WorldWideScience

Sample records for laser doppler perfusion

  1. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  2. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  3. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, AL; Steenbergen, W; Morales, F; Graaff, R; de Jong, ED; Elstrodt, JM; de Mul, FFM; Rakhorst, G

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  4. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; Morales, F.; Graaff, R.; de Jong, Ed; Elstrodt, J.M.; de Mul, F.F.M.; Rakhorst, G.

    2003-01-01

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  5. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  6. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring

    NARCIS (Netherlands)

    de Mul, FFM; Morales, F; Smit, AJ; Graaff, R

    To facilitate the quantitative analysis of post-occlusive reactive fiyper emia (POR11), measured with laser-Doppler perfusion monitoring (LDPM) on extremities, we present a flow model for the dynamics of the perfusion of the tissue during PORH, based on three parameters: two time constants (tau(1)

  7. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  8. Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth and healing time

    NARCIS (Netherlands)

    Kloppenberg, FWH; Beerthuizen, GIJM; ten Duis, H. J.

    Average perfusion in various burn wounds was assessed using Laser Doppler Imaging (LDI). The time necessary for a complete healing of the wound was compared to the results of the LDI measurements. A certain depth of burn was associated with a typical pattern of perfusion in the course of time. There

  9. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy

    Science.gov (United States)

    Chen, Defu; Ren, Jie; Wang, Ying; Gu, Ying

    2014-11-01

    Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.

  10. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    Energy Technology Data Exchange (ETDEWEB)

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-11-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year.

  11. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    International Nuclear Information System (INIS)

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-01-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year

  12. Modeling and processing of laser Doppler reactive hyperaemia signals

    Science.gov (United States)

    Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre

    2003-07-01

    Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.

  13. A comparative study of colour and perfusion between two different post surgical scars. Do the laser Doppler imager and the colorimeter measure the same features of a scar?

    Science.gov (United States)

    Mermans, J F; Peeters, W J; Dikmans, R; Serroyen, J; van der Hulst, R R J W; Van den Kerckhove, E

    2013-05-01

    The purpose of this study was to investigate the influence of different located post surgical scars on both perfusion and redness. The pattern of change and correlation between perfusion and redness of post surgical scars is also examined. In this study, we measured redness and perfusion of the abdominal and breast scar of 24 women undergoing breast reconstruction with Deep Inferior Epigastric Perforator Free Flap surgery with the Minolta Chromameter CR-400/410 and the Moor Instruments laser Doppler imager 12IR, respectively, at different intervals post-operatively. The laser Doppler imager gives significantly higher values for the abdominal compared with the breast scar. There was no consistent correlation found between perfusion and redness at the different test moments for both locations. The scores of both parameters were significantly associated after 9 months follow-up for both locations. Scars closed with higher mechanical force show higher perfusion and prolonged activity; and more redness is associated with more perfusion for both post surgical scars. Nevertheless, there was no consistent correlation found between these parameters making the laser Doppler imager and the Colorimeter still non-replaceable instruments. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  14. Impaired healing of cervical oesophagogastrostomies can be predicted by estimation of gastric serosal blood perfusion by laser Doppler flowmetry.

    Science.gov (United States)

    Pierie, J P; De Graaf, P W; Poen, H; Van der Tweel, I; Obertop, H

    1994-11-01

    To assess the value of relative blood perfusion of the gastric tube in prediction of impaired healing of cervical oesophagogastrostomies. Prospective study. University hospital, The Netherlands. Thirty patients undergoing transhiatal oesophagectomy and partial gastrectomy for cancer of the oesophagus or oesophagogastric junction, with gastric tube reconstruction and cervical oesophagogastrostomy. Operative measurement of gastric blood perfusion at four sites by laser Doppler flowmetry and perfusion of the same sites after construction of the gastric tube expressed as a percentage of preconstruction values. The relative perfusion at the most proximal site of the gastric tube was significantly lower than at the more distal sites (p = 0.001). Nine of 18 patients (50%) in whom the perfusion of the proximal gastric tube was less than 70% of preconstruction values developed an anastomotic stricture, compared with only 1 of 12 patients (8%) with a relative perfusion of 70% or more (p = 0.024). A reduction in perfusion of the gastric tube did not predict leakage. Impaired anastomotic healing is unlikely if relative perfusion is 70% or more of preconstruction values. Perfusion of less than 70% partly predicts the occurrence of anastomotic stricture, but leakage cannot be predicted. Factors other than blood perfusion may have a role in the process of anastomotic healing.

  15. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    Science.gov (United States)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  16. Laser Doppler flowmetry evaluation of gingival recovery response after laser treatment

    Science.gov (United States)

    Todea, Carmen; Cânjǎu, Silvana; Dodenciu, Dorin; Miron, Mariana I.; Tudor, Anca; Bǎlǎbuc, Cosmin

    2013-06-01

    This study was performed in order to evaluate in vivo the applicability of Laser Doppler Flowmetry (LDF) in recording the gingival blood flow and to assess the changes of gingival blood flow following gingival reshaping performed with Er:YAG and 980 nm diode lasers. The LDF evaluation was performed on 20 anterior teeth, which underwent reshaping of gingiva, corresponding to 5 female patients (4 anterior teeth/patient), aged between 20 and 35. One part of the mouth was treated with Er:YAG laser (LP, VLP modes, 140 - 250 mJ, 10 - 20 Hz, using cylindrical sapphire tips) and other part with 980 nm diode laser (CW, 4 W, contact mode and saline solution cooling). The gingival blood flow was monitored using a MoorLab laser Doppler equipment (Moor Instruments Ltd., Axminster, UK) with a straight optical probe, MP3b, 10 mm. The data were processed using statistical analysis software SPSS v16.0.1. The investigation showed an evident decrease in perfusion for both areas in comparison with the baseline values 24 hours after treatment. The microvascular blood flow increased significantly after 7 days in both areas but mostly in diode area (pdiode area remained at a high level after 14 days. Both lasers proved efficiency in the surgical treatment of gingival tissue. Moreover, Laser Doppler Flowmetry is adequate for recording changes in gingival blood flow following periodontal surgery.

  17. Can the green laser doppler measure skin-nutritive perfusion in patients with peripheral vascular disease?

    NARCIS (Netherlands)

    Ubbink, D. T.; Tulevski, I. I.; Jacobs, M. J.

    2000-01-01

    The recently developed green laser (GL; wavelength 543 nm) is thought to measure perfusion derived from a more superficial skin layer than does the standard near-infrared laser (RL; wavelength 780 nm). These lasers were used to investigate the disturbances in the different layers of skin perfusion

  18. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation

    Science.gov (United States)

    Figueiras, E.; Campos, R.; Semedo, S.; Oliveira, R.; Requicha Ferreira, L. F.; Humeau-Heurtier, A.

    2012-03-01

    Laser Doppler flowmetry (LDF) is now commonly used in clinical research to monitor microvascular blood flow. However, the dependence of the LDF signal on the microvascular architecture is still unknown. That is why we propose a new laser Doppler flowmeter for depth dependent monitoring of skin microvascular perfusion. This new laser Doppler flowmeter combines for the first time, in a device, several wavelengths and different spaced detection optical fibres. The calibration of the new apparatus is herein presented together with in vivo validation. Two in vivo validation tests are performed. In the first test, signals collected in the ventral side of the forearm are analyzed; in the second test, signals collected in the ventral side of the forearm are compared with signals collected in the hand palm. There are good indicators that show that different wavelengths and fibre distances probe different skin perfusion layers. However, multiple scattering may affect the results, namely the ones obtained with the larger fibre distance. To clearly understand the wavelength effect in LDF measurements, other tests have to be performed.

  19. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    Science.gov (United States)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  20. Compact Laser Doppler Flowmeter (LDF Fundus Camera for the Assessment of Retinal Blood Perfusion in Small Animals.

    Directory of Open Access Journals (Sweden)

    Marielle Mentek

    Full Text Available Noninvasive techniques for ocular blood perfusion assessment are of crucial importance for exploring microvascular alterations related to systemic and ocular diseases. However, few techniques adapted to rodents are available and most are invasive or not specifically focused on the optic nerve head (ONH, choroid or retinal circulation. Here we present the results obtained with a new rodent-adapted compact fundus camera based on laser Doppler flowmetry (LDF.A confocal miniature flowmeter was fixed to a specially designed 3D rotating mechanical arm and adjusted on a rodent stereotaxic table in order to accurately point the laser beam at the retinal region of interest. The linearity of the LDF measurements was assessed using a rotating Teflon wheel and a flow of microspheres in a glass capillary. In vivo reproducibility was assessed in Wistar rats with repeated measurements (inter-session and inter-day of retinal arteries and ONH blood velocity in six and ten rats, respectively. These parameters were also recorded during an acute intraocular pressure increase to 150 mmHg and after heart arrest (n = 5 rats.The perfusion measurements showed perfect linearity between LDF velocity and Teflon wheel or microsphere speed. Intraclass correlation coefficients for retinal arteries and ONH velocity (0.82 and 0.86, respectively indicated strong inter-session repeatability and stability. Inter-day reproducibility was good (0.79 and 0.7, respectively. Upon ocular blood flow cessation, the retinal artery velocity signal substantially decreased, whereas the ONH signal did not significantly vary, suggesting that it could mostly be attributed to tissue light scattering.We have demonstrated that, while not adapted for ONH blood perfusion assessment, this device allows pertinent, stable and repeatable measurements of retinal blood perfusion in rats.

  1. Estimation of amputation level with a laser Doppler flowmeter

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Jørgensen, J P; Vollmer-Larsen, B

    1989-01-01

    Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation...... was found between the successful amputation levels and the maximal blood perfusion of the skin measured in this way....

  2. Repeatability, Reproducibility and Standardisation of a Laser Doppler Imaging Technique for the Evaluation of Normal Mouse Hindlimb Perfusion

    Directory of Open Access Journals (Sweden)

    Arturo Brunetti

    2012-12-01

    Full Text Available Background. Preclinical perfusion studies are useful for the improvement of diagnosis and therapy in dermatologic, cardiovascular and rheumatic human diseases. The Laser Doppler Perfusion Imaging (LDPI technique has been used to evaluate superficial alterations of the skin microcirculation in surgically induced murine hindlimb ischemia. We assessed the reproducibility and the accuracy of LDPI acquisitions and identified several critical factors that could affect LDPI measurements in mice. Methods. Twenty mice were analysed. Statistical standardisation and a repeatability and reproducibility analysis were performed on mouse perfusion signals with respect to differences in body temperature, the presence or absence of hair, the type of anaesthesia used for LDPI measurements and the position of the mouse body. Results. We found excellent correlations among measurements made by the same operator (i.e., repeatability under the same experimental conditions and by two different operators (i.e., reproducibility. A Bland-Altman analysis showed the absence of bias in repeatability (p = 0.29 or reproducibility (p = 0.89. The limits of agreement for repeatability were –0.357 and –0.033, and for reproducibility, they were –0.270 and 0.238. Significant differences in perfusion values were observed in different experimental groups. Conclusions. Different experimental conditions must be considered as a starting point for the evaluation of new drugs and strategic therapies.

  3. Experimental and clinical application of laser doppler flowmetry in gastric and duodenal ulcerative bleedings

    Directory of Open Access Journals (Sweden)

    Afanasieva G.A.

    2011-12-01

    Full Text Available The research goal is to develop a new objective diagnostic method of prerecurrence syndrome that will prognose bleeding recurrence from gastroduodenal ulcers. Materials and methods. Method of laser Doppler flowmetry (LDF of the regional perfusion of tissue has been used. The experimental part has been done on 30 white laboratory rats. Characteristics of regional tissue perfusion in the simulation and laser hemostasis of bleeding have been studied. Gastroduodenal endoscopy has been performed with laser Doppler flowmetry (ELDF in clinical conditions to predict the recurrence of ulcerative bleeding. The prognostic method of gastroduodenal ulcerative bleeding was used in 58 patients hospitalized with such pathology and activity of bleeding Forrest II. Results. The study of microcirculation parameters and experimental hemostasis has showed the possibility of using LDF to measure its performance. Effective hemostasis has been accompanied by a significant decrease in perfusion. On the basis of microcirculation parameters in ulcerative bleeding, medical adrenaline test has been proposed for an objective verification pre-recurrence syndrome. To evaluate the effectiveness of endoscopic hemostasis perfusion has been measured before and after its implementation. Conclusion. ELDF has objectified the prognosis of ulcerative bleeding recurrence, verified pre-recurrence syndrome and evaluated the efficacy of endoscopic hemostasis

  4. The diagnosis of deep venous thrombosis using laser Doppler skin perfusion measurements

    NARCIS (Netherlands)

    de Graaff, J. C.; Ubbink, D. T.; Büller, H. R.; Jacobs, M. J.

    2001-01-01

    Compression ultrasonography (CUS) falls short in the diagnosis of deep venous thrombosis in asymptomatic patients and thrombi limited to the calf veins. Alternatively, laser Doppler fluxmetry (LDF) may be useful for this purpose, as it can measure the peripheral vasoconstriction response upon an

  5. Multi-site laser Doppler flowmetry for assessing collateral flow in experimental ischemic stroke: Validation of outcome prediction with acute MRI.

    Science.gov (United States)

    Cuccione, Elisa; Versace, Alessandro; Cho, Tae-Hee; Carone, Davide; Berner, Lise-Prune; Ong, Elodie; Rousseau, David; Cai, Ruiyao; Monza, Laura; Ferrarese, Carlo; Sganzerla, Erik P; Berthezène, Yves; Nighoghossian, Norbert; Wiart, Marlène; Beretta, Simone; Chauveau, Fabien

    2017-06-01

    High variability in infarct size is common in experimental stroke models and affects statistical power and validity of neuroprotection trials. The aim of this study was to explore cerebral collateral flow as a stratification factor for the prediction of ischemic outcome. Transient intraluminal occlusion of the middle cerebral artery was induced for 90 min in 18 Wistar rats. Cerebral collateral flow was assessed intra-procedurally using multi-site laser Doppler flowmetry monitoring in both the lateral middle cerebral artery territory and the borderzone territory between middle cerebral artery and anterior cerebral artery. Multi-modal magnetic resonance imaging was used to assess acute ischemic lesion (diffusion-weighted imaging, DWI), acute perfusion deficit (time-to-peak, TTP), and final ischemic lesion at 24 h. Infarct volumes and typology at 24 h (large hemispheric versus basal ganglia infarcts) were predicted by both intra-ischemic collateral perfusion and acute DWI lesion volume. Collateral flow assessed by multi-site laser Doppler flowmetry correlated with the corresponding acute perfusion deficit using TTP maps. Multi-site laser Doppler flowmetry monitoring was able to predict ischemic outcome and perfusion deficit in good agreement with acute MRI. Our results support the additional value of cerebral collateral flow monitoring for outcome prediction in experimental ischemic stroke, especially when acute MRI facilities are not available.

  6. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    2002-01-01

    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  7. Laser Doppler Flowmetry and Transcutaneous Oximetry in Chronic Skin Ulcers: A Comparative Evaluation.

    Science.gov (United States)

    Raposio, Edoardo; Bertozzi, Nicolò; Moretti, Rebecca; Grignaffini, Eugenio; Grieco, Michele P

    2017-07-01

    Laser Doppler Flowmetry (LDF) and transcutaneous oximetry (TcpO2) are established methods for investigating cutaneous perfusion. To date, no study previously performed has compared data obtained from these 2 methodologies in cases of chronic cutaneous ulcers. Laser Doppler Flowmetry and TcpO2 were performed in 25 consecutive outpatients with chronic lower limb ulcers (group A, experimental; 9 women and 16 men; mean age 67 years [range, 52-81 years]) and 25 age- and sex-matched healthy control subjects (group B, control) enrolled for the study. Ulcer aetiologies included 12 peripheral arterial occlusive disease, 9 chronic venous insufficiencies, and 4 pressure ulcers. Data were analyzed with Shapiro-Wilk and Wilcoxon-Mann-Whitney tests. A statistically significant difference (P < .05) was found between LDF values of the 2 groups. No statistically significant differences were found between the 2 groups regarding the TcpO2 measurements. The data confirmed the soundness of LDF while investigating local perfusion in patients with chronic cutaneous ulcers. The same diagnostic accuracy was not obtained by means of TcpO2.

  8. Laser Doppler imaging of cutaneous blood flow through transparent face masks: a necessary preamble to computer-controlled rapid prototyping fabrication with submillimeter precision.

    Science.gov (United States)

    Allely, Rebekah R; Van-Buendia, Lan B; Jeng, James C; White, Patricia; Wu, Jingshu; Niszczak, Jonathan; Jordan, Marion H

    2008-01-01

    A paradigm shift in management of postburn facial scarring is lurking "just beneath the waves" with the widespread availability of two recent technologies: precise three-dimensional scanning/digitizing of complex surfaces and computer-controlled rapid prototyping three-dimensional "printers". Laser Doppler imaging may be the sensible method to track the scar hyperemia that should form the basis of assessing progress and directing incremental changes in the digitized topographical face mask "prescription". The purpose of this study was to establish feasibility of detecting perfusion through transparent face masks using the Laser Doppler Imaging scanner. Laser Doppler images of perfusion were obtained at multiple facial regions on five uninjured staff members. Images were obtained without a mask, followed by images with a loose fitting mask with and without a silicone liner, and then with a tight fitting mask with and without a silicone liner. Right and left oblique images, in addition to the frontal images, were used to overcome unobtainable measurements at the extremes of face mask curvature. General linear model, mixed model, and t tests were used for data analysis. Three hundred seventy-five measurements were used for analysis, with a mean perfusion unit of 299 and pixel validity of 97%. The effect of face mask pressure with and without the silicone liner was readily quantified with significant changes in mean cutaneous blood flow (P face masks. Perfusion decreases with the application of pressure and with silicone. Every participant measured differently in perfusion units; however, consistent perfusion patterns in the face were observed.

  9. Red and green laser Doppler compared with capillary microscopy to assess skin microcirculation in the feet of healthy subjects

    NARCIS (Netherlands)

    Tulevski, I. I.; Ubbink, D. T.; Jacobs, M. J.

    1999-01-01

    Skin microvasculature consists of nutritive capillaries and subpapillary arteriolar and venular plexus connected by arteriolovenular anastomoses. Capillary perfusion is of paramount importance for skin viability. Recently a new combined laser Doppler instrument has become available, featuring a

  10. Doppler laser imaging predicts response to topical minoxidil in the treatment of female pattern hair loss.

    Science.gov (United States)

    McCoy, J; Kovacevic, M; Situm, M; Stanimirovic, A; Bolanca, Z; Goren, A

    2016-01-01

    Topical minoxidil is the only drug approved by the US FDA for the treatment of female pattern hair loss. Unfortunately, following 16 weeks of daily application, less than 40% of patients regrow hair. Several studies have demonstrated that sulfotransferase enzyme activity in plucked hair follicles predicts topical minoxidil response in female pattern hair loss patients. However, due to patients’ discomfort with the procedure, and the time required to perform the enzymatic assay it would be ideal to develop a rapid, non-invasive test for sulfotransferase enzyme activity. Minoxidil is a pro-drug converted to its active form, minoxidil sulfate, by sulfotransferase enzymes in the outer root sheath of hair. Minoxidil sulfate is the active form required for both the promotion of hair regrowth and the vasodilatory effects of minoxidil. We thus hypothesized that laser Doppler velocimetry measurement of scalp blood perfusion subsequent to the application of topical minoxidil would correlate with sulfotransferase enzyme activity in plucked hair follicles. In this study, plucked hair follicles from female pattern hair loss patients were analyzed for sulfotransferase enzyme activity. Additionally, laser Doppler velocimetry was used to measure the change in scalp perfusion at 15, 30, 45, and 60 minutes, after the application of minoxidil. In agreement with our hypothesis, we discovered a correlation (r=1.0) between the change in scalp perfusion within 60 minutes after topical minoxidil application and sulfotransferase enzyme activity in plucked hairs. To our knowledge, this is the first study demonstrating the feasibility of using laser Doppler imaging as a rapid, non-invasive diagnostic test to predict topical minoxidil response in the treatment of female pattern hair loss.

  11. Longitudinal studies on the microcirculation around the TheraCyte immunoisolation device, using the laser Doppler technique.

    Science.gov (United States)

    Rafael, E; Gazelius, B; Wu, G S; Tibell, A

    2000-01-01

    Encapsulation of cellular grafts in an immunoisolation membrane device may make it possible to perform transplantation without having to give immunosuppressive drugs. A common problem is the development of an avascular fibrotic zone around the implants, leading to impaired graft survival. The TheraCyte macroencapsulation device has therefore been designed to facilitate neovascularization of the device's surface. In this study, we evaluated the microcirculation around empty TheraCyte devices implanted SC in rats at various times after implantation, using a laser Doppler probe introduced via the device port. Studies were performed on day 1 or at 1, 2, and 4 weeks or at 2, 3, and 12 months after implantation. The mean flow was 158+/-42, 148+/-50, 133+/-28, 72+/-17, 138+/-41, 165+/-43, and 160+/-29 perfusion units (PU), respectively. Thus, the microcirculation around the device was significantly reduced at 4 weeks after implantation (p TheraCyte macroencapsulation devices that agree with our previous microdialysis studies on in vivo exchange of insulin and glucose between the device and the circulation. Laser Doppler flowmetry seems to provide a reliable technique for screening blood perfusion around macroencapsulation devices.

  12. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  13. Editorial special issue on "Laser Doppler vibrometry"

    Science.gov (United States)

    Vanlanduit, Steve; Dirckx, Joris

    2017-12-01

    The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).

  14. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor.

    Science.gov (United States)

    Sato, Miki; Noguchi, Junko; Mashima, Masato; Tanaka, Hirokazu; Hata, Toshiyuki

    2016-09-01

    To assess placental perfusion during spontaneous or induced uterine contraction in labor at term using placental vascular sonobiopsy (PVS) by 3D power Doppler ultrasound with the VOCAL imaging analysis program. PVS was performed in 50 normal pregnancies (32 in spontaneous labor group [SLG], and 18 in induced labor group with oxytocin or prostaglandin F2α [ILG]) at 37-41 weeks of gestation to assess placental perfusion during uterine contraction in labor. Only pregnancies with an entirely visualized anterior placenta were included in the study. Data acquisition was performed before, during (at the peak of contraction), and after uterine contraction. 3D power Doppler indices such as the vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were calculated in each placenta. There were no abnormal fetal heart rate tracings during contraction in either group. VI and VFI values were significantly reduced during uterine contraction in both groups (SLG, -33.4% [-97.0-15.2%], and ILG, -49.6% [-78.2--4.0%]), respectively (P power Doppler indices (VI, FI, and VFI) during uterine contraction (at the peak of contraction) showed a correlation greater than 0.7, with good intra- and inter-observer agreements. Our findings suggest that uterine contraction in both spontaneous and induced labors causes a significant reduction in placental perfusion. Reduced placental blood flow in induced uterine contraction has a tendency to be marked compared with that in spontaneous uterine contraction. To the best of our knowledge, this is the first study on the non-invasive assessment of placental perfusion during uterine contraction in labor using 3D power Doppler ultrasound. However, the data and their interpretation in the present study should be taken with some degree of caution because of the small number of subjects studied. Further studies involving a larger sample size are needed to assess placental perfusion and vascularity using PVS during normal and

  15. Sub-Doppler laser cooling of potassium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Landini, M. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Dipartimento di fisica, Universita di Trento, I-38123 Povo (Trento) (Italy); Roy, S.; Carcagni, L.; Trypogeorgos, D. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); Fattori, M.; Inguscio, M.; Modugno, G. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  16. Sub-Doppler laser cooling of potassium atoms

    International Nuclear Information System (INIS)

    Landini, M.; Roy, S.; Carcagni, L.; Trypogeorgos, D.; Fattori, M.; Inguscio, M.; Modugno, G.

    2011-01-01

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25±3 μK and 47±5 μK in high-density samples of the two isotopes 39 K and 41 K, respectively. Our findings should find application to other atomic systems.

  17. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  18. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    Science.gov (United States)

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  19. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    Science.gov (United States)

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  20. PulseCam: high-resolution blood perfusion imaging using a camera and a pulse oximeter.

    Science.gov (United States)

    Kumar, Mayank; Suliburk, James; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2016-08-01

    Measuring blood perfusion is important in medical care as an indicator of injury and disease. However, currently available devices to measure blood perfusion like laser Doppler flowmetry are bulky, expensive, and cumbersome to use. An alternative low-cost and portable camera-based blood perfusion measurement system has recently been proposed, but such camera-only system produces noisy low-resolution blood perfusion maps. In this paper, we propose a new multi-sensor modality, named PulseCam, for measuring blood perfusion by combining a traditional pulse oximeter with a video camera in a unique way to provide low noise and high-resolution blood perfusion maps. Our proposed multi-sensor modality improves per pixel signal to noise ratio of measured perfusion map by up to 3 dB and improves the spatial resolution by 2 - 3 times compared to best known camera-only methods. Blood perfusion measured in the palm using our PulseCam setup during a post-occlusive reactive hyperemia (PORH) test replicates standard PORH response curve measured using laser Doppler flowmetry device but with much lower cost and a portable setup making it suitable for further development as a clinical device.

  1. Effect of Defocused CO2 Laser on Equine Tissue Perfusion

    Directory of Open Access Journals (Sweden)

    Bergh A

    2006-03-01

    Full Text Available Treatment with defocused CO2 laser can have a therapeutic effect on equine injuries, but the mechanisms involved are unclear. A recent study has shown that laser causes an increase in equine superficial tissue temperature, which may result in an increase in blood perfusion and a stimulating effect on tissue regeneration. However, no studies have described the effects on equine tissue perfusion. The aim of the present study was to investigate the effect of defocused CO2 laser on blood perfusion and to correlate it with temperature in skin and underlying muscle in anaesthetized horses. Differences between clipped and unclipped haircoat were also assessed. Eight horses and two controls received CO2 laser treatment (91 J/cm2 in a randomised order, on a clipped and unclipped area of the hamstring muscles, respectively. The significant increase in clipped skin perfusion and temperature was on average 146.3 ± 33.4 perfusion units (334% and 5.5 ± 1.5°C, respectively. The significant increase in perfusion and temperature in unclipped skin were 80.6 ± 20.4 perfusion units (264% and 4.8 ± 1.4°C. No significant changes were seen in muscle perfusion or temperature. In conclusion, treatment with defocused CO2 laser causes a significant increase in skin perfusion, which is correlated to an increase in skin temperature.

  2. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teaghee; Choi, Jong Woon [Department of Information and Communication, Honam University, Seobong-dong 59-1, Gwansan-gu, Gwangju 506-714 (Korea, Republic of); Kim, Yong Pyung [College of Electronics and Information, Kyunghee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  3. Moving Target Detection With Compact Laser Doppler Radar

    Science.gov (United States)

    Sepp, G.; Breining, A.; Eisfeld, W.; Knopp, R.; Lill, E.; Wagner, D.

    1989-12-01

    This paper describes an experimental integrated optronic system for detection and tracking of moving objects. The system is based on a CO2 waveguide laser Doppler ra-dar with homodyne receiver and galvanometer mirror beam scanner. A "hot spot" seeker consisting of a thermal imager with image processor transmits the coordinates of IR-emitting, i.e. potentially powered, objects to the laser radar scanner. The scanner addresses these "hot" locations operating in a large field-of-view (FOV) random ac-cess mode. Hot spots exhibiting a Doppler shifted laser signal are indicated in the thermal image by velocity-to-colour encoded markers. After switching to a small FOV scanning mode, the laser Doppler radar is used to track fast moving objects. Labora-tory and field experiments with moving objects including rotating discs, automobiles and missiles are described.

  4. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  5. Acute effects of vascular modifying agents in solid tumors assessed by noninvasive laser Doppler flowmetry and near infrared spectroscopy

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Horsman, Michael R

    2002-01-01

    LDF, using a 41 degrees C heated custom-built LDF probe with four integrated laser/receiver units, and tumor blood volume was estimated by NIRS, using light guide coupled reflectance measurements at 800+/-10 nm. FAA, DMXAA, CA4DP, and HDZ significantly decreased tumor perfusion by 50%, 47%, 73......The potential of noninvasive laser Doppler flowmetry (LDF) and near infrared spectroscopy (NIRS) to detect acute effects of different vascular-modifying agents on perfusion and blood volume in tumors was evaluated. C3H mouse mammary carcinomas (approximately 200 mm(3)) in the rear foot of CDF1 mice......%, and 78%, respectively. In addition, FAA, DMXAA, and HDZ significantly reduced the blood volume within the tumor, indicating that these compounds to some degree shunted blood from the tumor to adjacent tissue, HDZ being most potent. CA4DP caused no change in the tumor blood volume, indicating...

  6. Influence of repetitive finger puncturing on skin perfusion and capillary blood analysis in patients with diabetes mellitus

    NARCIS (Netherlands)

    de Graaff, J. C.; Hemmes, G. J.; Bruin, T.; Ubbink, D. T.; Michels, R. P.; Jacobs, M. J.; Sanders, G. T.

    1999-01-01

    Frequent puncturing of fingers to check blood glucose in patients with type 1 diabetes might alter skin perfusion and, hence, influence the representativeness of the blood sample. We investigated the influence of repetitive puncturing on skin microcirculatory perfusion using laser Doppler fluxmetry

  7. Microcirculation assessment using an individualized model for diffuse reflectance spectroscopy and conventional laser Doppler flowmetry

    Science.gov (United States)

    Strömberg, Tomas; Karlsson, Hanna; Fredriksson, Ingemar; Nyström, Fredrik H.; Larsson, Marcus

    2014-05-01

    Microvascular assessment would benefit from co-registration of blood flow and hemoglobin oxygenation dynamics during stimulus response tests. We used a fiber-optic probe for simultaneous recording of white light diffuse reflectance (DRS; 475-850 nm) and laser Doppler flowmetry (LDF; 780 nm) spectra at two source-detector distances (0.4 and 1.2 mm). An inverse Monte Carlo algorithm, based on a multiparameter three-layer adaptive skin model, was used for analyzing DRS data. LDF spectra were conventionally processed for perfusion. The system was evaluated on volar forearm recordings of 33 healthy subjects during a 5-min systolic occlusion protocol. The calibration scheme and the optimal adaptive skin model fitted DRS spectra at both distances within 10%. During occlusion, perfusion decreased within 5 s while oxygenation decreased slowly (mean time constant 61 s dissociation of oxygen from hemoglobin). After occlusion release, perfusion and oxygenation increased within 3 s (inflow of oxygenized blood). The increased perfusion was due to increased blood tissue fraction and speed. The supranormal hemoglobin oxygenation indicates a blood flow in excess of metabolic demands. In conclusion, by integrating DRS and LDF in a fiber-optic probe, a powerful tool for assessment of blood flow and oxygenation in the same microvascular bed has been presented.

  8. Early effects of combretastatin-A4 disodium phosphate on tumor perfusion and interstitial fluid pressure

    DEFF Research Database (Denmark)

    Ley, C.D.; Horsman, Michael Robert; Kristjansen, P.E.G.

    2007-01-01

    /kg CA4DP by intraperitoneal injection. Tumor perfusion was recorded by laser Doppler flowmetry at separate time points, and IFP was recorded continuously by the wick-in-needle method. In this study, we found that CA4DP treatment resulted in a rapid reduction in tumor perfusion, followed by a decrease...

  9. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... is a valid method for assessing macular perfusion. Results were consistent with previous observations of hyperoxic blood flow reduction using blue field entoptic and laser Doppler velocimetry. Retinal perfusion seemed to be regulated around individual set points according to blood glucose levels. Multimodal...

  10. Time of correlation of low-frequency fluctuations in the regional laser Doppler flow signal from human skin

    Science.gov (United States)

    Folgosi-Correa, M. S.; Nogueira, G. E. C.

    2012-06-01

    The laser Doppler flowmetry allows the non-invasive assessment of the skin perfusion in real-time, being an attractive technique to study the human microcirculation in clinical settings. Low-frequency oscillations in the laser Doppler blood flow signal from the skin have been related to the endothelial, endothelial-metabolic, neurogenic and myogenic mechanisms of microvascular flow control, in the range 0.005-0.0095 Hz, 0.0095-0.021 Hz, 0.021-0.052 Hz and 0.052- 0.145 Hz respectively. The mean Amplitude (A) of the periodic fluctuations in the laser Doppler blood flow signal, in each frequency range, derived from the respective wavelet-transformed coefficients, has been used to assess the function and dysfunctions of each mechanism of flow control. Known sources of flow signal variances include spatial and temporal variability, diminishing the discriminatory capability of the technique. Here a new time domain method of analysis is proposed, based on the Time of Correlation (TC) of flow fluctuations between two adjacent sites. Registers of blood flow from two adjacent regions, for skin temperature at 32 0C (basal) and thermally stimulated (42 0C) of volar forearms from 20 healthy volunteers were collected and analyzed. The results obtained revealed high time of correlation between two adjacent regions when thermally stimulated, for signals in the endothelial, endothelial-metabolic, neurogenic and myogenic frequency ranges. Experimental data also indicate lower variability for TC when compared to A, when thermally stimulated, suggesting a new promising parameter for assessment of the microvascular flow control.

  11. Laser Doppler measurements in two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.; Zare, M.

    1976-01-01

    Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows

  12. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  13. Acute Effects of Vascular Modifying Agents in Solid Tumors Assessed by Noninvasive Laser Doppler Flowmetry and Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Michael Kragh

    2002-01-01

    Full Text Available The potential of noninvasive laser Doppler flowmetry (LDF and near infrared spectroscopy (NIRS to detect acute effects of different vascular-modifying agents on perfusion and blood volume in tumors was evaluated. C3H mouse mammary carcinomas (∼200 mm3 in the rear foot of CDF1 mice were treated with flavone acetic acid (FAA, 150 mg/kg, 5,6-dimethylxanthenone-4acetic acid (DMXAA, 20 mg/kg, combretastatin A-4 disodium phosphate (CAMP, 250 mg/kg, hydralazine (HDZ, 5 mg/kg, or nicotinamide (NTA, 500 mg/kg. Tumor perfusion before and after treatment was evaluated by noninvasive LDF, using a 41°C heated custombuilt LDF probe with four integrated laser/receiver units, and tumor blood volume was estimated by MRS, using light guide coupled reflectance measurements at 800±10 nm. FAA, DMXAA, CAMP, and HDZ significantly decreased tumor perfusion by 50%, 47%, 73%, and 78%, respectively. In addition, FAA, DMXAA, and HDZ significantly reduced the blood volume within the tumor, indicating that these compounds to some degree shunted blood from the tumor to adjacent tissue, HDZ being most potent. CAMP caused no change in the tumor blood volume, indicating that the mechanism of action of CAMP was vascular shut down with the blood pool trapped in the tumor. NTA caused no change in either tumor perfusion or tumor blood volume. We conclude that noninvasive LDF and MRS can determine acute effects of vascular modifying agents on tumor perfusion and blood volume.

  14. Thyroid perfusion imaging as a diagnostic tool in Graves' disease. Arterial spin labeling magnetic resonance imaging vs. colour-coded Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Muessig, K. [University Hospital of Duesseldorf (Germany). Dept. of Metabolic Diseases; Leibniz Center for Diabetes Research, Duesseldorf (Germany). Inst. for Clinical Diabetology; University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Schraml, C.; Schwenzer, N.F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology; Rietig, R.; Balletshofer, B. [University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Martirosian, P.; Haering, H.U.; Schick, F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; Claussen, C.D. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology

    2012-12-15

    Purpose: Though increased thyroid perfusion assessed by colour-coded Doppler ultrasound (CDUS) is characteristic of Graves' disease (GD), sometimes perfusion assessment by CDUS is not possible. In these cases, arterial spin labelling (ASL), a novel magnetic resonance imaging (MRI) technique allowing non-invasive thyroid perfusion quantification, may have additional diagnostic value. We aimed to evaluate the potential of ASL-MRI for assessment of increased blood perfusion in patients with GD compared to CDUS. Materials and Methods: Thyroid perfusion was measured by CDUS (volume flow rate calculated from pulsed wave Doppler signals and vessel diameter) and ASL-MRI at 1.5 T in 7 patients with GD and 10 healthy controls. Results: In patients with GD, average perfusion in both thyroid lobes was markedly increased compared to controls. Both techniques applied for volume related perfusion as well as absolute volume flow in thyroid feeding vessels provided similar results (all p = 0.0008). Using a cut-off value of 22 ml/min for the volume flow rate assessed by CDUS in the four feeding vessels allowed discrimination between patients with GD and controls in all cases. After adjusting thyroid perfusion for the differences in organ volume, both CDUS and ASL revealed also complete discrimination between health and disease. Conclusion: Thyroid perfusion measurement by ASL-MRI reliably discriminate GD from normal thyroid glands. In patients in whom thyroid arteries cannot be depicted by CDUS for technical or anatomical reasons, ASL-MRI may have additional diagnostic value. (orig.)

  15. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  16. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  17. Laser doppler velocimetry and confined flows

    Directory of Open Access Journals (Sweden)

    Ilić Jelena T.

    2017-01-01

    Full Text Available Finding the mode, in which two component laser Doppler velocimetry can be applied to flows confined in cylindrical tubes or vessels, was the aim of this study. We have identified principle issues that influence the propagation of laser beams in laser Doppler velocimetry system, applied to flow confined in cylindrical tube. Among them, the most important are influences of fluid and wall refractive indices, wall thickness and internal radius ratio and beam intersection angle. In analysis of the degrees of these influences, we have applied mathematical model, based on geometrical optics. The separation of measurement volumes, that measure different velocity components, has been recognized as the main drawback. To overcome this, we propose a lens with dual focal length – primary focal length for the measurement of one velocity component and secondary focal length for the measurement of the other velocity component. We present here the procedure for calculating the optimal value of secondary focal length, depending on experimental set-up parameters. The mathematical simulation of the application of the dual focal length lens, for chosen cases presented here, confirmed the accuracy of the proposed procedure.

  18. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  19. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  20. Evaluation of late radiation-induced changes of the superficial microcirculation after acute β-irradiation. II. prognostic importance of the cutaneous doppler laser

    International Nuclear Information System (INIS)

    Lefaix, J.L.; Delanian, S.

    2000-01-01

    Objective. -The changes that occur in the tissular microcirculation after accidental acute irradiation account for some of the early effects of such irradiation, especially at the cutaneous level. The prognostic importance of the cutaneous laser doppler was tested in an experimental model of acute β-irradiation. Methods.-Ten pigs were given β-irradiation with a high single localized dose of 90 Sr/ 90 Y (32 or 64 Gy, 7 mg/cm 2 ) delivered to the flank, and were evaluated 2, 7, 14, 21 and 28 days thereafter. Each individual was its own control. The local microcirculation was measured in the resting state and during thermal stimulation at 42 deg. C, using a Periflux cutaneous Doppler laser with p413 probes. Three periods of six minutes each were continuously recorded: period 1 (P1) represented basal resting cutaneous perfusion, with the slope p corresponding to the increase in perfusion when two minutes of thermal stimulation at 42 deg. C began; P2 to plateau perfusion during this stimulation; and P3 to perfusion on the return to equilibrium. Results. -After acute β-irradiation in the pig, all the cutaneous microcirculation parameters measured (P1, p, P2 and P3) had risen at day 2 in the irradiated area by a factor of 2 to 4, depending on the dose (p < 0.001), compared to the adjacent control area. On the other hand, as from day 7, the resting and the stimulated microcirculation varied little, except for a reduction of the slope p by a factor of 2 (p < 0.05) after the strongest radiation dose. Conclusion. -After acute irradiation, the increase in the resting cutaneous microcirculation may correspond to immediate but transitory capillary vasodilatation that accompanies the initial erythema in accidental irradiation. The absence of vascular response to thermal stimulation seems to be a good means of reaching an early diagnosis of delayed cutaneous radiation necrosis. (authors)

  1. Parametric Investigation of Laser Doppler Microphones

    Science.gov (United States)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  2. Comparison of three techniques for evaluating skin erythemal response for determination of sun protection factors of sunscreens: high resolution laser Doppler imaging, colorimetry and visual scoring.

