demonstrated a high apparent diffusion coefficient similar to that of free water. Conclusion This case series is the first attempt to investigate the utility of diffusion-weighted magnetic resonance imaging in the assessment of pericardial cysts. Diffusion-weighted imaging may be a useful noninvasive diagnostic tool for pericardial cysts when conventional imaging findings are inconclusive.

  9. Magnetic resonance imaging and ultrasonography in the diagnosis of temporomandibular joint internal derangements: A comparative study

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Chalkoo

    2015-01-01

    Full Text Available Objective: The purpose of the study was to compare high-resolution ultrasonography (HR-USG with magnetic resonance imaging (MRI in the diagnosis of temporomandibular joint (TMJ internal derangements. Materials and Methods: The study was conducted on 11 subjects with a chief complaint of TMJ discomfort, who were diagnosed as having TMJ internal derangement according to clinical diagnostic criteria (CDC for temporomandibular disorders (TMD. A control group of eight subjects who had no sign of TMJ internal derangement were also examined. Imaging modalities (MRI and HR-USG were performed on all the subjects (cases and controls. Results: Strong agreement was found between MRI and HR-USG in the diagnosis of TMJ internal derangements (k = 0.918, P < 0.001. Conclusion: MRI and HR-USG can be used to define the disc and its displacement.

  10. Limitations of indium leukocyte imaging for the diagnosis of spine infections

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, J.L.; Brown, M.L.; McLeod, R.; Fitzgerald, R.H. Jr. (Mayo Clinic and Mayo Foundation, Rochester, MN (USA))

    1991-02-01

    The usefulness of indium-111 white blood cell (WBC) scintigraphy in the detection of spine sepsis was studied in 22 patients who had open or percutaneous biopsies for microbiologic diagnosis. The indium images in 18 patients with vertebral infection were falsely negative in 15 (83%) and truly positive in 3 (17%). All four patients with negative cultures and histology had true-negative scans. The indium-111 WBC imaging results yielded a sensitivity of 17%, a specificity of 100%, and an accuracy rate of 31%. Prior antibiotic therapy was correlated with a high incidence of false-negative scans and photon-deficient indium-111 WBC uptake. The usefulness of indium-111 WBC scintigraphy for the diagnosis of vertebral infection may be limited to those patients who have not been treated with antibiotics previously.

  11. Influence of laser beam’s image-plane position on geometry of through-holes in percussion-drilled glass using excimer laser

    Directory of Open Access Journals (Sweden)

    Ales Babnik

    2013-01-01

    Full Text Available We study the influence of a laser beam’s image-plane position relative to the processed surface for the deep-hole, laser-microdrilling of soda-lime glass with an excimer 308-nm laser and mask-projection technique. It is demonstrated that the image-plane position has a significant influence on the hole’s tapering and final depth. Holes with exit diameters up to 10 times smaller than the mask-image diameter are produced in the case of perforation during the appropriate process phase determined by the formation of the plasma plume.

  12. Advanced Imaging in Chagas Heart Disease: From Diagnosis to Sudden Death Risk Stratification.

    Directory of Open Access Journals (Sweden)

    Rodríguez-Zanella H

    2016-01-01

    Full Text Available Chagas disease constitutes a relatively prevalent condition in Latin America and is increasing worldwide, with a wide spectrum of clinical subsets. Imaging modalities are critical for adequate diagnosis, staging and prognosis of this entity. Currently Echocardiography and Cardiac Magnetic Resonance are the most valuable techniques for this purpose. Evidence for both modalities has increased in the last years, as the role of advanced techniques such as Speckle Tracking Echocardiography has been explored. We aim to review the evidence of advanced imaging in the spectrum of patients with Chagas Heart Disease.

  13. [Methodological study on digitalization of tongue image in traditional Chinese medical diagnosis].

    Science.gov (United States)

    Zhou, Yue; Yang, Jie; Shen, Li

    2004-12-01

    This is a research aimed at proposing a computerized tongue analysis method based on computerized image processing for quantizing the tongue properties in traditional Chinese medical diagnosis. The chromatic algorithm and 2-D Gabor wavelet transformation are applied to segmenting tongue from original image. The statistical method is adopted in identifying the colors of each pixel, which are attributed to the tongue substance and coating respectively. Thickness of tongue coating is determined by energy of 2-D Gabor wavelet coefficients (GWTE). The distribution of GWTE and invariant moment algorithm are used to judge the tongue texture. The experiment result shows that all methods proposed in this paper are effective.

  14. Usefulness of dynamic MR imaging in the qualitative diagnosis of ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Joja, Ikuo; Okuno, Keiko; Notohara, Kenji; Kudo, Takafumi; Hiraki, Yoshio [Okayama Univ. (Japan). School of Medicine; Asakawa, Tohru

    1999-12-01

    The purpose of our study was to investigate the usefulness of dynamic MR imaging of ovarian tumors with solid components. Dynamic curves of signal intensities were analyzed in 72 patients with pathologically proven ovarian tumors. In order to evaluate the effects of contrast enhancement of the tumors, the t80 value was calculated from the time-intensity curve of each tumor. Based on t80 values, the time-intensity curves of the tumors could be classified into four types. We concluded that dynamic MR imaging is useful for the differential diagnosis of ovarian tumors. (author)

  15. Carotidynia: A Rare Diagnosis for Unilateral Neck Pain Revealed by Cross-Sectional Imaging

    Directory of Open Access Journals (Sweden)

    Corrado Santarosa

    2017-01-01

    Full Text Available Idiopathic carotidynia (IC is a rare and poorly understood syndrome consisting of unilateral neck pain, tenderness, and increased pulsations over the affected carotid bifurcation. A growing body of evidence supports the hypothesis that IC is a distinct clinicopathologic entity with characteristic imaging features. We report the case of a 34-year-old Caucasian male presenting with intense unilateral neck pain in the emergency setting. Computed tomography and ultrasonography revealed fusiform eccentric thickening of the ipsilateral carotid bifurcation without vessel narrowing. Contrast-enhanced magnetic resonance imaging depicted major perivascular enhancement without evidence of dissection. Further imaging and laboratory work-up excluded vasculitis. The diagnosis of IC was made. The patient was treated with nonsteroidal anti-inflammatory drugs and symptoms and imaging findings disappeared within a few weeks. Cross-sectional imaging allows not only ruling out IC mimickers but also making the correct diagnosis of this rare condition, in particular, as the clinical presentation of IC is often nonspecific.

  16. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Bhateja, Vikrant, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn; Moin, Aisha; Srivastava, Anuja [Shri Ramswaroop Memorial Group of Professional Colleges (SRMGPC), Lucknow, Uttar Pradesh 226028 (India); Bao, Le Nguyen [Duytan University, Danang 550000 (Viet Nam); Lay-Ekuakille, Aimé [Department of Innovation Engineering, University of Salento, Lecce 73100 (Italy); Le, Dac-Nhuong, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn [Duytan University, Danang 550000 (Viet Nam); Haiphong University, Haiphong 180000 (Viet Nam)

    2016-07-15

    Computer based diagnosis of Alzheimer’s disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer’s disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).

  17. In-vivo diagnosis and non-inasive monitoring of Imiquimod 5% cream for non-melanoma skin cancer using confocal laser scanning microscopy

    Science.gov (United States)

    Dietterle, S.; Lademann, J.; Röwert-Huber, H.-J.; Stockfleth, E.; Antoniou, C.; Sterry, W.; Astner, S.

    2008-10-01

    Basal cell carcinoma (BCC) is the most common cutaneous malignancy with increasing incidence rates worldwide. A number of established treatments are available, including surgical excision. The emergence of new non-invasive treatment modalities has prompted the development of non-invasive optical devices for therapeutic monitoring and evaluating treatment efficacy. This study was aimed to evaluate the clinical applicability of a fluorescence confocal laser scanning microscope (CFLSM) for non-invasive therapeutic monitoring of basal cell carcinoma treated with Imiquimod (Aldara®) as topical immune-response modifier. Eight participants with a diagnosis of basal cell carcinoma (BCC) were enrolled in this investigation. Sequential evaluation during treatment with Imiquimod showed progressive normalization of the confocal histomorphologic parameters in correlation with normal skin. Confocal laser scanning microscopy was able to identify characteristic features of BCC and allowed the visualization of therapeutic effects over time. Thus our results indicate the clinical applicability of CFLSM imaging to evaluate treatment efficacy in vivo and non-invasively.

  18. Dynamic imaging and hydrodynamics study of high velocity, laser ...

    Indian Academy of Sciences (India)

    Abstract. The main aim of the study of thin target foil–laser interaction experiments is to under- stand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow- graphy diagnostics developed for ...

  19. Evaluation of Thermal Imaging in the Diagnosis and Classification of Varicocele

    Directory of Open Access Journals (Sweden)

    Farshad Namdari

    2017-06-01

    Full Text Available Introduction: A varicocele is the abnormal dilation and tortuosity of venous plexus above the testicles. The pattern of abnormal heat distribution in the scrotum can be detected through thermal imaging, which is a distant, non-contact, and non-invasive method. The aim of the present study is to detect and grade varicocele. Materials and Methods: This study was conducted on 50 patients with high probability of varicocele, who referred to a hospital affiliated to the AJA University of Medical Sciences, Tehran, Iran. The evaluation procedure included thermal imaging, clinical diagnosis, and ultrasound test. The gold standard method was based on ultrasound examination. The thermal imaging was performed using a non-contact infrared camera. Results: This paper presented two methods for diagnosing and grading varicocele. The first method was based on the patterns and models of thermal asymmetry in the testicles (including three asymmetric and symmetric patterns. The second method was based on the temperature differences. The obtained results demonstrated that the use of temperature differences in the diagnosis of varicocele was better than the other proposed method. In addition, a temperature difference of 0.5°C in the pampiniform venous plexus was an important indicator for the diagnosis of varicocele using thermal imaging. The accuracy of thermography in grading varicocele was 76%.  Conclusion: According to the results of the study, thermography is a useful method for initial varicocele screening and can be applied as a supplement to other diagnostic techniques due to its low cost and lack of radiation exposure. Thermography was concluded to be a precise technique for the diagnosis of varicocele; however, its capability to determine the varicocele grading was comparatively low.