    Science.gov (United States)

    Wilhelm, K P; Kaspar, K; Funkel, O

    2001-04-01

    Sun protection factor (SPF) measurement is based on the determination of the minimal erythema dose (MED). The ratio of doses required to induce a minimal erythema between product-treated and untreated skin is defined as SPF. The aim of this study was to validate the conventionally used visual scoring with two non-invasive methods: high resolution laser Doppler imaging (HR-LDI) and colorimetry. Another goal was to check whether suberythemal reactions could be detected by means of HR-LDI measurements. Four sunscreens were selected. The measurements were made on the back of 10 subjects. A solar simulator SU 5000 (m.u.t., Wedel, Germany) served as radiation source. For the visual assessment, the erythema was defined according to COLIPA as the first perceptible, clearly defined unambiguous redness of the skin. For the colorimetric determination of the erythema, a Chromameter CR 300 (Minolta, Osaka, Japan) was used. The threshold for the colorimetry was chosen according to the COLIPA recommendation as an increase of the redness parameter delta a* = 2.5. For the non-contact perfusion measurements of skin blood flow, a two-dimensional high resolution laser Doppler imager (HR-LDI) (Lisca, Linköping, Sweden) was used. For the HR-LDI measurements, an optimal threshold perfusion needed to be established. For the HR-LDI measurements basal perfusion +1 standard deviation of all basal measurements was found to be a reliable threshold perfusion corresponding to the minimal erythema. Smaller thresholds, which would be necessary for detection of suberythemal responses, did not provide unambiguous data. All three methods, visual scoring, colorimetry and HR-LDI, produced similar SPFs for the test products with a variability of colorimetry are suitable, reliable and observer-independent methods for MED determination. However, they do not provide greater sensitivity and thus do not result in lower UV dose requirements for testing.

  3. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model.

    Science.gov (United States)

    Hakimé, Antoine; Peddi, Himaja; Hines-Peralta, Andrew U; Wilcox, Carol J; Kruskal, Jonathan; Lin, Shezhang; de Baere, Thierry; Raptopoulos, Vassilios D; Goldberg, S Nahum

    2007-06-01

    To prospectively compare single- and multisection computed tomographic (CT) perfusion for tumor blood flow determination in an animal model. All animal protocols and experiments were approved by the institutional animal care and use committee before the study was initiated. R3230 mammary adenocarcinoma was implanted in 11 rats. Tumors (18-20 mm) were scanned with dynamic 16-section CT at baseline and after administration of arsenic trioxide, which is known to cause acute reduction in blood flow. The concentration of arsenic was titrated (0-6 mg of arsenic per kilogram of body weight) to achieve a defined blood flow reduction (0%-75%) from baseline levels at 60 minutes, as determined with correlative laser Doppler flowmetry. The mean blood flow was calculated for each of four 5-mm sections that covered the entire tumor, as well as for the entire tumor after multiple sections were processed. Measurements obtained with both methods were correlated with laser Doppler flowmetry measurements. Interobserver agreement was determined for two blinded radiologists, who calculated the percentage of blood flow reduction for the "most representative" single sections at baseline and after arsenic administration. These results were compared with the interobserver variability of the same radiologists obtained by summing blood flow changes for the entire tumor volume. Overall correlations for acute blood flow reduction were demonstrated between laser Doppler flowmetry and the two CT perfusion approaches (single-section CT, r=0.85 and r(2)=0.73; multisection CT, r=0.93 and r(2)=0.87; pooled data, P=.01). CT perfusion disclosed marked heterogeneity of blood flow, with variations of 36% +/- 13 between adjacent 5-mm sections. Given these marked differences, interobserver agreement was much lower for single-section CT (standard deviation, 0.22) than for multisection CT (standard deviation, 0.10; P=.01). Multisection CT perfusion techniques may provide an accurate and more reproducible

  4. Reliability of laser Doppler, near-infrared spectroscopy and Doppler ultrasound for peripheral blood flow measurements during and after exercise in the heat.

    Science.gov (United States)

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Yeo, Chow C; Abbiss, Chris R

    2017-09-01

    This study examined the test-retest reliability of near-infrared spectroscopy (NIRS), laser Doppler flowmetry (LDF) and Doppler ultrasound to assess exercise-induced haemodynamics. Nine men completed two identical trials consisting of 25-min submaximal cycling at first ventilatory threshold followed by repeated 30-s bouts of high-intensity (90% of peak power) cycling in 32.8 ± 0.4°C and 32 ± 5% relative humidity (RH). NIRS (tissue oxygenation index [TOI] and total haemoglobin [tHb]) and LDF (perfusion units [PU]) signals were monitored continuously during exercise, and leg blood flow was assessed by Doppler ultrasound at baseline and after exercise. Cutaneous vascular conductance (CVC; PU/mean arterial pressure (MAP)) was expressed as the percentage change from baseline (%CVC BL ). Coefficients of variation (CVs) as indicators of absolute reliability were 18.7-28.4%, 20.2-33.1%, 42.5-59.8%, 7.8-12.4% and 22.2-30.3% for PU, CVC, %CVC BL , TOI and tHb, respectively. CVs for these variables improved as exercise continued beyond 10 min. CVs for baseline and post-exercise leg blood flow were 17.8% and 10.5%, respectively. CVs for PU, tHb (r 2  = 0.062) and TOI (r 2  = 0.002) were not correlated (P > 0.05). Most variables demonstrated CVs lower than the expected changes (35%) induced by training or heat stress; however, minimum of 10 min exercise is recommended for more reliable measurements.

  5. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  6. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  7. Aerosol distribution measurements by laser - Doppler - spectroscopy

    International Nuclear Information System (INIS)

    Baldassari, J.

    1977-01-01

    Laser-Doppler-Spectroscopy is used to study particle size distribution, especially sodium aerosols, in the presence of uncondensable gases. Theoretical basis are given, and an experimental technique is described. First theoretical results show reasonably good agreement with experimental data available; this method seems to be a promising one. (author)

  8. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  9. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...

  10. Local regulation of blood flow evaluated simultaneously by 133-xenon washout and laser Doppler flowmetry

    International Nuclear Information System (INIS)

    Engelhart, M.; Petersen, L.J.; Kristensen, J.K.

    1988-01-01

    The laser Doppler flowmeter and the 133-Xenon washout techniques of measuring cutaneous blood flow were compared for measuring the vasoconstrictor response of the hand during orthostatic maneuvres. Important discrepancies were detected for the two methods. When the hand was lowered by 40 cm a 40% decrease in blood flow was detected by the 133-Xenon method, while a 60% decrease was seen by the laser Doppler technique. Lowering the hand by 50 cm resulted in no further blood flow decrease when using the 133-Xenon method, but an 80% blood flow decrease was recorded with the laser Doppler method. A marked decrease in blood flow was recorded by the laser Doppler technique in hands that were sympathectomized or a hand that was subjected to a nerve blockade, strategies which should eliminate the orthostatic vasoconstrictor response of superficial cutaneous vessels. The 133-Xenon technique did not detect any blood flow changes in hands without sympathetic tone. We found the laser Doppler flowmetry technique unsatisfactory for measurement of blood flow changes that occur in nutritional vessels as this method measures total skin blood flow including non-capillary vessels

  11. Design of an integrated photo detector circuit for laser doppler blood flow monitoring

    NARCIS (Netherlands)

    Nieland, J.; Nieland, J.; van Kranenburg, H.; Wallinga, Hans; Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    1999-01-01

    A method to measure the blood perfusion of tissue is to apply photons to tissue and measure the frequency shift of the Doppler shifted photons.. To avoid the use of fibers, a chip was designed which contains photodetectors and electronic circuitry to amplify the signal. This IC serves as an

  12. What's behind the mask? A look at blood flow changes with prolonged facial pressure and expression using laser Doppler imaging.

    Science.gov (United States)

    Van-Buendia, Lan B; Allely, Rebekah R; Lassiter, Ronald; Weinand, Christian; Jordan, Marion H; Jeng, James C

    2010-01-01

    Clinically, the initial blanching in burn scar seen on transparent plastic face mask application seems to diminish with time and movement requiring mask alteration. To date, studies quantifying perfusion with prolonged mask use do not exist. This study used laser Doppler imaging (LDI) to assess perfusion through the transparent face mask and movement in subjects with and without burn over time. Five subjects fitted with transparent face masks were scanned with the LDI on four occasions. The four subjects without burn were scanned in the following manner: 1) no mask, 2) mask on while at rest, 3) mask on with alternating intervals of sustained facial expression and rest, and 4) after mask removal. Images were acquired every 3 minutes throughout the 85-minute study period. The subject with burn underwent a shortened scanning protocol to increase comfort. Each face was divided into five regions of interest for analysis. Compared with baseline, mask application decreased perfusion significantly in all subjects (P mask removal, all regions of the face demonstrated a hyperemic effect with the chin (P = .05) and each cheek (P mask removal. Perfusions remain constantly low while wearing the face mask, despite changing facial expressions. Changing facial expressions with the mask on did not alter perfusion. Hyperemic response occurs on removal of the mask. This study exposed methodology and statistical issues worth considering when conducting future research with the face, pressure therapy, and with LDI technology.

  13. Flow Profile Study using miniature Laser-Doppler velocimetry

    NARCIS (Netherlands)

    Booij, W.E.; Booij, W.E.; de Jongh, A.; de Mul, F.F.M.

    1995-01-01

    We present a physics experiment, in which laser - Doppler velocimetry is used to make first - year university physics students realize that the idealized solutions offered by standard text books seldom are applicable without corrections, which often are numerical. This is demonstrated by carefully

  14. Evaluation of cutaneous blood flow responses by 133Xe washout and a laser-Doppler flowmeter

    International Nuclear Information System (INIS)

    Engelhart, M.; Kristensen, J.K.

    1983-01-01

    A new method for noninvasive measurement of cutaneous blood flow is laser-Doppler flowmetry. The technique is based on the fact that laser light is back-scattered from the moving red blood cells, with Doppler-shifted frequencies; these impulses lead to photodetectors and are converted to flow signals. In this work we used a new system with a low noise level. Comparison was made between this technique and the atraumatic epicutaneous 133 Xe technique for measurement of cutaneous blood flow during reactive hyperemia and orthostatic pressure changes. The laser-Doppler flowmeter seems to measure blood flow in capillaries as well as in arteriovenous anastomoses, while the 133 Xe method probably measures only capillary flow. A calibration of the laser-Doppler method against the 133 Xe method would appear to be impossible in skin areas where arteriovenous anastomoses are present. The changes in blood flow during reactive hyperemia, orthostatic pressure changes, and venous stasis were found to be parallel as measured by the two methods in skin areas without shunt vessels. The laser-Doppler flowmeter would appear to be a useful supplement to the 133Xe washout method in cutaneous vascular physiology, but it is important to keep in mind that different parameters may be measured

  15. Significance of the determination of doppler sonography haemodynamic indices for the assessment of distal perfusion in patients with critical ischemia of lower limbs

    Directory of Open Access Journals (Sweden)

    Čizmić Milica

    2006-01-01

    Full Text Available Background/Aim: The perfusion of tissue, especially the muscles of the lower limbs (LL, implies the blood flow that carries enough nutrition, energy materials and oxygen. The aim of this study was to determine whether the decreased Doppler sonography parameters, resistance index (RI, and pulsatility index (PI were significant as indicators of irreversible ischemia of LL. Methods. In 40 patients (mean age 66±14.9 years, 21% women and 79% men with the signs of critical ischemia of LL, Lariche-Fontaine class III and IV, we performed contrast angiography of the LL arteries, and perfusion scintigraphy of LL using, thallium-201, while we performed Doppler sonography to determine resistance index (RI, as well as pulsatility index (PI. After that, all the patients were treated with vasodilatation using Bergmann's solution within a 10-day period. Following that, all the patients underwent the determination of haemodynamic indices RI and PI applying the methods of Doppler sonography. The obtained values of RI and PI indices revealed no clinical recovery which suggested the irreversibility of critical ischemia (unsuccessful therapy in 100% of the patients, and clinical recovery which suggested the reversibility of the disease (unsuccessful therapy in 80% of the patients. Results. The obtained values of PI = 0-0.3 and RI = 0-0.25 for the examined LL arteries were the indicators of irreversible ischemia. A significant correlation between the values of RI in the distal parts of a. tibialis anterior and posterior was proved, as well as between the decreased perfusion of LL determined by tallium-201 (p < 0.05, r = 0.43, and a tibialis anterior (p = 0.05, r = 0.38. There was, however, no statistically significant correlation between the angiographic values and perfusion scintigraphy of LL. Conclusion. The obtained values of haemodynamic RI and PI indices should be a novel approach for introducing a new criteria for the assessment of reversible and irreversible

  16. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    Science.gov (United States)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  17. Development of the medical apparatus for Doppler-controlled treatment of hemorrhoids using laser coagulation

    Directory of Open Access Journals (Sweden)

    Nikolay A. Gryaznov

    2017-12-01

    Full Text Available In the article authors present the concept of the surgical manipulator delivering laser radiation to the target area. For the implementation of Doppler-controlled treatment of hemorrhoids by laser coagulation, an important circumstance is the necessity to realize by means of the dopplerograph the possibility of controlling the efficiency of coagulation of the pathological vessel immediately after the impact, which will create the prerequisites for the formation of a program cycle with the inclusion of control elements by feedback. In this regard, the structure of the laser medical apparatus is developed, which allows determining the location, size and flow of arterial and venous vessels, performing laser coagulation of pathologically damaged sites under constant Doppler control. The developed adaptive power management system includes several functional units for the processing of the data from ultrasound scanner and the Doppler. Medical apparatus for minimally invasive treatment of hemorrhoids based on the laser coagulator and ultrasound Doppler will allow performing surgeries in automated and half-automated modes. The suggested medical apparatus helps to determine pathological vessels, choose the required radiation mode and provides vessel obliteration. Successful realization of constructive combination of real-time diagnostics and surgical manipulation with a laser can result in a unique minimally invasive solution to treat hemorrhoids that currently doesn’t have analogues.

  18. Three-dimensional laser cooling at the Doppler limit

    Science.gov (United States)

    Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2014-12-01

    Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.

  19. Temporal and spectral properties of esophageal mucosal blood perfusion: a comparison between normal subjects and nutcracker esophagus patients.

    Science.gov (United States)

    Zifan, A; Jiang, Y; Mittal, R K

    2017-02-01

    The mechanism of esophageal pain in patients with nutcracker esophagus (NE) and other esophageal motor disorders is not known. Our recent study shows that baseline esophageal mucosal perfusion, measured by laser Doppler perfusion monitoring, is lower in NE patients compared to controls. The goal of our current study was to perform a more detailed analysis of esophageal mucosal blood perfusion (EMBP) waveform of NE patients and controls to determine the optimal EMBP biomarkers that combined with suitable statistical learning models produce robust discrimination between the two groups. Laser Doppler recordings of 10 normal subjects (mean age 43 ± 15 years, 8 males) and 10 patients (mean age 47 ± 5.5 years., 8 males) with NE were analyzed. Time and frequency domain features were extracted from the first twenty-minute recordings of the EMBP waveforms, statistically ranked according to four independent evaluation criterions, and analyzed using two statistical learning models, namely, logistic regression (LR) and support vector machines (SVM). The top three ranked predictors between the two groups were the 0.5 and 0.75 perfusion quantile values followed by the surface of the EMBP power spectrum in the frequency domain. ROC curve ranking produced a cross-validated AUC (area under the curve) of 0.93 for SVM and 0.90 for LR. We show that as a group NE patients have lower perfusion values compared to controls, however, there is an overlap between the two groups, suggesting that not all NE patients suffer from low mucosal perfusion levels. © 2016 John Wiley & Sons Ltd.

  20. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges

    International Nuclear Information System (INIS)

    Abay, T Y; Kyriacou, P A

    2016-01-01

    Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p  <  0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG. (paper)

  1. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  2. Laser-Doppler Flowmetry and Horner’s Syndrome in Patients with Complete Unilateral Damage to the Parasellar Sympathetic Fibers During Cavernous Sinus Surgery

    Science.gov (United States)

    Benedičič, Mitja; Debevc, David; Dolenc, Vinko V.; Bošnjak, Roman

    2006-01-01

    Aim To determine ocular, sudomotor, and vasomotor components of Horner’s syndrome resulting from complete unilateral intraoperative damage to the parasellar sympathetic fibers during cavernous sinus surgery. Methods Complete damage to the parasellar sympathetic fibers was found in four patients operated for central skull base lesions. Pupilometry, eyelid fissure measurement, Hertel’s exophthalmometry, starch iodine sweat test, and laser-Doppler perfusion assessment of bilaterally symmetrical forehead and cheek areas were performed. Results Pupil diameter was smaller and the eyelid fissure was >2 mm narrower on the affected side in all four patients. Exophthalmometry after the operation never revealed >1 mm difference. Anhydrosis was localized to the medial forehead in three and to the entire forehead in one patient. Average perfusion did not significantly differ between the affected and opposite side of the forehead or cheek. Conclusions The parasellar sympathetic fibers exclusively innervate the orbit and variably innervate the forehead sweat glands. No conclusion regarding their contribution to the facial vasomotor control could be established. PMID:16625695

  3. Assessment by three-dimensional power Doppler ultrasound of cerebral blood flow perfusion in fetuses with congenital heart disease.

    Science.gov (United States)

    Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q

    2015-06-01

    To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P power Doppler ultrasound might help to identify cases of brain vasodilatation earlier and inform parental counseling. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  4. Basal ganglia perfusion using dynamic color Doppler sonography in infants with hypoxic ischemic encephalopathy receiving therapeutic hypothermia: a pilot study.

    Science.gov (United States)

    Faingold, Ricardo; Cassia, Guilherme; Morneault, Linda; Saint-Martin, Christine; Sant'Anna, Guilherme

    2016-10-01

    The objective of this study was to evaluate the cerebral perfusion of the basal ganglia in infants with hypoxic-ischemic encephalopathy (HIE) receiving hypothermia using dynamic color Doppler sonography (CDS) and investigate for any correlation between these measurements and survival. Head ultrasound (HUS) was performed with a 9S4 MHz sector transducer in HIE infants submitted to hypothermia as part of their routine care. Measurements of cerebral perfusion intensity (CPI) with an 11LW4 MHz linear array transducer were performed to obtain static images and DICOM color Doppler videos of the blood flow in the basal ganglia area. Clinical and radiological data were evaluated retrospectively. The video images were analyzed by two radiologists using dedicated software, which allows automatic quantification of color Doppler data from a region of interest (ROI) by dynamically assessing color pixels and flow velocity during the heart cycle. CPI is expressed in cm/sec and is calculated by multiplying the mean velocity of all pixels divided by the area of the ROI. Three videos of 3 seconds each were obtained of the ROI, in the coronal plane, and used to calculate the CPI. Data are presented as mean ± SEM or median (quartiles). A total of 28 infants were included in this study: 16 male, 12 female. HUS was performed within the first 48 hours of therapeutic hypothermia treatment. CPI values were significantly higher in the seven non-survivors when compared to survivors (0.226±0.221 vs . 0.111±0.082 cm/sec; P=0.02). Increased perfusion intensity of the basal ganglia area within the first 48 of therapeutic hypothermia treatment was associated with poor outcome in neonates with HIE.

  5. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  6. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  7. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    Directory of Open Access Journals (Sweden)

    Hop M Jenda

    2013-02-01

    Full Text Available Abstract Background Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate. Laser Doppler imaging (LDI is a technique with which a more accurate (>95% estimate of burn depth can be made by measuring the dermal perfusion. The actual effect on therapeutic decisions, clinical outcomes and the costs of the introduction of this device, however, are unknown. Before we decide to implement LDI in Dutch burn care, a study on the effectiveness and cost-effectiveness of LDI is necessary. Methods/design A multicenter randomised controlled trial will be conducted in the Dutch burn centres: Beverwijk, Groningen and Rotterdam. All patients treated as outpatient or admitted to a burn centre within 5 days post burn, with burns of indeterminate depth (burns not obviously superficial or full thickness and a total body surface area burned of ≤ 20% are eligible. A total of 200 patients will be included. Burn depth will be diagnosed by both clinical assessment and laser Doppler imaging between 2–5 days post burn in all patients. Subsequently, patients are randomly divided in two groups: ‘new diagnostic strategy’ versus ‘current diagnostic strategy’. The results of the LDI-scan will only be provided to the treating clinician in the ‘new diagnostic strategy’ group. The main endpoint is the effect of LDI on wound healing time. In addition we measure: a the effect of LDI on other patient outcomes (quality of life, scar quality, b the effect of LDI on diagnostic and therapeutic decisions, and c the effect of LDI on total (medical and non-medical costs and cost-effectiveness. Discussion This trial will contribute to our current knowledge on the use of LDI in burn care and will provide evidence on its cost-effectiveness. Trial registration NCT01489540

  8. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Alireza Mowla

    2016-09-01

    Full Text Available Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy (RCM is combined with the functional modality of laser Doppler flowmetry, which is capable of quantifying tissue perfusion. To realize the idea, we propose laser feedback interferometry as an implementation of RCM, which is able to detect the Doppler signal in addition to the confocal reflectance signal. Based on the proposed technique, we study numerical models of skin tissue incorporating two optical biomarkers of malignancy: (i abnormal red blood cell velocities and concentrations and (ii anomalous optical properties manifested through tissue confocal reflectance, using Monte Carlo simulation. We also conduct a laboratory experiment on a microfluidic channel containing a dynamic turbid medium, to validate the efficacy of the technique. We quantify the performance of the technique by examining a signal to background ratio (SBR in both the numerical and experimental models, and it is shown that both simulated and experimental SBRs improve consistently using this technique. This work indicates the feasibility of an optical instrument, which may have a role in enhanced imaging of skin malignancies.

  9. Toward the development of a low-cost laser Doppler module for ophthalmic microscopes

    Science.gov (United States)

    Cattini, Stefano; Rovati, Luigi

    2012-03-01

    A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.

  10. [Microcirculatory blood and lymph flow examination in eyelid skin by laser Doppler flowmetry].

    Science.gov (United States)

    Safonova, T N; Kintyukhina, N P; Sidorov, V V; Gladkova, O V; Reyn, E S

    to study normal blood and lymph microcirculation of the upper and lower eyelids in different age groups. The study included 108 volunteers (216 eyes) aged from 20 to 80 years with no signs of changes in anterior segment structures, who were grouped by age ranges (20-30 years, 31-40 years, 41-50 years, 51-60 years, 61-70 years, and 71-80 years) into 6 groups equal in gender and quantitative composition. In all volunteers, microcirculation of the upper and lower eyelids was examined by laser Doppler flowmetry (LDF) ('LASMA MC-1' peripheral blood and lymph flow analyzer and 'LASMA MC' laser diagnostic complex, LASMA LLC). The average perfusion changes in blood and lymph flow as well as blood and lymph flow oscillations were analyzed. Blood and lymph flow in the microvasculature of the upper and lower eyelids is variable and depends on neither the age, nor gender of the test subject. On LDF-gram, every increase in amplitude of blood flow corresponds to a decrease in that of lymph flow. The non-invasive method of LDF expands our diagnostic capabilities as it enables assessment of not only blood, but also lymph flow. The data obtained can serve as a starting point for exploring microcirculation in different age groups in the presence of different pathological processes.

  11. Evaluate Laser Needle Effect on Blood Perfusion Signals of Contralateral Hegu Acupoint with Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Guangjun Wang

    2012-01-01

    Full Text Available Our previous studies suggested that the MBF in contralateral Hegu acupoint (IL4 increased after ipsilateral Hegu acupoint was stimulated with manual acupuncture. In this study, twenty-eight (28 healthy volunteers were recruited and were randomly divided into Hegu acupoint stimulation group and Non-Hegu stimulation group. All subjects received the same model stimulation of the laser needle for 30 min in right Hegu acupoint and Non-Hegu acupoint, respectively. MBF of left LI4 was measured by the laser Doppler perfusion imaging system. The original data dealt with morlet wavelet analysis and the average amplitude and power spectral density of different frequency intervals was acquired. The results indicated that right Hegu stimulation with the laser needle might result in the increase of left Hegu acupoint MBF. 40 min later after ceased stimulation, the MBF is still increasing significantly, whereas the MBF has no significantly change in Non-Hegu stimulation group. The wavelet analysis result suggested that compared to Non-Hegu stimulation, stimulated to right Hegu acupoint might result in the increase of average amplitude in frequency intervals of 0.0095–0.02 Hz, 0.02–0.06 Hz, and 0.06–0.15 Hz, which might be influenced by the endothelial, neurogenic, and the intrinsic myogenic activity of the vessel wall, respectively.

  12. Laser Doppler vibrometry experiment on a piezo-driven slot synthetic jet in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2015-01-01

    Full Text Available The present study deals with a slot synthetic jet (SJ issuing from an actuator into quiescent surroundings and driven by a piezoceramic transducer. The actuator slot width was 0.36 mm, with a drive frequency proposed near the theoretical natural frequency of the actuator. The working fluid was water at room temperature. The present experiments used flow visualization (a laser-induced fluorescence technique and laser Doppler vibrometry methods. Flow visualization was used to identify SJ formation, to demonstrate its function, and to estimate SJ velocity. Laser Doppler vibrometry was used to quantify diaphragm displacement and refine operating parameters. Phase averaging yielded a spatial and temporal diaphragm deflection during the actuation period. Taking incompressibility and continuity into consideration, the velocity in the actuator slot and the Reynolds number of the SJ were evaluated as 0.21 m/s and 157, respectively. The present results confirmed a SJ actuator function at the resonance frequency of approximately 46 Hz, which corresponds closely with the theoretical evaluation. The laser Doppler vibrometry results corresponded closely with an estimation of SJ velocity by the present flow visualization.

  13. Development of an Extracorporeal Perfusion Device for Small Animal Free Flaps.

    Directory of Open Access Journals (Sweden)

    Andreas M Fichter

    Full Text Available Extracorporeal perfusion (ECP might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps.After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7.ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27% was even lower than after in vivo perfusion (49%, although not statistically significant (P = 0,083. After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%. Angiographic and histological findings confirmed these observations.Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies.

  14. Coherent Detection in Laser Doppler Velocimeters

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1974-01-01

    , but intelligible particle picture of electromagnetic waves. The analysis is carried out with special emphasis on the heterodyning process in the laser Doppler velocimeter (LDV) because the main purpose of this article is to provide a better understanding of this instrument. An aid for this purpose......The possibility of heterodyning between electromagnetic waves scattered by particles separated in space is explained from a classical point of view and from a quantum mechanical point of view. The last description being carried out using only the Heisenberg uncertainty principle and a rather coarse...

  15. Efficiency of use endobronchial laser doppler-flowmetry in patients with chronic leukemia

    Science.gov (United States)

    Vanina, E. A.; Voitsekhovskiy, V. V.; Landyshev, Y. S.; Tkacheva, S. I.

    2016-11-01

    In this work indicatorsendobronchial microcirculation were investigated in patients with chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), polycythemia vera (PV), idiopathic myelofibrosis (IMF). A diagnostic bronchoscopy was performed using fibreoptic «Olympus» (Japan).Endobronchial laser Doppler flowmetry was carried out on the laser analyzer capillary blood LAK-02 (Russia). Laser Doppler flowmetry indicators such as parameter of microcirculation, the oscillation amplitude in the endothelial, neurogenic, myogenic, cardiac and respiratory ranges were calculated by continuous the Wavelet transforms. Reduced cardiac and respiratory amplitudes in CML and CLL are primarily due to the development leukostasis. If PV is the case, this is due to sludge syndrome. And when MM occurs, it is caused by protein stasis in the vessels of the bronchial tubes. Increased endothelial oscillation amplitudes in the range in CML, PV, IMF and their reduction in MM indicate the presence of endothelial dysfunction in these patients. Increasing the amplitude of oscillations in the range of neurogenic indicates the development of arteriolar vasodilation as a compensatory response to the violation of blood flow. Increasing the amplitude of oscillations of myogenic tone indicating decrease precapillaries as a compensatory reaction to improve blood flow. It is concluded that endobronchial laser Doppler flowmetry is an important method allowing diagnosing the pathology of the microvasculature of the bronchi in chronic leukemia.

  16. Flow measurement by Laser Doppler Anemometry in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kehoe, A.

    1984-12-01

    Development of a Laser Doppler Anemometer measurement system and its operation are examined in this research. The system is designed for flow measurement in laboratory models of nuclear fuel assemblies. Use of the system is demonstrated by measuring turbulent velocity profiles in the laboratory model at full scale reactor flow rates. The reactors at the Savanah River Plant (SRP) are heavy water moderated and operate at low temperatures and pressures. Reactor power is currently limited by the temperature of the water in the nuclear fuel assembly. These temperature limits are conservatively calculated without allowing for any turbulent mixing. This research incorporates the design, fabriction and operation of a plexiglas model fuel assembly for the purpose of making turbulent velocity measurement via a Laser Doppler Anemometer System

  17. Abnormalities of Microcirculation and Intracranial and Cerebral Perfusion Pressures in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2008-01-01

    Full Text Available Objective: to evaluate the states of microcirculation, cerebral perfusion intracranial pressures in patients with isolated severe brain injury (SBI and to determine their possible relationships. Subjects and methods. 148 studies were performed in 16 victims with SBI. According to the outcome of brain traumatic disease, the patients were divided into two groups: 1 those who had a good outcome (n=8 and 2 those who had a fatal outcome (n=8. Microcirculation was examined by skin laser Doppler flowmetry using a LAKK-01 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. All the victims underwent surgical interventions to remove epi-, subdural, and intracerebral hematomas. A Codman subdural/intraparenchymatous intracranial pressure (ICD sensor (Johnson & Johnson, United Kingdom was intraoperatively inserted in the victims. Cerebral perfusion pressure (CPP was calculated using the generally accepted formula: CPP = MBP (mean blood pressure — ICD. ICD, CPP, and microcirculation were studied on postoperative days 1, 3, 5, and 7. Their values were recorded simultaneously. Ninety and 58 studies were conducted in the group of patients with good and fatal outcomes, respectively. Results. No correlation between the changes in MBP, ICD, and microcirculatory parameters suggested that the value of ICD was determined by the nature of brain damage and it was the leading and determining indicator in the diagnosis and treatment of secondary cerebral lesions. The amplitude of low-frequency fluctuations directly correlated with ICD, which indicated that they might be used to evaluate cerebral perfusion and impaired cerebral circulation indirectly in victims with severe brain injury. Conclusion. The laser Doppler flowmetric technique makes it possible not only to qualitatively, but also quantitatively determine changes in the tissue blood flow system in severe brain injury. With this technique, both the local and central

  18. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  19. Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Tenan, Mirna

    2002-01-01

    Little is known about the effects of antiangiogenic therapy on perfusion of human tumors and the mechanisms by which tumors can adapt to these treatments and recur. Here, we examined the effects of serial passaging of LN-229 human glioma xenografts overexpressing thrombospondin (TSP)-1 on tumor...... vascularity was estimated by noninvasive near infrared spectroscopy measuring blood volume at 800 +/- 10 nm and by histological vessel scores in CD31-immunostained cryosections. The tumor perfusion was assessed by noninvasive laser Doppler flowmetry. Overexpression of TSP-1 significantly inhibited tumor....... Elucidation of the mechanisms that allow this to happen has important consequences for the understanding of tumor recurrence after antiangiogenic therapy....

  20. Laser methods of. gamma. spectroscopy without Doppler broadening

    Energy Technology Data Exchange (ETDEWEB)

    Letokhov, V S [AN SSSR, Moscow. Inst. Spektroskopii

    1976-01-01

    Some new ideas and methods being conceived in a boundary area between atomic-molecular and nuclear physics are discussed. The recent progress with lasers tunable in the UV, visible, and IR should make the realization of these methods quite possible. There are at least two effects that link atomic and molecular transitions with nuclear transitions: they are the recoil effect and the Doppler effect.

  1. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  2. Dual beam translator for use in Laser Doppler anemometry

    Science.gov (United States)

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  3. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    Science.gov (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  4. Differences in time-domain and spectral indexes of skin-surface laser-Doppler signals between controls and breast-cancer subjects.

    Science.gov (United States)

    Hsiu, Hsin; Chen, Chao-Tsung; Hung, Shuo-Hui; Chen, Guan-Zhang; Huang, Yu-Ling

    2018-04-13

    There is an urgent need to improve the early diagnosis of breast cancer. The present study applied spectral and beat-to-beat analyses to laser-Doppler (LDF) data sequences measured on the skin surface on the back of the right hands, with the aim of comparing the different peripheral microcirculatory-blood-flow (MBF) perfusion condition between breast-cancer and control subjects. ECG and LDF signals were obtained simultaneously and noninvasively from 23 breast-cancer patients and 23 age-matched control subjects. Time-domain beat-to-beat indexes and their variability parameters were calculated. Spectral indexes were calculated using the Morlet wavelet transform. The beat-to-beat LDF pulse width and its variability were significantly smaller in cancer patients than in the controls. The energy contributions of endothelial-, neural-, and myogenic-related frequency bands were also significantly smaller in cancer patients. The present study has revealed significant differences in the beat-to-beat and spectral indexes of skin-surface-acquired LDF signals between control subjects and breast-cancer patients. This illustrates that LDF indexes may be useful for monitoring the changes in the MBF perfusion condition induced by breast cancer. Since the breast-cancer patients were at TNM stages 0- 2, the present findings may aid the development of indexes for detecting breast cancer.

  5. [Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results].

    Science.gov (United States)

    Secchi, M E; Sulli, A; Pizzorni, C; Cutolo, M

    2009-01-01

    Systemic sclerosis (SSc) is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC) is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF) can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Twenty-seven SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns ("Early", "Active", "Late"). LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36 degrees C. Statistical evaluation was carried out by non-parametric procedures. Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05). The heating of the probe to 36 degrees C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05), however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05). The SSc patients with NVC "Late" pattern, showed lower values of peripheral blood flow than patients with NVC "Active" or "Early" patterns (p<0.05). Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud's phenomenon (p <0.03). LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  6. Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Richiardi, Jonas; Van De Ville, Dimitri; Hyacinthe, Jean-Noël

    2012-01-01

    Using a small, but very instructive experiment, it is demonstrated that laser-Doppler flowmetry (LDF) at large interoptode spacing represents a unique tool for new investigations of thermoregulatory processes modulating the blood flow of small muscle masses in humans. It is shown on five healthy subjects that steady-state values of blood flow (perfusion) in the thenar eminence muscle group depend in a complex manner on both the local intramuscular temperature and local skin temperature, while the values of blood flow parameters measured during physiological transients, such as the post-ischaemic hyperhaemic response, depend only on the intramuscular temperature. In addition, it is shown that the so-called biological zero (i.e. remaining LDF signal during arterial occlusion) is influenced not only as expected by the intramuscular temperature, but also by the skin temperature. The proposed results reveal that the skeletal muscle has unique thermoregulatory characteristics compared, for example, to human skin. These and other observations represent new findings and we hope that they will serve as a stimulus for the creation of new experimental protocols leading to better understanding of blood flow regulation. (paper)

  7. Retinal hemodynamic influence of compound xueshuantong capsule on nonproliferative diabetic retinopathy after laser photocoagulation

    Directory of Open Access Journals (Sweden)

    Yu-Yan Wang

    2014-07-01

    Full Text Available AIM: To observe retinal hemodynamic influence of compound xueshuantong capsule on nonproliferative diabetic retinopathy(NPDRafter laser photocoagulation. METHODS: A total of 41 patients(72 eyeswith NPDR after laser photocoagulation were enrolled in this study. They were all given compound xueshuantong capsule, and used color Doppler flow imaging for detection of retinal hemodynamics. RESULTS: After treatment, patients with retinal blood perfusion significantly improved; central retinal arterial peak systolic velocity(PSV, end-diastolic velocity(EDVand medial velocity(Vmwere increased, while the resistance index(RIdecreased. The difference have statistical significance(PCONCLUSION: Compound xueshuantong capsule can improve retinal blood perfusion for nonproliferative diabetic retinopathy after laser photocoagulation, which is related to improvement of visual prognosis.

  8. The Transcranial Doppler Sonography for Optimal Monitoring and Optimization of Cerebral Perfusion in Aortic Arch Surgery: A Case Series.

    Science.gov (United States)

    Ghazy, Tamer; Darwisch, Ayham; Schmidt, Torsten; Nguyen, Phong; Elmihy, Sohaila; Fajfrova, Zuzana; Zickmüller, Claudia; Matschke, Klaus; Kappert, Utz

    2017-06-16

    To analyze the feasibility and advantages of transcranial doppler sonography (TCD) for monitoring and optimization of selective cerebral perfusion (SCP) in aortic arch surgery. From April 2013 to April 2014, nine patients with extensive aortic pathology underwent surgery under moderate hypothermic cardiac arrest with unilateral antegrade SCP under TCD monitoring in our institution. Adequate sonographic window and visualization of circle of Willis were to be confirmed. Intraoperatively, a cerebral cross-filling of the contralateral cerebral arteries on the unilateral SCP was to be confirmed with TCD. If no cross-filling was confirmed, an optimization of the SCP was performed via increasing cerebral flow and increasing PCO2. If not successful, the SCP was to be switched to bilateral perfusion. Air bubble hits were recorded at the termination of SCP. A sonographic window was confirmed in all patients. Procedural success was 100%. The mean operative time was 298 ± 89 minutes. Adequate cross-filling was confirmed in 8 patients. In 1 patient, inadequate cross-filling was detected by TCD and an optimization of cerebral flow was necessary, which was successfully confirmed by TCD. There was no conversion to bilateral perfusion. Extensive air bubble hits were confirmed in 1 patient, who suffered a postoperative stroke. The 30-day mortality rate was 0. Conclusion: The TCD is feasible for cerebral perfusion monitoring in aortic surgery. It enables a confirmation of adequacy of cerebral perfusion strategy or the need for its optimization. Documentation of calcific or air-bubble hits might add insight into patients suffering postoperative neurological deficits.

  9. Laser Doppler flowmetry in endodontics: a review.

    Science.gov (United States)

    Jafarzadeh, H

    2009-06-01

    Vascular supply is the most accurate marker of pulp vitality. Tests for assessing vascular supply that rely on the passage of light through a tooth have been considered as possible methods for detecting pulp vitality. Laser Doppler flowmetry (LDF), which is a noninvasive, objective, painless, semi-quantitative method, has been shown to be reliable for measuring pulpal blood flow. The relevant literature on LDF in the context of endodontics up to March 2008 was reviewed using PubMed and MEDLINE database searches. This search identified papers published between June 1983 and March 2008. Laser light is transmitted to the pulp by means of a fibre optic probe. Scattered light from moving red blood cells will be frequency-shifted whilst that from the static tissue remains unshifted. The reflected light, composed of Doppler-shifted and unshifted light, is returned by afferent fibres and a signal is produced. This technique has been successfully employed for estimating pulpal vitality in adults and children, differential diagnosis of apical radiolucencies (on the basis of pulp vitality), examining the reactions to pharmacological agents or electrical and thermal stimulation, and monitoring of pulpal responses to orthodontic procedures and traumatic injuries. Assessments may be highly susceptible to environmental and technique-related factors. Nonpulpal signals, principally from periodontal blood flow, may contaminate the signal. Because this test produces no noxious stimuli, apprehensive or distressed patients accept it more readily than current methods of pulp vitality assessment. A review of the literature and a discussion of the application of this system in endodontics are presented.

  10. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Carlos A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  11. Comparative study of the performance of semiconductor laser based coherent Doppler lidars

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development of conti......Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development...... of continuous-wave CDL systems using compact, inexpensive semiconductor laser (SL) sources. In this work, we compare the performance of two candidate emitters for an allsemiconductor CDL system: (1) a monolithic master-oscillator-power-amplifier (MOPA) SL and (2) an external-cavity tapered diode laser (ECTDL)....

  12. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  13. Kombineret laser Doppler flowmetri og spectrophotometri som metode til vurdering af mikrocirculation

    DEFF Research Database (Denmark)

    Berggren Olsen, Mette; Sørensen, Hanne Birke; Houlind, Kim Christian

    Kombineret laser Doppler flowmetri og spectrophotometri som metode til vurdering af mikrocirculation Berggren, MB, reservelæge, Karkirurgisk Afdeling, Kolding, mette.marie.berggren.olsen@slb.regionsyddanmark.dk; Houlind, K, lektor, afdelingslæge, Ph.d., Karkirurgisk afdeling, Kolding, kim...

  14. Particle sizing experiments with the laser Doppler velocimeter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  15. Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results

    Directory of Open Access Journals (Sweden)

    C. Pizzorni

    2011-06-01

    Full Text Available Objectives: Systemic sclerosis (SSc is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Methods: 27 SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns (“Early”, “Active”, “Late”. LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36°C. Statistical evaluation was carried out by non-parametric procedures. Results: Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05. The heating of the probe to 36°C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05, however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05. The SSc patients with NVC “Late” pattern, showed lower values of peripheral blood flow than patients with NVC “Active” or “Early” patterns (p<0.05. Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud’s phenomenon (p <0.03. Conclusions: LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  16. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  17. Eye-safe diode laser Doppler lidar with a MEMS beam-scanner

    DEFF Research Database (Denmark)

    Hu, Qi; Pedersen, Christian; Rodrigo, Peter John

    2016-01-01

    We present a novel Doppler lidar that employs a cw diode laser operating at 1.5 μm and a micro-electro-mechanical-system scanning mirror (MEMS-SM). In this work, two functionalities of the lidar system are demonstrated. Firstly, we describe the capability to effectively steer the lidar probe beam...

  18. Analysis of Signal-to-Noise Ratio of the Laser Doppler Velocimeter

    DEFF Research Database (Denmark)

    Lading, Lars

    1973-01-01

    The signal-to-shot-noise ratio of the photocurrent of a laser Doppler anemometer is calculated as a function of the parameters which describe the system. It is found that the S/N is generally a growing function of receiver area, that few large particles are better than many small ones, and that g...

  19. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    NARCIS (Netherlands)

    M.J. Hop (M. Jenda); J. Hiddingh (J.); C.M. Stekelenburg (C.); H.C. Kuipers (Hester); E. Middelkoop (Esther); M. Nieuwenhuis (Marianne); S. Polinder (Suzanne); M.E. van Baar (Margriet)

    2013-01-01

    textabstractBackground: Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate.Laser Doppler imaging (LDI) is a technique with which

  20. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    Science.gov (United States)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  1. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  2. Muscle blood volume assessment during exercise with Power Doppler Ultrasound

    NARCIS (Netherlands)

    Heres, H.M.; Tchang, B.C.Y.; Schoots, T.; Rutten, M.C.M.; van de Vosse, F.N.; Lopata, R.G.P.

    2016-01-01

    Assessment of perfusion adaptation in muscle during exercise can provide diagnostic information on cardiac and endothelial diseases. Power Doppler Ultrasound (PDUS) is known for its feasibility in the non-invasive measurement of moving blood volume (MBV), a perfusion related parameter. In this

  3. Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands

    NARCIS (Netherlands)

    Hop, M.J.; Hiddingh, J.; Stekelenburg, C.; Kuipers, H.C.; Middelkoop, E.; Nieuwenhuis, M.K.; Polinder, S.; van Baar, M.E.

    2013-01-01

    Background: Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate.Laser Doppler imaging (LDI) is a technique with which a more

  4. Recent advances in self-mixing laser-doppler velocimetry: use as an in-vivo blood flow meter

    NARCIS (Netherlands)

    Scalise, Lorenzo; de Mul, F.F.M.; Steenbergen, Wiendelt; Petoukhova, Anna

    2000-01-01

    In the present paper, recent experimental advances obtained with a laser Doppler self-mixing velocimeter are reported. The self-mixing effect in a semiconductor laser is used to realize the velocimeter. The velocity is calculated measuring the frequency peak of the frequency spectrum of the

  5. A miniaturized laser-Doppler-system in the ear canal

    Science.gov (United States)

    Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.

    2013-03-01

    Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a

  6. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  7. Combined Laser-Doppler Flowmetry and Spectrophotometry: Feasibility Study of a Novel Device for Monitoring Local Cortical Microcirculation during Aneurysm Surgery.

    Science.gov (United States)

    Sommer, Björn; Kreuzer, Maximilian; Bischoff, Barbara; Wolf, Dennis; Schmitt, Hubert; Eyupoglu, Ilker Y; Rössler, Karl; Buchfelder, Michael; Ganslandt, Oliver; Wiendieck, Kurt

    2017-01-01

    Background  Monitoring of cortical cerebral perfusion is essential, especially in neurovascular surgery. Study Aims  To test a novel noninvasive laser-Doppler flowmetry and spectrophotometry device for feasibility during elective cerebral aneurysm surgery. Material and Methods  In this prospective single-institution nonrandomized trial, we studied local cerebral microcirculation using the noninvasive laser-Doppler spectrophotometer "Oxygen-to-see" (O2C) in 20 consecutive patients (15 female, 5 male; median age: 60.5 ± 11.7 years) who were operated on for incidental cerebral aneurysms. Capillary-venous oxygenation (oxygen saturation ["SO 2 "]), postcapillary venous filling pressures (relative hemoglobin content ["rHb"]), blood cell velocity ("velo"), and blood flow ("flow") were measured in 7-mm tissue depth using a subdural fiberoptic probe. Results  Representative recordings were acquired immediately after dural opening over a median time span of 88 ± 21.8 seconds (range: 60-128 seconds) before surgical manipulation. Baseline values (median ± 2 standard deviations) of brain perfusion as measured with the O2C device were SO 2 , 39 ± 16.6%; rHb, 53 ± 18.6 arbitrary units (AU); velo, 60 ± 20.4 AU; and flow, 311 ± 72.8 AU. Placement of the self-retaining retractor led to a decrease in SO 2 of 17% ± 29% ( p  < .05) and flow of 10% ± 11% ( p  < .01); rHb increased by 18% ± 20% ( p  < .01), and velo remained unchanged. Retractor removal caused the opposite with an increased flow of 10% ± 7% ( p  < 0.001) and velo (3% ± 6%, p  = 0.11), but a decrease in SO 2 of 24% ± 33% ( p  = 0.09) and rHb of 12% ± 20% ( p =0.18). No neurologic or surgical complications occurred. Conclusion  Using this novel noninvasive system, we were able to measure local cerebral microcirculation during aneurysm surgery. Our data indicate that this device is able to detect changes during routine

  8. Investigation of two-phase bubbly flows using laser doppler anemometry

    OpenAIRE

    Marié , Jean-Louis

    1983-01-01

    International audience; The present work is devoted to the development of an accurate and reliable laser Doppler anemometer technique (L.D.A.) meant for the measurement of the characteristics of twoephase bubbly flows. Most of these characteristics are the various statistical moments of the velocity fluctuations and the Reynolds stress tensor components within the continuous phase but also, under well defined conditions, the mean slip velocity of the dispersed phase. Although this technique w...

  9. Application of a Novel Laser-Doppler Velocimeter for Turbulence: Structural Measurements in Turbulent Boundary Layers

    National Research Council Canada - National Science Library

    Lowe, Kevin T; Simpson, Roger L

    2006-01-01

    An advanced laser-Doppler velocimeter (LDV), deemed the 'comprehensive LDV', is designed to acquire fully-resolved turbulence structural measurements in high Reynolds number two- and three-dimensional turbulent boundary layers...

  10. Passive directional discrimination in laser-Doppler anemometry by the two-wavelength quadrature homodyne technique.

    Science.gov (United States)

    Büttner, Lars; Czarske, Jürgen

    2003-07-01

    We report a method for passive optical directional discrimination in laser-Doppler anemometers. For this purpose frequency-shift elements such as acousto-optic modulators, which are bulky and difficult to align during assembly, have traditionally been employed. We propose to use a quadrature homodyne technique to achieve directional discrimination of the fluid flow without any frequency-shift elements. It is based on the employment of two laser wavelengths, which generate two interference fringe systems with a phase shift of a quarter of the common fringe spacing. Measurement signal pairs with a direction-dependent phase shift of +/- pi/2 are generated. As a robust signal-processing technique, the cross-correlation technique is used. The principles of quadrature homodyne laser-Doppler anemometry are investigated. A setup that provides a constant phase shift of pi/2 throughout the entire measurement volume was achieved with both single-mode and multimode radiation. The directional discrimination was successfully verified with wind tunnel measurements. The complete passive technique offers the potential of building miniaturized measurement heads that can be integrated, e.g., into wind tunnel models.

  11. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    International Nuclear Information System (INIS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-01-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics

  12. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    International Nuclear Information System (INIS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-01-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  13. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    Energy Technology Data Exchange (ETDEWEB)

    Sels, Seppe, E-mail: Seppe.Sels@uantwerpen.be; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve [Op3Mech Research Group, University of Antwerp, Salesianenlaan 90, 2660 Antwerp (Belgium)

    2016-06-28

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  14. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    International Nuclear Information System (INIS)

    Bair, H.J.; Platsch, G.; Wolf, F.; Guenter, E.; Becker, D.; Rupprecht, H.; Neumayer, H.H.

    1997-01-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [de

  15. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    Science.gov (United States)

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  16. Fourier and wavelet analysis of skin laser doppler flowmetry signals

    OpenAIRE

    Qi, Wei

    2011-01-01

    ObjectiveThis thesis examines the measurement of skin microvascular blood flows from Laser Doppler Flowmetry (LDF) signals. Both healthy subjects and those with features of the metabolic syndrome are studied using signal processing techniques such as the Fourier and Wavelet transforms. An aim of this study is to investigate whether change in blood flow at rest can be detected from the spectral content of the processed signals in the diferent subject groups. Additionally the effect of insulin ...

  17. A comparison between 133Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    International Nuclear Information System (INIS)

    Kastrup, J.; Buelow, J.; Lassen, N.A.

    1987-01-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by 133 Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vaso-constrictor reflex by lowering the area of investigation below heart level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and 133 Xenon blood flow measurements were performed simultaneously on the sympathetically denervated forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The 133 Xenon method recorded a 44% decrease in blood flow in innervated and unchanged blood flow in denervated subcutaneous tissue during lowering of the extremities. Our results indicate that the Laser Doppler method and 133 Xenon method are not comparable, and that the Laser Doppler method is not useful in measuring local sympathetic mediated blood flow changes. (author)

  18. Comparison between /sup 133/Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, J.; Buelow, J.; Lassen, N.A.

    1987-10-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by /sup 133/Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vaso-constrictor reflex by lowering the area of investigation below heart level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and /sup 133/Xenon blood flow measurements were performed simultaneously on the sympathetically denervated forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The /sup 133/Xenon method recorded a 44% decrease in blood flow in innervated and unchanged blood flow in denervated subcutaneous tissue during lowering of the extremities. Our results indicate that the Laser Doppler method and /sup 133/Xenon method are not comparable, and that the Laser Doppler method is not useful in measuring local sympathetic mediated blood flow changes.

  19. New phase method of measuring particle size with laser Doppler radar

    Science.gov (United States)

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  20. Assesment of gingival microcirculation in anterior teeth using laser Doppler flowmetry

    Science.gov (United States)

    Canjau, Silvana; Miron, Mariana I.; Todea, Carmen D.

    2016-03-01

    Introduction: Evaluating the health status of the gingival tissue represents an important objective in the daily practice. Inflammation changes the microcirculatory and micromorphological dynamics of human gingiva. Aim: The purpose of this study was to evaluate the microcirculation in subjects with moderate gingivitis and healthy gingiva by using laser Doppler flowmetry (LDF). Material and Methods: Recordings of the gingival microcirculation (GM) were taken from 20 healthy gingival sites and from 20 sites with moderate gingivitis. The gingival blood flows in the gingivitis group before treatment was significantly different from those in the healthy gingiva group. Signals were recorded with the aid of a laser Doppler MoorLab instrument VMS-LDF2 probe VP3 10 mm S/N 2482. Three consecutive determinations of the GM were registered for each site, as follows: before the initial therapy, at 24 hours after the initial therapy and then, 7 days after the initial therapy. The data were processed using the statistical analysis software SPSS v16.0.1. Results: The results of this preliminary study showed statistically significant differences among the GM values recorded before and after the initial therapy. Conclusions: LDF could be a useful, noninvasive, sensitive, reproducible, and harmless method for measuring gingival blood flow (gingival microcirculation) in humans.

  1. Reduced Arteriovenous Shunting Capacity After Local Heating and Redistribution of Baseline Skin Blood Flow in Type 2 Diabetes Assessed With Velocity-Resolved Quantitative Laser Doppler Flowmetry

    Science.gov (United States)

    Fredriksson, Ingemar; Larsson, Marcus; Nyström, Fredrik H.; Länne, Toste; Östgren, Carl J.; Strömberg, Tomas

    2010-01-01

    OBJECTIVE To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS The skin blood flow response to local heating (44°C for 20 min) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity × concentration), in a physiologically relevant unit (grams RBC per 100 g tissue × millimeters per second) in a fixed output volume, separated into three velocity regions: v 10 mm/s. RESULTS The increased blood flow occurs in vessels with a velocity >1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v >10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v >10 mm/s, whereas no significant increase was found for v <1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio. PMID:20393143

  2. Laser doppler anemometry in single- and two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.

    1976-01-01

    The present report gives an introduction into laser-Doppler anemometry and tries to explain the basic physical principles of this measuring technique. Moire fringe patterns are used in order to visually model LDA-signals and to explain the basic difference in optical systems. It is pointed out that LDA measurements in highly turbulent flows and in two-phase flows should be attempted with direction sensitive instruments only. Some of the optical systems developed by the author and his collaborators are introduced and their functioning in measurements is demonstrated. These measurements embrace investigations in a number of single-phase flows including flames. (orig.) [de

  3. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology.

    Science.gov (United States)

    Li, Yanlu; Zhu, Jinghao; Duperron, Matthieu; O'Brien, Peter; Schüler, Ralf; Aasmul, Soren; de Melis, Mirko; Kersemans, Mathias; Baets, Roel

    2018-02-05

    This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.

  4. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  5. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    Science.gov (United States)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  6. Assessment of speed distribution of red blood cells in the microvascular network in healthy volunteers and type 1 diabetes using laser Doppler spectra decomposition

    International Nuclear Information System (INIS)

    Wojtkiewicz, S; Maniewski, R; Liebert, A; Wojcik-Sosnowska, E; Jasik, M; Karnafel, W

    2014-01-01

    We applied a recently reported method of decomposition of laser Doppler power density spectra for in vivo monitoring of speed distributions of red blood cells (RBCs) in the microvascular network. The spectrum decomposition technique allows us to derive the distribution of RBC speed (in absolute units (mm s −1 )) versus RBC concentration (in arbitrary units). We carried out postocclusive reactive hyperaemia (PORH) test in 15 healthy volunteers and 21 diabetic patients in which the duration of type 1 diabetes was longer than 10 years. Measurements were carried out simultaneously with the use of a typical laser Doppler commercial instrument and speed resolved laser Doppler instrument utilizing the new technique based on decomposition of the laser Doppler spectra. We show that for the classical laser Doppler instrument, none of the PORH parameters revealed a statistical significance of difference between the groups analyzed. In contrast, the RBC speed distributions obtained from laser Doppler spectra during rest in the control group and type 1 diabetes are statistically significant. This result suggests that speed distribution measurements in the rest state (without any kind of stimulation test) allows for the assessment of microcirculation disorders. Measurements carried out in healthy subjects show that the first moment of speed distributions (mean speed of the distributions) is 2.32 ± 0.54 mm s −1  and 2.57 ± 0.41 mm s −1  for optodes located on the toe and finger of the hand, respectively. Respective values in type 1 diabetes were higher: 3.00 ± 0.36 mm s −1  and 3.10 ± 0.48 mm s −1 . (paper)

  7. High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field

    International Nuclear Information System (INIS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Boudot, Rodolphe; Brazhnikov, Denis; Taichenachev, Alexei; Yudin, Valeriy; De Clercq, Emeric

    2017-01-01

    The saturated absorption technique is an elegant method widely used in atomic and molecular physics for high-resolution spectroscopy, laser frequency standards and metrology purposes. We have recently discovered that a saturated absorption scheme with a dual-frequency laser can lead to a significant sign reversal of the usual Doppler-free dip, yielding a deep enhanced-absorption spike. In this paper, we report detailed experimental investigations of this phenomenon, together with a full in-depth theoretical description. It is shown that several physical effects can support or oppose the formation of the high-contrast central spike in the absorption profile. The physical conditions for which all these effects act constructively and result in very bright Doppler-free resonances are revealed. Apart from their theoretical interest, results obtained in this manuscript are of great interest for laser spectroscopy and laser frequency stabilization purposes, with applications in laser cooling, matter-wave sensors, atomic clocks or quantum optics. (paper)

  8. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Re-Normalization Method of Doppler Lidar Signal for Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nakgyu; Baik, Sunghoon; Park, Seungkyu; Kim, Donglyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dukhyeon [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, we presented a re-normalization method for the fluctuations of Doppler signals from the various noises mainly due to the frequency locking error for a Doppler lidar system. For the Doppler lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter and an iodine filter as the Doppler frequency discriminator. For the Doppler frequency shift measurement, the transmission ratio using the injection-seeded laser is locked to stabilize the frequency. If the frequency locking system is not perfect, the Doppler signal has some error due to the frequency locking error. The re-normalization process of the Doppler signals was performed to reduce this error using an additional laser beam to an Iodine cell. We confirmed that the renormalized Doppler signal shows the stable experimental data much more than that of the averaged Doppler signal using our calibration method, the reduced standard deviation was 4.838 Χ 10{sup -3}.

  10. Gold nanorods as a contrast agent for Doppler optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available To investigate gold nanorods (GNRs as a contrast agent to enhance Doppler optical coherence tomography (OCT imaging of the intrascleral aqueous humor outflow.A serial dilution of GNRs was scanned with a spectral-domain OCT device (Bioptigen, Durham, NC to visualize Doppler signal. Doppler measurements using GNRs were validated using a controlled flow system. To demonstrate an application of GNR enhanced Doppler, porcine eyes were perfused at constant pressure with mock aqueous alone or 1.0×10(12 GNR/mL mixed with mock aqueous. Twelve Doppler and volumetric SD-OCT scans were obtained from the limbus in a radial fashion incremented by 30°, forming a circular scan pattern. Volumetric flow was computed by integrating flow inside non-connected vessels throughout all 12 scans around the limbus.At the GNR concentration of 0.7×10(12 GNRs/mL, Doppler signal was present through the entire depth of the testing tube without substantial attenuation. A well-defined laminar flow profile was observed for Doppler images of GNRs flowing through the glass capillary tube. The Doppler OCT measured flow profile was not statistically different from the expected flow profile based upon an autoregressive moving average model, with an error of -0.025 to 0.037 mm/s (p = 0.6435. Cross-sectional slices demonstrated the ability to view anterior chamber outflow ex-vivo using GNR-enhanced Doppler OCT. Doppler volumetric flow measurements were comparable to flow recorded by the perfusion system.GNRs created a measureable Doppler signal within otherwise silent flow fields in OCT Doppler scans. Practical application of this technique was confirmed in a constant pressure ex-vivo aqueous humor outflow model in porcine eyes.

  11. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    Directory of Open Access Journals (Sweden)

    Ketsaya Vacharanukul

    2006-06-01

    Full Text Available To achieve dynamic error compensation in CNC machine tools, a non-contactlaser probe capable of dimensional measurement of a workpiece while it is being machinedhas been developed and presented in this paper. The measurements are automatically fedback to the machine controller for intelligent error compensations. Based on a well resolvedlaser Doppler technique and real time data acquisition, the probe delivers a very promisingdimensional accuracy at few microns over a range of 100 mm. The developed opticalmeasuring apparatus employs a differential laser Doppler arrangement allowing acquisitionof information from the workpiece surface. In addition, the measurements are traceable tostandards of frequency allowing higher precision.

  12. Experimental data base of turbulent flow in rod bundles using laser doppler velocimeter

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Yang, Sun Kyu; Chung, Heung June; Won, Soon Yeun; Kim, Bok Deuk; Cho, Young Rho

    1992-01-01

    This report presents in detail the hydraulic characteristics measurements in subchannels of rod bundles using one-component LDV (Laser Doppler Velocimeter). In particular, this report presents the figures and tabulations of the resulting data. The detailed explanations about these results are shown in references publicated or presented at the conference. 4 kinds of experimental work were performed so far. (Author)

  13. Determination of the direction of motion on the basis of CW-homodyne laser Doppler radar

    Science.gov (United States)

    Biselli, Eugen; Werner, Christian

    1989-03-01

    Four methods for measuring the direction of a moving object using homodyne laser Doppler techniques are reviewed. The dynamic ranges of the signals for two methods that make use of the transmitter laser resonator characteristics or gain cell characteristics are shown to be limited. The resonance effects observed using a rotating wheel as an auxiliary target are discussed. The method employing eccentric scanner movement bidirectional scanning provides information concerning the direction of the velocity component to be measured.

  14. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    Science.gov (United States)

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest

  15. Functional and morphological evaluation of hand microcirculation with nailfold capillaroscopy and laser Doppler imaging in Raynaud's and Sjögren's syndrome and poly/dermatomyositis.

    Science.gov (United States)

    Szabo, N; Csiki, Z; Szanto, A; Danko, K; Szodoray, P; Zeher, M

    2008-01-01

    Nailfold capillaroscopy is widely used in autoimmune patients to determine capillary morphology. Laser Doppler imaging (LDI) is a relatively new method for measuring the microcirculation of cutaneous perfusion. The aim of this study was to investigate the capillary morphology and microcirculation among patients with Sjögren's syndrome (SS) and poly/dermatomyositis (PM/DM) with these two non-invasive methods and to detect secondary Raynaud's syndrome (SRS) in these autoimmune diseases. Thirty patients with primary SS, 30 patients with PM/DM, 30 patients with primary Raynaud's syndrome (PRS), and 30 healthy volunteers were included in the study. Nailfold capillaroscopy and LDI were performed on each patient. A comprehensive analysis was performed among the patients and healthy individuals. Among SS patients avascularity and among PM/DM patients avascularity and capillary morphology changes were most often detected by capillaroscopy. With LDI the mean steady-state cutaneous perfusion was 1.25 perfusion units (PU) in region of interest 1 (ROI1), 1.22 in ROI2, and 1.49 at the fingertips in PRS patients; the corresponding values were 1.2, 1.03, and 1.48 PU in SS, 0.91, 0.76, and 1.19 PU in PM/DM, and 1.79, 1.62, and 2.2 PU in the controls. The differences were significant between each autoimmune group compared to the control group (pnailfold capillaroscopy, abnormalities in capillary morphology can be detected, and by using LDI, the reduced blood flow in the capillaries can be detected. These investigations can be useful in the detection of SRS, or in distinguishing whether the reduced blood flow is due to primary/systemic autoimmune diseases.

  16. A Space-Frequency Data Compression Method for Spatially Dense Laser Doppler Vibrometer Measurements

    Directory of Open Access Journals (Sweden)

    José Roberto de França Arruda

    1996-01-01

    Full Text Available When spatially dense mobility shapes are measured with scanning laser Doppler vibrometers, it is often impractical to use phase-separation modal parameter estimation methods due to the excessive number of highly coupled modes and to the prohibitive computational cost of processing huge amounts of data. To deal with this problem, a data compression method using Chebychev polynomial approximation in the frequency domain and two-dimensional discrete Fourier series approximation in the spatial domain, is proposed in this article. The proposed space-frequency regressive approach was implemented and verified using a numerical simulation of a free-free-free-free suspended rectangular aluminum plate. To make the simulation more realistic, the mobility shapes were synthesized by modal superposition using mode shapes obtained experimentally with a scanning laser Doppler vibrometer. A reduced and smoothed model, which takes advantage of the sinusoidal spatial pattern of structural mobility shapes and the polynomial frequency-domain pattern of the mobility shapes, is obtained. From the reduced model, smoothed curves with any desired frequency and spatial resolution can he produced whenever necessary. The procedure can he used either to generate nonmodal models or to compress the measured data prior to modal parameter extraction.

  17. Field performance of an all-semiconductor laser coherent Doppler lidar

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    We implement and test what, to our knowledge, is the first deployable coherent Doppler lidar (CDL) system based on a compact, inexpensive all-semiconductor laser (SL). To demonstrate the field performance of our SL-CDL remote sensor, we compare a 36 h time series of averaged radial wind speeds...... measured by our instrument at an 80 m distance to those simultaneously obtained from an industry-standard sonic anemometer (SA). An excellent degree of correlation (R2=0.994 and slope=0.996) is achieved from a linear regression analysis of the CDL versus SA wind speed data. The lidar system is capable...

  18. Simultaneous measurement of pO2 and perfusion in the rabbit kidney in vivo.

    Science.gov (United States)

    O'Connor, Paul M; Anderson, Warwick P; Kett, Michelle M; Evans, Roger G

    2007-01-01

    Recently, a combined probe has been developed capable of simultaneous measurement of local tissue pO2 (fluorescence oximetry) and microvascular perfusion (laser Doppler flux) within the same local region. The aim of the current study was to test the utility of these combined probes to measure pO2 and perfusion in the kidney. Studies were performed in anesthetized, artificially ventilated rabbits (n=7). Baseline measurements of renal medullary perfusion and pO2 obtained using combined probes (537 +/- 110 units & 28.7 +/- 6.l mmHg, respectively) were indistinguishable from those obtained using independent probes (435 +/- 102 units & 26.9 +/- 6.4 mmHg). Baseline measurements of renal cortical pO2 were also similar between combined (9.7 +/- 1.6 mmHg) and independent probes (9.5 +/- 2.3 mmHg). Baseline levels of cortical perfusion however, were significantly greater when measured using independent probes (1130 +/- 114 units) compared to combined probes (622 +/- 59 units; P pO2 resulting from graded stimulation of the renal nerves were not significantly different when measured using combined probes to those obtained using independent probes. We conclude that combined probes are equally suitable to independent probes for tissue pO2 and microvascular perfusion measurement in the kidney. Our results raise some concerns regarding the accuracy of these OxyLite fluorescence probes for pO2 measurement in the kidney, particularly within the renal cortex.

  19. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  20. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  1. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.

    Science.gov (United States)

    Sandberg, M; Zhang, Q; Styf, J; Gerdle, B; Lindberg, L-G

    2005-04-01

    To evaluate a specially developed photoplethysmographic (PPG) technique, using green and near-infrared light sources, for simultaneous non-invasive monitoring of skin and muscle perfusion. Evaluation was based on assessments of changes in blood perfusion to various provocations, such as post-exercise hyperaemia and hyperaemia following the application of liniment. The deep penetrating feature of PPG was investigated by measurement of optical radiation inside the muscle. Simultaneous measurements using ultrasound Doppler and the new PPG application were performed to elucidate differences between the two methods. Specific problems related to the influence of skin temperature on blood flow were highlightened, as well. Following static and dynamic contractions an immediate increase in muscle perfusion was shown, without increase in skin perfusion. Liniment application to the skin induced a rapid increase in skin perfusion, but not in muscle. Both similarities and differences in blood flow measured by Ultrasound Doppler and PPG were demonstrated. The radiant power measured inside the muscle, by use of an optical fibre, showed that the near-infrared light penetrates down to the vascular depth inside the muscle. The results of this study indicate the potentiality of the method for non-invasive measurement of local muscle perfusion, although some considerations still have to be accounted for, such as influence of temperature on blood perfusion.

  2. Influence of the measuring condition on vibrocardiographic signals acquired on the thorax with a laser Doppler vibrometer

    Science.gov (United States)

    Mignanelli, L.; Bauer, G.; Klarmann, M.; Wang, H.; Rembe, C.

    2017-07-01

    Velocity signals acquired with a Laser Doppler Vibrometer on the thorax (Optical Vibrocardiography) contain important information, which have a relation to cardiovascular parameters and cardiovascular diseases. The acquired signal results in a superimposition of vibrations originated from different sources of the human body. Since we study the vibration generated by the heart to reliably detect a characteristic time interval corresponding to the PR interval in the ECG, these disturbance have to be removed by filtering. Moreover, the Laser Doppler Vibrometer measures only in the direction of the laser beam and, thus, the velocity signal is only a projection of the tridimensional movement of the thorax. This work presents an analysis of the influences of the filters and of the measurement direction on the characteristic time interval in Vibrocardiographic signals. Our analysis results in recommended settings for filters and we demonstrate that reliable detection of vibrocardiographic parameters is possible within an angle deviation of 30° in respect to the perpendicular irradiation on the front side of the subject.

  3. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

    Science.gov (United States)

    Serafini, S.; Paone, N.; Castellini, P.

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  4. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry.

    Science.gov (United States)

    Serafini, S; Paone, N; Castellini, P

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  5. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  6. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  7. A comparison between 133Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    DEFF Research Database (Denmark)

    Kastrup, J; Bülow, J; Lassen, N A

    1987-01-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by 133Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vasoconstrictor reflex by lowering the area of investigation below heart...... forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The 133Xenon method recorded a 44% decrease in blood flow in innervated...... level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and 133Xenon blood flow measurements were performed simultaneously on the sympathetically denervated...

  8. Laser Doppler imaging as a tool in the burn wound treatment protocol

    OpenAIRE

    Venclauskiene, Algirda; Basevicius, Algidas; Zacharevskij, Ernest; Vaicekauskas, Vytautas; Rimdeika, Rytis; Lukosevicius, Saulius

    2014-01-01

    Introduction The main treatment of burns is early excision of injured tissues. Aim To compare two different methods of examination of burned patients: clinical burn depth examination (CDE) and laser Doppler imaging (LDI). Material and methods A prospective randomized study of 57 burn patients treated in 2009–2011 was carried out. The burned patients were randomized into a CDE group and an LDI group. The CDE and LDI scan were performed 72 h after injury, with the second and third CDE and LDI s...

  9. Determination of air and hydrofoil pressure coefficient by laser doppler anemometry

    Directory of Open Access Journals (Sweden)

    Ristić Slavica S.

    2010-01-01

    Full Text Available Some results of experiments performed in water cavitation tunnel are presented. Pressure coefficient (Cp was experimentally determined by Laser Doppler Anemometry (LDA measurements. Two models were tested: model of airplane G4 (Super Galeb and hydrofoil of high speed axial pump. These models are not prepared for conventional pressure measurements, so that LDA is applied for Cp determination. Numerical results were obtained using a code for average Navier-Stokes equations solutions. Comparisons between computational and experimental results prove the effectiveness of the LDA. The advantages and disadvantages of LDA application are discussed. Flow visualization was made by air bubbles.

  10. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    Science.gov (United States)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  11. Assessment of vascularity in irradiated and nonirradiated maxillary and mandibular minipig alveolar bone using laser doppler flowmetry.

    NARCIS (Netherlands)

    Verdonck, H.W.; Meijer, G.J.; Laurin, T.; Nieman, F.H.; Stoll, C.; Riediger, D.; Stoelinga, P.J.W.; Baat, C. de

    2007-01-01

    PURPOSE: The purpose of this animal study was to confirm that laser Doppler flowmetry (LDF) is a reproducible method for the assessment of maxillary and mandibular alveolar bone vascularity and that there is less vascularity in irradiated mandibular and maxillary bone compared to nonirradiated bone.

  12. Comparison of laser Doppler imaging, fingertip lacticemy test, and nailfold capillaroscopy for assessment of digital microcirculation in systemic sclerosis.

    Science.gov (United States)

    Correa, Marcelo Ju; Andrade, Luis Ec; Kayser, Cristiane

    2010-01-01

    Laser Doppler imaging (LDI) is a relatively new method for assessing the functional aspect of superficial skin blood flow in systemic sclerosis (SSc) and Raynaud's phenomenon. The present study investigated the dynamic behavior of digital skin microvascular blood flow before and after cold stimulus (CS) in SSc patients and in healthy controls by means of a comprehensive approach of the functional (LDI), morphological (nailfold capillaroscopy (NFC)), and biochemical (fingertip lacticemy (FTL)) microcirculation components. Forty-four SSc patients and 40 healthy controls were included. After acclimatization, all subjects underwent NFC followed by LDI and FTL measurement. NFC was performed with a stereomicroscope under 10× to 20× magnification in the 10 digits of the hands. Skin blood flow of the dorsum of four fingertips (excluding the thumb) of the left hand was measured using LDI at baseline and for 30 minutes after CS. The mean finger blood flow (FBF) of the four fingertips was expressed as arbitrary perfusion units. FTL was determined on the fourth left finger before (pre-CS-FTL) and 10 minutes after CS. LDI showed significantly lower mean baseline FBF in SSc patients as compared with controls (296.9 ± 208.8 vs. 503.6 ± 146.4 perfusion units; P < 0.001) and also at all time points after CS (P < 0.001). There was a significant decrease in mean FBF after CS as compared with baseline in SSc patients and in controls, followed by recovery of the blood flow 27 minutes after CS in healthy controls, but not in SSc patients. FBF tended to be lower in patients with digital scars and previous ulceration/amputation (P = 0.06). There was no correlation between mean baseline FBF and NFC parameters. Interestingly, there was a negative correlation between FTL and FBF measured by LDI in basal conditions and 10 minutes after CS in SSc patients. LDI showed lower digital blood flow in SSc patients when compared with healthy controls and correlated well with FTL both at baseline

  13. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography.

    Science.gov (United States)

    Scremin, Oscar U; Figoni, Stephen F; Norman, Keith; Scremin, A M Erika; Kunkel, Charles F; Opava-Rutter, Dorene; Schmitter, Eric D; Bert, Alberto; Mandelkern, Mark

    2010-06-01

    To establish whether muscle blood flow (MBF) measurements with O-water positron emission tomography could reliably identify patients with critical limb ischemia and detect and quantify a distal deficit in skeletal MBF in these cases. O-water positron emission tomography scans were performed at rest or during unloaded ankle plantar and dorsiflexion exercise of the diseased leg in 17 subjects with leg ischemia or on a randomly selected leg of 18 age-matched healthy control subjects. TcPO2 was evaluated with Novametrix monitors and perfusion of skin topically heated to 44 degrees C and adjacent nonheated areas with a Moor Instruments laser Doppler imaging scanner. The enhancement of MBF induced by exercise was significantly lower in ischemic than in normal legs, and the sensitivity and specificity of this phenomenon were similar to those of laser Doppler imaging or TcPO2 in identifying ischemia subjects. In addition, the exercise MBF deficit was predominant at the distal-leg levels, indicating the ability of the technique to help determine the correct level of amputation. Skeletal MBF of legs with severe ischemia can be detected accurately with O-water positron emission tomography and could add valuable information about viability of skeletal muscle in the residual limb when deciding the level of an amputation.

  14. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs

    Science.gov (United States)

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2014-07-01

    Multiplex two-photon excitation spectroscopy is demonstrated at Doppler-limited resolution. We describe first Fourier-transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum of all excited transitions is revealed by a Fourier transform.

  15. Application of scanning laser Doppler vibrometry for delamination detection in composite structures

    Science.gov (United States)

    Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw

    2017-12-01

    In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.

  16. Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals

    International Nuclear Information System (INIS)

    Skoff, S M; Hendricks, R J; Sinclair, C D J; Tarbutt, M R; Hudson, J J; Segal, D M; Sauer, B E; Hinds, E A

    2009-01-01

    We demonstrate Doppler-free saturated absorption spectroscopy of cold molecular radicals formed by laser ablation inside a cryogenic buffer gas cell. By lowering the temperature, congested regions of the spectrum can be simplified, and by using different temperatures for different regions of the spectrum a wide range of rotational states can be studied optimally. We use the technique to study the optical spectrum of YbF radicals with a resolution of 30 MHz, measuring the magnetic hyperfine parameters of the electronic ground state. The method is suitable for high-resolution spectroscopy of a great variety of molecules at controlled temperature and pressure, and is particularly well suited to those that are difficult to produce in the gas phase.

  17. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges

    OpenAIRE

    Abay, T. Y.; Kyriacou, P. A.

    2016-01-01

    © 2016 Institute of Physics and Engineering in Medicine. Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of...

  18. Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth

    NARCIS (Netherlands)

    Suichies, H.E.; Brouwer, C.; Aarnoudse, J.G.; Jentink, H.W.; de Mul, F.F.M.; Greve, Jan

    1990-01-01

    Changes in forehead skin blood flow were determined in 17 healthy, term newborns, using a fiberless diode laser Doppler flow meter (Diodopp). Measurements were carried out three times on each infant, at postnatal ages of 16.8 ± 7.4 h, 58.9 ± 6.2 h and 121.5 ± 14.2 h (mean ± S.D.), respectively. Skin

  19. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  20. Noninvasive study of extremity perfusion by 43K scanning

    International Nuclear Information System (INIS)

    Miyamoto, A.T.; Mishkin, F.S.; Maxwell, T.M.

    1975-01-01

    In nine patients with lower extremity symptoms of arterial insufficiency, potassium chloride 43 K was injected intravenously during rest, reactive hyperemia, or exercise. Decreased radioactivity in muscle tissue was observed to correspond with symptoms, physical findings, Doppler ultrasound pressures, and angiographic findings in all six who had the procedure. Studies following surgical endarterectomies in two, a bypass procedure in one, and exploration without attempted reconstruction in one showed good correlation with postoperative symptoms, physical findings, and pressure measurements using Doppler ultrasound in three of four patients. The fourth patient showed no change on the postoperative study despite clinical improvement. These findings suggest that intravenously administered radioactive potassium provides a noninvasive means for demonstrating the perfused muscle mass of the extremities with delineation of ischemic areas. The risk of arterial puncture is eliminated, and the ability to visualize perfusion patterns during exercise is unique to this method. (U.S.)

  1. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  2. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  3. He-Ne laser effects on blood microcirculation. An in vivo study through laser doppler flowmetry

    International Nuclear Information System (INIS)

    Nunez, Silvia Cristina

    2002-01-01

    Blood microcirculation performs an important function in tissue repair process, as well as in pain control, allowing for greater oxygenation of the tissues and the accelerated expulsion of metabolic products, that may be contributing to pain. Low Intensity Laser Therapy (LILT) is widely used to promote healing, and there is an assumption that it is mechanism of action may be due to an enhancement of blood supply. The purpose of this study was to evaluate, using laser Doppler flowmetry (LDF), the stated effects caused by radiation emitted by a He-Ne laser (λ=632.8 nm) on blood microcirculation during tissue repair. To this end, 15 male mice were selected and received a liquid nitrogen provoked lesion, above the dorsal region, and blood flow was measured periodically, during 21 days. Due to radiation emission by the LDF equipment, a control group was established to evaluate possible effects caused by this radiation on microcirculation. To evaluate the He-Ne laser effects, a 1.15 J/cm 2 dose was utilized, with an intensity of 6 mW/cm 2 . The results obtained demonstrate flow alterations, provoked by the lesion, and subsequent inflammatory response. There was no statistical difference between the studied groups. As per the analysis of the results there is no immediate effect due the radiation emitted by a He Ne laser on microcirculation, although a percentage increase was observed in day 7 on medium blood flow rate in irradiated specimens. New studies are necessary to validate the use of this wavelength, in order to promote beneficial alterations in blood supply in radiated areas. (author)

  4. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    Science.gov (United States)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  5. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis

    Directory of Open Access Journals (Sweden)

    Joshua L. Heuslein

    2018-01-01

    Full Text Available The growth of endogenous collateral arteries that bypass arterial occlusion(s, or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL in vivo. We found miR-146a inhibition impaired EC tube formation and migration in vitro. Following FAL, Balb/c mice were treated with a single, intramuscular injection of anti-miR-146a or scramble locked nucleic acid (LNA oligonucleotides directly into the non-ischemic gracilis muscles. Serial laser Doppler imaging demonstrated that anti-miR-146a treated mice exhibited significantly greater perfusion recovery (a 16% increase compared mice treated with scramble LNA. Moreover, anti-miR-146a treated mice exhibited a 22% increase in collateral artery diameter compared to controls, while there was no significant effect on in vivo angiogenesis or muscle regeneration. Despite exerting no beneficial effects on angiogenesis, the inhibition of mechanosensitive miR-146a enhances perfusion recovery after FAL via enhanced arteriogenesis.