  20. Extra pulmonary sequestration with hemorrhage infection in a child: Preoperative imaging diagnosis and pathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Joo Ae; Goo, Hyun Woo [Dept. of Radiologyand Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    We describe a rare case of extralobar pulmonary sequestration with hemorrhagic infarction in a 10-year-old boy who presented with acute abdominal pain and fever. In our case, internal branching linear architecture, lack of enhancement in the peripheral portion of the lesion with internal hemorrhage, and vascular pedicle were well visualized on preoperative magnetic resonance imaging that led to successful preoperative diagnosis of extralobar pulmonary sequestration with hemorrhagic infarction probably due to torsion.

  1. Magnetic ressonance imaging in the diagnosis of Creutzfeldt-Jakob disease: report of two cases

    OpenAIRE

    Alan Peres Valente; Paula da Cunha Pinho; Leandro Tavares Lucato

    2015-01-01

    ABSTRACT Creutzfeldt-Jacob disease (CJD) is a rare condition caused by a pathogenic prion protein that evolves with rapidly progressive dementia and death. The clinical presentation may sometimes be misleading. Magnetic Resonance Imaging (MRI) aids diagnosis with patterns that can guide or confirm clinical hypotheses. Two cases of rapidly progressive dementia with ataxia, myoclonus and restricted diffusion on MRI in cortical/basal ganglia are presented to draw attention to CJD. RESUMO Doen...

  2. Magnetic ressonance imaging in the diagnosis of Creutzfeldt-Jakob disease: report of two cases

    Directory of Open Access Journals (Sweden)

    Alan Peres Valente

    Full Text Available ABSTRACT Creutzfeldt-Jacob disease (CJD is a rare condition caused by a pathogenic prion protein that evolves with rapidly progressive dementia and death. The clinical presentation may sometimes be misleading. Magnetic Resonance Imaging (MRI aids diagnosis with patterns that can guide or confirm clinical hypotheses. Two cases of rapidly progressive dementia with ataxia, myoclonus and restricted diffusion on MRI in cortical/basal ganglia are presented to draw attention to CJD.

  3. [Magnetic resonance imaging in the diagnosis of retrosternal anterior diaphragmatic hernia in an adult man].

    Science.gov (United States)

    Dancewicz, Maciej; Kowalewski, Janusz; Kusiak, Iwona; Pepliński, Janusz; Szabo-Moskal, Jadwiga

    2006-01-01

    The study presents a case report of a retrosternal anterior diaphragmatic hernia in a 46-year-old man presented with abdominal pain, nausea, dyspnoea and treated previously as for chronic pancreatitis. A strong suspicion of the diaphragmatic hernia was generated after chest radiograph. However, the exact diagnosis of the Morgagni hernia was established by magnetic resonance imaging. The hernia was repaired through thoracic incision. The postoperative course proved uneventful: the patient was discharged from the hospital 10 days after surgical intervention.

  4. Prenatal diagnosis of 'isolated' Dandy-Walker malformation: imaging findings and prenatal counselling.

    Science.gov (United States)

    Guibaud, Laurent; Larroque, Anne; Ville, Dorothée; Sanlaville, Damien; Till, Marianne; Gaucherand, Pascal; Pracros, Jean-Pierre; des Portes, Vincent

    2012-02-01

    The purpose of this article is to improve prenatal imaging diagnosis and counselling for cases of 'isolated' Dandy-Walker malformation (DWM) in the light of recent literature, which has demonstrated a potential good clinical and intellectual outcome of fetuses presenting with DWM characterised by partial vermian agenesis (identification of two fissures and three lobes) and absence of associated anatomical anomalies. This is a retrospective observational study of six consecutive prenatal cystic posterior fossa malformations, diagnosed as DWM, encountered in a national reference centre for posterior fossa malformations over a 2-year period. In all cases, DWM was diagnosed as isolated (without any associated central nervous system or extra-central nervous system malformations and normal standard karyotype). Despite good-quality imaging, including fetal magnetic resonance imaging (MRI), prenatal analysis of the vermis was impossible because of limited identification of fissuration and lobulation. In three cases, a cytogenetic anomaly was found, including 6p subtelomeric deletion (n = 2) and partial 4 qter deletion associated with partial 7p trisomy (n = 1). One fetus with 6p deletion was terminated. In four of the five postnatal cases, MRI confirmed the diagnosis of DWM but provided only limited information for vermian analysis. In one case, postnatal MRI showed a large Blake's pouch cyst with rotated but complete vermis associated with a marked mass effect on the distal part of the tentorium. Of the four babies born with postnatal diagnosis of DWM, all required ventriculoperitoneal shunting because of early postnatal hydrocephalus. When fetal MRI is necessary to exclude additional cerebral lesions in the diagnosis of DWM, we highlight the inaccuracy of magnetic resonance for anatomical analysis of the vermis. We also emphasise the potential high incidence of subtelomeric anomalies in isolated DWM, especially 6p deletion. In the postnatal period, paediatricians should

  5. Needle-based confocal laser endomicroscopy for the diagnosis of pancreatic cystic lesions: an international external interobserver and intraobserver study (with videos).

    Science.gov (United States)

    Krishna, Somashekar G; Brugge, William R; Dewitt, John M; Kongkam, Pradermchai; Napoleon, Bertrand; Robles-Medranda, Carlos; Tan, Damien; El-Dika, Samer; McCarthy, Sean; Walker, Jon; Dillhoff, Mary E; Manilchuk, Andrei; Schmidt, Carl; Swanson, Benjamin; Shah, Zarine K; Hart, Phil A; Conwell, Darwin L

    2017-10-01

    EUS-guided needle-based confocal laser endomicroscopy (nCLE) characteristics of common types of pancreatic cystic lesions (PCLs) have been identified; however, surgical histopathology was available in a minority of cases. We sought to assess the performance characteristics of EUS nCLE for differentiating mucinous from non-mucinous PCLs in a larger series of patients with a definitive diagnosis. Six endosonographers (nCLE experience >30 cases each) blinded to all clinical data, reviewed nCLE images of PCLs from 29 patients with surgical (n = 23) or clinical (n = 6) correlation. After 2 weeks, the assessors reviewed the same images in a different sequence. A tutorial on available and novel nCLE image patterns was provided before each review. The performance characteristics of nCLE and the κ statistic for interobserver agreement (IOA, 95% confidence interval [CI]), and intraobserver reliability (IOR, mean ± standard deviation [SD]) for identification of nCLE image patterns were calculated. Landis and Koch interpretation of κ values was used. A total of 29 (16 mucinous PCLs, 13 non-mucinous PCLs) nCLE patient videos were reviewed. The overall sensitivity, specificity, and accuracy for the diagnosis of mucinous PCLs were 95%, 94%, and 95%, respectively. The IOA and IOR (mean ± SD) were κ = 0.81 (almost perfect); 95% CI, 0.71-0.90; and κ = 0.86 ± 0.11 (almost perfect), respectively. The overall specificity, sensitivity, and accuracy for the diagnosis of serous cystadenomas (SCAs) were 99%, 98%, and 98%, respectively. The IOA and IOR (mean ± SD) for recognizing the characteristic image pattern of SCA were κ = 0.83 (almost perfect); 95% CI, 0.73-0.92; and κ = 0.85 ± 0.11 (almost perfect), respectively. EUS-guided nCLE can provide virtual histology of PCLs with a high degree of accuracy and inter- and intraobserver agreement in differentiating mucinous versus non-mucinous PCLs. These preliminary results support larger multicenter studies to evaluate EUS n

  6. [Clinical Manifestations, Imaging Features and Pathological Diagnosis of Primary Central Nervous System Lymphoma].

    Science.gov (United States)

    Wang, Hai-Li; Zhang, Zhong-Mian

    2018-02-01

    To analyze the clinical manifestations, imaging features and pathological diagnosis of patients with primary central nervous system lymphoma. The clinical data of 50 patients with primary central nervous system lymphoma admitted in our hospital from February 2016 to February 2008 were retrospectively analyzed. All the patients were examined by routine pathology and immunohistochemical staining. Among them 15 cases were examined by MVD and VEGF, and the other 15 glioma patients were taken as control group. In 50 patients, the disease was chronic, and the main clinical symptoms were numbness, cognitive disorder and disorder of consciousnessetc. Brain CT image of 33 cases (66%) mainly showed slightly higher density; 46 cases (92%) had head enhanced MRI lesions; 38 cases (76%) showed intracranial multiple lesions, 36 cases (72%) showed invasion of supratentorial, and 11 cases showed midline invasion (22%). Pathological diagnosis confirmed 47 cases (94%) with diffuse large B cell lymphoma, the proliferation index of the Ki-67(90%) in 41 case (82%) was higher. Primary central nervous system lymphoma is manifested with diffuse large B cell lymphoma as its main type, or with complicated clinical manifestations, lacks of features and certain imaging characteristics, but a few patients are easily pathologically misdiagnosed, therefore the biopsy is necessary for diagnosis of these patients.

  7. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images.

    Science.gov (United States)

    Kowal, Marek; Filipczuk, Paweł; Obuchowicz, Andrzej; Korbicz, Józef; Monczak, Roman

    2013-10-01

    Prompt and widely available diagnostics of breast cancer is crucial for the prognosis of patients. One of the diagnostic methods is the analysis of cytological material from the breast. This examination requires extensive knowledge and experience of the cytologist. Computer-aided diagnosis can speed up the diagnostic process and allow for large-scale screening. One of the largest challenges in the automatic analysis of cytological images is the segmentation of nuclei. In this study, four different clustering algorithms are tested and compared in the task of fast nuclei segmentation. K-means, fuzzy C-means, competitive learning neural networks and Gaussian mixture models were incorporated for clustering in the color space along with adaptive thresholding in grayscale. These methods were applied in a medical decision support system for breast cancer diagnosis, where the cases were classified as either benign or malignant. In the segmented nuclei, 42 morphological, topological and texture features were extracted. Then, these features were used in a classification procedure with three different classifiers. The system was tested for classification accuracy by means of microscopic images of fine needle breast biopsies. In cooperation with the Regional Hospital in Zielona Góra, 500 real case medical images from 50 patients were collected. The acquired classification accuracy was approximately 96-100%, which is very promising and shows that the presented method ensures accurate and objective data acquisition that could be used to facilitate breast cancer diagnosis. © 2013 Elsevier Ltd. All rights reserved.