  6. Muscle activity characterization by laser Doppler Myography

    Science.gov (United States)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  7. Muscle activity characterization by laser Doppler Myography

    International Nuclear Information System (INIS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Tomasini, Enrico Primo

    2013-01-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin

  8. The asymmetric facial skin perfusion distribution of Bell's palsy discovered by laser speckle imaging technology.

    Science.gov (United States)

    Cui, Han; Chen, Yi; Zhong, Weizheng; Yu, Haibo; Li, Zhifeng; He, Yuhai; Yu, Wenlong; Jin, Lei

    2016-01-01

    Bell's palsy is a kind of peripheral neural disease that cause abrupt onset of unilateral facial weakness. In the pathologic study, it was evidenced that ischemia of facial nerve at the affected side of face existed in Bell's palsy patients. Since the direction of facial nerve blood flow is primarily proximal to distal, facial skin microcirculation would also be affected after the onset of Bell's palsy. Therefore, monitoring the full area of facial skin microcirculation would help to identify the condition of Bell's palsy patients. In this study, a non-invasive, real time and full field imaging technology - laser speckle imaging (LSI) technology was applied for measuring facial skin blood perfusion distribution of Bell's palsy patients. 85 participants with different stage of Bell's palsy were included. Results showed that Bell's palsy patients' facial skin perfusion of affected side was lower than that of the normal side at the region of eyelid, and that the asymmetric distribution of the facial skin perfusion between two sides of eyelid is positively related to the stage of the disease (P Bell's palsy patients, and we discovered that the facial skin blood perfusion could reflect the stage of Bell's palsy, which suggested that microcirculation should be investigated in patients with this neurological deficit. It was also suggested LSI as potential diagnostic tool for Bell's palsy.

  9. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study

    International Nuclear Information System (INIS)

    Liebert, A; Zolek, N; Maniewski, R

    2006-01-01

    A method for measurement of distribution of speed of particles moving in an optically turbid medium is presented. The technique is based on decomposition of the laser-Doppler spectrum. The theoretical background is shown together with the results of Monte Carlo simulations, which were performed to validate the proposed method. The laser-Doppler spectra were obtained by Monte Carlo simulations for assumed uniform and Gaussian speed distributions of particles moving in the turbid medium. The Doppler shift probability distributions were calculated by Monte Carlo simulations for several anisotropy factors of the medium, assuming the Hanyey-Greenstein phase function. The results of the spectra decomposition show that the calculated speed distribution of moving particles match well the distribution assumed for Monte Carlo simulations. This result was obtained for the spectra simulated in optical conditions, in which the photon is scattered with the Doppler shift not more than once during its travel between the source and detector. Influence of multiple scattering of the photon is analysed and a perspective of spectrum decomposition under such conditions is considered. Potential applications and limitations of the method are discussed

  10. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  11. Dynamic characteristics of laser Doppler flowmetry signals obtained in response to a local and progressive pressure applied on diabetic and healthy subjects

    Science.gov (United States)

    Humeau, Anne; Koitka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-09-01

    In the biomedical field, the laser Doppler flowmetry (LDF) technique is a non-invasive method to monitor skin perfusion. On the skin of healthy humans, LDF signals present a significant transient increase in response to a local and progressive pressure application. This vasodilatory reflex response may have important implications for cutaneous pathologies involved in various neurological diseases and in the pathophysiology of decubitus ulcers. The present work analyses the dynamic characteristics of these signals on young type 1 diabetic patients, and on healthy age-matched subjects. To obtain accurate dynamic characteristic values, a de-noising wavelet-based algorithm is first applied to LDF signals. All the de-noised signals are then normalised to the same value. The blood flow peak and the time to reach this peak are then calculated on each computed signal. The results show that a large vasodilation is present on signals of healthy subjects. The mean peak occurs at a pressure of 3.2 kPa approximately. However, a vasodilation of limited amplitude appears on type 1 diabetic patients. The maximum value is visualised, on the average, when the pressure is 1.1 kPa. The inability for diabetic patients to increase largely their cutaneous blood flow may bring explanations to foot ulcers.

  12. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    International Nuclear Information System (INIS)

    Sedlacik, Jan; Fiehler, Jens; Reitz, Matthias; Schmidt, Nils O.; Bolar, Divya S.; Adalsteinsson, Elfar

    2015-01-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s and -1] = 20.7/20.4/20.1, R2*[s and -1] = 31.6/29.6/25.9, R2'[s and 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min and -1.100g and -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good

  13. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  14. Vascular perfusion of reproductive organs in pony mares and heifers during sedation with detomidine or xylazine.

    Science.gov (United States)

    Araujo, Reno R; Ginther, O J

    2009-01-01

    To assess the vascular effects of detomidine and xylazine in pony mares and heifers, respectively, as determined in a major artery and by extent of vascular perfusion of reproductive organs. 10 pony mares and 10 Holstein heifers. Pony mares were assigned to receive physiologic saline (0.9% NaCl) solution (n = 5) or detomidine (3.0 mg/mare, IV; 5). Heifers were assigned to receive saline solution (5) or xylazine (14 mg/heifer, IM; 5). Color Doppler ultrasonographic examinations were performed immediately before and 10 minutes after administration of saline solution or sedative. In spectral Doppler mode, a spectral graph of blood flow velocities during a cardiac cycle was obtained at the internal iliac artery and at the ovarian pedicle. In color-flow mode, color signals of blood flow in vessels of the corpus luteum and endometrium were assessed. Systemic effects of sedation in the 2 species were evident as a decrease in heart rate; increase in duration of systole, diastole, or both; decrease in volume of blood flow; and decrease in velocity of blood flow within the internal iliac artery. However, an effect of sedatives on local vascular perfusion in the ovaries and endometrium was not detected. Sedation with detomidine in pony mares and xylazine in heifers did not affect vascular perfusion in reproductive organs. These sedatives can be used in experimental and clinical color Doppler evaluations of vascular perfusion of the corpus luteum and endometrium.

  15. Prediction of cerebrovascular reserve by the MRI and doppler ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hui Joong; Kim, Yong Sun [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2005-07-15

    We investigated acute stroke patterns on diffusion weighted images and with doppler ultrasonography studies of ICA and MCA steno-occlusive diseases in order to predict the cerbrovascular reserve (CVR), as was measured by acetazolamide (ACZ)-challenged Tc-99m ECD brain perfusion SPECT. A retrospective analysis was performed of 76 patients who underwent MRI/MRA, ACZ-challenged Tc-99m ECD brain perfusion SPECT, and carotid and vertebral artery Doppler sonography. After dividing these patients into four groups-MCA and ICA ateno-occlusions, we analyzed the relationship between the CVR and topologic MR patterns and the flow volume, as was measured by Doppler sonography. The CVRs were preserved in 26 of 76 patients. The CVRs were impaired in those cases of occlusion that were detected on MRA and also by the pattern of the territorial involvement on the diffusion weighted image ({rho} < 0.05, x{sup 2} test). Yet in cases of preserved CVRs, the flow volume of the contralateral ICA, the anterior circulation, and the total cerebral flow volume were increased, as was checked by Doppler sonography ({rho} < 0.05, t-test). As calculated by logistic regression analysis, the accuracy for predicting the preserved CVR by using the statistically significant variables was 78%. We believe that the MRI-SPECT correlation study was helpful for understanding the hemodynamics and topographic patterns of ischemia in patients with ICA and MCA steno-occlusive disease, and that the flow volume measurement, which was done by using duplex US, was useful for predicting the CVR.

  16. Arm locking with Doppler estimation errors

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yinan; Wand, Vinzenz; Mitryk, Shawn; Mueller, Guido, E-mail: yinan@phys.ufl.ed [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2010-05-01

    At the University of Florida we developed the University of Florida LISA Interferometer Simulator (UFLIS) in order to study LISA interferometry with hardware in the loop at a system level. One of the proposed laser frequency stabilization techniques in LISA is arm locking. Arm locking uses an adequately filtered linear combination of the LISA arm signals as a frequency reference. We will report about experiments in which we demonstrated arm locking using UFLIS. During these experiments we also discovered a problem associated with the Doppler shift of the return beam. The initial arm locking publications assumed that this Doppler shift can perfectly be subtracted inside the phasemeter or adds an insignificant offset to the sensor signal. However, the remaining Doppler knowledge error will cause a constant change in the laser frequency if unaccounted for. Several ways to circumvent this problem have been identified. We performed detailed simulations and started preliminary experiments to verify the performance of the proposed new controller designs.

  17. Laser Doppler vibrometry on rotating structures in coast-down: resonance frequencies and operational deflection shape characterization

    International Nuclear Information System (INIS)

    Martarelli, M; Castellini, P; Santolini, C; Tomasini, E P

    2011-01-01

    In rotating machinery, variations of modal parameters with rotation speed may be extremely important in particular for very light and undamped structures, such as helicopter rotors or wind turbines. The natural frequency dependence on rotation speed is conventionally measured by varying the rotor velocity and plotting natural frequencies versus speed in the so-called Campbell diagram. However, this kind of analysis does not give any information about the vibration spatial distribution i.e. the mode shape variation with the rotation speed must be investigated with dedicated procedures. In several cases it is not possible to fully control the rotating speed of the machine and only coast-down tests can be performed. Due to the reduced inertia of rotors, the coast-down process is usually an abrupt transient and therefore an experimental technique, able to determine operational deflection shapes (ODSs) in short time, with high spatial density and accuracy, appears very promising. Moreover coast-down processes are very difficult to control, causing unsteady vibrations. Hence, a very efficient approach for the rotation control and synchronous acquisition must be developed. In this paper a continuous scanning system able to measure ODSs and natural frequencies excited during rotor coast-down is shown. The method is based on a laser Doppler vibrometer (LDV) whose laser beam is driven to scan continuously over the rotor surface, in order to measure the ODS, and to follow the rotation of the rotor itself even in coast-down. With a single measurement the ODSs can be recovered from the LDV output time history in short time and with huge data saving. This technique has been tested on a laboratory test bench, i.e. a rotating two-blade fan, and compared with a series of non-contact approaches based on LDV: - traditional experimental modal analysis (EMA) results obtained under non-rotating conditions by measuring on a sequence of points on the blade surface excited by an impact

  18. He-Ne laser effects on blood microcirculation. An in vivo study through laser doppler flowmetry; Efeito do laser de helio neonio sobre a microcirculacao sanguinea durante a reparacao tecidual. Estudo in vivo por meio de fluxometria laser doppler

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Silvia Cristina

    2002-07-01

    Blood microcirculation performs an important function in tissue repair process, as well as in pain control, allowing for greater oxygenation of the tissues and the accelerated expulsion of metabolic products, that may be contributing to pain. Low Intensity Laser Therapy (LILT) is widely used to promote healing, and there is an assumption that it is mechanism of action may be due to an enhancement of blood supply. The purpose of this study was to evaluate, using laser Doppler flowmetry (LDF), the stated effects caused by radiation emitted by a He-Ne laser ({lambda}=632.8 nm) on blood microcirculation during tissue repair. To this end, 15 male mice were selected and received a liquid nitrogen provoked lesion, above the dorsal region, and blood flow was measured periodically, during 21 days. Due to radiation emission by the LDF equipment, a control group was established to evaluate possible effects caused by this radiation on microcirculation. To evaluate the He-Ne laser effects, a 1.15 J/cm{sup 2} dose was utilized, with an intensity of 6 mW/cm{sup 2}. The results obtained demonstrate flow alterations, provoked by the lesion, and subsequent inflammatory response. There was no statistical difference between the studied groups. As per the analysis of the results there is no immediate effect due the radiation emitted by a He Ne laser on microcirculation, although a percentage increase was observed in day 7 on medium blood flow rate in irradiated specimens. New studies are necessary to validate the use of this wavelength, in order to promote beneficial alterations in blood supply in radiated areas. (author)

  19. Forehead Skin Blood Flow in Normal Neonates during Active and Quiet Sleep, Measured with a Diode Laser Doppler Instrument

    NARCIS (Netherlands)

    Suichies, H.E.; Aarnoudse, J.G.; Okken, A.; Jentink, H.W.; de Mul, F.F.M.; Greve, Jan

    1988-01-01

    Changes in forehead skin blood flow during active and quiet sleep were determined in 16 healthy neonates using a recently developed semi-conductor laser Doppler flow meter without light conducting fibres. Measurements were carried out at a postnatal age varying from 5 hours to 7 days. The two sleep

  20. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Kim, Jae-Ihn

    2009-01-01

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  1. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  2. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    Science.gov (United States)

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  3. Monitoring of traumatic process after hernioplasty by allografts using laser doppler flowmeter

    International Nuclear Information System (INIS)

    Bobrov, O.E.; Aleshchenko, I.E.; Dynnik, O.B.; Zinchenko, V.G.; Babenko, I.B.

    2008-01-01

    Full text: This is a comparative analysis of correlation between pathological phenomena of hemomicrom circulation at local trophic level of healing postoperative wounds by primary and secondary intention after hernioplasty by biomembranes (allografts) and by artificial reticular endoprosthesis. In this study two groups of patients were formed: I group (77 patients) underwent hernioplasty by implantation of biomembranes (Tutoplast allografts Fascia temporalis, Dermis); II group (81 patients) had hernioplasty using artificial reticular endoprosthesis. Comparative complex investigation of healing postoperative wounds was done by laser Doppler flowmeter, which allows fairly evaluating staging of traumatic process in 158 patients aging from 20 to 73 years, male, that underwent surgical treatments of inguinal hernia. In all patients traditional surgical technique using non-tension plasty methods for anterior abdominal wall was applied using above-mentioned materials. In first group wound healing took place by primary intention in all 77 patients and on amplitude-frequency spectrum of LDF charts happened by 4 phases: 1) reaction to trauma; 2) initial regeneration; 3) wound consolidation; 4) scar organization. In the second group - in 75 cases wound healing also took place by primary intention, but in 6 cases a secondary intention happened, which consisted on amplitude-frequency spectrum of LDF charts of 6 phases: 1) inflammation, 2) wound clearance from necrotic suppurative masses; 3) initial regeneration; 4) forming of granulations; 5) wound consolidation; 6) scar reorganization. To improve results of surgical treatment in patients with hernia it is needed to approach the choice of material for hernioplasty differentially depending hemodynamic type of microcirculation. Characteristics of vascular tissue system of future operative area directly influence the course of traumatic process in postoperative follow-up. Monitoring of traumatic process following hernioplasty by

  4. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  5. [Current role of color Doppler ultrasound in acute renal failure].

    Science.gov (United States)

    Bertolotto, M; Quaia, E; Rimondini, A; Lubin, E; Pozzi Mucelli, R

    2001-01-01

    Acute Renal Failure (ARF) is characterized by a rapid decline of the glomerular filtration rate, due to hypotension (prerenal ARF), obstruction of the urinary tract (post-renal ARF) or renal parenchymal disease (renal ARF). The differential diagnosis among different causes of ARF is based on anamnesis, clinical symptoms and laboratory data. Usually ultrasound (US) is the only imaging examination performed in these patients, because it is safe and readily available. In patients with ARF gray scale US is usually performed to rule out obstruction since it is highly sensitive to recognize hydronephrosis. Patients with renal ARF have no specific changes in renal morphology. The size of the kidneys is usually normal or increased, with smooth margins. Detection of small kidneys suggests underlying chronic renal pathology and worse prognosis. Echogenicity and parenchymal thickness are usually normal, but in some cases there are hyperechogenic kidneys, increased parenchymal thickness and increased cortico-medullary differentiation. Evaluation of renal vasculature with pulsed Doppler US is useful in the differential diagnosis between prerenal ARF and acute tubular necrosis (ATN), and in the diagnosis of renal obstruction. Latest generation US apparatus allow color Doppler and power Doppler evaluation of renal vasculature up to the interlobular vessels. A significant, but non specific, reduction in renal perfusion is usually appreciable in the patients with ARF. There are renal pathologic conditions presenting with ARF in which color Doppler US provides more specific morphologic and functional information. In particular, color Doppler US often provides direct or indirect signs which can lead to the right diagnosis in old patients with chronic renal insufficiency complicated with ARF, in patients with acute pyelonephritis, hepatic disease, vasculitis, thrombotic microangiopathies, and in patients with acute thrombosis of the renal artery and vein. Contrast enhanced US is

  6. Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus.

    Science.gov (United States)

    Monnet, Eric; Pelsue, Davyd; MacPhail, Catriona

    2006-02-01

    To validate laser doppler flowmetry (LDF) for measurement of blood flow in the stomach wall of dogs with gastric dilatation-volvulus (GDV). Six purpose-bred dogs and 24 dogs with naturally occurring GDV. Experimental and clinical. Capillary blood flow in the body of the stomach and pyloric antrum was measured with LDF (tissue perfusion unit (TPU) before and after induction of portal hypertension (PH) and after PH plus gastric ischemia (GI; PH + GI) and compared with flow measured by colored microsphere technique. Capillary flow was measured by LDF in the stomach wall of dogs with GDV. PH and PH+GI induced a significant reduction in blood flow in the body of the stomach (P = .019). A significant positive correlation was present between percent changes in capillary blood flow measured by LDF and colored microspheres after induction of PH + GI in the body of the stomach (r = 0.94, P = .014) and in the pyloric antrum (r = 0.95, P = .049). Capillary blood flow measured in the body of the stomach of 6 dogs that required partial gastrectomy (5.00+/-3.30 TPU) was significantly lower than in dogs that did not (28.00+/-14.40 TPU, P = .013). LDF can detect variations in blood flow in the stomach wall of dogs. LDF may have application for evaluation of stomach wall viability during surgery in dogs with GDV.

  7. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model.

    Science.gov (United States)

    Lotter, Oliver; Held, Manuel; Schiefer, Jennifer; Werner, Ole; Medved, Fabian; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Jaminet, Patrick; Rothenberger, Jens

    2015-01-01

    Currently, the diagnosis of burn depth is primarily based on a visual assessment and can be dependent on the surgeons' experience. The goal of this study was to determine the ability of laser Doppler flowmeter combined with a tissue spectrophotometer to discriminate burn depth in a miniature swine burn model. Burn injuries of varying depth, including superficial-partial, deep-partial, and full thickness, were created in seven Göttingen minipigs using an aluminium bar (100 °C), which was applied to the abdominal skin for periods of 1, 3, 6, 12, 30, and 60 seconds with gravity alone. The depth of injury was evaluated histologically using hematoxylin and eosin staining. All burns were assessed 3 hours after injury using a device that combines a laser light and a white light to determine blood flow, hemoglobin oxygenation, and relative amount of hemoglobin. The blood flow (41 vs. 124 arbitrary units [AU]) and relative amount of hemoglobin (32 vs. 52 AU) were significantly lower in full thickness compared with superficial-partial thickness burns. However, no significant differences in hemoglobin oxygenation were observed between these depths of burns (61 vs. 60%). These results show the ability of laser Doppler flowmeter and tissue spectrophotometer in combination to discriminate between various depths of injury in the minipig model, suggesting that this device may offer a valuable tool for burn depth assessment influencing burn management. © 2014 by the Wound Healing Society.

  8. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    Science.gov (United States)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  9. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  10. Regional perfusion and oxygenation of tumors upon methylxanthine derivative administration

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1998-01-01

    Purpose: The use of methylxanthine derivatives has been postulated as a means of increasing tumor perfusion and thus ameliorating tumor hypoxia. The aim of this study was to quantify and compare the effects of three methylxanthine derivatives: pentoxifylline (PX), torbafylline (TB), and HWA 138 (HW) on tumor perfusion and oxygenation. Methods and Materials: Anesthetized Sprague Dawley rats with DS-sarcomas implanted subcutaneously onto the hind foot dorsum were used in this study. Mean arterial blood pressure (MABP) was measured throughout experiments. Regional red blood cell (RBC) flux was monitored using a multichannel laser Doppler device and tumor oxygenation on a more global level was assessed polarographically using an O 2 -sensitive catheter electrode. The methylxanthine derivatives were administered as a single dose intraperitoneally (for PX 50 mg/kg; for TB and HW 75 mg/kg). Results: Following drug administration, initial decreases in MABP down to 75% of baseline values were observed for all three substances. PX, HW, and TB caused initial transient reductions in mean RBC flux followed by gradual increases to values of 137 ± 27 %, 139 ± 14 %, and 122 ± 14 % respectively at t = 60 min. Following a small initial decrease upon drug administration, O 2 partial pressure (pO 2 ) rose to 160 ± 31 %, 153 ± 34 %, and 121 ± 11 % for PX, HW, and TB, respectively at t = 60 min. At the end of the observation period (t = 90 min), increases in RBC flux and pO 2 were still evident. When individual tumors were considered, a variety of patterns (including opposing effects) for changes in RBC flux were seen, not necessarily reflected in the mean values. Thus, while the methylxanthine derivatives caused an increased average tumor perfusion, there is evidence suggesting that a redistribution of tumor blood flow occurs which may amplify preexisting heterogeneity. Conclusions: Substantial improvements in tumor oxygenation and perfusion were observed after administration of

  11. Fundamental supply of skin blood flow in the Chinese Han population: Measurements by a full-field laser perfusion imager.

    Science.gov (United States)

    Fei, W; Xu, S; Ma, J; Zhai, W; Cheng, S; Chang, Y; Wang, X; Gao, J; Tang, H; Yang, S; Zhang, X

    2018-05-08

    Skin blood flow is believed to link with many diseases, and shows a significant heterogeneity. There are several papers on basal cutaneous microcirculation perfusion in different races, while the data in Chinese is vacant. The aim was to establish the database of absolute fundamental supply of skin blood flow in the Chinese Han population. With a full-field laser perfusion imager (FLPI), the skin blood flow can be quantified. Cutaneous perfusion values were determined in 17 selected skin areas in 406 healthy participants aged between 20 and 80 years (mean 35.05 ± 11.33). Essential parameters such as weight, height were also measured and values of BMI were calculated. The perfusion values were reported in Arbitrary Perfusion Units (APU). The highest cutaneous perfusion value fell on eyelid (931.20 ± 242.59 in male and 967.83 ± 225.49 in female), and pretibial had the lowest value (89.09 ± 30.28 in male and 85.08 ± 33.59 in female). The values were higher in men than women on the bank of fingertips, nose, forehead, cheek, neck and earlobe (P < .05). Perfusion values on stretch and flexion side of forearm had negative correlation with age (P = .01 and P = 4.88 × 10 -3 , respectively) in male. Abdomen was negatively correlated with BMI in both gender (P = .02, respectively). Skin blood flow values vary with skin regions. There is a tendency to measure higher perfusion values in men than in women. And the values are irrelevant with age or BMI. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    International Nuclear Information System (INIS)

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-01-01

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  13. Simultaneous assessment of blood flow in UVB-inflamed human skin by laser Doppler flowmetry and the 133-xenon cashout technique

    DEFF Research Database (Denmark)

    1991-01-01

    The purpose of the study was to compare skin bloood flow by laser Doppler flowmetry (LDF) and the 133-Xenon washout technique in UVB-inflamed human skin. Six healthy subjects participated in the study. Forearm skin blood flow was measured prior to irradiation and then 8, 24, 48 and 72 h...

  14. Comparison of Acupuncture Effect on Blood Perfusion between Needling Nonacupoint on Meridian and Needling Nonacupoint off Meridian

    Directory of Open Access Journals (Sweden)

    Wei-Bo Zhang

    2013-01-01

    Full Text Available To verify the ancient theory of rather missing the acupoint than missing the meridian, acupuncture at nonacupoint on meridian and acupuncture at nonacupoint off meridian were performed, respectively. The blood perfusion (BP on the calf around bladder meridian area was measured with a laser Doppler perfusion imager before, during, and after acupuncture. The whole scanning field was divided into seven subareas, and mean BP on each area was calculated. The ratio of mean BP between a subarea and a reference subarea was gotten, and then the change rate was calculated as ratio change rate (RCR. The results showed that RCR on bladder meridian area and around Chengshan (BL57 during or after acupuncture at nonacupoint on meridian was significantly higher than that at nonacupoint off meridian, which supports the ancient theory. Such differences may be attributable to some factors that can facilitate the signals transmission and produce a better acupuncture effect, such as richer nerve terminals, blood vessels, and mast cells which can produce stronger signals on the acupoints and the low hydraulic resistance channel along meridians which plays a role of signal transmitting channel to get a better effect of acupuncture.

  15. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bair, H.J.; Platsch, G.; Wolf, F. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Nuclear Medicine; Guenter, E.; Becker, D. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Internal Medicine 1; Rupprecht, H.; Neumayer, H.H. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Internal Medicine 4

    1997-08-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [Deutsch] Ziel der Studie war es, das

  16. Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2013-01-01

    on heterodyne detection, our sFPI-LDV has the advantages of having large remote sensing range not limited by laser coherence, high velocity dynamic range not limited by detector bandwidth and inherent sign discrimination of Doppler shift. The more optically efficient coaxial arrangement where transmitter...... achieves ~40 dB reduction in strength of unwanted reflections (i.e. leakage) while maintaining high optical efficiency. Experiments with a solid target demonstrate the performance of the sFPI-LDV system with high sensitivity down to pW level at present update rates up to 10 Hz....

  17. Blood Perfusion in Human Eyelid Skin Flaps Examined by Laser Speckle Contrast Imaging-Importance of Flap Length and the Use of Diathermy.

    Science.gov (United States)

    Nguyen, Cu Dinh; Hult, Jenny; Sheikh, Rafi; Tenland, Kajsa; Dahlstrand, Ulf; Lindstedt, Sandra; Malmsjö, Malin

    2017-10-11

    It is well known that blood perfusion is important for the survival of skin flaps. As no study has been conducted to investigate how the blood perfusion in human eyelid skin flaps is affected by the flap length and diathermy, the present study was carried out to investigate these in patients. Fifteen upper eyelids were dissected as part of a blepharoplastic procedure, releasing a 30-mm long piece of skin, while allowing the 5 mm wide distal part of the skin to remain attached, to mimic a skin flap (hereafter called a "skin flap"). Blood perfusion was measured before and after repeated diathermy, using laser speckle contrast imaging. Blood perfusion decreased from the base to the tip of the flap: 5 mm from the base, the perfusion was 69%, at 10 mm it was 40%, at 15 mm it was 20%, and at 20 mm it was only 13% of baseline values. Diathermy further decreased blood perfusion (measured 15 mm from the base) to 13% after applying diathermy for the first time, to 6% after the second and to 4% after the third applications of diathermy. Blood perfusion falls rapidly with distance from the base of skin flaps on the human eyelid, and diathermy reduces blood perfusion even further. Clinically, it may be advised that flaps with a width of 5 mm be no longer than 15 mm (i.e., a width:length ratio of 1:3), and that the use of diathermy should be carefully considered.

  18. Ovarian and uterine periovulatory Doppler ultrasonography in bitches

    Directory of Open Access Journals (Sweden)

    Claudia C. Barbosa

    2013-09-01

    Full Text Available This paper aims to describe the uterine and ovarian ultrasonographic characteristics and Doppler velocimetric features of their arteries in bitches during the periovulatory period. Fifteen estrous cycles in 10 animals were evaluated. The ultrasonographic characteristics, resistance indices (RI and pulsatility indices (PI of the uterus and ovaries in each animal were recorded 5 days before and after ovulation (D0. The data were statistically analyzed, and the results were expressed as the mean ± standard error of mean (P<0.05. In results the ultrasonographic features of the uterus were the same on all of the cycles and evaluated days. The uterus had an average diameter of 0.85±0.02cm. An increase in the volume of the ovaries and the diameter of the ovarian follicles were measured. Ovaries had a volume of 0.64±0.06cm³, and the follicles cavities had a diameter of 0.46 ± 0.01 cm on the day of ovulation. After ovulation, it was observed that some follicles not collapse in some cycles. Two days prior to ovulation, the uterine blood perfusion decreased. This decrease remained unchanged until ovulation. Following ovulation, we measured a gradual increase in the uterine perfusion and in the ovarian artery. This artery directed blood flow to the ovaries and increased the intra-ovarian perfusion on the day after ovulation. In conclusion, specific features are observed in the uterus and ovarian ultrasound image and Doppler values of their arteries presented on the periovulatory days and when associated allow to estimate more accurately the date of ovulation.

  19. Quantitative measurement of blood flow dynamics in chorioallantoic membrane of chicken embryo using laser Doppler anemometry

    Science.gov (United States)

    Borozdova, M. A.; Stiukhina, E. S.; Sdobnov, A. A.; Fedosov, I. V.; Postnov, D. E.; Tuchin, V. V.

    2016-04-01

    We report the results on in ovo application of developed Laser Doppler Anemometer (LDA) device. The chorioallantoic membrane (CAM) of 9-13 days chicken embryos was used as a biological model that allows an easy access to both arterial and venous vessels of different size. The key point of our study was to find out how the periodic and aperiodic pulsations of blood flow (which are inevitable in living organism) will affect the LDA functions and measuring capability. Specifically, we (i) developed the technique to extract and refine the pulse rhythm from the signal received from a vessel, and (ii) analyzed the changes in power spectra of LDA signal that are caused by heart beating and considerably complicate the reliable measurement of Doppler shift. Our main conclusion is that the algorithm of LDA data processing need to be improved, and this possibly can be done by counting the information on current phase of cardiac cycle.

  20. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    Science.gov (United States)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  1. Value of Perfusion CT, Transcranial Doppler Sonography, and Neurological Examination to Detect Delayed Vasospasm after Aneurysmal Subarachnoid Hemorrhage

    International Nuclear Information System (INIS)

    Kunze, E.; Raslan, F.; Stetter, Ch.; Lee, J.Y.; Solymosi, L.; Ernestus, R.I.; Vince, G.H.; Westermaier, Th.; Pham, M.; Solymosi, L.

    2012-01-01

    Background. If detected in time, delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) may be treated by balloon angioplasty or chemical vasospasmolysis in order to enhance cerebral blood flow (CBF) and protect the brain from ischemic damage. This study was conceived to compare the diagnostic accuracy of detailed neurological examination, Transcranial Doppler Sonography (TCD), and Perfusion-CT (PCT) to detect angiographic vasospasm. Methods. The sensitivity, specificity, positive and negative predictive values of delayed ischemic neurological deterioration (DIND), pathological findings on PCT-maps, and accelerations of the mean flow velocity (MVF) were calculated. Results. The accuracy of DIND to predict angiographic vasospasm was 0.88. An acceleration of MFV in TCD (>140 cm/s) had an accuracy of 0.64, positive PCT-findings of 0.69 with a higher sensitivity, and negative predictive value than TCD. Interpretation. Neurological assessment at close intervals is the most sensitive and specific parameter for cerebral vasospasm. PCT has a higher accuracy, sensitivity and negative predictive value than TCD. If detailed neurological evaluation is possible, it should be the leading parameter in the management and treatment decisions. If patients are not amenable to detailed neurological examination, PCT at regular intervals is a helpful tool to diagnose secondary vasospasm after aneurysmal SAH

  2. Material properties identification using ultrasonic waves and laser Doppler vibrometer measurements: a multi-input multi-output approach

    International Nuclear Information System (INIS)

    Longo, R; Vanlanduit, S; Guillaume, P

    2013-01-01

    In this paper a multi-input multi-output approach able to determine the material properties of homogeneous materials is presented. To do so, an experimental set-up which combines the use of multi harmonic signals with interleaved frequencies and laser Doppler vibrometer measurements has been developed. A modeling technique, based on transmission and reflection measurements, allowed the simultaneous determination of longitudinal wave velocity, density and thickness of the materials under test with high levels of precision and accuracy. (paper)

  3. Safety and efficacy of distal perfusion catheterization to prevent limb ischemia after common femoral artery cannulation for extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chang Ho; Seong, Nak Jong; Yoon, Chang Jin [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-06-15

    The extracorporeal membrane oxygenation (ECMO) cannula has the potential for obstructing flow to the lower limb, thus causing severe ischemia and possible limb loss. We evaluated the safety and clinical efficacy of percutaneous distal perfusion catheterization in preventing limb ischemia. Between March 2013 and February 2015, 28 patients with distal perfusion catheterization after ECMO were included in this retrospective study. The technical success was evaluated by Doppler ultrasound at the popliteal level after saline injection via distal perfusion catheter. Clinical success was assessed when at least one of the following conditions was met: restoration of continuous peripheral limb oximetry value or presence of distal arterial pulse on Doppler ultrasound evaluation or resolution of early ischemic sign after connecting the catheter with ECMO. Twenty-six patients with early ischemia were successfully cannulated with a distal perfusion catheter (92.8%). Clinical success was achieved in 12/28 (42.8%) patients; 8/10 (80.0%) patients with survival duration exceeding 7 days and 4/18 (22.2%) patients with survival duration less than 7 days, respectively. A percutaneous distal perfusion catheter placement was a feasible tool with safety and efficacy in preventing lower limb ischemia for patients with prolonged common femoral arterial cannulation for ECMO.

  4. Safety and efficacy of distal perfusion catheterization to prevent limb ischemia after common femoral artery cannulation for extracorporeal membrane oxygenation

    International Nuclear Information System (INIS)

    Jeon, Chang Ho; Seong, Nak Jong; Yoon, Chang Jin

    2016-01-01

    The extracorporeal membrane oxygenation (ECMO) cannula has the potential for obstructing flow to the lower limb, thus causing severe ischemia and possible limb loss. We evaluated the safety and clinical efficacy of percutaneous distal perfusion catheterization in preventing limb ischemia. Between March 2013 and February 2015, 28 patients with distal perfusion catheterization after ECMO were included in this retrospective study. The technical success was evaluated by Doppler ultrasound at the popliteal level after saline injection via distal perfusion catheter. Clinical success was assessed when at least one of the following conditions was met: restoration of continuous peripheral limb oximetry value or presence of distal arterial pulse on Doppler ultrasound evaluation or resolution of early ischemic sign after connecting the catheter with ECMO. Twenty-six patients with early ischemia were successfully cannulated with a distal perfusion catheter (92.8%). Clinical success was achieved in 12/28 (42.8%) patients; 8/10 (80.0%) patients with survival duration exceeding 7 days and 4/18 (22.2%) patients with survival duration less than 7 days, respectively. A percutaneous distal perfusion catheter placement was a feasible tool with safety and efficacy in preventing lower limb ischemia for patients with prolonged common femoral arterial cannulation for ECMO

  5. Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Directory of Open Access Journals (Sweden)

    Pape Sarah A

    2009-02-01

    Full Text Available Abstract Background Laser-Doppler imaging (LDI of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA, site and cause of burn, day of LDI scan, burn center. It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are

  6. Feasibility and diagnostic power of transthoracic coronary Doppler for coronary flow velocity reserve in patients referred for myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Nylander Eva

    2008-03-01

    Full Text Available Abstract Background Myocardial perfusion imaging (MPI, using single photon emission computed tomography (SPECT is a validated method for detecting coronary artery disease. Transthoracic Doppler echocardiography (TTDE of flow at rest and during adenosine provocation has previously been evaluated in selected patient groups. We therefore wanted to compare the diagnostic ability of TTDE in the left anterior descending coronary artery (LAD to that of MPI in an unselected population of patients with chest pain referred for MPI. Our hypothesis was that TTDE with high accuracy would identify healthy individuals and exclude them from the need for further studies, enabling invasive investigations to be reserved for patients with a high probability of disease. Methods Sixty-nine patients, 44 men and 25 women, age 61 ± 10 years (range 35–82, with a clinical suspicion of stress induced myocardial ischemia, were investigated. TTDE was performed at rest and during adenosine stress for myocardial scintigraphy. Results We found that coronary flow velocity reserve (CFVR determined from diastolic measurements separated normal from abnormal MPI findings with statistical significance. TTDE identified coronary artery disease, defined from MPI, as reversible ischemia and/or permanent defect, with a sensitivity of 60% and a specificity of 79%. The positive predictive value was 43% and the negative predictive value was 88%. There was an overlap between groups which could be due to abnormal endothelial function in patients with normal myocardial perfusion having either hypertension or diabetes. Conclusion TTDE is an attractive non-invasive method to evaluate chest pain without the use of isotopes, but the diagnostic power is strongly dependent on the population investigated. Even in our heterogeneous clinical cardiac population, we found that CFVR>2 in the LAD excluded significant coronary artery disease detected by MPI.

  7. Intraoperative Vascular Neuromonitoring in Patients with Subarachnoid Hemorrhage: A Pilot Study Using Combined Laser-Doppler Spectrophotometry.

    Science.gov (United States)

    Schmitz, Emilija; Bischoff, Barbara; Wolf, Dennis; Schmitt, Hubert J; Eyupoglu, Ilker Y; Roessler, Karl; Buchfelder, Michael; Sommer, Björn

    2017-11-01

    Intraoperative monitoring of cerebral microcirculation in patients with subarachnoid hemorrhage (SAH) may predict the postoperative neurologic outcome. In this pilot study, we examined the value of a novel noninvasive real-time measurement technique for detecting changes in local microcirculation. We used the O2C (Oxygen to see) laser-Doppler spectrophotometry system in 14 patients with Hunt & Hess grade 2-5 SAH who underwent microsurgical cerebral aneurysm clipping. A subdural probe recorded capillary venous oxygenation (SO 2 ), relative hemoglobin concentration, blood cell velocity, and blood flow at a tissue depth of 7 mm. Data were recorded immediately before dural closure. We also recorded somatosensory evoked potentials (SEPs) with median and tibial nerve stimulation. Results were compared with neurologic performance, as measured on the modified Rankin Scale, at the day of discharge from the hospital and 12 months thereafter. Patient functional outcomes after discharge and 12 months were correlated with pathological decreased flow and increased SO 2 values. In 6 of 8 patients, microcirculatory monitoring parameters indicated ischemia during surgery, as shown by electrophysiological SEP changes and infarction detected on the postoperative computed tomography (CT) scan. Pathological SEP results correlated closely with infarct demarcation as seen on CT. Our results indicate the potential benefit of intraoperative combined laser-Doppler flowmetry and spectrophotometry for predicting postoperative clinical outcomes in this small patient sample. Larger-cohort testing is needed to verify our findings and show the possible merits of this novel method. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    Science.gov (United States)

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  9. Prospects of Laser Doppler flowmetry application in assessment of skin microcirculation in diabetes

    Directory of Open Access Journals (Sweden)

    Dmitry A. Kulikov

    2017-10-01

    Full Text Available This review includes results of scientific and clinical use of laser Doppler flowmetry (LDF in patients with diabetes mellitus. LDF is a non-invasive method for the quantitative evaluation of microcirculation, which can assess microcirculatory rhythms and conduct functional tests with various impacts, allowing the exploration of regulatory mechanisms of microcirculation. LDF reveals specific diabetes changes in the regulatory function of microcirculation. Microcirculation disturbances, which are traditionally associated with the pathogenesis of complications, also occur in patients with early disorders of carbohydrate metabolism and may precede the manifestation of diabetes. However, this method is still not applied in clinical practice. In this review, we analysed factors limiting the implementation of LDF in practical medicine and suggest ways to improve its clinical significance.

  10. New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography. Comparison with thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Fujimoto, Kohei; Watanabe, Hiroyuki; Hozumi, Takeshi; Otsuka, Ryo; Hirata, Kumiko; Yamagishi, Hiroyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2004-01-01

    The usefulness of coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography to detect myocardial ischemia was compared with exercise thallium-201 single photon emission computed tomography (SPECT). Transthoracic Doppler echocardiography was performed in 110 patients with suspected coronary artery disease. Color Doppler signals of the left circumflex coronary artery flow in the apical four-chamber view were identified, and the velocities at rest and during hyperemia recorded for calculation of coronary flow reserve by the pulsed Doppler method. All patients underwent SPECT within 1 week of the transthoracic Doppler echocardiographic study. Coronary flow reserve in the left circumflex coronary artery was measured in 79 (72%) of 110 patients. SPECT revealed reversible perfusion defect in the left circumflex coronary artery territories in 12 of 69 patients excluding those with multivessel disease. Coronary flow reserve <2.0 had a sensitivity of 92% and specificity of 96% for reversible perfusion defect detected by SPECT. Noninvasive coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography can estimate myocardial ischemia in the left ventricular lateral regions. (author)

  11. Correlation between nuclear perfusion parameters and duplex US indices in the diagnosis of renal allograft rejection

    International Nuclear Information System (INIS)

    Kim, E.E.; Maklad, N.F.; Pjura, G.A.; Lowry, P.A.

    1986-01-01

    Fifty nuclear perfusion and duplex US studies in 30 patients who had received renal allografts were prospectively analyzed to evaluate their respective measures of blood flow as indicators of rejection. The nuclear study (Tc-99m DTPA) generated three parameters, and a real-time, pulsed Doppler sector scanner generated resistance and pulsatility indices. In nine cases with a greater than 70% resistance index and 1.4 pulsatility index on US, the US findings correlated well with changes in nuclear perfusion parameters, indication rejection. The authors conclude that the combination of decreasing nuclear perfusion parameters and positive US indices may obviate the need for biopsy in the diagnosis of allograft rejection

  12. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    Science.gov (United States)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  13. Aortic isthmus Doppler velocimetry: role in assessment of preterm fetal growth restriction.

    LENUS (Irish Health Repository)

    Kennelly, M M

    2012-02-01

    Intrauterine fetal growth restriction (IUGR) is an important pregnancy complication associated with significant adverse clinical outcome, stillbirth, perinatal morbidity and cerebral palsy. To date, no uniformly accepted management protocol of Doppler surveillance that reduces mortality and cognitive morbidity has emerged. Aortic isthmus (AoI) evaluation has been proposed as a potential monitoring tool for IUGR fetuses. In this review, the current knowledge of the relationship between AoI Doppler velocimetry and preterm fetal growth restriction is reviewed. Relevant technical aspects and reproducibility data are reviewed as we discuss AoI Doppler and its place within the existing repertoire of Doppler assessments in placental insufficiency. The AoI is a link between the right and left ventricles which perfuse the lower and upper body, respectively. The clinical use of AoI waveforms for monitoring fetal deterioration in IUGR has been limited, but preliminary work suggests that abnormal AoI impedance indices are an intermediate step between placental insufficiency-hypoxemia and cardiac decompensation. Further prospective studies correlating AoI indices with arterial and venous Doppler indices and perinatal outcome are required before encorporating this index into clinical practice.

  14. Single-point relative process using Laser-Doppler velocimetry for calibration of flow sensors at temperatures above 100 C

    International Nuclear Information System (INIS)

    March, J.F.

    1996-01-01

    Due to technical difficulties, the calibration of flow sensors of heat meters above 100 C cannot be performed by the gravimetric standard method. A novel method using a laser Doppler velocimeter (LDV) was therefore developed, based on the gravimetric method below 100 C and on Reynolds' similarity law. This method allows a turbine meter to be calibrated as a secondary flowrate standard with a relative uncertainty below 0,2% for temperatures of up to 180 C. (orig.) [de

  15. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    Science.gov (United States)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  16. Reducing the first-order Doppler shift in a Sagnac interferometer

    NARCIS (Netherlands)

    Hannemann, S.; Salumbides, E.J.; Ubachs, W.M.G.

    2007-01-01

    We demonstrate a technique to reduce first-order Doppler shifts in crossed atomic/molecular and laser beam setups by aligning two counterpropagating laser beams as part of a Sagnac interferometer. Interference fringes on the exit port of the interferometer reveal minute deviations from perfect

  17. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom

    Directory of Open Access Journals (Sweden)

    Fleur A. Camfferman

    2015-01-01

    Full Text Available Introduction. Preterm infants are born during critical stages of brain development, in which the adaptive capacity of the fetus to extra-uterine environment is limited. Inadequate brain perfusion has been directly linked to preterm brain damage. Advanced high-frequency ultrasound probes and processing algorithms allow visualization of microvessels and depiction of regional variation. To assess whether visualization and flow velocity estimates of preterm cerebral perfusion using Doppler techniques is accurate, we conducted an in vitro experiment using a microvessel flow phantom.Materials and Methods. An in-house developed flow phantom containing two microvessels (inner diameter 200 and 700 microns with attached syringe pumps, filled with blood-mimicking fluid, was used to generate non-pulsatile perfusion of variable flow. Measurements were performed using an Esaote MyLab70 scanner.Results. Microvessel mimicking catheters with velocities as low as 1cm/sec were adequately visualized with a linear ultrasound probe. With a convex probe velocities <2 cm/sec could not be depicted. Within settings, velocity and diameter measurements were highly reproducible (intra class correlation 0.997 (95% CI 0.996-0.998 and 0.914 (0.864-0.946. Overall, mean velocity was overestimated up to 3-fold, especially in high velocity ranges. Significant differences were seen in velocity measurements when using steer angle correction and in vessel diameter estimation (p<0.05.Conclusion. Visualization of microvessel size catheters mimicking small brain vessels is feasible. Reproducible velocity and diameter results can be obtained, although important overestimation of the values is observed. Before velocity estimates of microcirculation can find its use in clinical practice, calibration of the ultrasound machine for any specific Doppler purpose is essential. The ultimate goal is to develop a sonographic tool that can be used for objective study of regional perfusion in routine

  18. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    Science.gov (United States)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  19. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  20. Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging.

    Directory of Open Access Journals (Sweden)

    Cyril Puissant

    Full Text Available Endothelial dysfunction precedes atherosclerosis. Vasodilation induced by acetylcholine (ACh is a specific test of endothelial function. Reproducibility of laser techniques such as laser-Doppler-flowmetry (LDF and Laser-speckle-contrast-imaging (LSCI to detect ACh vasodilation is debated and results expressions lack standardization. We aimed to study at a 7-day interval (i the inter-subject reproducibility, (ii the intra-subjects reproducibility, and (iii the effect of the results expressions over variability.Using LDF and LSCI simultaneously, we performed two different ACh-iontophoresis protocols. The maximal ACh vasodilation (peak-ACh was expressed as absolute or normalized flow or conductance values. Inter-subject reproducibility was expressed as coefficient of variation (inter-CV,%. Intra-subject reproducibility was expressed as within subject coefficients of variation (intra-CV,%, and intra-class correlation coefficients (ICC. Fifteen healthy subjects were included. The inter-subject reproducibility of peak-ACh depended upon the expression of the results and ranged from 55% to 162% for LDF and from 17% to 83% for LSCI. The intra-subject reproducibility (intra-CV/ICC of peak-ACh was reduced when assessed with LSCI compared to LDF no matter how the results were expressed and whatever the protocol used. The highest intra-subject reproducibility was found using LSCI. It was 18.7%/0.87 for a single current stimulation (expressed as cutaneous vascular conductance and 11.4%/0.61 for multiple current stimulations (expressed as absolute value.ACh-iontophoresis coupled with LSCI is a promising test to assess endothelial function because it is reproducible, safe, and non-invasive. N°: NCT01664572.

  1. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  2. Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.

    1979-01-01

    A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air

  3. Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry.

    Science.gov (United States)

    Sirevaag, Erik J; Casaccia, Sara; Richter, Edward A; O'Sullivan, Joseph A; Scalise, Lorenzo; Rohrbaugh, John W

    2016-06-01

    The application of a noncontact physiological recording technique, based on the method of laser Doppler vibrometry (LDV), is described. The effectiveness of the LDV method as a physiological recording modality lies in the ability to detect very small movements of the skin, associated with internal mechanophysiological activities. The method is validated for a range of cardiovascular variables, extracted from the contour of the carotid pulse waveform as a function of phase of the respiration cycle. Data were obtained from 32 young healthy participants, while resting and breathing spontaneously. Individual beats were assigned to four segments, corresponding with inspiration and expiration peaks and transitional periods. Measures relating to cardiac and vascular dynamics are shown to agree with the pattern of effects seen in the substantial body of literature based on human and animal experiments, and with selected signals recorded simultaneously with conventional sensors. These effects include changes in heart rate, systolic time intervals, and stroke volume. There was also some evidence for vascular adjustments over the respiration cycle. The effectiveness of custom algorithmic approaches for extracting the key signal features was confirmed. The advantages of the LDV method are discussed in terms of the metrological properties and utility in psychophysiological research. Although used here within a suite of conventional sensors and electrodes, the LDV method can be used on a stand-alone, noncontact basis, with no requirement for skin preparation, and can be used in harsh environments including the MR scanner. © 2016 Society for Psychophysiological Research.

  4. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-03-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics.

  5. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    International Nuclear Information System (INIS)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-01-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics

  6. Distinguishing Buried Objects in Extremely Shallow Underground by Frequency Response Using Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Touma Abe,; Tsuneyoshi Sugimoto,

    2010-07-01

    A sound wave vibration using a scanning laser Doppler vibrometer are used as a method of exploring and imaging an extremely shallow underground. Flat speakers are used as a vibration source. We propose a method of distinguishing a buried object using a response range of a frequencies corresponding to a vibration velocities. Buried objects (plastic containers, a hollow steel can, an unglazed pot, and a stone) are distinguished using a response range of frequencies. Standardization and brightness imaging are used as methods of discrimination. As a result, it was found that the buried objects show different response ranges of frequencies. From the experimental results, we confirmed the effectiveness of our proposed method.

  7. The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations.

    Science.gov (United States)

    Martini, Romeo; Bagno, Andrea

    2018-04-14

    The wavelet analysis has been applied to the Laser Doppler Fluxmetry for assessing the frequency spectrum of the flowmotion to study the microvascular function waves.Although the application of wavelet analysis has allowed a detailed evaluation of the microvascular function, its use does not seem to be yet widespread over the last two decades.Aiming to improve the diffusion of this methodology, we herein present a systematic review of the literature about the application of the wavelet analysis to the laser Doppler fluxmetry signal. A computer research has been performed on PubMed and Scopus databases from January 1990 to December 2017. The used terms for the investigation have been "wavelet analysis", "wavelet transform analysis", "Morlet wavelet transform" along with the terms "laser Doppler", "laserdoppler" and/or "flowmetry" or "fluxmetry". One hundred and eighteen studies have been found. After the scrutiny, 97 studies reporting data on humans have been selected. Fifty-three studies, 54.0% (95% CI 44.2-63.6) pooled rate, have been performed on 892 healthy subjects and 44, 45,9 % (95% CI 36.3-55.7%) pooled rate have been performed on 1679 patients. No significant difference has been found between the two groups (p 0,81). On average, the number of studies published each year was 4.8 (95% CI 3.4-6.2). The trend of studies production has increased significantly from 1998 to 2017, (p 0.0006). But only the studies on patients have shown a significant increase trend along the years (p 0.0003), than the studies on healthy subjects (p 0.09).In conclusion, this review highlights that despite being a promising and interesting methodology for the study of the microcirculatory function, the wavelet analysis has remained still neglected.

  8. Sequential motion of the ossicular chain measured by laser Doppler vibrometry.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi

    2017-12-01

    In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.

  9. Molecules cooled below the Doppler limit

    Science.gov (United States)

    Truppe, S.; Williams, H. J.; Hambach, M.; Caldwell, L.; Fitch, N. J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2017-12-01

    Magneto-optical trapping and sub-Doppler cooling have been essential to most experiments with quantum degenerate gases, optical lattices, atomic fountains and many other applications. A broad set of new applications await ultracold molecules, and the extension of laser cooling to molecules has begun. A magneto-optical trap (MOT) has been demonstrated for a single molecular species, SrF, but the sub-Doppler temperatures required for many applications have not yet been reached. Here we demonstrate a MOT of a second species, CaF, and we show how to cool these molecules to 50 μK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays for quantum simulation, launched into a molecular fountain for testing fundamental physics, and used to study collisions and chemistry between atoms and molecules at ultracold temperatures.

  10. Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce

    2011-07-01

    To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human premolar teeth. Recordings were made from 11 healthy teeth in 9 subjects (aged 16-30 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, the dam significantly decreased the mean blood flow by 80%. Injecting LA and cavity preparation had no significant effect. Removal and replacement of the pulp reduced the mean blood flow by 58%. There was no further change when the pulp was removed. With red light, the dam reduced the signal from intact teeth by 60%. Injecting LA and cavity preparation had no significant effect. The signal fell by 67% after pulp removal and replacement and did not change significantly when the pulp was removed. Opaque rubber dam minimises the contribution of non-pulpal tissues to the laser Doppler signal recorded from premolars. Using dam, the pulp contributed about 60% to the blood flow signal with both red and infrared light. The difference between them in this respect was not significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  12. Synchronized epiaortic two-dimensional and color Doppler echocardiographic guidance enables routine ascending aortic cannulation in type A acute aortic dissection.

    Science.gov (United States)

    Inoue, Yoshito; Takahashi, Ryuichi; Ueda, Toshihiko; Yozu, Ryohei

    2011-02-01

    Preference for arterial inflow during surgery for type A acute aortic dissection remains controversial. Antegrade central perfusion prevents malperfusion and retrograde embolism, and the ascending aorta provides arterial access for rapid establishment of systemic perfusion, especially if there is hemodynamic instability. It has not been used routinely, however, because of the disruption caused to the aorta. We evaluated the safety and efficacy of routine cannulation of the dissected aorta for the repair of type A dissection. Surgical results were analyzed for 83 consecutive patients with type A acute aortic dissection between 2002 and 2009. They were treated surgically by prosthetic graft replacement under hypothermic circulatory arrest. The ascending aorta was routinely cannulated using the Seldinger technique with epiaortic echocardiographic guidance; antegrade systemic perfusion was evaluated by color Doppler ultrasound. Systemic antegrade perfusion via the dissected ascending aorta was performed safely in all cases. There was no malperfusion or thromboembolism as a result of ascending aortic cannulation. Epiaortic 2-dimensional and color Doppler imaging provided real-time monitoring adequate for the placement and for proper systemic perfusion. There were 5 in-hospital deaths (5/83=6.0%) and 8 strokes (preoperative 6/83=7.2%, postoperative 2/83=2.4%). A total of 78 patients (78/83=94%) were discharged and have been followed up without major adverse cardiac events for a mean duration of 31.8 months. Ascending aortic cannulation is a simple and safe technique that provides a rapid and reliable route of antegrade central systemic perfusion in type A aortic dissection. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. The Pathophysiology of Decompression Sickness and the Effects of Doppler Detectable Bubbles.

    Science.gov (United States)

    1980-12-18

    workers (Harvey, 1951a and 1951b) and Blinks, Twitty and Whiteker (1951) show that muscular activity was a 23 ~I. predisposing factor to the formation of...Hills, 1966), the mechanism of action is somewhat specific (neural distension ); but for those theories utilizing circulation and/or intravascular...highly perfused non- muscular tissue, such as kidney, forms a gas phase following decompression, Doppler perivascular cuff probes were surgically placed on

  14. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Kitano, Hiroya

    2014-04-01

    Numerous studies have reported sound-induced motion of the tympanic membrane (TM). To demonstrate sequential motion characteristics of the entire TM by noncontact laser Doppler vibrometry (LDV), we have investigated multipoint TM measurement. A laser Doppler vibrometer was mounted on a surgical microscope. The velocity was measured at 33 points on the TM using noncontact LDV without any reflectors. Measurements were performed with tonal stimuli of 1, 3, and 6 kHz. Amplitudes were calculated from these measurements, and time-dependent changes in TM motion were described using a graphics application. TM motions were detected more clearly and stably at 1 and 3 kHz than at other frequencies. This is because the external auditory canal acted as a resonant tube near 3 kHz. TM motion displayed 1 peak at 1 kHz and 2 peaks at 3 kHz. Large amplitudes were detected in the posterosuperior quadrant (PSQ) at 1 kHz and in the PSQ and anteroinferior quadrant (AIQ) at 3 kHz. The entire TM showed synchronized movement centered on the PSQ at 1 kHz, with phase-shifting between PSQ and AIQ movement at 3 kHz. Amplitude was smaller at the umbo than at other parts. In contrast, amplitudes at high frequencies were too small and complicated to detect any obvious peaks. Sequential multipoint motion of the tympanic membrane showed that vibration characteristics of the TM differ according to the part and frequency.

  15. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  16. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium

    International Nuclear Information System (INIS)

    Javan, Ali; Kocharovskaya, Olga; Lee Hwang; Scully, Marlan O.

    2002-01-01

    We derive an analytic expression for the linewidth of electromagnetically induced transparency (EIT) resonance in a Doppler-broadened system. It is shown here that for relatively low intensity of the driving field the EIT linewidth is proportional to the square root of intensity and is independent of the Doppler width, similar to the laser-induced line narrowing effect described by Feld and Javan. In the limit of high intensity we recover the usual power-broadening case where the EIT linewidth is proportional to the intensity and inversely proportional to the Doppler width

  17. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Foroughi Abari, Farzad; Mann, Jakob

    2012-01-01

    are presented. A method for determining the background noise spectrum without interrupting the transmission of the laser beam is described. Moreover, the dependency between the determination of the threshold of a Doppler spectrum with low signal-to-noise ratios and the characteristics of the wind flow......This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra...... are investigated and a systematic approach for removing the noise is outlined. The suggested post processing procedures are applied to two sample time series acquired by a short-range WindScanner during one second each....

  18. Demonstration of blood flow by color doppler in the femoral artery distal to arterial cannula during peripheral venoarterial-extracorporeal membrane oxygenation

    Directory of Open Access Journals (Sweden)

    K G Suresh Rao

    2017-01-01

    Full Text Available In spite of distal perfusion of the limb using a cannula, the limb can have ischemic events if there is an undetected kink or clot anywhere in the line or thrombus in the artery. There are several ways to monitor and assess the limb ischemia. Monitoring for clinical signs of limb ischemia like temperature change and pallor is reliable and mandatory. We report a method where we used color Doppler to document the blood flow. Curvilinear vascular probe of an echo machine is used to identify the flow in the distal femoral artery of the lower limb. . As we have demonstrated in the video attached, once flow to the distal limb perfusion system is shut off by closing the three way stop cock, we can appreciate the immediate cessation of flow in the artery by Doppler.

  19. Correlations of Neck/Shoulder Perfusion Characteristics and Pain Symptoms of the Female Office Workers with Sedentary Lifestyle.

    Science.gov (United States)

    Bau, Jian-Guo; Chia, Taipau; Wei, Shan-Hua; Li, Yung-Hui; Kuo, Fun-Chie

    2017-01-01

    Modern office workers are often impacted by chronic neck/shoulder pain. Most of the previous studies which investigated the relationship of the occupational factors and musculoskeletal symptoms had adopted questionnaire survey. In this study the microcirculatory characteristics and perceived symptoms in neck/shoulder region were compared among office workers with sedentary lifestyle. Thirty-seven female office workers were recruited in this study. Microcirculatory flow in neck/shoulder region characterized by the mean blood flow (MMBF value), pulsatile blood flow (PMBF value), and the PMBF/MMBF ratio (perfusion pulsatility, PP) were investigated using Laser Doppler Flowmetry (LDF). A Chinese version of the Standardized Nordic Musculoskeletal Questionnaire (NMQ) were also administered to collect the information of perceived neck/shoulder symptoms. Correlations between the perfusion characteristics and the individual/occupational factors were analyzed using the Spearman test. The difference of the MMBF values between the low-pain group (pain level≤2) and the high-pain group (pain level>2) were compared using the Mann-Whitney U test. There were 81% participants reported neck or shoulder pain symptoms. The duration of shoulder pain was significantly correlated with the workers' age and the duration of employment (psedentary lifestyle, was found to be more likely to evoke ischemia shoulder pain. Further studies are needed to assess current indicator, PP value, and the underlying mechanism of pain caused by sedentary lifestyle.

  20. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    Science.gov (United States)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  1. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend

    Energy Technology Data Exchange (ETDEWEB)

    Enayet, M.M.; Gibson, M.M.; Taylor, A.M.K.P.; Yianneskis, M.

    1982-12-01

    Laser-Doppler measurements are reported for laminar and turbulent flow through a 90/sup 0/ bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60, and 75/sup 0/ planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layerd, conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. This displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intended for use as benchmark data for calibrating flow calculation methods.

  2. Characteristics of laser-induced plasma under reduced background pressure with Doppler spectroscopy of excited atomic species near the shockwave front

    Science.gov (United States)

    Dojić, Dejan; Skočić, Miloš; Bukvić, Srdjan

    2018-03-01

    We present measurements of Laser Induced Plasma expansion relying on classical, laterally resolved spectroscopy. Easy observable Doppler splitting of Cu I 324.75 nm spectral line provides measurement of radial expansion velocity in a straightforward way. The measurements are conducted in atmosphere of air, argon and hydrogen at low pressure in the range 20-200 Pa. We found that expansion velocity is linearly decreasing if pressure of surrounding gas increases, with velocity/pressure slope nearly the same for all three gases. Copper atoms have the highest expansion speed in argon ( ∼ 50 km/s) and the smallest speed in air ( ∼ 42 km/s). It is found that expansion velocity increases linearly with irradiance, while intensity of the spectral line is quite insensitive to the laser irradiance.

  3. Measurement of microvascular blood flow in cancellous bone using laser Doppler flowmetry and 133Xe-clearance

    International Nuclear Information System (INIS)

    Hellem, S.; Jacobsson, L.S.; Nilsson, G.E.; Lewis, D.H.

    1983-01-01

    Blood flow in cancelleous bone with varying vascular density was investigated simultaneously with Laser Doppler Flowmeter (LDF) and 113 Xe-clearance. The cancellous bone subapical to 2 contralateral incisors in the mandibles of 17 young pigs was used as an experimental model. Light from a 2 mW He-Ne-laser was guided through an optical fibre to a flowmeter probe. Stainless steel probe-holders firmly inserted in the pulpal canals of the two incisors served as the probe entrance to cancellous bone for blood flow recording. Due to the Doppler effect, the light scattered by circulating blood cells undergoes a frequency shift. The back-scattered light picked up by optical fibres in the probe, was guided to a photosensitive device, where it was demodulated. After signal processing, a signal referred to as the Blood Flow Value (BFV) was recorded on a pen recorder. Rhythmical variations (vasomotion) in BFV with frequencies from 2-11 cycles/min were observed in 6% of recordings made initially after probeholder implantation, and in 34% of the recordings made 5 weeks later. On this occasion, a marked increase in BFV was recorded. Histological examination showed increased vascularity in the bone tissue. The reproducibility error of LDF was 7.4% and temporal changes in BFV, apart from vasomotion, were 8.3%, provided no injections or manipulations of the probe were made. Spatial variations in BFV were found to be related to the vascular density. 2 successive recordings by LDF from the same bone area were highly correlated (r=0.98). The corresponding figure for 2 logarithmic decay rates of locally injected 133 Xe was 0.76. No correlation between BFV and 133 Xe-clearance could be demonstrated. (author)

  4. 3D power Doppler ultrasound in early diagnosis of preeclampsia.

    Science.gov (United States)

    Neto, R Moreira; Ramos, J G L

    2016-01-01

    Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (ppower Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  5. Spectral Doppler findings in a rare case of acute compartment syndrome following leg burn

    Directory of Open Access Journals (Sweden)

    Omer A. Mahmoud

    2018-04-01

    Full Text Available Acute compartment syndrome (ACS is an orthopedic emergency condition, which is rarely attributed to burns. It occurs when pressure in an enclosed space rises to a point where it reduces blood flow and impairs tissue perfusion. Its consequences often lead to ischemia and possible necrosis within that space. Until now, the use of Doppler assessment to explore different types of compartment syndrome has yielded contradictory findings. Here, we present a significant increase of blood flow velocity in the arteries proximal to the burned area. Thus, the combination of Duplex ultrasound results with clinical findings will help vascular surgeons to make immediate decision to perform fasciotomy. Keywords: Compartment syndrome, Spectral Doppler

  6. On the choice of the number of samples in laser Doppler anemometry signal processing

    Science.gov (United States)

    Dios, Federico; Comeron, Adolfo; Garcia-Vizcaino, David

    2001-05-01

    The minimum number of samples that must be taken from a sinusoidal signal affected by white Gaussian noise, in order to find its frequency with a predetermined maximum error, is derived. This analysis is of interest in evaluating the performance of velocity-measurement systems based on the Doppler effect. Specifically, in laser Doppler anemometry (LDA) it is usual to receive bursts with a poor signal-to- noise ratio, yet high accuracy is required for the measurement. In recent years special attention has been paid to the problem of monitoring the temporal evolution of turbulent flows. In this kind of situation averaging or filtering the data sequences cannot be allowed: in a rapidly changing environment each one of the measurements should rather by performed within a maximum permissible error and the bursts strongly affected by noise removed. The method for velocity extraction that will be considered here is the spectral analysis through the squared discrete Fourier transform, or periodogram, of the received bursts. This paper has two parts. In the first an approximate expression for the error committed in LDA is derived and discussed. In the second a mathematical formalism for the exact calculation of the error as a function of the signal-to- noise ratio is obtained, and some universal curves for the expected error are provided. The results presented here appear to represent a fundamental limitation on the accuracy of LDA measurements, yet, to our knowledge, they have not been reported in the literature so far.

  7. Postocclusive reactive hyperemia in hand-arm vibration syndrome

    Directory of Open Access Journals (Sweden)

    Zlatka Stoyneva

    2016-08-01

    Full Text Available Objectives: To assess laser Doppler-recorded postocclusive reactive hyperemic responses in vibration-induced Raynaud’s phenomenon and compare it with primary and secondary to sclerodermy Raynaud’s phenomenon. Material and Methods: Thirty patients with vibration-induced Raynaud’s phenomenon and 30 healthy controls and patients with primary and secondary to sclerodermy Raynaud’s phenomenon were investigated. Fingerpulp skin blood flow was monitored by laser Doppler flowmetry during postocclusive reactive hyperemia test. Results: Lower initial perfusion values were established in all the patients with Raynaud’s phenomenon compared to the healthy controls (p < 0.0001. The postocclusive reactive hyperemic peak was lower in all the Raynaud’s phenomenon groups compared to the controls (p < 0.0001. The postocclusive and basal perfusions were lower in the secondary Raynaud’s phenomenon groups compared to the control and the primary Raynaud’s phenomenon groups (p < 0.0001. The velocities to postocclusive hyperemic peak were lower in all the Raynaud’s phenomenon patients (p < 0.0001, so were in the vibration-induced (p < 0.002 and the sclerodermy Raynaud’s phenomenon (p < 0.004 groups in relation to the primary Raynaud’s phenomenon group. The perfusion values and the velocities were significantly influenced by the initial superficial skin temperatures and perfusions, while the velocities were dependent also on gender, and the hyperemic peak on age. Conclusions: Postocclusive reactive hyperemia is abnormal in all Raynaud’s phenomenon patients. Laser Doppler-recorded reactive hyperemia test contributes to diagnosing Raynaud’s phenomenon and has proved to be valuable for group analysis. The applied method is not sensitive enough to discriminate adequately the type of Raynaud’s phenomenon among individual cases.

  8. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  9. Effect of optical pumping on absorption spectra for the doppler broadened rubidium

    International Nuclear Information System (INIS)

    Shin, Seo Ro; Noh, Heung Ryoul

    2008-01-01

    The absorption of a laser beam in the Doppler broadened atomic vapor cell is one of the simplest problems in atomic physics. Although many reports on theoretical and experimental studies of linear absorption have been reported, the effect of optical pumping on the absorption coefficient has not been studied in detail. In this presentation, we present a theoretical and experimental study on linear absorption for the Doppler broadened rubidium vapor cell. The absorption coefficient of a σ"+"(or π)polarized laser beam was calculated as a function of the laser frequency for the various laser intensities. The calculated results were compared with the experimental results. Figure 1(a) shows the calculated absorption coefficient of the π polarized laser beam for the transition F"g"=1→F"e"=0,1,2 of the "87"Rb atom. The diameter of the laser beam was 3mm and the intensity was I=0 and I=0.1I"8"(I"8"=16.2W/m"2"). The peak values for various intensities are shown in Fig. 1(b). We found that the absorption coefficient for the transition from the lower hyperfine state decreased with the increased laser intensity, whereas that for the transition from the upper hyperfine state increased(decreased)for the σ"+"(π)polarized laser beam

  10. Time-of-flight laser spectrometer

    International Nuclear Information System (INIS)

    Izosimov, I.N.; Naumov, Yu.V.; Shishunov, N.A.

    1982-01-01

    A new method of laser spectroscopy with a multichannel way of recording is proposed. In the above method the beam of laser carrying out resonance excitation of studied atoms at the first stage, is directed along the atom beam. It the generation line width of this laser is much less than doppler broadening of spectral line caused by the atom velocities scattering in the beam, the selection of atoms according to velocities will take place, i. e. only atoms, having a definite projection of velocity on laser beam direction, will be excited. If laser line has several components, concealed in doppler circuit, the spectrum of velocities of excited atoms will also include several components. Spectrum of ion velocities obtained as a result of photoionization of excited atoms, reproduces within the limits of doppler circuit the structure of spectral line, corresponding to atom transition into the given excited state, as laser frequency at the dye is fixed in the process, of measurement. The method, proposed, is characterized not only by the property of multichannel but by a new way of atomic beam collimation. Analysis of ion velocities permits to carry out the regime of non-doppler spectroscopy at weakly collima-- ted atomic beams with collimation degree of 1:3. It gives a gain in sensitivity of about one order in comparison with one-channel methods while operating with high resolution (of 30 MHz order) [ru

  11. Laser doppler flowmetry evaluation as a pulpal vitality test

    International Nuclear Information System (INIS)

    Eduardo, Flavia Tavares de Oliveira de Paula

    2004-01-01

    The more frequently used pulp vitality tests (PVTs) are the thermal (cold and heat) and the electrical stimulus. These tests are, however, subjective, depending on the sensitivity threshold of each individual, and usually fail when immature or recently traumatised teeth are tested. The laser Doppler flowmetry (LDF) have been suggested as a PVT, by evaluating the pulp measured flow (F). The measured quantity F, used to discriminate healthy and non-vital teeth, is sensitive to factors hardly controlled or predictable, such as the LDFs and probe response differences, and the flow variations among individuals. It was suggested recently a new discriminator, F(%), less sensitive to such factors. The PVTs performances for F (%) and F as discriminators, however, were not known. The present study aimed to evaluate the PVTs' performances using the quantities F(%) and F (dif) as discriminators, both derived from F, and to compare, qualitatively and quantitatively, their performances to that obtained by using F. The quantities F(%) and F(dif) are, respectively, the ratio and the difference of the flow from the interrogated tooth and its healthy homologous, being F(dif) a proposed new discriminator. The obtained confidence intervals (95% of significance) of the areas under ROC curves were from 0,964 to 1,000 for F (%); from 0,959 to 1,000 for F (dif) and; from 0,584 to 0,951 for F; showing that F(%) and F (dif) are more reliable discriminators then F. (author)

  12. [Lung perfusion studies after percutaneous closure of patent ductus arteriosus using the Amplatzer Duct Occluder in children].

    Science.gov (United States)

    Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván

    2015-01-01

    The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusionductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  13. Multipoint photonic doppler velocimetry using optical lens elements

    Science.gov (United States)

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  14. Method and apparatus for Doppler frequency modulation of radiation

    Science.gov (United States)

    Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)

    1980-01-01

    A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.

  15. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  16. A comparison between red and infrared light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce

    2011-06-01

    To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-55 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, because of technical limitations, data were obtained for the first three conditions only. The dam significantly decreased the mean blood flow by 82%. Injecting LA and cavity preparation had no significant effect. With red light, dam produced a decrease of 56%, and the resulting signal was reduced by 33% after LA and cavity preparation. The remaining signal fell by 46% after pulp removal and replacement. This contribution of the pulp is similar to that recorded previously with infrared light. There was no significant further change when the pulp was finally removed. The importance of using opaque rubber dam is confirmed. With dam, there is no advantage to using red rather than infrared light, and in each case the pulp contributes less than 50% to the blood flow signal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    Science.gov (United States)

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  18. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    Science.gov (United States)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  19. [Microcirculation of the nasal mucosa during use of balloon tamponade].

    Science.gov (United States)

    Klinger, M; Siegert, R

    1997-03-01

    Nasal packings are commonly accepted in the treatment of severe epistaxis. Cuffed catheters are known to cause damage to the nasal mucosa most likely by interfering with tissue perfusion. In this study the effect of different pressure levels on local perfusion of septal mucosa is investigated. In 15 healthy subjects the blood flow in septal mucosa was measured by laser doppler flowmetry by positioning a cuffed epistaxis catheter into the nasal cavity with a laser probe attached to it. Increasing pressure was administered by injecting saline solution while continuously recording intraluminal pressure, perfusion, and filling volume. The local pressure affecting the septal mucosa at the moment of stalling perfusion was determined by subtracting the extranasal cuff pressure from the current intranasal cuff pressure at same inflation volumes. Microcirculation of the septal mucosa stopped when the local pressure exceeded a value of Pmean = 42 mmHg. Individual variations (n = 15) were small (s = 9 mmHg). The intraluminal cuff pressure was measured to be about ten times higher due to the retraction force of the cuff. Spontaneous oscillations of the blood flow were reduced with increasing pressure to the blood vessels. Filling volumes up to 3.2 ml were sufficient to stop perfusion. Cuffed nasal packings stop the blood flow in nasal mucosa even at low local pressures. Depending on the material characteristics of different cuffs the pressure to dilate the cuff may, however, be several times higher than the actual local pressure. This effect may cause problems in the proper use of cuffed catheters. Laser doppler flowmetry proved to be helpful in determining reproducible perfusion values.

  20. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  1. Portal venous perfusion steal causing graft dysfunction after orthotopic liver transplantation: serial imaging findings in a successfully treated patient

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Su; Chung, Yong Eun; Choi, Jin Young; Park, Mi Suk; Lim, Joon Seok; Kim, Myeong Jin; Kim, Hon Soul [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Sang Kyun [Dept. of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    A 53-year-old male with hepatocellular carcinoma underwent orthotopic liver transplantation. Preoperative computed tomography revealed main portal vein luminal narrowing by flat thrombi and the development of cavernous transformation. On post-transplantation day 1, thrombotic portal venous occlusion occurred, and emergency thrombectomy was performed. Subsequent Doppler ultrasonography and contrast-enhanced ultrasonography confirmed the restoration of normal portal venous flow. The next day, however, decreased portal venous velocity was observed via Doppler ultrasonography, and serum liver enzymes and bilirubin levels remained persistently elevated. Direct portography identified massive perfusion steal through prominent splenorenal collateral veins. Stent insertion and balloon angioplasty of the portal vein were performed, and subsequent Doppler ultrasonography demonstrated normalized portal flow parameters. Afterwards, the serum liver enzymes and bilirubin levels rapidly normalized.

  2. Compression therapy in mixed ulcers increases venous output and arterial perfusion.

    Science.gov (United States)

    Mosti, Giovanni; Iabichella, Maria Letizia; Partsch, Hugo

    2012-01-01

    This study was conducted to define bandage pressures that are safe and effective in treating leg ulcers of mixed arterial-venous etiology. In 25 patients with mixed-etiology leg ulcers who received inelastic bandages applied with pressures from 20 to 30, 31 to 40, and 41 to 50 mm Hg, the following measurements were performed before and after bandage application to ensure patient safety throughout the investigation: laser Doppler fluxmetry (LDF) close to the ulcer under the bandage and at the great toe, transcutaneous oxygen pressure (TcPo(2)) on the dorsum of the foot, and toe pressure. Ejection fraction (EF) of the venous pump was performed to assess efficacy on venous hemodynamics. LDF values under the bandages increased by 33% (95% confidence interval [CI], 17-48; P pressure ranges applied. At toe level, a significant decrease in flux of -20% (95% CI, -48 to 9; P bandage pressure >41 mm Hg. Toe pressure values and TcPo(2) showed a moderate increase, excluding a restriction to arterial perfusion induced by the bandages. Inelastic bandages were highly efficient in improving venous pumping function, increasing the reduced ejection fraction by 72% (95% CI, 50%-95%; P pressure of 21 to 30 mm Hg and by 103% (95% CI, 70%-128%; P ulceration, an ankle-brachial pressure index >0.5 and an absolute ankle pressure of >60 mm Hg, inelastic compression of up to 40 mm Hg does not impede arterial perfusion but may lead to a normalization of the highly reduced venous pumping function. Such bandages are therefore recommended in combination with walking exercises as the basic conservative management for patients with mixed leg ulcers. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  3. Measurements of ultrasonic waves by means of laser Doppler velocimeter and an experimental study of elastic wave propagation in inhomogeneous media; Laser doppler sokudokei ni yoru choonpa keisoku to ganseki wo mochiita fukinshitsu baishitsu no hado denpa model jikken

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, O; Sato, T [Geological Survey of Japan, Tsukuba (Japan); Lei, X [Dia Consultants Company, Tokyo (Japan)

    1996-05-01

    In the study of seismic wave propagation, a model experimenting technique has been developed using a laser Doppler velocimeter (LDV) as the sensor. This technique, not dependent on conventional piezoelectric devices, only irradiates the specimen with laser to measure the velocity amplitude on the target surface, eliminating the need for close contact between the specimen and sensor. In the experiment, elastic penetration waves with their noise levels approximately 0.05mm/s were observed upon application of vibration of 10{sup 6}-10{sup 5}Hz. The specimen was stainless steel or rock, and waveforms caught by the LDV and piezoelectric device were compared. As the result, it was found that the LDV is a powerful tool for effectively explaining elastic wave propagation in inhomogeneous media. The piezoelectric device fails to reproduce accurately the waves to follow the initial one while the LDV detect the velocity amplitude on the specimen surface in a wide frequency range encouraging the discussion over the quantification of observed waveforms. 10 refs., 7 figs.

  4. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  5. Use of Wigner-Ville transformations for fluid particles in laser Doppler flow accelerometry

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Jong; Kwon, Hyu Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-03-15

    Flow acceleration with Lagrangian description is crucial to understanding particle movements in turbulent jet flows or dissipation statistics in isotropic turbulence. Laser Doppler anemometry is regarded as a suitable experimental tool for measuring flow acceleration, because scattering particles generate trajectories in the measurement volume, which process gives rise to flow acceleration at a fixed measuring point with the Lagrangian description. The most useful algorithm for processing Doppler signals is either the quadrature demodulation technique (QDT) or the iterative parametric method (alternatively, the minimization of least squares, LSM) as in the literature. In the present study, another algorithm using the Wigner-Ville transform (W-V) is introduced to give more accurate estimation of flow acceleration than the QDT or the LSM. Five signal-processing algorithms, including the QDT, the LSM, the MC (maximization of correlation), and the W-V, were compared with each other in experiments with an impinging air jet flow with a cylindrical rod and a round free-air jet flow. Mean flow acceleration distribution in the stream wise direction was mainly investigated. Processing speeds for the above-mentioned signal-processing algorithms were checked to find the best algorithm, which has best performance with short processing time. Although QDT was found to be an accurate algorithm with short processing time, it has limited applications to flows with large acceleration and high SNR. The MC was also found to be a good algorithm with moderate processing speed, which can be useful in flows with low SNR because the MC is an iterative parametric method. The W-V gave the most accurate values for flow acceleration; however, the processing time for this method was the slowest among the signal-processing algorithms.