  8. How to Differentiate Borderline Hepatic Nodules in Hepatocarcinogenesis: Emphasis on Imaging Diagnosis.

    Science.gov (United States)

    Park, Hyun Jeong; Choi, Byung Ihn; Lee, Eun Sun; Park, Sung Bin; Lee, Jong Beum

    2017-06-01

    Rapid advances in liver imaging have improved the evaluation of hepatocarcinogenesis and early diagnosis and treatment of hepatocellular carcinoma (HCC). In this situation, detection of early-stage HCC in its development is important for the improvement of patient survival and optimal treatment strategies. Because early HCCs are considered precursors of progressed HCC, precise differentiation between a dysplastic nodule (DN), especially a high-grade DN, and early HCC is important. In clinical practice, these nodules are frequently called "borderline hepatic nodules." This article discusses radiological and pathological characteristics of these borderline hepatic nodules and offers an understanding of multistep hepatocarcinogenesis by focusing on the descriptions of the imaging changes in the progression of DN and early HCC. Detection and accurate diagnosis of borderline hepatic nodules are still a challenge with contrast enhanced ultrasonography, CT, and MRI with extracellular contrast agents. However, gadoxetic acid-enhanced MRI may be useful for improving the diagnosis of these borderline nodules. Since there is a net effect of incomplete neoangiogenesis and decreased portal venous flow in the early stage of hepatocarcinogenesis, borderline hepatic nodules commonly show iso- or hypovascularity. Therefore, precise differentiation of these nodules remains a challenging issue. In MRI using hepatobiliary contrast agents, signal intensity of HCCs on hepatobiliary phase (HBP) is regarded as a potential imaging biomarker. Borderline hepatic nodules are seen as nonhypervascular and hypointense nodules on the HBP, which is important for predicting tumor behavior and determining appropriate therapeutic strategies.

  9. Near-IR imaging of erbium laser ablation with a water spray

    Science.gov (United States)

    Darling, Cynthia L.; Maffei, Marie E.; Fried, William A.; Fried, Daniel

    2008-02-01

    Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm1. Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO2 and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water.

  10. [Neuromuscular dynamic scapular winging: Clinical, electromyographic and magnetic resonance imaging diagnosis].

    Science.gov (United States)

    Nguyen, Christelle; Guérini, Henri; Roren, Alexandra; Zauderer, Jennifer; Vuillemin, Valérie; Seror, Paul; Ouaknine, Michaël; Palazzo, Clémence; Bourdet, Christopher; Pluot, Étienne; Roby-Brami, Agnès; Drapé, Jean-Luc; Rannou, François; Poiraudeau, Serge; Lefèvre-Colau, Marie-Martine

    2015-12-01

    Dyskinesia of the scapula is a clinical diagnosis and includes all disorders affecting scapula positioning and movement whatever its etiology. Scapular winging is a subtype of scapular dyskinesia due to a dynamic prominence of the medial border of the scapula (DSW) secondary to neuromuscular imbalance in the scapulothoracic stabilizer muscles. The two most common causes of DSW are microtraumatic or idiopathic lesions of the long thoracic nerve (that innerves the serratus anterior) or the accessory nerve (that innerves the trapezius). Diagnosis of DSW is clinical and electromyographic. Use of magnetic resonance imaging (MRI) could be of interest to distinguish lesion secondary to a long thoracic nerve from accessory nerve and to rule out scapular dyskinesia related to other shoulder disorders. Causal neuromuscular lesion diagnosis in DSW is challenging. Clinical examinations, combined with scapular MRI, could help to their specific diagnosis, determining their stage, ruling out differential diagnosis and thus give raise to more targeted treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Comparison of the diagnostic ability of blue laser imaging magnification versus pit pattern analysis for colorectal polyps.

    Science.gov (United States)

    Nakano, Arihiro; Hirooka, Yoshiki; Yamamura, Takeshi; Watanabe, Osamu; Nakamura, Masanao; Funasaka, Kohei; Ohno, Eizaburo; Kawashima, Hiroki; Miyahara, Ryoji; Goto, Hidemi

    2017-04-01

    Background and study aims There have been few evaluations of the diagnostic ability of new narrow band light observation blue laser imaging (BLI). The present prospective study compared the diagnostic ability of BLI magnification and pit pattern analysis for colorectal polyps. Patients and methods We collected lesions prospectively, and the analysis of images was made by two endoscopists, retrospectively. A total of 799 colorectal polyps were examined by BLI magnification and pit pattern analysis at Nagoya University Hospital. The Hiroshima narrow-band imaging classification was used for BLI. Differentiation of neoplastic from non-neoplastic lesions and diagnosis of deeply invasive submucosal cancer (dSM) were compared between BLI magnification and pit pattern analysis. Type C2 in the Hiroshima classification was evaluated separately, because application of this category as an index of the depth of cancer invasion was considered difficult. Results We analyzed 748 colorectal polyps, excluding 51 polyps that were inflammatory polyps, sessile serrated adenoma/polyps, serrated adenomas, advanced colorectal cancers, or other lesions. The accuracy of differential diagnosis between neoplastic and non-neoplastic lesions was 98.4 % using BLI magnification and 98.7 % with pit pattern analysis. In addition, the diagnostic accuracy of BLI magnification and pit pattern analysis for dSM for cancer was 89.5 % and 92.1 %, respectively. When type C2 lesions were excluded, the diagnostic accuracy of BLI for dSM was 95.9 %. The 18 type C2 lesions comprised 1 adenoma, 9 intramucosal or slightly invasive submucosal cancers, and 8 dSM. Pit pattern analysis allowed accurate diagnosis of the depth of invasion in 13 lesions (72.2 %). Conclusions Most colorectal polyps could be diagnosed accurately by BLI magnification without pit pattern analysis, but we should add pit pattern analysis for type C2 lesions in the Hiroshima classification.

  12. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    Science.gov (United States)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  13. Imaging of Phospholipids in Formalin Fixed Rat Brain Sections by Matrix Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Carter, Claire L.; McLeod, Cameron W.; Bunch, Josephine

    2011-11-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a valuable tool for the analysis of molecules directly from tissue. Imaging of phospholipids is gaining widespread interest, particularly as these lipids have been implicated in a variety of pathologic processes. Formalin fixation (FF) is the standard protocol used in histology laboratories worldwide to preserve tissue for analysis, in order to aid in the diagnosis and prognosis of diseases. This study assesses MALDI imaging of phospholipids directly in formalin fixed tissue, with a view to future analysis of archival tissue. This investigation proves the viability of MALDI-MSI for studying the distribution of lipids directly in formalin fixed tissue, without any pretreatment protocols. High quality molecular images for several phosphatidylcholine (PC) and sphingomyelin (SM) species are presented. Images correspond well with previously published data for the analysis of lipids directly from freshly prepared tissue. Different ionization pathways are observed when analyzing fixed tissue compared with fresh, and this change was found to be associated with formalin buffers employed in fixation protocols. The ability to analyze lipids directly from formalin fixed tissue opens up new doors in the investigation of disease profiles. Pathologic specimens taken for histologic investigation can be analyzed by MALDI-MS to provide greater information on the involvement of lipids in diseased tissue.

  14. Portable LED-induced autofluorescence imager with a probe of L shape for oral cancer diagnosis

    Science.gov (United States)

    Huang, Ting-Wei; Lee, Yu-Cheng; Cheng, Nai-Lun; Yan, Yung-Jhe; Chiang, Hou-Chi; Chiou, Jin-Chern; Mang, Ou-Yang

    2015-08-01

    The difference of spectral distribution between lesions of epithelial cells and normal cells after excited fluorescence is one of methods for the cancer diagnosis. In our previous work, we developed a portable LED Induced autofluorescence (LIAF) imager contained the multiple wavelength of LED excitation light and multiple filters to capture ex-vivo oral tissue autofluorescence images. Our portable system for detection of oral cancer has a probe in front of the lens for fixing the object distance. The shape of the probe is cone, and it is not convenient for doctor to capture the oral image under an appropriate view angle in front of the probe. Therefore, a probe of L shape containing a mirror is proposed for doctors to capture the images with the right angles, and the subjects do not need to open their mouse constrainedly. Besides, a glass plate is placed in probe to prevent the liquid entering in the body, but the light reflected from the glass plate directly causes the light spots inside the images. We set the glass plate in front of LED to avoiding the light spots. When the distance between the glasses plate and the LED model plane is less than the critical value, then we can prevent the light spots caused from the glasses plate. The experiments show that the image captured with the new probe that the glasses plate placed in the back-end of the probe has no light spots inside the image.

  15. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Science.gov (United States)

    Meng, Qingqing; Li, Zheng

    2013-01-01

    Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained. PMID:23533377

  16. [Optimization of digital chest radiography image post-processing in diagnosis of pneumoconiosis].

    Science.gov (United States)

    Sheng, Bing-yong; Mao, Ling; Zhou, Shao-wei; Shi, Jin

    2013-11-01

    To establish the optimal image post-processing parameters for digital chest radiography as preliminary research for introducing digital radiography (DR) to pneumoconiosis diagnosis in China. A total of 204 pneumoconiosis patients and 31 dust-exposed workers were enrolled as the subjects in this research. Film-screen radiography (FSR) and DR images were taken for all subjects. DR films were printed after raw images were processed and parameters were altered using DR workstation (GE Healthcare, U.S.A.). Image gradations, lung textures, and the imaging of thoracic vertebra were evaluated by pneumoconiosis experts, and the optimal post-processing parameters were selected. Optical density was measured for both DR films and FSR films. For the DR machine used in this research, the contrast adjustment (CA) and brightness adjustment (BA) were the main parameters that determine the brightness and gray levels of images. The optimal ranges for CA and BA were 115%∼120% and 160%∼165%, respectively. The quality of DR chest films would be optimized when tissue contrast was adjusted to a maximum of 0.15, edge to a minimum of 1, and both noise reduction and tissue equalization to0.The failure rate of chest DR (0.4%) was significantly lower than that of chest FSR (17%) (P image post-processing on DR machine purchased from GE Healthcare, the DR chest films can meet all requirements for the quality of chest X-ray films in the Chinese diagnostic criteria for pneumoconiosis.