  6. Use of Wigner-Ville transformations for fluid particles in laser Doppler flow accelerometry

    International Nuclear Information System (INIS)

    Chun, Se Jong; Kwon, Hyu Sang

    2012-01-01

    Flow acceleration with Lagrangian description is crucial to understanding particle movements in turbulent jet flows or dissipation statistics in isotropic turbulence. Laser Doppler anemometry is regarded as a suitable experimental tool for measuring flow acceleration, because scattering particles generate trajectories in the measurement volume, which process gives rise to flow acceleration at a fixed measuring point with the Lagrangian description. The most useful algorithm for processing Doppler signals is either the quadrature demodulation technique (QDT) or the iterative parametric method (alternatively, the minimization of least squares, LSM) as in the literature. In the present study, another algorithm using the Wigner-Ville transform (W-V) is introduced to give more accurate estimation of flow acceleration than the QDT or the LSM. Five signal-processing algorithms, including the QDT, the LSM, the MC (maximization of correlation), and the W-V, were compared with each other in experiments with an impinging air jet flow with a cylindrical rod and a round free-air jet flow. Mean flow acceleration distribution in the stream wise direction was mainly investigated. Processing speeds for the above-mentioned signal-processing algorithms were checked to find the best algorithm, which has best performance with short processing time. Although QDT was found to be an accurate algorithm with short processing time, it has limited applications to flows with large acceleration and high SNR. The MC was also found to be a good algorithm with moderate processing speed, which can be useful in flows with low SNR because the MC is an iterative parametric method. The W-V gave the most accurate values for flow acceleration; however, the processing time for this method was the slowest among the signal-processing algorithms

  7. Measurements of the electrophoretic mobility with a new laser Doppler cytopherometer (Lazypher) and critical evaluation of the electrophorese mobility-test (EMT)

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    The new developed Laser Doppler Cytopherometer (Lazypher) allows the exact and objective measurement of the electrophoretic mobility of particles. Comparative experiments with the Free Flow Cell Electrophoresis instrument of Hannig showed identical results. The impression that the electrophoretic Mobility Test (EMT) is not valid for cancer diagnosis has been substantiated. But in its present form with the new instrument (Lazypher) possible improvements, e.g. isolation of lymphocytes, purification of antigens or indicator particles, can be estimated objectively for their value for the test system. (orig.) [de

  8. Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T S; Seghier, M L; Delpy, D T

    2004-01-01

    This study reports the derivation of a precise mathematical relationship existing between the different p-moments of the power spectrum of the photoelectric current, obtained from a laser-Doppler flowmeter (LDF), and the red blood cell speed. The main purpose is that both the Brownian (defining the 'biological zero') and the translational movements are taken into account, clarifying in this way what the exact contribution of each parameter is to the LDF derived signals. The derivation of the equations is based on the quasi-elastic scattering theory and holds for multiple scattering (i.e. measurements in large tissue volumes and/or very high red blood cell concentration). The paper also discusses why experimentally there exists a range in which the relationship between the first moment of the power spectrum and the average red blood cells speed may be considered as 'linear' and what are the physiological determinants that can result in nonlinearity. A correct way to subtract the biological zero from the LDF data is also proposed. The findings should help in the design of improved LDF instruments and in the interpretation of experimental data

  9. DOPPLER STUDY IN HIGH-RISK PREGNANCIES IN THIRD TRIMESTER OF PREGNANCIES FOR PREDICTION OF ADVERSE PERINATAL OUTCOME

    Directory of Open Access Journals (Sweden)

    Upendranath Upadhyay

    2017-04-01

    Full Text Available BACKGROUND Our study aimed to evaluate the Doppler value in third trimester of pregnancy where the features at risk is suspected. The patient with abnormal findings are identified and intervened for timely confinement. After delivery, the neonates were also taken care and the outcome were analysed. MATERIALS AND METHODS Study conducted from June 2015 to October 2016 in Add Annex Healthcare Centre and Hi-Tech Medical College, Bhubaneswar. The case referred from the SCB Medical College, Cuttack, and Hi-Tech Medical College. Around 50 randomly selected cases beyond 28 wks. of pregnancy with foetus risk were studied. RESULTS The study shows that the abnormal perinatal outcomes are more with abnormal findings in different arteries (Umbilical ArteryUA, Middle Cerebral Artery-MCA, Maternal Uterine Artery-MUA, i.e. 10 out of 19. But, in cases with normal fetoplacental perfusion, the perinatal outcome is much better, i.e. 4 out of 14. CONCLUSION Doppler study by an expert hand offers a tremendous potential in identification of fetoplacental perfusion defect and then timely inversion of pregnancies with “foetus at risk” and decreases the neonatal deaths and maternal morbidity.

  10. A method for the automated assessment of temporal characteristics of functional hemispheric lateralization by transcranial Doppler sonography.

    Science.gov (United States)

    Deppe, M; Knecht, S; Lohmann, H; Ringelstein, E B

    2004-07-01

    Transcranial Doppler sonography (TCD) can guide and complement investigations based on functional magnetic resonance and positron emission tomography imaging by providing continuous information on cerebral perfusion changes correlated to cerebral activation. So far, however, the role of functional TCD has been limited by a lack of sensitivity. Here, the authors present an outline of a method that increases the potential of TCD to detect perfusion changes within a vascular territory. Sensitivity on the order of 1% can be achieved by transformation of Doppler envelope curves, which accounts for systemic quasi-periodic and irregular spontaneous blood flow modulations and artificial disturbances related to the recording. A statistical technique is introduced that allows the automatic detection of time periods of significant hemispheric lateralization in evoked flow studies. Furthermore, an index of laterality is defined quantifying the extent of hemispheric dominance during stimulus processing. The analysis technique described in this article has been successfully employed in recent examinations on vision, motor activation, language, language recovery, and other cognitive tasks. The novel functional TCD technique permits valid and reproducible assessments of the temporal characteristics of functional hemispheric lateralization.

  11. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  12. Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia

    DEFF Research Database (Denmark)

    Welten, S. M. J.; Bastiaansen, Ajnm; de Jong, R. C. M.

    2014-01-01

    in mice after single femoral artery ligation. Methods and Results: Gene silencing oligonucleotides (GSOs) were used to inhibit 4 14q32 microRNAs, miR-329, miR-487b, miR-494, and miR-495, 1 day before double femoral artery ligation. Blood flow recovery was followed by laser Doppler perfusion imaging. All 4...... GSOs clearly improved blood flow recovery after ischemia. Mice treated with GSO-495 or GSO-329 showed increased perfusion already after 3 days (30% perfusion versus 15% in control), and those treated with GSO-329 showed a full recovery of perfusion after 7 days (versus 60% in control). Increased...

  13. Investigation of Hepatic Blood Perfusion by Laser Speckle Imaging and Changes of Hepatic Vasoactive Substances in Mice after Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Xiao-jing Song

    2014-01-01

    Full Text Available The study was conducted to observe the effect of electroacupuncture (EA on hepatic blood perfusion (HBP and vascular regulation. We investigated 60 male anesthetized mice under the following 3 conditions: without EA stimulation (control group; EA stimulation at Zusanli (ST36 group; EA stimulation at nonacupoint (NA group during 30 min. The HBP was measured using the laser speckle perfusion imaging (LSPI. The level of nitric oxide (NO, endothelin-1 (ET-1, and noradrenaline (NE in liver tissue was detected by biochemical methods. Results were as follows. At each time point, HBP increase in ST36 group was higher than that in the NA group in anesthetized mice. HBP gradually decreased during 30 min in control group. The level of NO in ST36 group was higher than that in NA group. The level of both ET-1 and NE was the highest in control group, followed by NA group and ST36 group. It is concluded that EA at ST36 could increase HBP possibly by increasing the blood flow velocity (BFV, changing vascular activity, increasing the level of NO, and inhibiting the level of ET-1 in liver tissue.

  14. Optical fibre laser velocimetry: a review

    International Nuclear Information System (INIS)

    Charrett, Thomas O H; James, Stephen W; Tatam, Ralph P

    2012-01-01

    The applications of optical fibre technology to laser velocimetry are diverse and often critical to their successful implementation, particularly in harsh environments. Applications range from the use of optical fibres for beam delivery and scattered light collection, aiding the miniaturization of instrument probes, to the use of imaging fibre bundles for imaging the flow field in planar velocimetry systems. Optical fibre techniques have also been used in signal processing, for example fibre frequency shifters, and optical fibre devices such as amplifiers and lasers have been exploited. This paper will review the use of optical fibres in point-wise laser velocimetry techniques such as laser Doppler velocimetry and laser transit anemometry, as well as in planar measurement techniques such as particle imaging velocimetry and planar Doppler velocimetry. (topical review)

  15. Left ventricular diastolic dyssynchrony assessed with phase analysis of gated myocardial perfusion SPECT: a comparison with tissue Doppler imaging

    International Nuclear Information System (INIS)

    Boogers, Mark J.; Veltman, Caroline E.; Chen, Ji; Garcia, Ernest V.; Bommel, Rutger J. van; Mooyaart, Eline A.Q.; Wall, Ernst E. van der; Schalij, Martin J.; Bax, Jeroen J.; Delgado, Victoria; Younis, Imad Al; Hiel, Bernies van der; Dibbets-Schneider, Petra

    2011-01-01

    The aim of the current study was to evaluate the feasibility of phase analysis on gated myocardial perfusion SPECT (GMPS) for the assessment of left ventricular (LV) diastolic dyssynchrony in a head-to-head comparison with tissue Doppler imaging (TDI). The population consisted of patients with end-stage heart failure of New York Heart Association functional class III or IV with a reduced LV ejection fraction of ≤35%. LV diastolic dyssynchrony was calculated using TDI as the maximal time delay between early peak diastolic velocities of two opposing left ventricle walls (diastolic mechanical delay). Significant LV diastolic dyssynchrony was defined as a diastolic mechanical delay of >55 ms on TDI. Furthermore, phase analysis on GMPS was performed to evaluate LV diastolic dyssynchrony; diastolic phase standard deviation (SD) and histogram bandwidth (HBW) were used as markers of LV diastolic dyssynchrony. A total of 150 patients (114 men, mean age 66.0 ± 10.4 years) with end-stage heart failure were enrolled. Both diastolic phase SD (r = 0.81, p 55 ms) showed significantly larger diastolic phase SD (68.1 ± 13.4 vs. 40.7 ± 14.0 , p < 0.01) and diastolic HBW (230.6 ± 54.3 vs. 129.0 ± 55.6 , p < 0.01) as compared to patients without LV diastolic dyssynchrony on TDI (≤55 ms). Finally, phase analysis on GMPS showed a good intra- and interobserver reproducibility for the determination of diastolic phase SD (ICC 0.97 and 0.88) and diastolic HBW (ICC 0.98 and 0.93). Phase analysis on GMPS showed good correlations with TDI for the assessment of LV diastolic dyssynchrony. (orig.)

  16. Power doppler ultrasound findings of renal infarct after experimental renal artery occlusion: comparison with spiral CT

    International Nuclear Information System (INIS)

    Jung, Seung Eun; Shinn, Kyung Sub; Kim, Hak Hee; Mun, Seok Hwan; Lee, Young Joon; Lee, Bae Young; Choi, Byung Gil; Lee, Jae Mun; Lee, Hee Jeong

    1999-01-01

    To evaluate the efficacy of power Doppler ultrasonography (PDUS) in depicting renal infarction in rabbits during experimental renal segmental arterial occlusion, and to compare the results with those of CT scanning. In 28 rabbits weighing 2.5 4kg, the segmental renal artery was occluded through the left main renal artery by embolization with Ivalon (Nycomed, Paris, France). Power Doppler ultrasonography and spiral CT scanning were performed before and at 2, 5, 8, 15, and 24 hours, and 3 and 7 days after occlusion of the segmental renal artery. The location of infarcted areas and collaterals, as seen on PDUS and CT scans, was evaluated by two radiologists. In all cases, as seen on power Doppler ultrasonography, infarcted areas-when compared with normal parenchyma, clearly demonstrated wedge-shaped perfusion defects in the kidney. The location of the lesion closely corresponded to the location seen during CT scanning. After renal arterial occlusion, transiently congested capsular arteries, which were named 'capsular sign', were seen in 63% of rabbits in the two and five-hour groups. No significant cortical rim sign was demonstrated on power Doppler ultrasonography, though it was noted on spiral CT at 15 and 24 hours, and 3 and 7 days after renal arterial occlusion. Power Doppler ultrasonography was useful for the diagnosis of renal infarction. Congested capsular artery seen in the early stage of renal infarction might be a characteristic finding of this condition, as seen on power Doppler ultrasonography

  17. Dynamics of laser speckle imaging of blood flow and morphological changes in tissues with a full time local ischemia of pancreas

    Directory of Open Access Journals (Sweden)

    Alexandrov D.A.

    2014-12-01

    Full Text Available The purpose: to establish influence of a full ischemia of different duration and the subsequent reperfusionon pathology development in pancreas of rats by means of laser speckle-visualization and lifetime digital microscopy. Materials and Methods. The work has been performed on 42 white rats of line Wistar in weight of 200-250 Research of properties of a blood-groove was made by means of methods laser Doppler flowmetry, digital biomicroscopy and a method of laser speckle-contrast visualization. Results. After the termination of a 5-minute full ischemia the speed of bloodflow has been increased in 2-3 times, clinic pancreatic necrosis is marked does not develop. After the termination of 20-minute full ischemia the increase in speed of a bloodflow did not occur, there were morphological and clinical signs of pancreatic necrosis. Conclusion, the efficiency of monitoring of microhemodynamics of pancreas in rats by the method of speckle-capillary of full field has been shown. Multidirectional phase of perfusion changes in pancreas have been revealed after reversible infringement of blood supply of different duration.

  18. Capillaroscopy 2016: new perspectives in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Carmen Pizzorni

    2016-01-01

    Full Text Available Systemic sclerosis (SSc is an autoimmune disorder of unknown aetiology characterized by early impairment of the microvascular system. Nailfold microangiopathy and decreased peripheral blood perfusion are typical clinical aspects of SSc. The best method to evaluate vascular injury is nailfold videocapillaroscopy, which detects peripheral capillary morphology, and classifies and scores the abnormalities into different patterns of microangiopathy. Microangiopathy appears to be the best evaluable predictor of the disease development and has been observed to precede the other symptoms by many years. Peripheral blood perfusion is also impaired in SSc, and there are different methods to assess it: laser Doppler and laser speckle techniques, thermography and other emerging techniques.

  19. Contribution of laser Doppler flowmetry with venoarteriolar reflex, cold, and rewarming testing, and intravital capillaroscopy to diagnose Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Zeman J

    2014-05-01

    Full Text Available Jan Zeman,1 Oksana Turyanytsya,1 Vojtĕch Kapsa,2 Mojmír Eliáš3 1Department of Clinical Cardiology and Angiology, Hospital Bulovka, 2Charles University in Prague, Faculty of Mathematics and Physics, 3Kooperativa a.s., Pobrezni, Prague, Czech Republic Background: The early differential diagnosis of Raynaud’s phenomenon (RP is crucial for the prognosis and therapy of these patients. In our microcirculatory laboratory, we use intravital capillaroscopy (IC, plethysmography (P, and laser Doppler flowmetry (LDF for examining acrosyndromes. We combine LDF with venoarteriolar reflex test, cold test, and rewarming test to achieve more reliable diagnoses of acrosyndromes. Patients and methods: We examined LDF and IC according to a strict protocol using a battery of tests (venoarteriolar reflex test, cold test, rewarming test applied to five different groups of people and compared their results: healthy controls, primary Raynaud’s phenomenon (PRP, systemic scleroderma, vibration white finger, and peripheral artery occlusive disease. Our tests included 340 individuals (72 patients plus 268 controls. Results: Although all tests provided some differences between controls and patients, only the rewarming test offered significant results for differential diagnoses. Conclusion: IC and LDF combined with the battery of tests (venoarteriolar reflex test, cold test, rewarming test under standard conditions can be used as reliable tools to distinguish between PRP and some types of secondary RP (especially in the case of systemic scleroderma, vibration white fingers, or peripheral artery occlusive disease; RPs with organic occlusions of the small arteries causing the diseases. Our methodology can help to distinguish between other types of RP, as well. Keywords: Raynaud’s phenomenon, acrosyndrome, laser Doppler flowmetry, intravital capillaroscopy, scleroderma, vibration white finger, peripheral artery occlusive disease

  20. Spontaneous generation of vortex and coherent vector beams from a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping: application to highly sensitive rotational and translational Doppler velocimetry

    Science.gov (United States)

    Otsuka, Kenju; Chu, Shu-Chun

    2017-07-01

    Selective excitation of Laguerre-Gauss modes (optical vortices: helical LG0,2 and LG0,1), reflecting their weak transverse cross-saturation of population inversions against a preceding higher-order Ince-Gauss (IG0,2) or Hermite-Gauss (HG2,1) mode, was observed in a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping. Single-frequency coherent vector beams were generated through the transverse mode locking of a pair of orthogonally polarized IG2,0 and LG0,2 or HG2,1 and LG0,1 modes. Highly sensitive self-mixing rotational and translational Doppler velocimetry is demonstrated by using vortex and coherent vector beams.

  1. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    Science.gov (United States)

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  2. Physical model experiment for wave field measurements by means of laser Doppler vibrometer. Measurement of three components; Laser Doppler shindokei ni yoru butsuri model jikken. Hado sanseibun no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, O; Sato, T [Geological Survey of Japan, Tsukuba (Japan); Lei, X [DIA Consultant Co. Ltd., Tokyo (Japan)

    1997-05-27

    In this experiment, a beam incident from an oblique direction is reflected by a spherical lens toward the direction of incidence. When the surface of a matter is vibrated by elastic waves, the spherical lens comes into a translation motion that accompanies the vibration. It follows accordingly that the vibration on the surface of the matter may be detected by sensing the spherical lens travelling speed. Three components of the vibration may be determined if beams are focused at one spot from three directions. Detection of the S-wave component by LDV (laser Doppler vibrometer) discloses the complicated wave field in a heterogeneous material, and this physical model experiment may be utilized in various fields of study. For instance, information about problems that may surface in the field work may be collected beforehand in a physical model experiment for developing an S-wave-aided probing method. For the study of seismic wave propagation in a complicated three-dimensional ground structure, a numerical model is not enough, and a physical model experiment will be an effective method to fulfill the purpose. In the monitoring of cracks in a rock, again, not only elastic wave velocity but also waveform information collected from a physical model experiment should be fully utilized. 6 refs., 6 figs.

  3. Analytical Model of Doppler Spectra of Light Backscattered from Rotating Convex Bodies of Revolution in the Global Cartesian Coordinate System

    International Nuclear Information System (INIS)

    Yan-Jun, Gong; Zhen-Sen, Wu; Jia-Ji, Wu

    2009-01-01

    We present an analytical model of Doppler spectra in backscattering from arbitrary rough convex bodies of revolution rotating around their axes in the global Cartesian coordinate system. This analytical model is applied to analyse Doppler spectra in backscatter from two cones and two cylinders, as well as two ellipsoids of revolution. We numerically analyse the influences of attitude and geometry size of objects on Doppler spectra. The analytical model can give contribution of the surface roughness, attitude and geometry size of convex bodies of revolution to Doppler spectra and may contribute to laser Doppler velocimetry as well as ladar applications

  4. Experimental Study on The Two-Phase Flow Characteristics Using Conductivity Probes And Laser Doppler Anemometry In A Vertical Pipe

    Science.gov (United States)

    Chiva, S.; Mendez, S.; Muñoz-Cobo, J. L.; Julia, J. E.; Hernandez, L.

    2007-06-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using Laser Doppler Anemometry (LDA). Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.491 m/s to 0.981 m/s and a void fraction up to 10 %. For each two-phase flow configuration twenty five radial position and three axial locations were measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions.

  5. Vasomotion in human skin before and after local heating recorded with laser Doppler flowmetry. A method for induction of vasomotion

    DEFF Research Database (Denmark)

    Kastrup, J; Bülow, J; Lassen, N A

    1989-01-01

    neurogenic origin. A method for induction of regular amplified alpha-oscillations was discovered and evaluated. When heating the skin locally to 42 degrees C the blood cell flux increased and the pre-heating alpha- and beta-oscillations disappeared. During the post-heating period, amplified regular rhythmic......Rhythmical variations in blood cell flux in human skin have been studied using laser Doppler flowmetry. The fluctuations in blood cell flux could be divided into two different categories named alpha- and beta-oscillations with a median frequency of 6.8 min-1 and 1.5 min-1, respectively...... alpha-oscillations appeared. At the end of the post-heating period beta-oscillations re-appeared....

  6. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after...... blood perfusion recording and grouped according to needle type, skin blood perfusion response relates to needle diameter. The response was significantly higher after insertions with 28G and hooked 32G needles than with 30G (P ..., but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  7. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  8. Hepatic perfusion during hepatic artery infusion chemotherapy: Evaluation with perfusion CT and perfusion scintigraphy

    International Nuclear Information System (INIS)

    Miller, D.L.; Carrasquillo, J.A.; Lutz, R.J.; Chang, A.E.

    1989-01-01

    The standard method for the evaluation of hepatic perfusion during hepatic artery infusion (HAI) chemotherapy is planar hepatic artery perfusion scintigraphy (HAPS). Planar HAPS was performed with 2 mCi of [99mTc] macroaggregated albumin infused at 1 ml/min and compared with single photon emission CT (SPECT) HAPS and with a new study, CT performed during the slow injection of contrast material through the HAI catheter (HAI-CT). Thirteen patients underwent 16 HAI-CT studies, 14 planar HAPS studies, and 9 SPECT HAPS studies. In 13 of 14 studies (93%) HAI-CT and planar HAPS were in complete agreement as to the perfusion pattern of intrahepatic metastases and normal liver. In nine studies where all modalities were performed, the findings identified by HAI-CT and planar HAPS agreed in all cases, whereas the results of two SPECT scans disagreed with the other studies. With respect to perfusion of individual metastases, 14 of 14 HAI-CT studies, 12 of 13 planar HAPS studies, and 9 of 9 SPECT HAPS studies correctly demonstrated the perfusion status of individual lesions as indicated by the pattern of changes in tumor size determined on CT obtained before and after the perfusion studies. Hepatic artery infusion CT was superior for delineation of individual metastases, particularly small lesions, and for the evaluation of nonperfused portions of the liver. Planar HAPS detected extrahepatic perfusion in four patients, and this was not detected by HAI-CT. We conclude that HAI-CT and scintigraphy are complementary techniques. Hepatic artery infusion CT has advantages for the evaluation of intrahepatic perfusion, and planar HAPS is superior to HAI-CT for the detection of extrahepatic perfusion

  9. Invos Cerebral Oximeter compared with the transcranial Doppler for monitoring adequacy of cerebral perfusion in patients undergoing carotid endarterectomy.

    Science.gov (United States)

    Fassiadis, N; Zayed, H; Rashid, H; Green, D W

    2006-12-01

    The aim of this prospective study was to assess the correlation between signals obtained during carotid endarterectomy (CEA) under local (LA) or general anesthesia from the Somanetics Invos cerebral oximeter (CO) and transcranial Doppler (TCD). Forty patients were enrolled in the study. The percentages fall in TCD mean flow velocity (FVm) and CO regional oxygen saturation (rSO2) on the ipsilateral side following clamping were recorded and the correlation coefficient and Spearman's coefficient of rank correlation were calculated. Fourteen patients were not included in the statistical analysis because either no TCD window or reliable TCD signal was obtained. The remaining 26 patients had a fall in either FVm, rSO2 or both during carotid clamping. There was a highly statistically significant correlation between the percentage fall in FVm and rSO2 with a correlation coefficient of 0.73, P<0.0001, with a 95% confidence interval (CI) for r=0.48 to 0.87; Spearman's coefficient of rank correlation (rho) =0.67, P=0.0008, with a 95% CI for rho=0.384 to 0.84. A significant decline in both TCD and rSO2 was noted in 3 patients under LA out of which 2 required shunts for alteration in conscious level. In 2 LA patients there was a significant decline in TCD but not in rSO2 and the endarterectomy was completed without a shunt. Regional oxygen saturation correlates well with FVm during carotid clamping. However, the inability to obtain reliable TCD FVm readings in 35% of patients is a serious disadvantage for this monitor. It appears that CO is a satisfactory and possibly superior device for monitoring adequacy of cerebral perfusion and oxygenation during CEA in comparison with the TCD.

  10. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  11. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  12. Dynamic spatio-temporal imaging of early reflow in a neonatal rat stroke model.

    Science.gov (United States)

    Leger, Pierre-Louis; Bonnin, Philippe; Lacombe, Pierre; Couture-Lepetit, Elisabeth; Fau, Sebastien; Renolleau, Sylvain; Gharib, Abdallah; Baud, Olivier; Charriaut-Marlangue, Christiane

    2013-01-01

    The aim of the study was to better understand blood-flow changes in large arteries and microvessels during the first 15 minutes of reflow in a P7 rat model of arterial occlusion. Blood-flow changes were monitored by using ultrasound imaging with sequential Doppler recordings in internal carotid arteries (ICAs) and basilar trunk. Relative cerebral blood flow (rCBF) changes were obtained by using laser speckle Doppler monitoring. Tissue perfusion was measured with [(14)C]-iodoantipyrine autoradiography. Cerebral energy metabolism was evaluated by mitochondrial oxygen consumption. Gradual increase in mean blood-flow velocities illustrated a gradual perfusion during early reflow in both ICAs. On ischemia, the middle cerebral artery (MCA) territory presented a residual perfusion, whereas the caudal territory remained normally perfused. On reflow, speckle images showed a caudorostral propagation of reperfusion through anastomotic connections, and a reduced perfusion in the MCA territory. Autoradiography highlighted the caudorostral gradient, and persistent perfusion in ventral and medial regions. These blood-flow changes were accompanied by mitochondrial respiration impairment in the ipsilateral cortex. Collectively, these data indicate the presence of a primary collateral pathway through the circle of Willis, providing an immediate diversion of blood flow toward ischemic regions, and secondary efficient cortical anastomoses in the immature rat brain.

  13. Impairment of skin blood flow during post-occlusive reactive hyperhemy assessed by laser Doppler flowmetry correlates with renal resistive index.

    Science.gov (United States)

    Coulon, P; Constans, J; Gosse, P

    2012-01-01

    We lack non-invasive tools for evaluating the coronary and renal microcirculations. Since cutaneous Doppler laser exploration has evidenced impaired cutaneous microvascular responses in coronary artery disease and in impaired renal function, we wanted to find out if there was a link between the impairments in the cutaneous and renal microcirculations. To specify the significance of the rise in the renal resistive index (RI), which is still unclear, we also sought relations between RI and arterial stiffness. We conducted a cross-sectional controlled study in a heterogeneous population including hypertensive patients of various ages with or without a history of cardiovascular disease along with a healthy control group. The cutaneous microcirculation was evaluated by laser Doppler flowmetry of the post-occlusive reactive hyperhemy (PORH) and of the hyperhemy to heat. The renal microcirculation was evaluated by measurement of the RI. Arterial stiffness was evaluated from an ambulatory measurement of the corrected QKD(100-60) interval. We included 22 hypertensives and 11 controls of mean age 60.6 vs 40.8 years. In this population, there was a correlation between RI and basal zero to peak flow variation (BZ-PF) (r=-0.42; P=0.02) and a correlation between RI and rest flow to peak flow variation (RF-PF) (r=-0.44; P=0.01). There was also a significant correlation between RI and the corrected QKD(100-60) (r=-0.47; P=0.01). The significant correlation between PORH parameters and RI indicates that the functional modifications of the renal and cutaneous microcirculations tend to evolve in parallel during ageing or hypertension. The relation between RI and arterial stiffness shows that RI is a compound index of both renal microvascular impairment and the deterioration of macrovascular mechanics.

  14. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  15. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    Science.gov (United States)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  16. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  17. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  18. Modal parameter determination of a lightweight aerospace panel using laser Doppler vibrometer measurements

    Science.gov (United States)

    de Sousa, Kleverson C.; Domingues, Allan C.; Pereira, Pedro P. de S.; Carneiro, Sergio H.; de Morais, Marcus V. G.; Fabro, Adriano T.

    2016-06-01

    The experimental determination of modal parameters, i.e. natural frequencies, mode shapes and damping ratio, are key in characterizing the dynamic behaviour of structures. Typically, such parameters are obtained from dynamic measurements using one or a set of accelerometers, for response measurements, along with force transducers from an impact hammer or an electrodynamic actuator, i.e. a shaker. However, lightweight structures, commonly applied in the aerospace industry, can be significantly affected by the added mass from accelerometers. Therefore, non-contact measurement techniques, like Laser Doppler Vibrometer (LDV), are a more suitable approach in determining the dynamic characteristics of such structures. In this article, the procedures and results of a modal test for a honeycomb sandwich panel for aerospace applications are presented and discussed. The main objectives of the test are the identification of natural frequencies and mode shapes in order to validate a numerical model, as well as the identification of the damping characteristics of the panel. A validated numerical model will be necessary for future detailed response analysis of the satellite, including vibroacoustic investigations to account for acoustic excitations encountered during launching. The numerical model using homogenised material properties is updated to fit the experimental results and very good agreement between experimental and numerically obtained natural frequencies and mode shapes.

  19. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  20. Physiological effects of indomethacin and celecobix: an S-transform laser Doppler flowmetry signal analysis

    International Nuclear Information System (INIS)

    Assous, S; Humeau, A; Tartas, M; Abraham, P; L'Huillier, J P

    2005-01-01

    Conventional signal processing typically involves frequency selective techniques which are highly inadequate for nonstationary signals. In this paper, we present an approach to perform time-frequency selective processing of laser Doppler flowmetry (LDF) signals using the S-transform. The approach is motivated by the excellent localization, in both time and frequency, afforded by the wavelet basis functions. Suitably chosen Gaussian wavelet functions are used to characterize the subspace of signals that have a given localized time-frequency support, thus enabling a time-frequency partitioning of signals. In this paper, the goal is to study the influence of various pharmacological substances taken by the oral way (celecobix (Celebrex (registered) ), indomethacin (Indocid (registered) ) and placebo) on the physiological activity behaviour. The results show that no statistical differences are observed in the energy computed from the time-frequency representation of LDF signals, for the myogenic, neurogenic and endothelial related metabolic activities between Celebrex and placebo, and Indocid and placebo. The work therefore proves that these drugs do not affect these physiological activities. For future physiological studies, there will therefore be no need to exclude patients having taken cyclo-oxygenase 1 inhibitions

  1. Physiological effects of indomethacin and celecobix: an S-transform laser Doppler flowmetry signal analysis

    Science.gov (United States)

    Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L'Huillier, J. P.

    2005-05-01

    Conventional signal processing typically involves frequency selective techniques which are highly inadequate for nonstationary signals. In this paper, we present an approach to perform time-frequency selective processing of laser Doppler flowmetry (LDF) signals using the S-transform. The approach is motivated by the excellent localization, in both time and frequency, afforded by the wavelet basis functions. Suitably chosen Gaussian wavelet functions are used to characterize the subspace of signals that have a given localized time-frequency support, thus enabling a time-frequency partitioning of signals. In this paper, the goal is to study the influence of various pharmacological substances taken by the oral way (celecobix (Celebrex®), indomethacin (Indocid®) and placebo) on the physiological activity behaviour. The results show that no statistical differences are observed in the energy computed from the time-frequency representation of LDF signals, for the myogenic, neurogenic and endothelial related metabolic activities between Celebrex and placebo, and Indocid and placebo. The work therefore proves that these drugs do not affect these physiological activities. For future physiological studies, there will therefore be no need to exclude patients having taken cyclo-oxygenase 1 inhibitions.

  2. Laser Doppler imaging, thermographic imaging, and tissue oxygen saturation measurements detect early skin reactions during breast radiotherapy

    Science.gov (United States)

    Harrison, David K.; Harrison, Eileen M.; Newton, David J.; Windsor, Phyllis M.

    2001-05-01

    A range of acute skin reactions, ranging from mild erythema to moist desquamation, can be seen in patients receiving standard fractionated radiotherapy to the breast for conservation therapy of breast carcinoma. In a number of cases these reactions can cause considerable discomfort and seriously affect the patient's quality of life. In previous studies we have used the techniques of laser Doppler imaging, digital thermographic imaging and lightguide spectrophotometry to study oxygen supply and blood flow in inflammatory reactions induced experimentally in forearm skin. The present study is an attempt to use the same techniques to investigate whether any or all of them can detect changes in breast skin very early on in the course of radiotherapy treatment. A further aim of the longer term study is to investigate to what extent these early changes may be able to predict the occurrence later of severe acute or delayed reactions.

  3. A fiber optic Doppler sensor and its application in debonding detection for composite structures.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.

  4. Doppler Tomography

    Science.gov (United States)

    Marsh, T. R.

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  5. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  6. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  7. Acetazolamide stimulation test in patients with unilateral internal carotid artery stenosis using Tc-99m HMPAO SPECT and transcranial doppler sonography

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, I. Y.; Na, J. H. [Inha University Hospital, Incheon (Korea, Republic of)

    2007-07-01

    We compared perfusion reserve by acetazolamide (ACZ) challenged brain perfusion SPECT and cerebral vasoreactivity (CVR) by transcranial Doppler sonography (TCD) in patients with unilateral internal carotid artery stenosis. This study was conducted prospectively in 37 consecutive patients with angiographically proven unilateral internal carotid artery stenosis (stenosis> 50%). We estimated % CVR (100? {l_brace}post-ACZ mean velocity (cm/sec) - Pre-ACZ mean velocity (cm/sec){r_brace} / pre-ACZ mean velocity) by TCD. The % CVR was compared with perfusion reserve of SPECT. The % CVR of MCA and ICA was significantly decreased in the ipsilateral side to the carotid stenosis (p<0.05). The CVR impairment was more severe when cerebral infarct is already developed (p<0.01). There was a significant correlation between the degree of carotid stenosis and the CVR (p<0.01). In the area of impaired perfusion reserve on the SPECT, the estimated CVR by TCD was significantly lower (p<0.05), even to the negative value, implying that there is actually steal phenomenon in that area. ACZ challenge can actually decrease cerebral blood flow in the area of impaired perfusion reserve on brain SPECT. So we should be very cautiously performing in ACZ challenge especially when there is a severe carotid stenosis because there is a possibility of developing hemodynamic stroke.

  8. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    Science.gov (United States)

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.

  9. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  10. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  11. Laser spectroscopy and laser ion source development at UNISOR

    International Nuclear Information System (INIS)

    Bingham, C.

    1991-01-01

    The development of the laser spectroscopy facility at UNISOR will be described. The method of collinear laser-atomic beams interaction is utilized to achieve atomic spectra essentially free of Doppler spreading. Measurement of resonance fluorescence via an efficient fiber-optic light collector is used to observe the atomic excitation by the laser beam. The system has been utilized to measure the atomic lifetime of the 6p 4 Ps/2 0 level in Xe II. In other experiment the relativistic Doppler effect was measured as a test of time dilation. Hyperfine structure and isotope shift measurements have been made for a series of Tl atoms ranging in mass from 187 to 205. Magnetic dipole and electric quadrupole moments were deduced for several of these isotopes; these quantities and the isotope shifts added greatly to our understanding of nuclear shapes in this transition region. Future directions will focus around more sensitive detection techniques and the development of purer beams in order to enable the study of nuclei farther from stability. The development of a laser ion source which operates in a completely cold mode and utilizes resonant absorption in the ionization process world facilitate the production of ultra-pure atomic beams

  12. Diagnosis of brain death by transcranial Doppler sonography.

    Science.gov (United States)

    Bode, H; Sauer, M; Pringsheim, W

    1988-12-01

    The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.

  13. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    International Nuclear Information System (INIS)

    Kaznacheev, A; Kuznetsov, I

    2014-01-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC ''Power machines'' - ''LMZ''. The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone

  14. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    Energy Technology Data Exchange (ETDEWEB)

    Rohe, Daniel Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  15. Usefulness of pulse-wave doppler tissue sampling and dobutamine stress echocardiography for identification of false positive inferior wall defects in SPECT

    International Nuclear Information System (INIS)

    Altinmakas, S.; Dagdeviren, B.; Turkmen, M.; Gursurer, M.; Say, B.; Tezel, T.; Ersek, B.

    2000-01-01

    False positive inferior wall perfusion defects restrict the accuracy of SPECT in diagnosis of coronary artery disease (CAD). Pulse-Wave Tissue Doppler (PWTD) has been recently proposed to assess regional wall motion velocities. The objectives of this study were to evaluate the presence of CAD by using PWTD during dobutamine stress echocardiography (DSE) in patients with an inferior perfusion defect detected by SPECT and compare PWTD parameters of normal cases with patients who had inferior perfusion defect and CAD. Sixty-five patients (mean age 58±8 years, 30 men) with a normal LV systolic function at rest according to echocardiographic evaluation with an inferior ischemia determined by SPECT and a control group (CG) of 34 normal cases (mean age 56±7 years, 16 men) were included in this study. All patients underwent a standard DSE (up to 40 μg/kg/min with additional atropine during sub-maximum heart rate responses). Pulse-wave Doppler tissue sampling of inferior wall was performed in the apical 2-chamber view at rest and stress. The coronary angiography was performed within 24 hours. The results were evaluated for the prediction of significant right coronary artery (RCA) and/or left circumflex coronary artery (CX) with narrowing (≥50% diameter stenosis, assessed by quantitative coronary angiography). It was observed that the peak stress mean E/A ratio was lower in patients with CAD when compared to patients without CAD (0.78±0.2 versus 1.29±0.11 p<0.0001). Also the peak stress E/A ratio of normal cases was significantly higher than patients who had CAD (1.19±0.3 versus 0.78±0.2 p<0.0001). When the cut off point for the E/A ratio was determined as 1, the sensitivity and specificity of dobutamine stress PWTD E/A were 89% and 86%, respectively. The peak stress E/A ratio was higher than 1 in all patients with a false positive perfusion defect. Systolic S velocity increase during DSE was significantly lower in patients with CAD (54%±17 versus 99%±24 p=0

  16. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    International Nuclear Information System (INIS)

    Cole, Z.; Roos, P.A.; Berg, T.; Kaylor, B.; Merkel, K.D.; Babbitt, W.R.; Reibel, R.R.

    2007-01-01

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier

  17. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Z. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)]. E-mail: cole@s2corporation.com; Roos, P.A. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Berg, T. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Kaylor, B. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Merkel, K.D. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Reibel, R.R. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)

    2007-11-15

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier.

  18. Near-Infrared Spectroscopy versus Transcranial Doppler-Based Monitoring in Carotid Endarterectomy

    Directory of Open Access Journals (Sweden)

    Jun Woo Cho

    2017-12-01

    Full Text Available Background: Proper monitoring of cerebral perfusion during carotid artery surgery is crucial for determining if a shunt is needed. We compared the safety and reliability of near-infrared spectroscopy (NIRS with trans-cranial Doppler (TCD for cerebral monitoring. Methods: This single-center, retrospective review was con-ducted on patients who underwent carotid endarterectomy (CEA using selective shunt-based TCD or NIRS at Daegu Catholic University Medical Center from November 2009 to June 2016. Postoperative complications were the primary outcome, and the distribution of risk factors between the 2 groups was compared. Results: The medical records of 74 patients (45 TCD, 29 NIRS were reviewed. The demographic characteristics were similar between the 2 groups. One TCD patient died within the 30-day postoperative period. Postoperative stroke (n=4, p=0.15 and neurologic complications (n=10, p=0.005 were only reported in the TCD group. Shunt usage was 44.4% and 10.3% in the TCD and NIRS groups, respectively (p=0.002. Conclusion: NIRS-based selective shunting during CEA seems to be safe and reliable for monitoring cerebral perfusion in terms of postoperative stroke and neurologic symptoms. It also reduces unnecessary shunt usage.