  17. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2010-02-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  18. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  19. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  20. Confocal laser endomicroscopy for in vivo diagnosis of Barrett's oesophagus and associated neoplasia: a pilot study conducted in a single Italian centre.

    Science.gov (United States)

    Trovato, Cristina; Sonzogni, Angelica; Ravizza, Davide; Fiori, Giancarla; Tamayo, Darina; De Roberto, Giuseppe; de Leone, Annalisa; De Lisi, Stefania; Crosta, Cristiano

    2013-05-01

    Diagnosis and management of Barrett's oesophagus are controversial. Technical improvements in real-time recognition of intestinal metaplasia and neoplastic foci provide the chance for more effective target biopsies. Confocal laser endomicroscopy allows to analyze living cells during endoscopy. To assess the diagnostic accuracy, inter- and intra-observer variability of endomicroscopy for detecting in vivo neoplasia (dysplasia and/or early neoplasia) in Barrett's oesophagus. Prospective pilot study. Patients referred for known Barrett's oesophagus were screened. Endomicroscopy was carried out in a circular fashion, every 1-2 cm, on the whole columnar-lined distal oesophagus. Visible lesions, when present, were analyzed first. Targeted biopsies were taken. Confocal images were classified according to confocal Barrett classification. Endomicroscopic and histological findings were compared. Forty-eight out of 50 screened patients underwent endomicroscopy. Visible lesions were observed in 3 patients. In a per-biopsy analysis, Barrett's-oesophagus-associated neoplasia could be predicted with an accuracy of 98.1%. The agreement between endomicroscopic and histological results was substantial (κ=0.76). This study suggests that endomicroscopy can provide in vivo diagnosis of Barrett's oesophagus-associated neoplasia. Because it allows for the study of larger surface areas of the mucosa, endomicroscopy may lead to significant improvements in the in vivo screening and surveillance of Barrett's oesophagus. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    S Jeyalakshmi

    2017-05-01

    Full Text Available Plants, for their growth and survival, need 13 mineral nutrients. Toxicity or deficiency in any one or more of these nutrients affects the growth of plant and may even cause the destruction of the plant. Hence, a constant monitoring system for tracking the nutrient status in plants becomes essential for increase in production as well as quality of yield. A diagnostic system using digital image processing would diagnose the deficiency symptoms much earlier than human eyes could recognize. This will enable the farmers to adopt appropriate remedial action in time. This paper focuses on the review of work using image processing techniques for diagnosing nutrient deficiency in plants.

  2. Ion pinhole imaging diagnostics on fast ion source in femtosecond laser plasma of cluster targets.

    Science.gov (United States)

    Makarov, Sergey; Pikuz, Sergey; Faenov, Anatoly; Pikuz, Tatiana; Fukuda, Yuji; Skobelev, Igor; Zhvaniya, Irina; Varzar, Sergey; Kando, Masaki; Kodama, Ryousuke

    2017-07-10

    The spatial configuration of the ion source generated under femtosecond laser interaction with clusters is investigated. While intense laser pulses (36 fs, 60 mJ, intensity of 4 × 1017 W/cm2) propagated in CO2 cluster (~0.22 μm in diameter) media, the shape of the obtained plasma ion source was registered for the first time by means of pinhole imaging method. The remarkable decrease in fast ion yield in the vicinity of the assumed best laser focus near the gas cluster jet axis is observed. Such observed anisotropy of the ion source is suggested to originate from the influence of the laser prepulse destroying clusters in advance to the arrival of the main pulse. The assumption is confirmed by optical shadowgraphy images of the plasma channel and is important for further development of an efficient laser-plasma-based fast ion source. Following the observed geometry of the ion source, the laser intensity limit allowing to accelerate ions to ~100 keV energy range was estimated.

  3. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  4. MRI diagnosis of ACL bundle tears: value of oblique axial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Alex W.H.; Griffith, James F.; Hung, Esther H.Y. [Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR (China); Law, Kan Yip; Yung, Patrick S.H. [Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR (China)

    2013-02-15

    To investigate the diagnostic accuracy of oblique axial intermediate weighting MR imaging in detecting partial thickness anterior cruciate ligament (ACL) bundle tears. The study protocol was approved by the institutional ethics committee. Sixty-one subjects (43 male, 18 female; mean age 27.4 years; range 9 to 57 years) with clinically suspected ACL tear or meniscal tear between September 2009 and January 2011 were studied with MRI and arthroscopy. Detection of partial tear for the ACL as a whole and for each ACL bundle by protocol A (standard orthogonal sequences) and protocol B (standard orthogonal sequences plus oblique axial intermediate weighted imaging) was compared in a blinded fashion. Performance characteristics for protocol A and protocol B were compared using sensitivity, specificity, accuracy and ROC curves. A two-tailed p value of <0.05 indicated statistical significance. Fifteen (24.6%) normal, 15 (24.6%) partial and 31 complete tears were diagnosed by arthroscopy. Sensitivity, specificity and accuracy of protocol A for the diagnosis of partial tear of the ACL was 33%, 87% and 74%, while for protocol B the values were 87%, 87% and 87% respectively. The area under the curve (AUC) for the diagnosis of partial ACL tear and individual bundle tear was higher for protocol B, although this difference did not reach statistical significance (p > 0.05). The addition of oblique axial imaging to standard MR imaging improves diagnostic accuracy for detecting partial tears of the ACL as well as individual bundle tears of the ACL. (orig.)

  5. Whole Body Magnetic Resonance Imaging in the Diagnosis of Parsonage Turner Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Twair, A.; Nelson, E.; Brennan, D.; Eustace, S. [Cappagh National Orthopaedic Hospital Finglas, Dublin (Ireland)

    2004-08-01

    Purpose: To describe magnetic resonance imaging (MRI) findings in patients with suspected Parsonage Turner syndrome and to emphasize the value of an additional whole body MR scan to improve specificity of this diagnosis. Material and Methods: Three patients with proven Parsonage Turner syndrome referred for conventional MRI of the shoulder girdle and additional whole body turboSTIR MRI were included for study. Results: In each case, imaging revealed edema in the muscles of the shoulder girdle. Whole body turboSTIR MRI scan confirmed localized unilateral changes in each case improving specificity and confidence in the diagnosis of Parsonage Turner syndrome in each case. Conclusion: Whole body turboSTIR MR imaging is a useful diagnostic tool in the evaluation of patients with suspected Parsonage Turner syndrome. Inclusion of the brain, neck, brachial plexus, and extremity musculature at whole body imaging allows differentiation from polymyositis and elimination of additional causes of shoulder girdle pain and weakness including gross lesions in the brain, neck, and brachial plexus by a single non-invasive study.

  6. Mechanical Fault Diagnosis Using Color Image Recognition of Vibration Spectrogram Based on Quaternion Invariable Moment

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2015-01-01

    Full Text Available Automatic extraction of time-frequency spectral image of mechanical faults can be achieved and faults can be identified consequently when rotating machinery spectral image processing technology is applied to fault diagnosis, which is an advantage. Acquired mechanical vibration signals can be converted into color time-frequency spectrum images by the processing of pseudo Wigner-Ville distribution. Then a feature extraction method based on quaternion invariant moment was proposed, combining image processing technology and multiweight neural network technology. The paper adopted quaternion invariant moment feature extraction method and gray level-gradient cooccurrence matrix feature extraction method and combined them with geometric learning algorithm and probabilistic neural network algorithm, respectively, and compared the recognition rates of rolling bearing faults. The experimental results show that the recognition rates of quaternion invariant moment are higher than gray level-gradient cooccurrence matrix in the same recognition method. The recognition rates of geometric learning algorithm are higher than probabilistic neural network algorithm in the same feature extraction method. So the method based on quaternion invariant moment geometric learning and multiweight neural network is superior. What is more, this algorithm has preferable generalization performance under the condition of fewer samples, and it has practical value and acceptation on the field of fault diagnosis for rotating machinery as well.

  7. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  8. Multiphoton Laser Microscopy and Fluorescence Lifetime Imaging for the Evaluation of the Skin

    Directory of Open Access Journals (Sweden)

    Stefania Seidenari

    2012-01-01

    Full Text Available Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM, is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.

  9. Hyperspectral laser-induced flourescence imaging for assessing internal quality of kiwi fruit

    Science.gov (United States)

    Liu, Muhua; Liao, Yifeng; Zhou, Xiaomei

    2008-03-01

    This paper describes an experimental study on non-destructive methods for predicting quality of kiwifruits using fluorescence imaging. The method is based on hyperspectral laser-induced fluorescence imaging in the region between 700 and 1110 nm, and estimates the kiwifruits quality in terms of internal sugar content and firmness. A station for acquiring hyperspectral laser-induced fluorescence imaging has been designed and carefully choosing each component. The fluorescence imaging acquired by the station has been pre-processed by selecting regions of interest (ROIs) of 50 100 × pixels. A line regressing prediction method estimates the quality of kiwifruit samples. The results obtained in classification show that the station and prediction model enables the correct discrimination of kiwifruits internal sugar content and firmness with a percentage of r= 98.5%, SEP=0.4 and r=99.9%, SEP=0.62.

  10. A Video Rate Confocal Laser Beam Scanning Light Microscope Using An Image Dissector

    Science.gov (United States)

    Goldstein, Seth R.; Hubin, Thomas; Rosenthal, Scott; Washburn, Clayton

    1989-12-01

    A video rate confocal reflected light microscope with no moving parts has been developed. Return light from an acousto-optically raster scanned laser beam is imaged from the microscope stage onto the photocathode of an Image Dissector Tube (IDT). Confocal operation is achieved by appropriately raster scanning with the IDT x and y deflection coils so as to continuously "sample" that portion of the photocathode that is being instantaneously illuminated by the return image of the scanning laser spot. Optimum IDT scan parameters and geometric distortion correction parameters are determined under computer control within seconds and are then continuously applied to insure system alignment. The system is operational and reflected light images from a variety of objects have been obtained. The operating principle can be extended to fluorescence and transmission microscopy.

  11. Space-based laser active imaging simulation system based on HLA

    Science.gov (United States)

    Han, Yi; Sun, Huayan; Li, Yingchun

    2013-09-01

    This paper adopts the High Level Architecture to develop the space-based laser active imaging distribution simulation software system, and designs the system framework which contains three-step workflow including modeling, experimental and analysis. The paper puts forward the general needs of the simulation system first, then builds the simulation system architecture based on HLA and constructs 7 simulation federal members. The simulation system has the primary functions of space target scattering characteristic analysis, imaging simulation, image processing and target recognition, and system performance analysis and so on, and can support the whole simulation process. The results show that the distribution simulation system can meet the technical requirements of the space-based laser imaging simulation.

  12. Automatic Detection of Vehicles Using Intensity Laser and Anaglyph Image

    Directory of Open Access Journals (Sweden)

    Hideo Araki

    2006-12-01

    Full Text Available In this work is presented a methodology to automatic car detection motion presents in digital aerial image on urban area using intensity, anaglyph and subtracting images. The anaglyph image is used to identify the motion cars on the expose take, because the cars provide red color due the not homology between objects. An implicit model was developed to provide a digital pixel value that has the specific propriety presented early, using the ratio between the RGB color of car object in the anaglyph image. The intensity image is used to decrease the false positive and to do the processing to work into roads and streets. The subtracting image is applied to decrease the false positives obtained due the markings road. The goal of this paper is automatically detect motion cars presents in digital aerial image in urban areas. The algorithm implemented applies normalization on the left and right images and later form the anaglyph with using the translation. The results show the applicability of proposed method and it potentiality on the automatic car detection and presented the performance of proposed methodology.

  13. Laser Illuminated Imaging: Multiframe Beam Tilt Tracking and Deconvolution Algorithm

    Science.gov (United States)

    2013-03-01

    Atmosphere, Bellingham WA: SPIE Optical Engineering Press, 1990. [9] J. W. Goodman , Introduction to Fourier Optics , Greenwood Village CO: Roberts...quality. 6 Figure 1: Basic LADAR system concept Using Fourier optics , a basic model for the image obtained by the system, is described...square with N pixels in each direction. (1) Equation 1: Basic Fourier optics predicted image The PSF or the

  14. Confocal Laser Endomicroscopy for the Diagnosis of Urothelial Carcinoma in the Bladder and the Upper Urinary Tract: Protocols for Two Prospective Explorative Studies.

    Science.gov (United States)

    Liem, Esmee Iml; Freund, Jan Erik; Baard, Joyce; de Bruin, D Martijn; Laguna Pes, M Pilar; Savci-Heijink, C Dilara; van Leeuwen, Ton G; de Reijke, Theo M; de la Rosette, Jean Jmch

    2018-02-07

    Visual confirmation of a suspicious lesion in the urinary tract is a major corner stone in diagnosing urothelial carcinoma. However, during cystoscopy (for bladder tumors) and ureterorenoscopy (for tumors of the upper urinary tract) no real-time histopathologic information can be obtained. Confocal laser endomicroscopy (CLE) is an optical imaging technique that allows for in vivo high-resolution imaging and may allow real-time tumor grading of urothelial lesions. The primary objective of both studies is to develop descriptive criteria for in vivo CLE images of urothelial carcinoma (low-grade, high-grade, carcinoma in situ) and normal urothelium by comparing CLE images with corresponding histopathology. In these two prospective clinical trials, CLE imaging will be performed of suspicious lesions and normal tissue in the urinary tract during surgery, prior to resection or biopsy. In the bladder study, CLE will be performed in 60 patients using the Cystoflex UHD-R probe. In the upper urinary tract study, CLE will be performed in 25 patients during ureterorenoscopy, who will undergo radical treatment (nephroureterectomy or segmental ureter resection) thereafter. All CLE images will be analyzed frame by frame by three independent, blinded observers. Histopathology and CLE-based diagnosis of the lesions will be evaluated. Both studies comply with the IDEAL stage 2b recommendations. Presently, recruitment of patients is ongoing in both studies. Results and outcomes are expected in 2018. For development of CLE-based diagnosis of urothelial carcinoma in the bladder and the upper urinary tract, a structured conduct of research is required. This study will provide more insight in tissue-specific CLE criteria for real-time tumor grading of urothelial carcinoma. Confocal Laser Endomicroscopy: ClinicalTrials.gov NCT03013894; https://clinicaltrials.gov /ct2/show/NCT03013894?term=NCT03013894&rank=1 (Archived by WebCite at http://www.webcitation.org/6wiPZ378I); and Dutch Central

  15. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  16. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  17. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles.

    Science.gov (United States)

    Huber, R; Wojtkowski, M; Taira, K; Fujimoto, J; Hsu, K

    2005-05-02

    We demonstrate a high-speed, frequency swept, 1300 nm laser source for frequency domain reflectometry and OCT with Fourier domain/swept-source detection. The laser uses a fiber coupled, semiconductor amplifier and a tunable fiber Fabry-Perot filter. We present scaling principles which predict the maximum frequency sweep speed and trade offs in output power, noise and instantaneous linewidth performance. The use of an amplification stage for increasing output power and for spectral shaping is discussed in detail. The laser generates ~45 mW instantaneous peak power at 20 kHz sweep rates with a tuning range of ~120 nm full width. In frequency domain reflectometry and OCT applications the frequency swept laser achieves 108 dB sensitivity and ~10 mum axial resolution in tissue. We also present a fast algorithm for real time calibration of the fringe signal to equally spaced sampling in frequency for high speed OCT image preview.

  18. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics

    Directory of Open Access Journals (Sweden)

    Marion Semmler

    2017-06-01

    Full Text Available Recently, we reported on the in vivo application of a miniaturized measuring device for 3D visualization of the superior vocal fold vibrations from high-speed recordings in combination with a laser projection unit (LPU. As a long-term vision for this proof of principle, we strive to integrate the further developed laserendoscopy as a diagnostic method in daily clinical routine. The new LPU mainly comprises a Nd:YAG laser source (532 nm/CW/2 ω and a diffractive optical element (DOE generating a regular laser grid (31 × 31 laser points that is projected on the vocal folds. By means of stereo triangulation, the 3D coordinates of the laser points are reconstructed from the endoscopic high-speed footage. The new design of the laserendoscope constitutes a compromise between robust image processing and laser safety regulations. The algorithms for calibration and analysis are now optimized with respect to their overall duration and the number of required interactions, which is objectively assessed using binary classifiers. The sensitivity and specificity of the calibration procedure are increased by 40.1% and 22.3%, which is statistically significant. The overall duration for the laser point detection is reduced by 41.9%. The suggested semi-automatic reconstruction software represents an important stepping-stone towards potential real time processing and a comprehensive, objective diagnostic tool of evidence-based medicine.

  19. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    Science.gov (United States)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  20. Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA

    Science.gov (United States)

    Gallas, Brandon D.; Chan, Heang-Ping; D’Orsi, Carl J.; Dodd, Lori E.; Giger, Maryellen L.; Gur, David; Krupinski, Elizabeth A.; Metz, Charles E.; Myers, Kyle J.; Obuchowski, Nancy A.; Sahiner, Berkman; Toledano, Alicia Y.; Zuley, Margarita L.

    2017-01-01

    This report summarizes the Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and Computer-Assist Devices. The purpose of the workshop was to gather information on the current state of the science and facilitate consensus development on statistical methods and study designs for the evaluation of imaging devices to support US Food and Drug Administration submissions. Additionally, participants expected to identify gaps in knowledge and unmet needs that should be addressed in future research. This summary is intended to document the topics that were discussed at the meeting and disseminate the lessons that have been learned through past studies of imaging and computer-aided detection and diagnosis device performance. PMID:22306064

  1. Tibial tunnel and pretibial cysts following ACL graft reconstruction: MR imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ghazikhanian, Varand [Brigham and Women' s Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Beltran, Javier [Maimonides Medical Center, Brooklyn, NY (United States); Nikac, Violeta [Maimonides Medical Center, Department of Radiology, Brooklyn, NY (United States); Bencardino, Jenny T. [NYU Hospital for Joint Diseases, New York, NY (United States); Feldman, Marina

    2012-11-15

    Tunnel cyst formation is a rare complication after anterior cruciate ligament reconstruction, usually occurring 1-5 years post-operatively, which may occasionally be symptomatic. There are multiple proposed theories regarding the etiology of tunnel cysts. Theories include necrosis, foreign-body reaction, lack of complete graft osteo-integration, and intravasation of articular fluid. It is important to know if the tunnel cysts are communicating or not communicating with the joint, as surgical management may be different. Imaging characteristics on magnetic resonance images (MRI) include tibial tunnel widening, multilocular or unilocular cyst formation in the graft or tibial tunnel, with possible extension into the pretibial space, intercondylar notch, and/or popliteal fossa. The MR imaging differential diagnosis of tibial tunnel cysts includes infection, foreign-body granuloma, or tibial screw extrusion. Importantly, to the best of our knowledge, graft failure or instability has not been reported in association with tibial tunnel cysts. (orig.)

  2. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    Science.gov (United States)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  3. Real time imaging analysis using a terahertz quantum cascade laser and a microbolometer focal plane array

    OpenAIRE

    Buchanan, Kevin William.

    2008-01-01

    It is widely published that the terahertz (THz) spectral range has potential for imaging in the fields of military and security applications. The Sensors Research Laboratory previously achieved real-time imaging of concealed objects using a 1mW quantum cascade laser (QCL) and an uncooled vanadium oxide/silicon nitride based microbolometer. This thesis introduces an amorphous silicon based microbolometer with improved NETD in the 8-12 micrometer infrared spectral range. The QCL is usually oper...

  4. Real-time magnetic resonance imaging texture characterization of necrosis during laser interstitital thermotherapy procedures

    Science.gov (United States)

    Betrouni, N.; Lopes, R.; Colin, P.; Mordon, S.

    2010-02-01

    This paper aims to describe the development of a method to monitor laser interstitial thermo therapy by MR images. The method is based on the texture analysis using fractal geometry features of the images to estimate the size of the induced necrosis. The method was validated by comparing the results to macroscopic measurements. It demonstrates the ability to achieve good estimation of the necrosis in ex-vivo experimentations involving pig liver and in vivo experimentations done on tumors grown on Copenhagen rats.