  19. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  20. A quantitative analysis of microcirculation in sore-prone pressure areas on conventional and pressure relief hospital mattresses using laser Doppler flowmetry and tissue spectrophotometry.

    Science.gov (United States)

    Rothenberger, Jens; Krauss, Sabrina; Held, Manuel; Bender, Dominik; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Constantinescu, Mihai Adrian; Jaminet, Patrick

    2014-11-01

    Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  1. Usefulness of hemodynamically distribution of intranodal vessels in differentiating metastatic neck lymph nodes-value of color doppler and spectral wave sonogram

    International Nuclear Information System (INIS)

    Mumtaz, U.

    2017-01-01

    Objective: To evaluate the diagnostic assessment of enlarged lymph nodes, based on its perfusion pattern by taking tissue diagnosis as gold standard. Study Design: Analytical study. Place and Duration of Study: Departments of Radiology and Pathology, PIMS Hospital, Islamabad, from February to May 2016. Methodology: Color sonography of patients with clinically, palpable cervical lymph nodes were carried by senior trainee under the supervision of senior radiologist. Ultrasound guided tissue diagnosis was obtained in all suspected malignant cases. Histopathology was taken as the gold standard for determining accuracy. Results: Accuracy, sensitivity and specificity, positive and negative predictive values of color Doppler ultrasound in detecting malignant cervical lymphadenopathy was found to be 88.46%, 86.05%, 79.31% and 92.50%, respectively with diagnostic accuracy of 86.95%, when intranodal vascular pattern on color Doppler imaging was analyzed. Using spectral wave indexes, the same values were 92.31%, 90.70%, 85.71%, 95.12%, respectively with overall diagnostic accuracy of 91.30%. Conclusion: Color Doppler sonography is much sensitive borderline than grey scale findings alone. Furthermore, lymph nodes appearing in the detection of malignant nodes on grey scale images can be reliably diagnosed on Doppler scan. (author)

  2. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  3. Measurement of subcutaneous adipose tissue blood flow in the morbidly obese using a laser Doppler velocimeter

    Science.gov (United States)

    Klassen, Gerald A.; Paton, Barry E.; Maksym, Geoff; Janigan, David; Perey, Bernard

    1992-08-01

    Using a laser Doppler velocimeter (LDV) subcutaneous adipose tissue blood flow (AF) was recorded in the upright and supine positions in the upper and lower abdomen in 22 morbidly obese patients before gastroplasty. Age was 42 +/- 3 (mean +/- SEM), weight 135 +/- 7 kg, and body mass index (BMI) 51 +/- 3. Adipose flow expressed as mV was: supine, upper abdomen 647 +/- 23, lower abdomen 604 +/- 24; upright, upper abdomen 621 +/- 27, lower abdomen 607 +/- 29. AF was significantly more in the upper than lower abdomen (supine position) and AF was significantly lower in the lower abdomen upright than the upper abdomen supine. Regression analysis of age indicates that blood flow decreases in the lower abdomen so that in the supine position the difference between upper and lower abdomen AF increases. Similar analysis of BMI did not indicate significant trends. These data indicate that with morbid obesity there is lower tissue blood flow to the lower abdomen. This may explain why such patients may develop areas of painful ischemic necrosis in the dependent region of their anterior abdominal pannus.

  4. Vasomotor response of the human face: laser-Doppler measurements during mild hypo- and hyperthermia.

    Science.gov (United States)

    Rasch, W; Cabanac, M

    1993-04-01

    The skin of the face is reputed not to vasoconstrict in response to cold stress because the face skin temperature remains steady during hypothermia. The purpose of the present work was to measure the vasomotor response of the human face to whole-body hypothermia, and to compare it with hyperthermia. Six male subjects were immersed in cold and in warm water to obtain the two conditions. Skin blood flow, evaporation, and skin temperature (Tsk) were recorded in three loci of the face, the forehead, the infra orbital area, and the cheek. Tympanic (Tty) and oesophageal (Toes) temperatures were also recorded during the different thermal states. Normothermic measurements served as control. Blood flow was recorded with a laser-Doppler flowmeter, evaporation measured with an evaporimeter. Face Tsk remained stable between normo-, hypo-, and hyperthermia. Facial blood flow, however, did not follow the same pattern. The facial blood flow remained at minimal vasoconstricted level when the subjects' condition was changed from normo- to hypothermia. When the condition changed from hypo- to hyperthermia a 3 to 9-fold increase in the blood flow was recorded. From these results it was concluded that a vasoconstriction seems to be the general vasomotor state in the face during normothermia.

  5. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  6. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  7. Doppler ultrasound study of portal hemodynamics in patients with Gaucher disease

    Directory of Open Access Journals (Sweden)

    Šarenac-Kovač Radmila

    2015-01-01

    Full Text Available Gaucher disease is a lysosomal storage disorder caused by a deficiency of the enzyme glucocerebrosidase and characterized by the presence of pathological macrophages laden with glucosylceramide. Hepatosplenomegaly is a common manifestation of Gaucher disease, but symptomatic portal hypertension is rarely seen. The study included 20 untreated adult patients with Gaucher disease (non-neuronopathic type 1 diagnosed with the presence of Gaucher cells in the bone marrow, and 20 healthy subjects as controls. The examination of patients included color Doppler ultrasonography (pulsed Doppler mode, resistive index (RI and Doppler perfusion index (DPI using a Toshiba Xario ultrasound machine and a convex array probe PVT-375AX (1.9-6 MHz with the objective of analyzing portal hemodynamics. Results showed that all patients had enlarged liver and spleen, and their average sizes were significantly larger than those in the healthy controls (liver: 17.04 vs.14.02 cm; spleen: 22.2 vs. 10.74 cm. DPI values were significantly different between patients and controls (0.15 vs. 0.21. Considering DPI <0.15 indicates arterial liver hypoperfusion and hypoxia, it can be concluded that a number of patients had a problem with liver oxygenation, which may be linked to the high angiotensin-converting enzyme (ACE levels obtained in the patients (339.42 U/L, 10 times greater than in control subjects. Since ACE is a potent vasoconstrictor produced by spleen macrophages in Gaucher disease, we can suppose that elevated ACE is associated with effects on the blood vessels of the liver and spleen. [Projekat Ministarstva nauke Republike Srbije, br. 175056

  8. Placental perfusion in 3rd trimester pregnancy

    Science.gov (United States)

    Sitepu, M.; Syahriza, A.; Sibuea, D.; Hanafiah, T. M.

    2018-03-01

    The placenta is an organ for transmitting nutrition and oxygen to thefetus; it means if there is a defect in the placenta could make growth restriction to the fetus, even death. Uterine artery flow escalated since the halfway point of the pregnancy or the complete trophoblast invasion of spiralis artery, and keep going in every week. 3D power Doppler examination on placenta could show the uterineplacenta circulation and fetoplacental at once so could give themore accurate result. A cross-sectional study in RSUP HAM and theprivate specialist clinic was conducted in 100 pregnant samples with 28-40 week gestational age, exact last menstrual period date, and no underlying disease to examine the alteration of placental perfusion by gestationalage and placental location. There was a correlation between VI and VFI in placenta toward umbilical artery flow, but no correlation in FI. The placental location also plays a role in interval blood flow, especially FI and VFI, it means the VFI hold the strongest correlation in both ways.

  9. Frequency tripling with multimode-lasers

    International Nuclear Information System (INIS)

    Langer, H.; Roehr, H.; Wrobel, W.G.

    1978-10-01

    The presence of different modes with random phases in a laser beam leads to fluctuations in nonlinear optical interactions. This paper describes the influence of the linewidth of a dye laser on the generation of intensive Lyman-alpha radiation by frequency tripling. Using this Lyman-alpha source for resonance scattering on strongly doppler-broadened lines in fusion plasmas the detection limit of neutral hydrogen is nearly two orders higher with the multimode than the singlemode dye laser. (orig.) [de

  10. Allgöwer-Donati Versus Vertical Mattress Suture Technique Impact on Perfusion in Ankle Fracture Surgery: A Randomized Clinical Trial Using Intraoperative Angiography.

    Science.gov (United States)

    Shannon, Steven F; Houdek, Matthew T; Wyles, Cody C; Yuan, Brandon J; Cross, William W; Cass, Joseph R; Sems, Stephen A

    2017-02-01

    The purpose of this study was to evaluate which primary wound closure technique for ankle fractures affords the most robust perfusion as measured by laser-assisted indocyanine green angiography: Allgöwer-Donati or vertical mattress. Prospective, randomized. Level 1 Academic Trauma Center. Thirty patients undergoing open reduction internal fixation for ankle fractures were prospectively randomized to Allgöwer-Donati (n = 15) or vertical mattress (n = 15) closure. Demographics were similar for both cohorts with respect to age, sex, body mass index, surgical timing, and OTA/AO fracture classification. Skin perfusion (mean incision perfusion and mean perfusion impairment) was quantified in fluorescence units with laser-assisted indocyanine green angiography along the lateral incision as well as anterior and posterior to the incision at 30 separate locations. Minimum follow-up was 3 months with a mean follow-up 4.7 months. Allgöwer-Donati enabled superior perfusion compared with the vertical mattress suture technique. Mean incision perfusion for Allgöwer-Donati was 51 (SD = 13) and for vertical mattress was 28 (SD = 10, P ankle fractures. Theoretically, this may enhance soft tissue healing and decrease the risk of wound complications. Surgeons may take this into consideration when deciding closure techniques for ankle fractures. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  11. Vortex information display system program description manual. [data acquisition from laser Doppler velocimeters and real time operation

    Science.gov (United States)

    Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.

    1975-01-01

    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.

  12. [Comparison of the effects of the intervention with electric thermal bian stone and air suction cup on blood perfusion at meridian points].

    Science.gov (United States)

    Zhao, Pengna; Wang, Yanping; Gu, Feifei; Li, Chaozheng; Wei, Yulong; Wang, Guangjun; Zhang, Weibo

    2018-02-12

    To observe the impacts of the intervention with electric thermal bian stone and air suction cup on blood perfusion (BP) at meridian points and explore the approach of accurate measurement and regulation of meridian qi and blood balance in "precise acupuncture". The laser Doppler line scanner (LDLS) was used to measure BP at bilateral yua n-primary points at the pericardium meridian, the triple energizer meridian, the gallbladder meridian and the liver meridian (small cycle of jueyin to shaoyang meridians) at 31 healthy receptors. The bias ratio of blood perfusion (BPBR) deviated to the reference value was calculated. The electric thermal bian stone and air suction cup were used in the intervention at the he -sea points of the affected meridians in which BPBR was relatively higher at the yuan -primary points. The electric thermal bian stone therapy was used when BPBR was less than -30% and the air suction cupping therapy was used when BPBR was higher than 30%. BP was measured twice before intervention and it was measured separately at the moment after intervention and in 20 min after intervention. The means of BP before and after intervention and the change ratio of blood perfusion (BPCR) before intervention, at the moment after intervention and 20 min after intervention were calculated. 1. After the intervention of electric thermal bian stone, BP mean was increased from (103.51±41.21) PU to (121.97±56.22) PU ( P 0.05), but the change ratio was highly remained. 2. After intervention with air suction cup, BP mean was reduced from (194.83±81.14) PU to (173.88±88.26) PU. Before intervention, at the moment after intervention and 20 min after intervention, separately, BPCR were (7.62±30.49)%, (-12.12±18.20)% and (-14.35±21.25)%. BPCR at the moment after intervention and in 20 min after intervention were significantly different from that before intervention (both P cup is opposite.

  13. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T

    2006-01-01

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware

  14. Differences in laser-Doppler indices between skin-surface measurement sites in subjects with diabetes.

    Science.gov (United States)

    Hsiu, Hsin; Hu, Hsiao-Feng; Tsai, Hung-Chi

    2018-01-01

    This study performed laser-Doppler flowmetry (LDF) measurements with the aim of identifying differences in diabetes-induced microcirculatory-blood-flow (MBF) responses between the following skin surface measurement sites: an acupoint around the wrist, an acupoint around the ankle, and a nearby nonacupoint around the ankle. The 67 study subjects were assigned to diabetic, prediabetic, and healthy groups according to the results of oral glucose tolerance tests. Beat-to-beat and spectral analyses were applied to the LDF waveform to obtain the foot delay time (FDT), the flow rise time (FRT), and the relative energy contributions (RECs) in five frequency bands. FRT and FDT were significantly shorter and the RECs of the endothelial-, neural-, and myogenic-related frequency bands were significantly smaller in the diabetic group than in the control group at the acupoint around the ankle, but there were no such prominent differences at the other sites. The acupoint around the ankle was better than the nearby nonacupoint and the acupoint around the wrist for distinguishing the age-matched diabetic, prediabetic, and healthy subjects. These findings imply that when monitoring diabetes-induced MBF responses, the measurement locations should be chosen carefully in order to minimize interference effects and to improve the ability to distinguish subjects with different conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  16. Scanning laser Doppler imaging may predict disease progression of localized scleroderma in children and young adults.

    Science.gov (United States)

    Shaw, L J; Shipley, J; Newell, E L; Harris, N; Clinch, J G; Lovell, C R

    2013-07-01

    Localized scleroderma is a rare but potentially disfiguring and disabling condition. Systemic treatment should be started early in those with active disease in key functional and cosmetic sites, but disease activity is difficult to determine clinically. Superficial blood flow has been shown to correlate with disease activity in localized scleroderma. To examine whether superficial blood flow measured by laser Doppler imaging (LDI) has the potential to predict disease progression and therefore select patients for early systemic treatment. A group of 20 individuals had clinical assessment and scanning LDI blood-flow measurements of 32 affected body sites. After a mean follow-up of 8.7 months their clinical outcome was compared with the results of the initial LDI assessment. Eleven out of 15 patients with an assessment of active LDI had progressed clinically, and 16 out of the 17 scans with inactive LDI assessment had not progressed, giving a positive predictive value of 73% and a negative predictive value of 94%. We believe that LDI can be a useful tool in predicting disease progression in localized scleroderma, and it may help clinicians to decide which patients to treat early. © 2013 The Authors BJD © 2013 British Association of Dermatologists.

  17. Prise en compte de la dimension finie des faisceaux d'éclairage en granulométrie optique: anémométrie phase Doppler

    OpenAIRE

    Onofri, Fabrice

    1995-01-01

    The optical diagnosis by phase Doppler anemometry of particles encountered in two­phase flows require the use of focused laser beams. The influence of the intensity gradients induced on the particle surface is considered in the first part of this manuscript. Several new phase Doppler geometries are proposed, enabling to suppress the errors induced by the so­called « trajectory effects ». The second part of this work deals with the extension of the phase Doppler anemometry to particle refracti...

  18. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  19. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  20. High pressure gas laser technology for atmospheric remote sensing

    Science.gov (United States)

    Javan, A.

    1980-01-01

    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  1. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Science.gov (United States)

    Gambetta, A.; Vicentini, E.; Coluccelli, N.; Wang, Y.; Fernandez, T. T.; Maddaloni, P.; De Natale, P.; Castrillo, A.; Gianfrani, L.; Laporta, P.; Galzerano, G.

    2018-04-01

    We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL). The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ˜7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  2. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Directory of Open Access Journals (Sweden)

    A. Gambetta

    2018-04-01

    Full Text Available We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL. The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ∼7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  3. Validation of a new noniterative method for accurate position determination of a scanning laser vibrometer

    Science.gov (United States)

    Pauwels, Steven; Boucart, Nick; Dierckx, Benoit; Van Vlierberghe, Pieter

    2000-05-01

    The use of a scanning laser Doppler vibrometer for vibration testing is becoming a popular instrument. The scanning laser Doppler vibrometer is a non-contacting transducer that can measure many points at a high spatial resolution in a short time. Manually aiming the laser beam at the points that need to be measured is very time consuming. In order to use it effectively, the position of the laser Doppler vibrometer needs to be determined relative to the structure. If the position of the laser Doppler vibrometer is known, any visible point on the structure can be hit and measured automatically. A new algorithm for this position determination is developed, based on a geometry model of the structure. After manually aiming the laser beam at 4 or more known points, the laser position and orientation relative to the structure is determined. Using this calculated position and orientation a list with the mirror angles for every measurement point is generated, which is used during the measurement. The algorithm is validated using 3 practical cases. In the first case a plate is used of which the points are measured very accurately, so the geometry model is assumed to be perfect. The second case is a brake disc. Here the geometry points are measured with a ruler, thus not so accurate. The final validation is done on a body in white of a car. A reduced finite element model is used as geometry model. This calibration shows that the new algorithm is very effective and practically usable.

  4. The Efficacy of Magnetic Resonance Imaging and Color Doppler Ultrasonography in Diagnosis of Salivary Gland Tumors

    Directory of Open Access Journals (Sweden)

    Behrooz Davachi

    2014-12-01

    Full Text Available Background and aims. Although salivary gland tumors are not very common, early diagnosis and treatment is crucial because of their proximity to vital organs, and therefore, determining the efficacy of new imaging procedures becomes important. This study aimed to evaluate the efficacy of magnetic resonance imaging (MRI and color doppler ultrasonography parameters in the diagnosis and differentiation of benign and malignant salivary gland tumors. Materials and methods. In this cross-sectional study, color doppler ultrasonography and MRI were performed for 22 patients with salivary gland tumor. Demographic data as well as MRI, color doppler ultrasonography, and surgical parameters including tumor site, signal in MRI images, ultrasound echo, tumor border, lymphadenopathy, invasion, perfusion, vascular resistance index (RI, vascular pulse index (PI were analyzed using Chi-square test, Fisher’s exact test, and independent ttest. Results. The mean age of patients was 46.59±13.97 years (8 males and 14 females. Patients with malignant tumors were older (P < 0.01. The most common tumors were pleomorphic adenoma (36.4%, metastasis (36.4%, and mucoepidermoid carcinoma (9%. Nine tumors (40.9% were benign and 13 (59.1% were malignant. The overall accuracy of MRI and color doppler ultrasonography in determining tumor site was 100% and 95%, respectively. No significant difference observed between RI and PI and the diagnosis of tumor. Conclusion. Both MRI and ultrasonography have high accuracy in the localization of tumors. Well-identified border was a sign of benign tumors. Also, invasion to adjacent structures was a predictive factor for malignancy.

  5. Application of escape probability to line transfer in laser-produced plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; London, R.A.; Zimmerman, G.B.; Haglestein, P.L.

    1989-01-01

    In this paper the authors apply the escape probability method to treat transfer of optically thick lines in laser-produced plasmas in plan-parallel geometry. They investigate the effect of self-absorption on the ionization balance and ion level populations. In addition, they calculate such effect on the laser gains in an exploding foil target heated by an optical laser. Due to the large ion streaming motion in laser-produced plasmas, absorption of an emitted photon occurs only over the length in which the Doppler shift is equal to the line width. They find that the escape probability calculated with the Doppler shift is larger compared to the escape probability for a static plasma. Therefore, the ion streaming motion contributes significantly to the line transfer process in laser-produced plasmas. As examples, they have applied escape probability to calculate transfer of optically thick lines in both ablating slab and exploding foil targets under irradiation of a high-power optical laser

  6. Temporal changes in tumor oxygenation and perfusion upon normo- and hyperbaric inspiratory hyperoxia

    Energy Technology Data Exchange (ETDEWEB)

    Thews, Oliver [University of Halle, Institute of Physiology, Halle (Saale) (Germany); Vaupel, Peter [University Medical Center Mainz, Department of Radiooncology and Radiotherapy, Tumor Pathophysiology Section, Mainz (Germany)

    2016-03-15

    Inspiratory hyperoxia under hyperbaric conditions has been shown to effectively reduce tumor hypoxia and to improve radiosensitivity. However, applying irradiation (RT) under hyperbaric conditions is technically difficult in the clinical setting since RT after decompression may be effective only if tumor pO{sub 2} remains elevated for a certain period of time. The aim of the present study was to analyze the time course of tumor oxygenation and perfusion during and after hyperbaric hyperoxia. Tumor oxygenation, red blood cell (RBC) flux for perfusion monitoring, and vascular resistance were assessed continuously in experimental rat DS-sarcomas by polarographic catheter electrodes and laser Doppler flowmetry at 1 and 2 atm (bar) of environmental pressure during breathing of pure O{sub 2} or carbogen (95 % O{sub 2} + 5 % CO{sub 2}). During room air breathing, the tumor pO{sub 2} followed very rapidly within a few minutes the change of the ambient pressure during compression or decompression. With O{sub 2} breathing under hyperbaric conditions, the tumor pO{sub 2} increased more than expected based on the rise of the environmental pressure, although the time course was comparably rapid. Breathing carbogen, the tumor pO{sub 2} followed with a slight delay of the pressure change, and within 10 min after decompression the baseline values were reached again. RBC flux increased during carbogen breathing but remained almost constant with pure O{sub 2}, indicating a vasodilation (decrease in vascular resistance) with carbogen but a vasoconstriction (increase in vascular resistance) with O{sub 2} during hyperbaric conditions. Since the tumor pO{sub 2} directly followed the environmental pressure, teletherapy after hyperbaric conditions does not seem to be promising as the pO{sub 2} reaches baseline values again within 5-10 min after decompression. (orig.) [German] Inspiratorische Hyperoxie unter hyperbaren Bedingungen reduziert sehr effektiv die Tumorhypoxie und erhoeht die

  7. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    International Nuclear Information System (INIS)

    Goel, Sumit; Nagendrareddy, Suma Gundareddy; Raju, Manthena Srinivasa; Krishnojirao, Dayashankara Rao Jingade; Rastogi, Rajul; Mohan, Ravi Prakash Sasankoti; Gupta, Swati

    2011-01-01

    To evaluate the efficacy of ultrasonography (USG) with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas) of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas). There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions

  8. The relationship of muscle perfusion and metabolism with cardiovascular variables before and after detomidine injection during propofol-ketamine anaesthesia in horses.

    Science.gov (United States)

    Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta

    2002-10-01

    To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although

  9. Laser stabilisation for velocity-selective atomic absorption

    NARCIS (Netherlands)

    Meijer, H.A.J.; Meulen, H.P. van der; Ditewig, F.; Wisman, C.J.; Morgenstern, R.

    1987-01-01

    A relatively simple method is described for stabilising a dye laser at a frequency ν = ν0 + νc in the vicinity of an atomic resonance frequency ν0. The Doppler effect is exploited by looking for atomic fluorescence when a laser beam is crossed with an atomic beam at certain angles αi. Absolute

  10. Biphasic threat to femoral head perfusion in abduction: arterial hypoperfusion and venous congestion

    Energy Technology Data Exchange (ETDEWEB)

    Yousefzadeh, David K. [Comer Children' s Hospital, Department of Radiology, Chicago, IL (United States); University of Chicago, Department of Radiology, Chicago, IL (United States); Jaramillo, Diego [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Johnson, Neil [Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Doerger, Kirk [Radiology Associates of Northern Kentucky, Crestview Hills, KY (United States); Sullivan, Christopher [University of Chicago, Department of Surgery, Chicago, IL (United States)

    2010-09-15

    Hip abduction can cause avascular necrosis (AVN) of the femoral head in infants. To compare the US perfusion pattern of femoral head cartilage in neutral position with that in different degrees and duration of abduction, testing the venous congestion theory of post-abduction ischemia. In 20 neonates, the Doppler flow characteristics of the posterosuperior (PS) branch of the femoral head cartilage feeding vessels were evaluated in neutral and at 30 , 45 , and 60 abduction. In three neonates the leg was held in 45-degree abduction and flow was assessed at 5, 10, and 15 min. Male/female ratio was 11/9 with a mean age of 1.86 {+-} 0.7 weeks. The peak systolic velocities (PSV) declined in all three degrees of abduction. After 15 min of 45-degree abduction, the mean PSV declined and showed an absent or reversed diastolic component and undetectable venous return. No perfusion was detected at 60-degree abduction. Abduction-induced femoral head ischemia is biphasic and degree- and duration-dependent. In phase I there is arterial hypoperfusion and in phase II there is venous congestion. A new pathogeneses for femoral head ischemia is offered. (orig.)

  11. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  12. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    Science.gov (United States)

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  13. [Microcirculation in patients with paranoid schizophrenia].

    Science.gov (United States)

    Sakharov, A V; Ozornin, A S; Golygina, S E; Vinogradova, A O; Shvets, M S

    2018-01-01

    To study microcirculation in patients with paranoid schizophrenia by laser Doppler flowmetry. Fifty-three patients at the age from 18 to 38 years with a diagnosis of 'paranoid schizophrenia' (F20.0) were examined in the acute psychotic state and after 3 weeks of therapy. The control group consisted of 20 healthy volunteers. To assess microcirculation, the noninvasive technique of laser Doppler flowmetry using a laser blood flow analyzer was used. Significant changes in the microcirculation persisting even over three weeks of therapy in patients were identified. The total microcirculation index was increased by 1.4 times which indicated the acceleration of blood flow. An increase in the average fluctuations of perfusion by 3.7 times and in the coefficient of variation by 1.9 times, which reflect the excessive strengthening of local mechanisms of regulation of microcirculation, were found. There were an increase in the myogenic tone and neurogenic tone of metarteriole and precapillary sphincters as well as bypass index.

  14. A Noninvasive Miniaturized-Wireless Laser-Doppler Fiber-Optic Sensor for Understanding Distal Fingertip Injuries in Astronauts

    Science.gov (United States)

    Ansari, Rafat R.; Jones, Jeffrey A.; Pollonini, Luca; Rodriquez, Mikael; Opperman, Roedolph; Hochstein, Jason

    2009-01-01

    During extra-vehicular activities (EVAs) or spacewalks astronauts over use their fingertips under pressure inside the confined spaces of gloves/space suits. The repetitive hand motion is a probable cause for discomfort and injuries to the fingertips. We describe a new wireless fiber-optic probe that can be integrated inside the astronaut glove for noninvasive blood perfusion measurements in distal fingertips. In this preliminary study, we present blood perfusion measurements while performing hand-grip exercises simulating the use of space tools.

  15. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Science.gov (United States)

    Goel, Sumit; Nagendrareddy, Suma Gundareddy; Raju, Manthena Srinivasa; Krishnojirao, Dayashankara Rao Jingade; Rastogi, Rajul; Mohan, Ravi Prakash Sasankoti; Gupta, Swati

    2011-01-01

    Aim: To evaluate the efficacy of ultrasonography (USG) with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas) of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas). There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions. PMID:22223940

  16. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Sumit Goel

    2011-01-01

    Full Text Available Aim: To evaluate the efficacy of ultrasonography (USG with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas. There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions.

  17. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Page, Scott; Freeman, Dennis M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Ghaffari, Roozbeh [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  18. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  19. Sub-doppler spectroscopy based on the transit relaxation of atomic particles in a thin gas cell

    International Nuclear Information System (INIS)

    Azad, Izmailov

    2011-01-01

    This paper is the review of methods, achievements, and possibilities of the recently elaborated high-resolution laser spectroscopy based on sub-doppler absorption, fluorescence and polarization resonances (on centers of quantum transitions), which arise because of the specific optical selection of comparatively slow-speed atoms or molecules in a thin cell with a rarefied gas. It is considered two following mechanisms of such velocity selection of atomic particles connected with their flight durations between walls of the thin cell : 1) optical pumping of sublevels of the ground atomic term and 2) optical excitation of long-lived metastable quantum levels. Theoretical bases of elaborated spectroscopy methods are presented. In case of the optical pumping mechanism, experimental technique and results on the record of sub-doppler spectral structure of Cs and Rb atoms and on the frequency stabilization of diode lasers by given methods are described. Perspectives of further development and applications of this new direction of the high-resolution spectroscopy are discussed

  20. Sub-doppler spectroscopy based on the transit relaxation of atomic particles in a thin gas cell

    International Nuclear Information System (INIS)

    Izmailov, Azad

    2010-01-01

    This paper is the review of methods, achievements and possibilities of the recently elaborated high-resolution laser spectroscopy based on sub-doppler absorption, fluorescence and polarization resonances, which arise because of the specific optical selection of comparatively slow-speed atoms in a thin cell with rarefied gas. It was considered two following mechanisms of such a velocity selection of atomic particles connected with their flight durations between walls of the thin cell : 1) optical pumping of sublevels of the ground atomic term and 2) optical excitation of long-lived quantum levels. Theoretical bases of elaborated spectroscopy methods are presented. In case of the optical pumping mechanism, experimental technique and results on the record of sub-doppler spectral structure of Cs and Rb atoms and on the frequency stabilization of diode lasers by given methods are described. Perspectives of further development and applications of this new direction of the high-resolution spectroscopy are discussed

  1. High-cervical spinal cord electrical stimulation in brain low perfusion syndromes: experimental basis and preliminary clinical report.

    Science.gov (United States)

    Broseta, J; García-March, G; Sánchez-Ledesma, M J; Gonçalves, J; Silva, I; Barcia, J A; Llácer, J L; Barcia-Salorio, J L

    1994-01-01

    Previous studies of our group showed that C1-C2 spinal cord stimulation increases carotid and brain blood flow in normal conditions in the goat and dog and it has a beneficial vasomotor effect in a model of vasospasm in the rat. For further clinical application it seemed rational to investigate the possible vascular changes mediated by this technique in experimental brain infarction. To this aim, 45 New Zealand rabbits were used. Brain infarction was produced by bilateral carotid ligation in 15, unilateral microcoagulation of the middle cerebral artery in 15 and by microcoagulation of the vertebral artery at the craniocervical junction in the other 15. One week later, following daily clinical scoring and cortical and posterior fossa blood flow readings by laser Doppler, a period of 120 min of right C1-C2 spinal cord electric stimulation was performed. A mean of 27% increase in previous blood flow recordings was obtained at the right hemisphere and a mean of 32% in the posterior fossa. This procedure was used in 10 patients presenting with various cerebral low perfusion syndromes. Though not constant, an increase in alertness, retention, speech, emotional lability and performance in skilled acts was achieved. No MR changes were observed, though SPECT readings showed an increase in blood flow in the penumbral perilesional area.

  2. Analysis of microvascular perfusion with multi-dimensional complete ensemble empirical mode decomposition with adaptive noise algorithm: Processing of laser speckle contrast images recorded in healthy subjects, at rest and during acetylcholine stimulation.

    Science.gov (United States)

    Humeau-Heurtier, Anne; Marche, Pauline; Dubois, Severine; Mahe, Guillaume

    2015-01-01

    Laser speckle contrast imaging (LSCI) is a full-field imaging modality to monitor microvascular blood flow. It is able to give images with high temporal and spatial resolutions. However, when the skin is studied, the interpretation of the bidimensional data may be difficult. This is why an averaging of the perfusion values in regions of interest is often performed and the result is followed in time, reducing the data to monodimensional time series. In order to avoid such a procedure (that leads to a loss of the spatial resolution), we propose to extract patterns from LSCI data and to compare these patterns for two physiological states in healthy subjects: at rest and at the peak of acetylcholine-induced perfusion peak. For this purpose, the recent multi-dimensional complete ensemble empirical mode decomposition with adaptive noise (MCEEMDAN) algorithm is applied to LSCI data. The results show that the intrinsic mode functions and residue given by MCEEMDAN show different patterns for the two physiological states. The images, as bidimensional data, can therefore be processed to reveal microvascular perfusion patterns, hidden in the images themselves. This work is therefore a feasibility study before analyzing data in patients with microvascular dysfunctions.

  3. Comparison of power Doppler and color Doppler ultrasonography in the detection of intrasticular blood flow of normal infants

    International Nuclear Information System (INIS)

    Shin, Sung Ran; Lee, Ho Kyoung; Lee, Won Gyun; Youk, Dong Joon; Rho, Taek Soo; Lee, Min Jin; Lee, Sang Chun

    1999-01-01

    To compare color Doppler ultrasonography (US) and power Doppler US in the detection of intratesticular blood flow in normal infants and to asses the symmetry of blood flow. Testicular blood flow was assessed prospectively in 100 testes of 50 infants with both power and color Doppler US. We compared the power Doppler with color Doppler to detect intratesticular blood. When the flow was detected, intratesticular blood flow was graded as follows: grade 1: single intratesticular Doppler signal ; grade 2: multiple intratesticular Doppler signals. The symmetry of intratesticular flow was assessed by using the same method. Intratesticular flow was detected in 72 (72%) and 68 (68%) testes on power and color Doppler US, respectively. In 76 testes (76%), intratesticular flow was detected in either one or both techniques. On power Doppler US, grade 1 was seen in 40 tests and grade 2 in 32 testes. On color Doppler US, grade 1 was noted in 52 testes and grade 2 in 16 testes. Testicular blood flow was symmetric on both power and color Doppler US in each patient. There was no difference between power Doppler and color Doppler ultrasonography in detecting intratesticular blood flow in normal infants.

  4. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  5. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  6. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae

    2005-01-01

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 ± 8.5%, range:3 ∼ 35%) and mild to moderate severity (-71 ± 42.7%, range:-217 ∼ -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome

  7. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae [Donga University College of Medicine, Busan (Korea, Republic of)

    2005-02-15

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 {+-} 8.5%, range:3 {approx} 35%) and mild to moderate severity (-71 {+-} 42.7%, range:-217 {approx} -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

  8. Scintigraphic assessment of normal values of lower limb perfusion under stress and rest, with possible clinical applications

    International Nuclear Information System (INIS)

    Malkowski, B.; Zajac, A.; Maziarz, Z.; Zaborowski, G.; Ryglewska-Brzozowska, M.; Malara, A.; Tryniszewski, W.

    2005-01-01

    The lack of a range of normal values of perfusion in the lower limbs during stress and at rest narrows the use of this type of diagnostic tool to the estimation of the current state of relative perfusion without indications of the presence or level of perfusion disturbances. Numerous reports on early changes in endothelium reactivity (depending on disease and degree of vessel pathology) encouraged us to assess lower limb perfusion in healthy people. Our goal was to 1) work out a program and method which would enable lower limb perfusion assessment under stress and at rest in patients without signs of lower limb circulation deprivation and 2) establish the normal range of indexes of lower limb perfusion under stress and at rest which would enable their use in the diagnostics of lower limb muscle circulation. 33 male patients aged between 25 to 45 years (mean: 35.30 ± 6.04) without signs of circulatory problems were entered into the study. To exclude circulatory disturbances, Doppler USG, blood pressure, and laboratory tests were performed on every patient at rest 5 min. after the injection of 11.1 MBq/kg 99 mTc MIBI. Whole body as well as thigh and calf scintigrams were made with an ELSCINT SP6HR gamma-camera. The symmetry of the thigh and calf perfusion (WSU, WSP) and the indexes of the thigh (WPLU, WPPU) and calf (WPLP, WSPP) perfusion of both lower limbs were estimated. At rest: WSP: 96.47% ±1.02, WSP: 96.47% ± 1.02, WPLP: 9.77 ± 0.32, WPPP: 9.78 ± 0.31, WPLU: 8.45 ± 0.22, WPPU: 8.48 ± 0.22. Under stress: WSP: 96.69% ± 1.32, WSU: 96.41% ± 1.20, WPLP: 8.78 ± 0.26, WPPP: 8.81 ± 0.25, WPLU: 7.77 ± 0.25, WPPU: 7.82 ± 0.26. Anamnesis, additional studies, and laboratory tests in the group examined did not show any circulatory disturbances. The estimated values in patients without circulatory disturbances are similar and within a narrow range, which allows us to calculate the norms of lower limb perfusion at rest and under stress. The determined normal

  9. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    Directory of Open Access Journals (Sweden)

    Ovandir Bazan

    2013-12-01

    Full Text Available INTRODUCTION: In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. OBJECTIVE: To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. METHODS: To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. RESULTS: It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. CONCLUSIONS: Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM is superior to the 21 AJ - 501 model (Master Series. Based on the results, future studies can choose to focus on specific regions of the these valves.

  10. Gallblader varices in children with portal cavernoma: duplex-Doppler and color Doppler ultrasound studies

    International Nuclear Information System (INIS)

    Muro, D.; Sanguesa, C.; Lopez, A.

    1998-01-01

    To determine the prevalence of varices in the gallbladder wall, observed by duplex-Doppler and color Doppler ultrasound, in children with cavernoma of the portal vein. Nineteen patients with portal hypertension were studied prospectively by duplex-Doppler and color Doppler ultrasound: 12 of the patients had developed a cavernoma of the portal vein. The presence of peri vesicular varices was assessed in the group of patients with portal cavernoma. Duplex-Doppler and color Doppler ultrasound disclosed the presence of varices in gallbladder wall in nine of the 12 patients (75%). The varices appeared as anechoic and serpiginous areas, and Doppler ultrasound revealed slowed venous flow. However, the three patients in whom gallbldder varices were not detected presented collateral gastric ciculation and spontaneous splenorenal shunt. Gallbladder varices are common in children with portal vein cavernoma; they present hepatopetal flow. Their developments is not related to the size of the portal cavernoma, the presence of spontaneous portosystemic shunts, or endoscopic obliteration of gastric and esophageal varices. The detection of gallbladder varices in patients with portal hypertension who are to undergo biliary surgery is highly important for the surgeon, helping to avoid perioperative complications. (Author) 15 refs

  11. Pulpal blood flow recorded from exposed dentine with a laser Doppler flow meter using red or infrared light.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Vongsavan, Noppakun; Matthews, Bruce

    2018-03-01

    To determine the percentage of the blood flow signal that is derived from dental pulp when recording from exposed dentine in a human premolar. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-33 yr.) with a laser Doppler flow meter (Periflux 4001) using either a red (635 nm) or an infrared (780 nm) laser. After exposing dentine above the buccal pulpal horn (cavity diam. 1.6 mm, depth 3 mm) and isolating the crown with opaque rubber dam, blood flow was recorded alternately with infrared or red light from the exposed dentine under four conditions: before and after injecting local anaesthetic (3% Mepivacaine without vasoconstrictor) (LA) over the apex of the root of the tooth; after exposing the pulp by cutting a buccal, class V cavity in the tooth; and after sectioning the coronal pulp transversely through the exposure. There was no significant change in mean blood flow recorded with either light source when the tooth was anaesthetized or when the pulp was exposed. After the pulp had been sectioned, the blood flow recorded with infrared light fell by 67.8% and with red light, by 68.4%. The difference between these effects was not significant. When recording blood flow from exposed coronal dentine with either infrared or red light in a tooth isolated with opaque rubber dam, about 68% to the signal was contributed by the pulp. The signal:noise ratio was better with infrared than red light, and when recording from dentine than enamel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Laser Doppler measurement and CFD validation in 3 × 3 bundle flow

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbiao, E-mail: xiongjinbiao@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Yang [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Nan; Fu, Xiaoliang [State Nuclear Power Software Development Center, National Energy Key Laboratory of Nuclear Power Software (China); Wang, Hongyan [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Cheng, Xu [Karlsruhe Institute of Technology (Germany); Yang, Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); State Nuclear Power Software Development Center, National Energy Key Laboratory of Nuclear Power Software (China)

    2014-04-01

    Highlights: • Five-beam LDV is operated in the three-beam mode to measure 3 × 3 bundle flow. • Correlation and FFT techniques are applied to analyze the flow structure. • Large coherent structure is observed in gaps between different subchannels. • The Reynolds stress models predict weak mixing between different subchannels. - Abstract: The five-beam three-component laser Doppler system is operated in the three-beam two-component mode to measure the 3 × 3 bundle flow with simple grid spacer. Experiment has been conducted at Re = 15,200 and 29,900. According to the experiment result, the root mean square (RMS) of axial velocity fluctuation shows large value in the gap and the near-wall region of the edge sub-channel which is induced by the axial velocity gradient. Significant intensity of lateral velocity fluctuation is observed which indicates the strong lateral mixing in a 3 × 3 rod bundle. Through the correlation analysis coherent structures have been observed in the gap region. The spectral analysis shows that the LDV measurement complies to the Komogorov spectrum law, f{sup −5/3}, well. The low-frequency peak spectral density of the axial velocity fluctuation has been observed in the gap region connecting sub-channels with velocity difference. The performance of the SSG model and the baseline Reynolds stress model are investigated based on the experiment result. The models predict higher axial velocity in the interior sub-channel and lower in the edge and corner ones than the experiment result. Large discrepancy between the calculated and measured axial flow velocity is resulted from failure in calculating the strong negative u{sup ′}w{sup ′¯} in the gap region connecting different sub-channels.