  5. Description of fiber optical parametric oscillators as laser sources applied to cellular imaging

    OpenAIRE

    Goulart-Pailo, Christiane

    2011-01-01

    The integration of lasers has advanced imaging and quantitative analysis in the study of biological problems. In this document we describe a class of light sources known as fiber optical parametric oscillators (FOPO). The wavelength tunability of the FOPO system is a fundamental feature for the cellular imaging techniques in perspective. The FOPO converts the wave frequency provided by the pump into two other wave frequencies as its output. The difference between two waves frequencies produce...

  6. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Pape, S L; Rygg, J R; Shepherd, R

    2010-05-11

    Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only measure proton energy distribution with high resolution, but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and non-imaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  7. Diagnostics of plasma plume produced by laser ablation using ICCD imaging and transient electrical probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Mihaila, I; Ursu, C; Gegiuc, A; Popa, G, E-mail: ghpopa@uaic.r [Department of Physics, Faculty of Physics, ' Alexandru Ioan Cuza' University, 700506, Iasi (Romania)

    2010-01-01

    The dynamics of transient plasmas generated by high-fluence nanosecond laser ablation has been investigated by means of fast ICCD imaging and electrical probes in transient regime. Measurements have been carried out on plasmas produced in vacuum (5x 10{sup -6} Torr residual pressure) by a pulsed Excimer laser (20 ns, XeCl, {lambda}= 308 nm) irradiating stainless steel targets. Two plasma expansion velocities were estimated, one from probe measurements and another from recorded ICCD images. Electron plasma temperature (0.1 - 0.3 eV) and density (1 - 5x10{sup 11} cm{sup -3}) were measured by electrical probes for a laser radiation power density of 6x10{sup 8} W/cm{sup 2}.

  8. Pseudo Prune Belly Syndrome: Diagnosis Revealed by Imaging – A Case Report and Brief Review

    Science.gov (United States)

    Grover, Hemal; Sethi, Sanjay; Garg, Jatin; Ahluwalia, Amrit Pal

    2017-01-01

    Summary Background Prune Belly Syndrome (PBS) is a rare entity, usually found in male neonates. It comprises complex urinary tract anomalies, bilateral undescended testis and absence of anterior abdominal wall muscles. Patients with unilateral abdominal wall deficiency, unilateral undescended testis and female neonates with abdominal wall laxity are classified as Pseudo Prune Belly syndrome (PPBS). Reports on PPBS do not highlight the radiological and imaging characteristics of this syndrome and the current literature on the role of newer imaging modalities, such as Magnetic Resonance Imaging (MRI), remains relatively sparse. We describe a new case of PPBS and emphasize the role of imaging, especially ultrasound and MRI in the process of diagnosis and briefly review the subject. Case Report A male infant of four months of age was referred for evaluation of left-sided cryptorchidism. Clinical examination revealed laxity of the left abdominal wall. Ultrasound examination of the abdomen, pelvis and scrotum was performed together with routine laboratory tests. Ultrasound examination was followed by intravenous urography, voiding cysto-urethrography and MRI of the abdomen. On ultrasound, the left testis was located in the inguinal canal, the right kidney was slightly enlarged and the left kidney could not be localized. Ultrasound appearances suggested chronic obstruction in the urinary bladder. Intravenous urography, voiding cysto-urethrography and MRI confirmed the ultrasound diagnosis and also revealed a left dysplastic kidney with a dilated, tortuous ureter. Clinical and imaging features were consistent with pseudo prune belly syndrome (PPBS). Conclusions We report a new occurrence of PPBS, a rare entity. The imaging approach for a comprehensive evaluation of the renal system in PPBS, especially with MRI, is emphasized. PMID:28580040

  9. Pseudo Prune Belly Syndrome: Diagnosis Revealed by Imaging - A Case Report and Brief Review.

    Science.gov (United States)

    Grover, Hemal; Sethi, Sanjay; Garg, Jatin; Ahluwalia, Amrit Pal

    2017-01-01

    Prune Belly Syndrome (PBS) is a rare entity, usually found in male neonates. It comprises complex urinary tract anomalies, bilateral undescended testis and absence of anterior abdominal wall muscles. Patients with unilateral abdominal wall deficiency, unilateral undescended testis and female neonates with abdominal wall laxity are classified as Pseudo Prune Belly syndrome (PPBS). Reports on PPBS do not highlight the radiological and imaging characteristics of this syndrome and the current literature on the role of newer imaging modalities, such as Magnetic Resonance Imaging (MRI), remains relatively sparse. We describe a new case of PPBS and emphasize the role of imaging, especially ultrasound and MRI in the process of diagnosis and briefly review the subject. A male infant of four months of age was referred for evaluation of left-sided cryptorchidism. Clinical examination revealed laxity of the left abdominal wall. Ultrasound examination of the abdomen, pelvis and scrotum was performed together with routine laboratory tests. Ultrasound examination was followed by intravenous urography, voiding cysto-urethrography and MRI of the abdomen. On ultrasound, the left testis was located in the inguinal canal, the right kidney was slightly enlarged and the left kidney could not be localized. Ultrasound appearances suggested chronic obstruction in the urinary bladder. Intravenous urography, voiding cysto-urethrography and MRI confirmed the ultrasound diagnosis and also revealed a left dysplastic kidney with a dilated, tortuous ureter. Clinical and imaging features were consistent with pseudo prune belly syndrome (PPBS). We report a new occurrence of PPBS, a rare entity. The imaging approach for a comprehensive evaluation of the renal system in PPBS, especially with MRI, is emphasized.

  10. Multimodal optical imager for inner ear hearing loss diagnosis (Conference Presentation)

    Science.gov (United States)

    Park, Jesung; Maguluri, Gopi N.; Zhao, Youbo; Iftimia, Nicusor V.

    2017-02-01

    Sensorineural hearing loss (SNHL), which typically originates in the cochlea, is the most common otologic problem caused by aging and noise trauma. The cochlea, a delicate and complex biological mechanosensory transducer in the inner ear, has been extensively studied with the goal of improving diagnosis of SNHL. However, the difficulty associated with accessing the cochlea and resolving the microstructures that facilitate hearing within it in a minimally-invasive way has prevented us from being able to assess the pathology underlying SNHL in humans. To address this problem we investigated the ability of a multimodal optical system that combines optical coherence tomography (OCT) and single photon autofluorescence imaging (AFI) to enable visualization and evaluation of microstructures in the cochlea. A laboratory OCT/AFI imager was built to acquire high resolution OCT and single photon fluorescence images of the cochlea. The imager's ability to resolve diagnostically-relevant details was evaluated in ears extracted from normal and noise-exposed mice. A prototype endoscopic OCT/AFI imager was developed based on a double-clad fiber approach. Our measurements show that the multimodal OCT/AFI imager can be used to evaluate structural integrity in the mouse cochlea. Therefore, we believe that this technology is promising as a potential clinical evaluation tool, and as a technique for guiding otologic surgeries such as cochlear implant surgery.

  11. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging.

    Science.gov (United States)

    Garcia-Hernandez, Jose Juan; Gomez-Flores, Wilfrido; Rubio-Loyola, Javier

    2016-01-01

    Medical images (MI) are relevant sources of information for detecting and diagnosing a large number of illnesses and abnormalities. Due to their importance, this study is focused on breast ultrasound (BUS), which is the main adjunct for mammography to detect common breast lesions among women worldwide. On the other hand, aiming to enhance data security, image fidelity, authenticity, and content verification in e-health environments, MI watermarking has been widely used, whose main goal is to embed patient meta-data into MI so that the resulting image keeps its original quality. In this sense, this paper deals with the comparison of two watermarking approaches, namely spread spectrum based on the discrete cosine transform (SS-DCT) and the high-capacity data-hiding (HCDH) algorithm, so that the watermarked BUS images are guaranteed to be adequate for a computer-aided diagnosis (CADx) system, whose two principal outcomes are lesion segmentation and classification. Experimental results show that HCDH algorithm is highly recommended for watermarking medical images, maintaining the image quality and without introducing distortion into the output of CADx. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Design of a decision support system, trained on GPU, for assisting melanoma diagnosis in dermatoscopy images

    Science.gov (United States)

    Glotsos, Dimitris; Kostopoulos, Spiros; Lalissidou, Stella; Sidiropoulos, Konstantinos; Asvestas, Pantelis; Konstandinou, Christos; Xenogiannopoulos, George; Konstantina Nikolatou, Eirini; Perakis, Konstantinos; Bouras, Thanassis; Cavouras, Dionisis

    2015-09-01

    The purpose of this study was to design a decision support system for assisting the diagnosis of melanoma in dermatoscopy images. Clinical material comprised images of 44 dysplastic (clark's nevi) and 44 malignant melanoma lesions, obtained from the dermatology database Dermnet. Initially, images were processed for hair removal and background correction using the Dull Razor algorithm. Processed images were segmented to isolate moles from surrounding background, using a combination of level sets and an automated thresholding approach. Morphological (area, size, shape) and textural features (first and second order) were calculated from each one of the segmented moles. Extracted features were fed to a pattern recognition system assembled with the Probabilistic Neural Network Classifier, which was trained to distinguish between benign and malignant cases, using the exhaustive search and the leave one out method. The system was designed on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. Results showed that the designed system discriminated benign from malignant moles with 88.6% accuracy employing morphological and textural features. The proposed system could be used for analysing moles depicted on smart phone images after appropriate training with smartphone images cases. This could assist towards early detection of melanoma cases, if suspicious moles were to be captured on smartphone by patients and be transferred to the physician together with an assessment of the mole's nature.

  13. Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology

    Science.gov (United States)

    Mukhopadhyay, Sanjay; Feldman, Michael D.; Abels, Esther; Ashfaq, Raheela; Beltaifa, Senda; Cacciabeve, Nicolas G.; Cathro, Helen P.; Cheng, Liang; Cooper, Kumarasen; Dickey, Glenn E.; Gill, Ryan M.; Heaton, Robert P.; Kerstens, René; Lindberg, Guy M.; Malhotra, Reenu K.; Mandell, James W.; Manlucu, Ellen D.; Mills, Anne M.; Mills, Stacey E.; Moskaluk, Christopher A.; Nelis, Mischa; Patil, Deepa T.; Przybycin, Christopher G.; Reynolds, Jordan P.; Rubin, Brian P.; Saboorian, Mohammad H.; Salicru, Mauricio; Samols, Mark A.; Sturgis, Charles D.; Turner, Kevin O.; Wick, Mark R.; Yoon, Ji Y.; Zhao, Po

    2018-01-01

    Most prior studies of primary diagnosis in surgical pathology using whole slide imaging (WSI) versus microscopy have focused on specific organ systems or included relatively few cases. The objective of this study was to demonstrate that WSI is noninferior to microscopy for primary diagnosis in surgical pathology. A blinded randomized noninferiority study was conducted across the entire range of surgical pathology cases (biopsies and resections, including hematoxylin and eosin, immunohistochemistry, and special stains) from 4 institutions using the original sign-out diagnosis (baseline diagnosis) as the reference standard. Cases were scanned, converted to WSI and randomized. Sixteen pathologists interpreted cases by microscopy or WSI, followed by a wash-out period of ≥4 weeks, after which cases were read by the same observers using the other modality. Major discordances were identified by an adjudication panel, and the differences between major discordance rates for both microscopy (against the reference standard) and WSI (against the reference standard) were calculated. A total of 1992 cases were included, resulting in 15,925 reads. The major discordance rate with the reference standard diagnosis was 4.9% for WSI and 4.6% for microscopy. The difference between major discordance rates for microscopy and WSI was 0.4% (95% confidence interval, −0.30% to 1.01%). The difference in major discordance rates for WSI and microscopy was highest in endocrine pathology (1.8%), neoplastic kidney pathology (1.5%), urinary bladder pathology (1.3%), and gynecologic pathology (1.2%). Detailed analysis of these cases revealed no instances where interpretation by WSI was consistently inaccurate compared with microscopy for multiple observers. We conclude that WSI is noninferior to microscopy for primary diagnosis in surgical pathology, including biopsies and resections stained with hematoxylin and eosin, immunohistochemistry and special stains. This conclusion is valid across a

  14. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    Science.gov (United States)

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-02

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI.

  15. Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images

    NARCIS (Netherlands)

    Kang, Z.; Li, J.; Zhang, L.; Zhao, Q.; Zlatanova, S.

    2009-01-01

    This paper presents a new approach to the automatic registration of terrestrial laser scanning (TLS) point clouds using panoramic reflectance images. The approach follows a two-step procedure that includes both pair-wise registration and global registration. The pair-wise registration consists of

  16. Effect of speckles on the depth sensitivity of laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Rajan, V.; Varghese, B.; van Leeuwen, T. G.; Steenbergen, W.

    2007-01-01

    A theoretical model is presented and experimentally validated that allows the prediction of the effect of speckles on the depth sensitivity of laser Doppler perfusion imaging. It is shown that the influence of speckles on depth sensitivity is large. In particular the sensitivity to particle motion

  17. 3-D Reconstruction of Neurons from Multichannel Confocal Laser Scanning Image Series

    NARCIS (Netherlands)

    Wouterlood, F.G.

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used

  18. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  19. Structured imaging technique in the gynecologic office for the diagnosis of abnormal uterine bleeding.

    Science.gov (United States)

    Dueholm, Margit; Hjorth, Ina Marie D

    2017-04-01

    The aim in the diagnosis of abnormal uterine bleeding (AUB) is to identify the bleeding cause, which can be classified by the PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system. In a gynecologic setting, the first step is most often to identify structural abnormalities (PALM causes). Common diagnostic options for the identification of the PALM include ultrasonography, endometrial sampling, and hysteroscopy. These options alone or in combination are sufficient for the diagnosis of most women with AUB. Contrast sonography with saline or gel infusion, three-dimensional ultrasonography, and magnetic resonance imaging may be included. The aim of this article is to describe how a simple structured transvaginal ultrasound can be performed and implemented in the common gynecologic practice to simplify the diagnosis of AUB and determine when additional invasive investigations are required. Structured transvaginal ultrasound for the identification of the most common endometrial and myometrial abnormalities and the most common ultrasound features are described. Moreover, situations where magnetic resonance imaging may be included are described. This article proposes a diagnostic setup in premenopausal women for the classification of AUB according to the PALM-COEIN system. Moreover, a future diagnostic setup for fast-track identification of endometrial cancer in postmenopausal women based on a structured evaluation of the endometrium is described. Copyright © 2016. Published by Elsevier Ltd.

  20. Utility of Magnetic Resonance Imaging for the Diagnosis of Appendicitis During Pregnancy: A Canadian Experience.

    Science.gov (United States)

    Burns, Michael; Hague, Cameron J; Vos, Patrick; Tiwari, Pari; Wiseman, Sam M

    2017-11-01

    The objective of the study was to evaluate the performance of magnetic resonance imaging (MRI) for the diagnosis of appendicitis during pregnancy. We conducted a retrospective review of all MRI scans performed at our institution, between 2006 and 2012, for the evaluation of suspected appendicitis in pregnant women. Details of the MRI scans performed were obtained from the radiology information system as well as details of any ultrasounds carried out for the same indication. Clinical and pathological data were obtained by retrospective chart review. The study population comprised 63 patients, and 8 patients underwent a second MRI scan during the same pregnancy. A total of 71 MRI scans were reviewed. The appendix was identified on 40 scans (56.3%). Sensitivity of MRI was 75% and specificity was 100% for the diagnosis of appendicitis in pregnant women. When cases with right lower quadrant inflammatory fat stranding or focal fluid, without appendix visualization, were classified as positive for appendicitis, MRI sensitivity increased to 81.3% but specificity decreased to 96.4%. MRI is sensitive and highly specific for the diagnosis of appendicitis during pregnancy and should be considered as a first line imaging study for this clinical presentation. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Accuracy of brain imaging in the diagnosis of idiopathic intracranial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Maralani, P.J. [Section of Neuroradiology, Department of Diagnostic Imaging, Ottawa Hospital, Ottawa, Ontario (Canada); Hassanlou, M. [Department of Ophthalmology, Ottawa Hospital, Ottawa, Ontario (Canada); Torres, C.; Chakraborty, S.; Kingstone, M. [Section of Neuroradiology, Department of Diagnostic Imaging, Ottawa Hospital, Ottawa, Ontario (Canada); Patel, V.; Zackon, D. [Department of Ophthalmology, Ottawa Hospital, Ottawa, Ontario (Canada); Bussiere, M., E-mail: mbussiere@toh.on.ca [Section of Neuroradiology, Department of Diagnostic Imaging, Ottawa Hospital, Ottawa, Ontario (Canada); Division of Neurology, Department of Medicine, Ottawa Hospital, Ottawa, Ontario (Canada)

    2012-07-15

    Aim: To investigate the accuracy of individual and combinations of signs on brain magnetic resonance imaging (MRI) and magnetic resonance venography (MRV) in the diagnosis of idiopathic intracranial hypertension (IIH). Materials and methods: This study was approved by the institutional research ethics board without informed consent. Forty-three patients and 43 control subjects were retrospectively identified. Each patient and control had undergone brain MRI and MRV. Images were anonymized and reviewed by three neuroradiologists, blinded to clinical data, for the presence or absence of findings associated with IIH. The severity of stenosis in each transverse sinus was graded and summed to generate a combined stenosis score (CSS). The sensitivity, specificity, and likelihood ratios (LR) were calculated for individual and combinations of signs. Results: Partially empty sella (specificity 95.3%, p < 0.0001), flattening of the posterior globes (specificity 100%, p < 0.0001), and CSS <4 (specificity 100%, p < 0.0001) were highly specific for IIH. The presence of one sign, or any combination, significantly increased the odds of a diagnosis of IIH (LR+ 18.5 to 46, p < 0.0001). Their absence, however, did not rule out IIH. Conclusions: Brain MRI with venography significantly increased the diagnostic certainty for IIH if there was no evidence of a mass, hydrocephalus, or sinus thrombosis and one of the following signs was present: flattening of the posterior globes, partially empty sella, CSS <4. However, absence of these signs did not exclude a diagnosis of IIH.

  2. The application of multimodal molecular imaging in the diagnosis of dementia with Lewy bodies

    Directory of Open Access Journals (Sweden)

    Zhong-bao GAO

    2017-01-01

    Full Text Available Objective To evaluate the value of multimodal molecular imaging in the diagnosis of dementia with Lewy bodies (DLB. Methods Five patients with probable DLB received detailed clinical data collection, neuropsychological tests, head MRI examination, 11C-methyl-N-2β-carbomethoxy-3β-(4-fluorophenyl-tropane (11C-β-CFT PET, 11C-Pittsburgh compound B (11C-PIB PET and 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET examination. Results Cognitive dysfunction and visual hallucinations were prominent symptoms in patients with DLB. 11C-β-CFT PET showed that the radioactive uptake significantly reduced in bilateral putamen and caudate nuclei. 11C-PIB PET showed increased radioactive retention in bilateral frontal, temporal, parietal and occipital cortex with various degrees. 18F-FDG PET showed glucose hypometabolism in bilateral parietal and occipital cortex. Conclusions Multimodal molecular imaging greatly improves the specificity of clinical diagnosis of DLB, and it is expected to achieve accurate diagnosis before death. DOI: 10.3969/j.issn.1672-6731.2017.01.009

  3. Segmentation, Splitting, and Classification of Overlapping Bacteria in Microscope Images for Automatic Bacterial Vaginosis Diagnosis.

    Science.gov (United States)

    Song, Youyi; He, Liang; Zhou, Feng; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu

    2017-07-01

    Quantitative analysis of bacterial morphotypes in the microscope images plays a vital role in diagnosis of bacterial vaginosis (BV) based on the Nugent score criterion. However, there are two main challenges for this task: 1) It is quite difficult to identify the bacterial regions due to various appearance, faint boundaries, heterogeneous shapes, low contrast with the background, and small bacteria sizes with regards to the image. 2) There are numerous bacteria overlapping each other, which hinder us to conduct accurate analysis on individual bacterium. To overcome these challenges, we propose an automatic method in this paper to diagnose BV by quantitative analysis of bacterial morphotypes, which consists of a three-step approach, i.e., bacteria regions segmentation, overlapping bacteria splitting, and bacterial morphotypes classification. Specifically, we first segment the bacteria regions via saliency cut, which simultaneously evaluates the global contrast and spatial weighted coherence. And then Markov random field model is applied for high-quality unsupervised segmentation of small object. We then decompose overlapping bacteria clumps into markers, and associate a pixel with markers to identify evidence for eventual individual bacterium splitting. Next, we extract morphotype features from each bacterium to learn the descriptors and to characterize the types of bacteria using an Adaptive Boosting machine learning framework. Finally, BV diagnosis is implemented based on the Nugent score criterion. Experiments demonstrate that our proposed method achieves high accuracy and efficiency in computation for BV diagnosis.

  4. Urinary tract infection in children: Diagnosis, treatment, imaging - Comparison of current guidelines.

    Science.gov (United States)

    Okarska-Napierała, M; Wasilewska, A; Kuchar, E

    2017-12-01

    Urinary tract infection (UTI) is a frequent disorder of childhood, yet the proper approach for a child with UTI is still a matter of controversy. The objective of this study was to critically compare current guidelines for the diagnosis and management of UTI in children, in light of new scientific data. An analysis was performed of the guidelines from: American Academy of Pediatrics (AAP), National Institute for Health and Care Excellence (NICE), Italian Society of Pediatric Nephrology, Canadian Paediatric Society (CPS), Polish Society of Pediatric Nephrology, and European Association of Urology (EAU)/European Society for Pediatric Urology (ESPU). Separate aspects of the approach for a child with UTI, including diagnosis, treatment and further imaging studies, were compared, with allowance for recent research in each field. The analyzed guidelines tried to reconcile recent reports about diagnosis, treatment, and further diagnostics in pediatric UTI with prior practices and opinions, and economic capabilities. There was still a lack of sufficient data to formulate coherent, unequivocal guidelines on UTI management in children, with imaging tests remaining the main area of controversy. As a result, the authors formulated their own proposal for UTI management in children. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  5. A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING

    OpenAIRE

    S Jeyalakshmi; R Radha

    2017-01-01

    Plants, for their growth and survival, need 13 mineral nutrients. Toxicity or deficiency in any one or more of these nutrients affects the growth of plant and may even cause the destruction of the plant. Hence, a constant monitoring system for tracking the nutrient status in plants becomes essential for increase in production as well as quality of yield. A diagnostic system using digital image processing would diagnose the deficiency symptoms much earlier than human eyes could recognize. This...

  6. Imaging spectroscopy of polymer ablation plasmas for laser propulsion applications

    Science.gov (United States)

    Jiao, Long; Truscott, Benjamin S.; Liu, Hao; Ashfold, Michael N. R.; Ma, Honghao

    2017-01-01

    A number of polymers have been proposed for use as propellants in space launch and thruster applications based on laser ablation, although few prior studies have either evaluated their performance at background pressures representative of the upper atmosphere or investigated interactions with ambient gases other than air. Here, we use spatially and temporally resolved optical emission spectroscopy to compare three polymers, poly(ethylene), poly(oxymethylene), and glycidyl azide polymer, ablated using a 532 nm, nanosecond pulsed laser under Ar and O2 at pressures below 1 Torr. Emission lines from neutrally and positively charged atoms are observed in each case, along with the recombination radiation at the interaction front between the plasma plume and the background gas. C2 radicals arise either as a direct fragmentation product or by a three-body recombination of C atoms, depending on the structure of the polymer backbone, and exhibit a rotational temperature of ≈5000 K. The Sedov-Taylor point blast model is used to infer the energy release relative to the incident laser energy, which for all polymers is greater in the presence of O2, as to be expected based on their negative oxygen balance. Under Ar, plume confinement is seen to enhance the self-reactivity of the ejecta from poly(oxymethylene) and glycidyl azide polymer, with maximum exothermicity close to 0.5 Torr. However, little advantage of the latter, widely considered one of the most promising energetic polymers, is apparent under the present conditions over the former, a common engineering plastic.

  7. Scanning laser topography and scanning laser polarimetry: comparing both imaging methods at same distances from the optic nerve head.

    Science.gov (United States)

    Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael

    2012-01-01

    To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.

  8. Autofluorescence imaging after selective RPE laser treatment in macular diseases and clinical outcome: a pilot study

    Science.gov (United States)

    Framme, C; Brinkmann, R; Birngruber, R; Roider, J

    2002-01-01

    Aim: Selective retinal pigment epithelium (RPE) laser treatment is a new technique which selectively damages the RPE while sparing the neural retina. One difficulty is the inability to visualise the laser lesions. The aim of the study was to investigate whether fundus autofluorescence (AF) is changed because of the RPE damage, and thus might be used for treatment control. Additionally, the clinical course of patients with various macular diseases was evaluated. Methods: 26 patients with macular diseases (diabetic maculopathy (DMP), soft drusen maculopathy (AMD), and central serous retinopathy (CSR)) were treated and followed up for at least 6 months. Treatment was performed with a train of repetitive short laser pulses (800 ns) of a frequency doubled Nd:YAG laser (parameters: 532 nm, 50 and 500 pulses at 100 and 500 Hz, retinal spot diameter 200 μm, pulse energies 75–175 μJ). AF was excited by 488 nm and detected by a barrier filter at 500 nm (HRA, Heidelberg Engineering, Germany). Patients were examined by ophthalmoscopy, fluorescein angiography, and autofluorescence measurements at various times after treatment (10 minutes, 1 hour, 1 and 6 weeks, 3, 6, and 12 months). Results: Fluorescein angiography showed leakage from the irradiated areas for about 1 week after treatment. None of the laser lesions was ophthalmoscopically visible during treatment. Identification of the lesions was possible by AF imaging showing an intensity decay in the irradiated area in 22 out of 26 patients, predominantly in patients with CSR and AMD. Lesions could be identified 10 minutes after treatment as hypoautofluorescent spots, which were more pronounced 1 hour later. During follow up the laser spots became hyperautofluorescent. In patients with DMP some AF images were less helpful because of diffuse oedema and larger retinal thickness. In these cases ICG angiography was able to confirm therapeutic success very well. Most of the patients have had benefit from the treatment, with

  9. Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy

    Science.gov (United States)

    Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin

    2017-07-01

    Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.

  10. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  11. Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements.

    Science.gov (United States)

    Syta, Olga; Wagner, Barbara; Bulska, Ewa; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Gonzalez, Jhanis; Russo, Richard

    2018-03-01

    Multilayered fragments of murals were used to evaluate the usefulness of two laser-based instrumental methods: laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) for elemental imaging of unique historic samples. Simultaneous LA/LIBS measurements with the use of 266nm Nd:YAG laser were performed on cross-sections of mediaeval Nubian objects with specific blue painting layers including either Egyptian blue (CaCuSi4O10) or lapis lazuli (Na8-10Al6Si6O24S2-4). A combined use of both laser-based methods allowed for clear distinguishing of blue pigments based on visual imaging of a chemical composition of heterogeneous archaeological inorganic samples. The identification of the pigments was confirmed with Raman spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Imaging in the diagnosis of cemento-ossifying fibroma: a case series.

    Science.gov (United States)

    Mithra, R; Baskaran, Pavitra; Sathyakumar, M

    2012-01-01

    Cemento-ossifying fibroma is a benign fibro-osseous lesion belonging to the same category as fibrous dysplasia and cementifying dysplasia. These are slow-growing lesions that are seen in the third and fourth decades of life. Both the ossifying fibroma and cemento-ossifying fibroma represent two extremes of the same disease process since histologically both contain bone and cementum. However, the term cemento-ossifying fibroma is justified on the basis of clinical and radiological correlation. Radiographs have become an essential tool in the diagnosis of lesions in the jaw, where the anatomy is complex. Nowadays, CT provides information for diagnosis as well as treatment planning. In this case series, we report three cases of cemento-ossifying fibroma that were histologically confirmed and discuss the imaging findings.

  13. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging.

    Science.gov (United States)

    Sinjab, Faris; Kong, Kenny; Gibson, Graham; Varma, Sandeep; Williams, Hywel; Padgett, Miles; Notingher, Ioan

    2016-08-01

    We describe a multifocal Raman micro-spectroscopy detection method based on a digital micromirror device, which allows for simultaneous "power-sharing" acquisition of Raman spectra from ad hoc sampling points. As the locations of the points can be rapidly updated in real-time via software control of a liquid-crystal spatial light modulator (LC-SLM), this technique is compatible with automated adaptive- and selective-sampling Raman spectroscopy techniques, the latter of which has previously been demonstrated for fast diagnosis of skin cancer tissue resections. We describe the performance of this instrument and show examples of multiplexed measurements on a range of test samples. Following this, we show the feasibility of reducing measurement time for power-shared multifocal Raman measurements combined with confocal auto-fluorescence imaging to provide guided diagnosis of tumours in human skin samples.

  14. Prenatal diagnosis of lipomyelomeningocele by ultrasound and magnetic resonance imaging (MRI).

    Science.gov (United States)

    Felekis, T; Korkontzelos, I; Akrivis, C; Tsirkas, P; Zagaliki, A

    2015-01-01

    The authors report a case of a lipomyelomengocele with tethered cord, revealed on prenatal ultrasonography and confirmed by fetal magnetic resonance imaging (MRI). A 32-year-old woman, gravida 1 para 1 underwent the routine second trimester prenatal ultrasound scan at 22(+5) weeks of gestation at the present hospital. The scan indicated an echoic semisolid subcutaneous mass covered by skin, posterior to the lumbosacral spinal canal of the fetus. Based on the findings indicating occult dysraphism, a fetal MRI examination was conducted, revealing that the mass was extending to the spinal cord, tethering the cauda equina. The diagnosis of lipomyelomeningocele was established. Lipomyelomeningocele is a form of closed neural tube defect with unclear predisposing factors. Its prevalence ranges between 0.3 and 0.6 per 10,000 live births. It leads to progressive conus tethering with associated neurological, urinary, and gastrointestinal deficits, demonstrating the importance of prenatal diagnosis.

  15. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System

    Science.gov (United States)

    Mobashsher, Ahmed Toaha; Abbosh, A. M.

    2016-11-01

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system’s operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D