  13. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas

    2016-01-01

    INTRODUCTION: Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. METHODS: 90...... perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing cardiac surgery. Pulmonary artery perfusion with hypothermic HTK solution does not seem to improve postoperative oxygenation. TRIAL REGISTRATION NUMBER...

  14. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  15. Laser Doppler flowmetry for bone blood flow measurement: correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow

    International Nuclear Information System (INIS)

    Swiontkowski, M.F.; Tepic, S.; Perren, S.M.; Moor, R.; Ganz, R.; Rahn, B.A.

    1986-01-01

    Laser Doppler flowmetry (LDF) was used to measure bone blood flow in the rabbit femoral condyles. To correlate the LDF output signal blood cell flux to in vivo blood flow, simultaneous measurements using LDF and 85 Sr-labeled microspheres were made in an adult rabbit model. There was no correlation between the two methods for blood flow in the femoral condyles and the correlation between the two methods for blood flow in the femoral head does not achieve statistical significance. An LDF signal of 0.4 V was approximately equal to a microsphere measured flow rate of 0.4 ml blood/g bone/min. The strength of the correlation in the latter case may have been affected by (a) large arteriovenous shunts, (b) inadequate mixing of the microspheres with a left ventricular injection, and (c) insufficient numbers of microspheres present in the bone samples. When LDF was used to evaluate the effect of elevated intracapsular pressure on femoral head blood flow in skeletally mature rabbits, femoral head subchondral bone blood flow declined with increasing intracapsular pressure from a baseline value of 0.343 +/- 0.036 to a value of 0.127 +/- 0.27 at 120 cm of water pressure. The decline in femoral head blood flow was statistically significant at pressures of 40 cm of water or higher (p less than 0.001), and evaluation of sections of the proximal femora made from preterminal disulphine blue injections confirmed these findings. Intracapsular tamponade has an adverse effect on femoral head blood flow beginning well below central venous pressure and should be considered in the pathophysiology of posttraumatic and nontraumatic necrosis of the femoral head. Laser Doppler flowmetry was easy to use and appears to be a reproducible technique for evaluating femoral head blood flow, offering distinct advantages over the microsphere technique for measuring bone blood flow

  16. Intensity dependence narrowing of electromagnetically induced absorption in a Doppler-broadened medium

    International Nuclear Information System (INIS)

    Dimitrijevic, J.; Arsenovic, D.; Jelenkovic, B. M.

    2007-01-01

    In this paper, we present a theoretical model for studying the interaction between linearly polarized laser light and near-degenerated Zeeman sublevels for a multiple V-type atomic system of 2 S 1/2 F g =2→ 2 P 3/2 F e =3 transition in 87 Rb. We have calculated the laser absorption in a Hanle configuration, as well as the amplitudes and the widths of electromagnetically induced absorption (EIA) in the range of laser intensities from 0.01 to 40 mW/cm 2 . Our results, showing nonvanishing EIA amplitude, a nonmonotonic increase of the EIA width for the increase of laser intensity, and pronounced shape differences of the Hanle EIA curves at different laser intensities, are in good agreement with recent experimental results. We have found that the EIA behaves differently than the electromagnetically induced transparency (EIT) as a function of the laser intensity. Both the amplitude and width of the EIA have narrow maximums at 1 to 2 mW/cm 2 . We have shown the strong influence of Doppler broadening of atomic transition on Hanle resonances and have suggested the explanation of it

  17. Vascularization of liver tumors - preliminary results with Coded Harmonic Angio (CHA), phase inversion imaging, 3D power Doppler and contrast medium-enhanced B-flow with second generation contrast agent (Optison).

    Science.gov (United States)

    Jung, E M; Kubale, R; Jungius, K-P; Jung, W; Lenhart, M; Clevert, D-A

    2006-01-01

    To investigate the dynamic value of contrast medium-enhanced ultrasonography with Optison for appraisal of the vascularization of hepatic tumors using harmonic imaging, 3D-/power Doppler and B-flow. 60 patients with a mean age of 56 years (range 35-76 years) with 93 liver tumors, including histopathologically proven hepatocellular carcinoma (HCC) [15 cases with 20 lesions], liver metastases of colorectal tumors [17 cases with 33 lesions], metastases of breast cancer [10 cases with 21 lesions] and hemangiomas [10 cases with 19 lesions] were prospectively investigated by means of multislice CT as well as native and contrast medium-enhanced ultrasound using a multifrequency transducer (2.5-4 MHz, Logig 9, GE). B scan was performed with additional color and power Doppler, followed by a bolus injection of 0.5 ml Optison. Tumor vascularization was evaluated with coded harmonic angio (CHA), pulse inversion imaging with power Doppler, 3D power Doppler and in the late phase (>5 min) with B-flow. In 15 cases with HCC, i.a. DSA was performed in addition. The results were also correlated with MRT and histological findings. Compared to spiral-CT/MRT, only 72/93 (77%) of the lesions could be detected in the B scan, 75/93 (81%) with CHA and 93/93 (100%) in the pulse inversion mode. Tumor vascularization was detectable in 43/93 (46%) of lesions with native power Doppler, in 75/93 (81%) of lesions after administering contrast medium in the CHA mode, in 81/93 (87%) of lesions in the pulse inversion mode with power Doppler and in 77/93 (83%) of lesions with contrast-enhanced B-flow. Early arterial and capillary perfusion was best detected with CHA, particularly in 20/20 (100%) of the HCC lesions, allowing a 3D reconstruction. 3D power Doppler was especially useful in investigating the tumor margins. Up to 20 min after contrast medium injection, B-flow was capable of detecting increased metastatic tumor vascularization in 42/54 (78%) of cases and intratumoral perfusion in 17/20 (85

  18. Avaliação dos tumores hepáticos ao Doppler Doppler evaluation of liver tumors

    Directory of Open Access Journals (Sweden)

    Márcio Martins Machado

    2004-10-01

    Full Text Available Os avanços recentes na ultra-sonografia têm ampliado a possibilidade de detecção de tumores hepáticos. Isto tem auxiliado na perspectiva de melhora do prognóstico destes pacientes, à medida que novas técnicas terapêuticas têm surgido. Neste artigo os autores relatam achados ao Doppler que podem auxiliar na identificação e caracterização dos tumores hepáticos, avaliando dados do Doppler colorido, pulsado e do Doppler de amplitude ("power Doppler". Fazem, também, referência a novas modalidades de imagem, como o uso da harmônica.Recent advances in ultrasound have optimized the detection of liver tumors and helped to improve the prognosis of patients with this condition as newly developed and improved therapeutic modalities have been established. The authors review important Doppler findings which may help in the identification and characterization of some hepatic tumors through the evaluation of color Doppler, pulsed Doppler and power Doppler features. New imaging methods such as the use of harmonics imaging are also reviewed.

  19. Therapeutic monitoring of intracerebral perfusion disturbances secondary to subarachnoid haemorrhage (SAH) by means of Tc-99m-HMPAO SPECT

    International Nuclear Information System (INIS)

    Locher, J.T.; Bruehlmeier, M.; Landolt, H.

    2002-01-01

    Aim: Aneurysmal SAH is a devastating illness as two-thirds of the patients are disabled or die. Modern concepts of treatment include the prevention of the most serious complications after a surgical intervention (clipping, coiling) such as re-bleeding, vasospasms and stroke. The follow-up of cerebral perfusion could provide an objective basis for treatment. Material and Methods: In order to control the recently developed ''3H-therapy'' (hypertension-hypervolemia-hemodilution) we use the diagnostic possibilities of trans-cranial Doppler sonography (TCD), Tc-99m-HMPAO SPET (with semiquantitative parametric display) and angiography. Our algorithm includes a daily TCD, and, as a routine, the perfusion SPET on postoperative days 2/3, 8/10 and/or in case of a worsening of TCD results or neurological state. Results: In 20 consecutive cases 51 perfusion SPETs have been performed. Although, in general, a moderate 3H-therapy will be implemented postoperatively even without vasospasms or clinical signs the corrections of dosage highly depends on the TCD and SPET results. Vasospasms were the common reason for increased flow velocities measured by TCD and a (graduate) hypoperfusion on SPET (15 cases), but in three cases SPET showed a local or contra-lateral luxury perfusion indicative for stroke and, therefore, implicating a reduction/termination of the 3H-therapy. Conclusion: Our experiences with the new concept demonstrate not only a diagnostic performance of the used techniques but also an improved effectiveness of cost and benefit

  20. Can tissue spectrophotometry and laser Doppler flowmetry help to identify patients at risk for wound healing disorders after neck dissection?

    Science.gov (United States)

    Rohleder, Nils H; Flensberg, Sandra; Bauer, Florian; Wagenpfeil, Stefan; Wales, Craig J; Koerdt, Steffen; Wolff, Klaus D; Hölzle, Frank; Steiner, Timm; Kesting, Marco R

    2014-03-01

    Microcirculation and oxygen supply in cervical skin were measured with an optical, noninvasive method in patients with or without radiotherapy before neck dissection. The course of wound healing was monitored after the surgical procedure to identify predictive factors for postoperative wound healing disorders. Tissue spectrophotometry and laser Doppler flowmetry were used to determine capillary oxygen saturation, hemoglobin concentration, blood flow, and blood velocity at 2-mm and 8-mm depths in the cervical skin of 91 patients before neck dissection in a maxillofacial unit of a university hospital in Munich, Germany. Parameters were evaluated for differences between patients with irradiation (24) and without (67) and patients with wound healing disorders (25) and without (66) (univariate or multivariate statistical analyses). Velocity at 2 mm was lower in irradiated skin (P = .016). Flow at 2 mm was higher in patients with wound healing disorders (P = .018). High flow values could help to identify patients at risk for cervical wound healing disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  2. Doppler evaluation of valvular stenosis

    International Nuclear Information System (INIS)

    Kisslo, J.; Krafchek, J.; Adams, D.; Mark, D.B.

    1986-01-01

    One of the reasons why use of Doppler echocardiography is growing rapidly is because of its utility in detecting the presence of valvular stenosis and in estimating its severity. Detection of the presence of stenotic valvular heart disease using Doppler echocardiography was originally described over 10 years ago. It has been demonstrated that Doppler blood velocity data could be used to estimate the severity of a stenotic lesion. This chapter discusses the evaluation of valvular stenois using Doppler

  3. The Cognitive Doppler.

    Science.gov (United States)

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  4. Doppler ultrasound exam of an arm or leg

    Science.gov (United States)

    Peripheral vascular disease - Doppler; PVD - Doppler; PAD - Doppler; Blockage of leg arteries - Doppler; Intermittent claudication - Doppler; Arterial insufficiency of the legs - Doppler; Leg pain and ...

  5. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test.

    Science.gov (United States)

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2012-10-01

    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  6. Perfusion dyssynchrony analysis

    NARCIS (Netherlands)

    Chiribiri, A.; Villa, A.D.M.; Sammut, E.; Breeuwer, M.; Nagel, E.

    2015-01-01

    AIMS: We sought to describe perfusion dyssynchrony analysis specifically to exploit the high temporal resolution of stress perfusion CMR. This novel approach detects differences in the temporal distribution of the wash-in of contrast agent across the left ventricular wall. METHODS AND RESULTS:

  7. Experimental verification of the inverse Doppler effect in negative-index material

    Science.gov (United States)

    Feng, Lie; Chen, Jiabi; Wang, Yan; Geng, Tao; Zhuang, Songlin

    2010-10-01

    μResearch of negative-index material (NIM) is a very hot developing research field in recent years. NIM is also called left-handed material (LHM), in which the electric field [see manuscript], the magnetic field [see manuscript] and the wave vector [see manuscript] are not composed of a set of right-handed coordinates but a set of left-handed coordinates. Thus the action of electromagnetic waves in both left-handed material and right-handed material is just the opposite, for instance, the negative refraction phenomenon, the inverse Doppler effect and so on. Here we report the explicit result of the inverse Doppler effect through a photonic crystal (PC) prism at 10.6m wavelength for the first time, and the result we get from the experiment is much similar to the theoretical analysis we have deduced before. During the experiment, the CO2 laser is used as a light source, and the PC prism is used as a sample, which can move a tiny distance (1mm) uniformly with a translating stage. Based on the method of optical heterodyne, we let the emergent light from the output surface of PC prism and the reference light from light source interfere at the surface of the detector. When the translating stage moves towards the detector, the optical paths in the PC prism will be changed, and then the Doppler frequency shift will be generated. Though several different samples have been tested repeatedly, the results we get are extraordinarily similar. So we can be sure that the inverse Doppler effect really exists in the NIM at optical frequencies. To our best knowledge, this is the only experimental verification of the inverse Doppler effect in the NIM at optical frequencies at home and aboard.

  8. Brain perfusion: computed tomography applications

    International Nuclear Information System (INIS)

    Miles, K.A.

    2004-01-01

    Within recent years, the broad introduction of fast multi-detector computed tomography (CT) systems and the availability of commercial software for perfusion analysis have made cerebral perfusion imaging with CT a practical technique for the clinical environment. The technique is widely available at low cost, accurate and easy to perform. Perfusion CT is particularly applicable to those clinical circumstances where patients already undergo CT for other reasons, including stroke, head injury, subarachnoid haemorrhage and radiotherapy planning. Future technical developments in multi-slice CT systems may diminish the current limitations of limited spatial coverage and radiation burden. CT perfusion imaging on combined PET-CT systems offers new opportunities to improve the evaluation of patients with cerebral ischaemia or tumours by demonstrating the relationship between cerebral blood flow and metabolism. Yet CT is often not perceived as a technique for imaging cerebral perfusion. This article reviews the use of CT for imaging cerebral perfusion, highlighting its advantages and disadvantages and draws comparisons between perfusion CT and magnetic resonance imaging. (orig.)

  9. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate.

    Directory of Open Access Journals (Sweden)

    Keisuke Saito

    Full Text Available In order to investigate how holmium laser enucleation of the prostate (HoLEP improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53-88 underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS, IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS, uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2. The median IPSS improved significantly from 20 (range: 6-35 to 3 (0-22 (p < 0.001; Wilcoxon signed-rank test, as did the storage symptoms score, which decreased from 13 (2-20 to 3 (1-8 (p < 0.001. Median bladder blood flow increased at the trigone from 9.57 ± 0.83 ml/sec to 17.60 ± 1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms.

  10. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate

    Science.gov (United States)

    Ide, Hisamitsu; Aoki, Hiroaki; Muto, Satoru; Yamaguchi, Raizo; Tsujimura, Akira; Horie, Shigeo

    2015-01-01

    In order to investigate how holmium laser enucleation of the prostate (HoLEP) improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH) before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53–88) underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS), IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS), uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan) laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2). The median IPSS improved significantly from 20 (range: 6–35) to 3 (0–22) (p<0.001; Wilcoxon signed-rank test), as did the storage symptoms score, which decreased from 13 (2–20) to 3 (1–8) (p<0.001). Median bladder blood flow increased at the trigone from 9.57±0.83 ml/sec to 17.60±1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms. PMID:26090819

  11. Doppler lidar sensor for precision navigation in GPS-deprived environment

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  12. Space communication and radar with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  13. Doppler flowmetry in preeclampsia.

    Science.gov (United States)

    Zahumensky, J

    2009-01-01

    The purpose of this study was to summarize the new published data on the Doppler flowmetry in preeclampsia. We summarize the new published data on the Doppler flowmetry in uteroplacental, fetoplacental and fetal circulation in preeclampsia. The present review summarized the results of clinical research on the Doppler flowmetry in the screening of risk of preclampsia, in the diagnosis of preclampsia and in the fetal risk in preclampsia (Ref. 19). Full Text (Free, PDF) www.bmj.sk.

  14. Acute testicular torsion in children: the role of sonography in the diagnostic workup.

    Science.gov (United States)

    Gunther, P; Schenk, J P; Wunsch, R; Holland-Cunz, S; Kessler, U; Troger, J; Waag, K L

    2006-11-01

    Acute testicular torsion in children is an emergency and has to be diagnosed urgently. Doppler sonography is increasingly used in imaging the acute scrotum. Nevertheless, in uncertain cases, surgical exploration is required. In this study, we attempted to define the role of Doppler sonography in the diagnostic workup of the acutely painful scrotum. All patients admitted between 1999 and 2005 with acute scrotal pain were included. After clinical assessment, patients were imaged by Doppler sonography with a ''high-end'' instrument. In cases of absent arterial perfusion of the testis in Doppler sonography, surgical exploration was carried out. Patients with unaffected perfusion were followed clinically by ultrasound for up to 2 years. Sixty-one infants and children aged 1 day to 17 years (median: 7.9 years) were included. In 14 cases, sonography demonstrated absent central perfusion, with abnormal parenchymal echogenicity in six. Absence of venous blood flow together with reduction of central arterial perfusion was found in one infant. In these 15 patients, surgical exploration confirmed testicular torsion. Among the other 46 patients, we found four cases with increased testicular perfusion and 27 with increased perfusion of the epididymis. In one infant, a testicular tumour was found sonographically, and orchiectomy confirmed diagnosis of a teratoma. Follow-up examinations of the conservatively treated patients showed good clinical outcome with physiologic central perfusion as well as normal echogenic pattern of both testes. No case of testicular torsion was missed. By means of Doppler sonography, an unequivocal statement regarding testicular perfusion was possible in all cases. The initial Doppler diagnosis was confirmed by operative evaluation and follow-up ultrasound. Testicular torsion can therefore be excluded by correctly performed ultrasound with modern equipment.

  15. High-energy, 2µm laser transmitter for coherent wind LIDAR

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  16. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  17. Steerable Doppler transducer probes

    International Nuclear Information System (INIS)

    Fidel, H.F.; Greenwood, D.L.

    1986-01-01

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis

  18. Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Ana Flávia Machado de Carvalho

    Full Text Available Abstract OBJECTIVE To evaluate the effects of low-level laser therapy isolated and associated with Calendula officinalis oil in treating diabetic foot ulcers. METHOD An experimental, randomized, controlled, prospective, interventional clinical case study using a quantitative approach. The sample consisted of 32 diabetic patients of both genders. Participants were randomly divided into four groups. Doppler Ultrasound evaluation of the Ankle-Brachial Index, brief pain inventory and analog pain scale were performed at baseline and after 30 days. RESULTS Reduced pain was observed in the Low-level laser therapy and Low-level laser therapy associated with Essential Fatty Acids groups (p<0.01. Regarding the Ankle-Brachial Index and Doppler Ultrasound, all groups remained stable. By analyzing lesion area reduction, Low-level laser therapy associated with Essential fatty acids group showed a significance of p=0.0032, and the Low-level laser therapy group showed p=0.0428. CONCLUSION Low-level laser therapy, performed alone or associated with the Calendula officinalis oil was effective in relieving pain and accelerating the tissue repair process of diabetic foot.

  19. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  20. Interobserver Variation of the Bolus-and-Burst Method for Pancreatic Perfusion with Dynamic – Contrast-Enhanced Ultrasound

    Czech Academy of Sciences Publication Activity Database

    Stangeland, M.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Gilja, O.H.; Dimcevski, G.; Nylund, K.

    2017-01-01

    Roč. 3, č. 3 (2017), E99-E106 E-ISSN 2199-7152 Institutional support: RVO:68081731 Keywords : interobserver * dynamic contrast-enhanced ultrasound * perfusion * pancreas Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Medical engineering https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0043-110475

  1. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  2. Doppler radar flowmeter

    Science.gov (United States)

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  3. Pancreatic capillary blood flow during caerulein-induced pancreatitis evaluated by a laser-doppler flowmeter in rats Estudo das alterações do fluxo capilar pancreático após infusão de ceruleína avaliado por laser-Doppler em ratos

    Directory of Open Access Journals (Sweden)

    Roberto Ferreira Meirelles Jr.

    2003-01-01

    Full Text Available PURPOSE: The pancreatic capillary blood flow (PCBF was studied to determine its alterations during caerulein-induced pancreatitis in rats. METHODS: Twenty rats were divided in groups: control and caerulein. A laser-Doppler flowmeter to measure PCBF continuously was used. Blood pressure (BP and heart rate (HR were monitored. Serum biochemistry analyses were determined. Histopathological study was performed. RESULTS: The PCBF measured a mean of 109.08 ± 14.54% and 68.24 ± 10.47% in control group and caerulein group, respectively. Caerulein group had a mean decrease of 31.75 ± 16.79%. The serum amylase was 1323.70 ± 239.10U.I-1 and 2184.60 ± 700.46U.I-1 in control and caerulein groups, respectively. There was a significant difference in the PCBF (pOBJETIVO: O fluxo capilar pancreático (FCP foi estudado para determinar suas alterações durante a pancreatite aguda induzida por ceruleína, em ratos. MÉTODOS: Vinte ratos foram divididos em grupo controle e grupo ceruleína. Um laser-Doppler fluxímetro foi empregado para determinar, continuamente, o FCP durante 120 minutos. A pressão arterial média (PAM e a freqüência cardíaca (FC foram determinadas, durante o experimento. Análise bioquímica sérica e estudo histopatológico, por microscopia ótica, do tecido pancreático foram realizados, ao final do experimento. RESULTADOS: O FCP foi em média 109,08 ± 2,17% e 68,24 ± 16,79% nos grupos controle e ceruleína , respectivamente. No grupo ceruleína, houve uma diminuição média de 31,75 ± 16,79%. Os níveis de amilase sérica foram de 1323,70 ± 239,10U.I-1 e 2184,60 ± 700,46U.I-1 nos grupos controle e ceruleína, respectivamente. Houve diferença significante (p<0,05 no FCP e na amilasemia, quando comparado o grupo controle com o grupo ceruleína. Embora micro e macrovacuolização estivessem presentes no grupo ceruleína, não houve diferença histológica entre os grupos. CONCLUSÃO: A diminuição do FCP parece um evento precoce

  4. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  5. Simulation study on detection performance of eye-safe coherent Doppler wind lidar operating near 1.6 μm

    Science.gov (United States)

    Ma, Han; Wang, Qing; Na, Quanxin; Gao, Mingwei

    2018-01-01

    Coherent Doppler wind lidars (CDWL) are widely used in aerospace, atmospheric monitoring and other fields. The parameters of laser source such as the wavelength, pulse energy, pulse duration and pulse repetition rate (PRR) have significant influences on the detection performance of wind lidar. We established a simulation model which takes into account the effects of atmospheric transmission, backscatter, atmospheric turbulence and parameters of laser source. The maximum detection range is also calculated under the condition that the velocity estimation accuracy is 0.1 m/s by using this model. We analyzed the differences of the detection performance between two operation systems, which show the high pulse energy-low pulse repetition rate (HPE-LPRR) and low pulse energy-high repetition rate (LPE-HPRR), respectively. We proved our simulation model reliable by using the parameters of two commercial lidar products. This research has important theoretical and practical values for the design of eye-safe coherent Doppler wind lidar.

  6. Spatial weighting of Doppler reactivity feedback

    International Nuclear Information System (INIS)

    Carew, J.F.; Diamond, D.J.; Todosow, M.

    1977-12-01

    The spatial weighting of the local Doppler feedback implicit in the determination of the core Doppler feedback reactivity has been investigated. Using a detailed planar PDQ7-II PWR model with local fuel-temperature feedback, the core Doppler spatial weight factor, S, has been determined for various control patterns and power levels. Assuming power-squared weighting of the local Doppler feedback, a simple analytic expression for S has been derived and, based on comparison with the PDQ7-II results, provides a convenient and accurate representation of the Doppler spatial weight factor. The sensitivity of these results to variations in the fuel rod heat transfer coefficients, fuel loading and the magnitude of the Doppler coefficient has also been evaluated. The dependence of the local Doppler coefficient on moderator temperature, boron concentration and control rod density has been determined and found to be weak. Selected comparisons with vendor analyses have been made and indicate general agreement

  7. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  8. Sub-Doppler Frequency Metrology in HD for Tests of Fundamental Physics.

    Science.gov (United States)

    Cozijn, F M J; Dupré, P; Salumbides, E J; Eikema, K S E; Ubachs, W

    2018-04-13

    Weak transitions in the (2,0) overtone band of the hydrogen deuteride molecule at λ=1.38  μm were measured in saturated absorption using the technique of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Narrow Doppler-free lines were interrogated with a spectroscopy laser locked to a frequency comb laser referenced to an atomic clock to yield transition frequencies [R(1)=217105181895(20)  kHz; R(2)=219042856621(28)  kHz; R(3)=220704304951(28)  kHz] at three orders of magnitude improved accuracy. These benchmark values provide a test of QED in the smallest neutral molecule, and they open up an avenue to resolve the proton radius puzzle, as well as constrain putative fifth forces and extra dimensions.

  9. Nuclear magnetic resonance of perfused tissue

    International Nuclear Information System (INIS)

    Harpen, M.D.; Allison, R.C.

    1986-01-01

    The effect of perfusion on the NMR signal observed in NMR imaging is studied in a phantom and in two isolated perfused canine lungs. It is observed that perfusion in tissue has little effect on longitudinal relaxation times. Transverse relaxation rates are observed to correlate linearly with rates of perfusion, in accordance with a model presented. (author)

  10. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  11. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter

    Directory of Open Access Journals (Sweden)

    Nobutomo Morita

    2018-01-01

    Full Text Available The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces—such as metal, paper, film, and so on—thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV by modifying the design which was adopted from MEMS (microelectromechanical systems fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects—aluminum block, wood block, and white acrylic block—considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping.

  12. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter.

    Science.gov (United States)

    Morita, Nobutomo; Nogami, Hirofumi; Higurashi, Eiji; Sawada, Renshi

    2018-01-23

    The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV) and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces-such as metal, paper, film, and so on-thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV) by modifying the design which was adopted from MEMS (microelectromechanical systems) fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects-aluminum block, wood block, and white acrylic block-considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping.

  13. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    International Nuclear Information System (INIS)

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  14. The Microcirculation System in Critical Conditions Caused by Abdominal Sepsis

    Directory of Open Access Journals (Sweden)

    S. L. Kan

    2011-01-01

    Full Text Available Objective: to evaluate the microcirculation system in critical conditions caused by abdominal sepsis for a further differentiated approach to intensive care. Subjects and methods. Twenty-four patients with abdominal sepsis (mean age 42.9±0.9 years were examined; a control group consisted of 35 apparently healthy individuals (mean age 40.1±2.1 years. Over 11 days, the microcirculatory bed was evaluated by cutaneous laser Doppler flowmetry by means of a ЛАКК-02 laser capillary blood flow analyzer made in the Russian Federation (LAZMA Research-and-Production Association, by using a basic light guide for percutaneous microcirculation studies. Results. Throughout the study, tissue blood perfusion remained in the patients with sepsis due to the higher effect of mainly active components of vascular tone regulation on the microvascular bed. In a poor outcome, there was a reduction in both active and passive regulatory effects on tissue perfusion chiefly due to local (myogenic factors. Conclusion. The findings suggest that the patients with sepsis have microcirculatory regulation changes aimed at maintaining tissue perfusion. A follow-up of the microcirculation may be useful in choosing intensive care tactics and predicting disease outcome. Key words: sepsis, microcirculation, microvascular bed, micro blood flow, tissue perfusion.

  15. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  16. Wet cupping therapy improves local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis.

    Science.gov (United States)

    Meng, Xiang-Wen; Wang, Ying; Piao, Sheng-Ai; Lv, Wen-Tao; Zhu, Cheng-Hui; Mu, Ming-Yuan; Li, Dan-Dan; Liu, Hua-Peng; Guo, Yi

    2018-01-15

    To observe wet cupping therapy (WCT) on local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis (NT-CS). Fifty-seven NT-CS patients were randomly divided into WCT group and Jiaji acupoint-acupuncture (JA) group according a random number table. WCT group (30 cases) was treated with WCT for 10 min, and JA group (27 cases) was treated with acupuncture for 10 min. The treatment effificacies were evaluated with a Visual Analogue Scale (VAS). Blood perfusion at Dazhui (GV 14) and Jianjing (GB 21) acupoints (affected side) was observed with a laser speckle flflowmetry, and its variations before and after treatment in both groups were compared as well. In both groups, the VAS scores signifificantly decreased after the intervention (P<0.01), while the blood perfusion at the two acupoints signifificantly increased after intervention (P<0.05); however, the increasement magnitude caused by WCT was obvious compared with JA (P<0.05). WCT could improve analgesic effects in patients with NT-CS, which might be related to increasing local blood perfusion of acupunct points.

  17. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  18. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  19. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  20. Small signal gain measurements in a small scale HF overtone laser

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, C.F.; Hewett, K.B.; Manke, G.C. II; Hager, G.D. [Air Force Research Laboratory, Directed Energy Directorate, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, P.G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States); Truman, C.R. [Mechanical Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

    2003-07-01

    The overtone gain medium of a small-scale HF overtone laser was probed using a sub-Doppler tunable diode laser. Two-dimensional spatially resolved small signal gain and temperature maps were generated for several ro-vibrational transitions in the HF (v=2{yields}v=0) overtone band. Our results compare well with previous measurements of the overtone gain in a similar HF laser device. (orig.)

  1. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  2. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia.

    Science.gov (United States)

    de la Torre, Jack C

    2016-09-01

    Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia. © 2016 International Society of Neuropathology.

  3. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets

    DEFF Research Database (Denmark)

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Rasmussen, Rune

    2018-01-01

    of dexmedetomidine. Cerebral perfusion measured by laser speckle contrast imaging was related to cerebral oxygenation as measured by an intracerebral Licox probe (partial pressure of oxygen) and transcranial near infrared spectroscopy technology (NIRS) (cerebral oxygen saturation). Results During propofol......–remifentanil anaesthesia, increases in blood pressure by norepinephrine and phenylephrine did not change cerebral perfusion significantly, but cerebral partial pressure of oxygen (Licox) increased following vasopressors in both groups and increases following norepinephrine were significant (NBP: P = 0.04, LBP: P = 0......–remifentanil–dexmedetomidine anaesthesia was not followed by significant changes in cerebral perfusion. Licox measures increased significantly following both vasopressors in both groups, whereas the decreases in NIRS measures were only significant in the NBP group. Conclusions Cerebral partial pressure of oxygen measured by Licox...

  4. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  5. Doppler ultrasound monitoring technology.

    Science.gov (United States)

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  6. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  7. 8TH International Laser Physics Workshop Lphys󈨧 Budapest, July 2-6, 1999, Program

    Science.gov (United States)

    1999-07-05

    Gerhard J. MUller (Germany) Rudolf Steiner (Germany) Symposium Status and Future Directions of High-Power Laser Installations Co-Chairs: See Leang...Sciences, Kazan. Russia I.A. Shcherbakov General Physics Institute. Russian Academy of Sciences. Moscow, Russia R. Steiner Institute of Laser Technologies...14.50-15.15 R. Steiner , A. Pohl, A. Bentele, T. Meier (Ulm, Germany) Laser Doppler sensor for laser assisted injection 30 SEMINAR 5 --- LASER METHODS IN

  8. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  9. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  10. Local measurements in two-phase flow using a double-sensor conductivity probes and laser doppler anemometry in a vertical pipe

    International Nuclear Information System (INIS)

    Chiva, S.; Julia, E.; Hernandez, L.; Mendez, S.; Munoz-Cobo, J.L.

    2007-01-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), and interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using laser Doppler anemometry. Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.29 m/s to 2 m/s and a void fraction up to 15%. For each two-phase flow configuration 15 radial position and three axial positions was measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions. Two theoretical calibration factors have been defined to relate the mean measurable parameter to the interfacial area concentrations obtained and the measured bubbles, including the missed bubbles. Those factors include the effects of bubble motions, and probe spacing. These calibration factors were obtained through new analytical and numerical method, using a Monte Carlo approach. (author)

  11. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  12. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    Science.gov (United States)

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements

  13. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  14. Patient-exposure data for doppler ultrasound

    International Nuclear Information System (INIS)

    Stewart, H.F.; Silvis, P.X.; Smith, S.W.

    1986-01-01

    In recent years ultrasound imaging and Doppler blood flow measurements have become important tools for use in diagnostic medicine. Commercial pulse-echo imaging equipment was first introduced into commerce in 1963. The first commercial continuous wave Doppler unit was introduced to the marketplace in 1966. As equipment improved and applications developed, the industry experienced rapid growth in the 1970s. One of the more recent growth areas in the application of diagnostic ultrasound has been the use of pulsed Doppler equipment for cardiac applications. Prior to 1976, some continuous wave Doppler ultrasound was used for cardiovascular diagnosis. However, only a single manufacturer marketed a pulsed Doppler clinical instrument for cardiac or peripheral vascular diagnosis. Currently, many continuous wave and pulsed Doppler instruments are commercially available for both peripheral vascular and cardiac diagnosis. This chapter (1) briefly reviews current safety guidelines, regulations, and recommendations for diagnostic ultrasound; (2) discusses the patient-exposure intensities associated with Doppler ultrasound medical equipment and compare these levels of exposure with intensities from other medical ultrasound devices; and (3) considers some of the current information as it relates to the safety of diagnostic ultrasound

  15. Color-coded perfusion analysis of CEUS for pre-interventional diagnosis of microvascularisation in cases of vascular malformations.

    Science.gov (United States)

    Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M

    2014-01-01

    Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.

  16. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    International Nuclear Information System (INIS)

    Tutcu, Semra; Serter, Selim; Kaya, Yavuz; Kara, Eray; Nese, Nalan; Pekindil, Goekhan; Coskun, Teoman

    2010-01-01

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  17. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tutcu, Semra [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Serter, Selim, E-mail: serterselim@gmail.co [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Kaya, Yavuz; Kara, Eray [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Nese, Nalan [Department of Pathology, Celal Bayar University, School of Medicine, Manisa (Turkey); Pekindil, Goekhan [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Coskun, Teoman [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey)

    2010-08-15

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  18. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  19. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  20. Hepatic arterial perfusion increases in the early stage of severe acute pancreatitis patients: Evaluation by perfusion computed tomography

    International Nuclear Information System (INIS)

    Koyasu, Sho; Isoda, Hiroyoshi; Tsuji, Yoshihisa; Yamamoto, Hiroshi; Matsueda, Kazuhiro; Watanabe, Yuji; Chiba, Tsutomu; Togashi, Kaori

    2012-01-01

    Purpose: Although hepatic perfusion abnormalities have been reported in patients with acute pancreatitis, hepatic perfusion with severe acute pancreatitis (SAP) has not been quantitatively evaluated in humans. Therefore, we investigated hepatic perfusion in patients with SAP using perfusion CT. Materials and methods: Hepatic perfusion CT was performed in 67 patients with SAP within 3 days after symptom onset. The patients were diagnosed as having SAP according to the Atlanta criteria. Fifteen cases were established as a control group. Perfusion CT was obtained for 54 s beginning with a bolus injection of 40 ml of contrast agent (600–630 mgI/kg) at a flow rate of 4 ml/s. Perfusion data were analyzed by the dual-input maximum slope method to obtain hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP). Finally, we compared HAP and HPP in SAP patients with those in the control group, respectively. Results: Average HAP was significantly higher in SAP patients than in the control group (75.1 ± 38.0 vs. 38.2 ± 9.0 ml/min/100 ml; p < 0.001). There was no significant difference in average HPP between SAP patients and the control group (206.7 ± 54.9 vs. 204.4 ± 38.5 ml/min/100 ml; p = 0.92). Conclusion: Using quantitative analysis on perfusion CT, we first demonstrated an increase of HAP in the right hepatic lobe in SAP patients.

  1. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  2. Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application

    Science.gov (United States)

    Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico

    2006-09-01

    Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.

  3. Doppler-guided retrograde catheterization system

    Science.gov (United States)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  4. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  5. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  6. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  7. Can preoperative myocardial perfusion scintigraphy predict changes in left ventricular perfusion and function after coronary artery bypass graft surgery?

    DEFF Research Database (Denmark)

    Eckardt, Rozy; Kjeldsen, Bo Juel; Johansen, Allan

    2012-01-01

    OBJECTIVESWe wanted to evaluate whether preoperative myocardial perfusion scintigraphy (MPS) could predict changes in cardiac symptoms and postoperative myocardial perfusion and left ventricular function after coronary artery bypass grafting (CABG).METHODSNinety-two patients with stable angina...... in 26%. Left ventricular ejection fraction (LVEF), which was normal before operation in 45%, improved in 40% of all patients. The increase in LVEF was not related to the preoperative pattern of perfusion defects. Of 30 patients with normalized perfusion after CABG, 29 (97%) had reversible defects...... that reversible or partly reversible perfusion defects at a preoperative MPS have a high chance of normalized myocardial perfusion assessed by MPS 6 months after operation. Normal perfusion is obtained almost exclusively in territories with reversible ischaemia. Symptoms improved in nearly all patients and LVEF...

  8. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  9. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  10. Number of distal limb and brachial pressure measurements required when diagnosing peripheral arterial disease by laser Doppler flowmetry

    International Nuclear Information System (INIS)

    Høyer, C; Biurrun Manresa, J A; Petersen, L J

    2013-01-01

    We examine the reliability of single and repeated blood pressure measurements at ankle, toe, and arm levels for the diagnosis of peripheral arterial disease (PAD) by laser Doppler flowmetry. Segmental pressures were measured in 200 patients with known or suspected PAD. Segmental indices were calculated using (1) one measurement [M-1], two measurements [M-2], or by a predefined reproducibility criterion (RC) as well as (2) by using one brachial blood-pressure (BBP-one) or correspondent to each segmental pressure (BBP-all) as reference. The agreement in diagnosis of PAD by Cohen's Kappa was κ = 0.930 when comparing RC to M-1, and κ = 0.977 when comparing RC to M-2. The same comparison showed excellent relative reliability for segmental indices (all intra-class correlation coefficients (ICC) ≥ 0.980). Diagnostic classification agreement for BBP-all versus BBP-one were κ = 0.831 for RC, κ = 0.804 for M-1, and κ = 0.847 for M-2. The relative reliability analysis showed excellent correlation in segmental indices (all ICC ≥ 0.957). The study shows minimal difference in segmental indices and diagnostic classification when comparing calculations based on the listed strategies. However, the study indicated that it is important to measure BBPs correspondent to each segmental pressure. (paper)

  11. Dual-signal heterodyne lock-in amplification with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2006-01-01

    High-sensitivity heterodyne detection with lasers applied to radar and satellite communication is seriously hampered by the large electronic bandwidth due to Doppler shift and frequency instability. These drawbacks can be circumvented by dual-signal heterodyne detection. The system consists of

  12. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    Science.gov (United States)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  13. Ex-vivo machine perfusion for kidney preservation.

    Science.gov (United States)

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  14. FUNCTIONAL STUDIES ON BLOOD MICROCIRCULATION SYSTEM WITH LASER DOPPLER FLOWMETRY IN CLINICAL MEDICINE: PROBLEMS AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    D. G. Lapitan

    2016-01-01

    Full Text Available The paper presents a  review of the research update on the blood microcirculation system assessed with laser Doppler flowmetry (LDF. Specific procedures for measurement of the microcirculation index by LDF and individual variability of microcirculation parameters during their real time assessment in vivo are discussed. In physiological conditions, a relative deviation of the results of measurements by LDF is within the range±35% and above from the mean value of the microcirculation index. This imposes certain limitations on the interpretation of the diagnostic results in terms of the “normal or pathologic”. Specifics of performance of functional stress tests on the microcirculation system are reviewed. Diagnostic criteria based on functional stress testing of the microcirculation system, which can be implemented with methodologically strict normatives and regulations, for examples, those for the occlusion test, are more reliable from metrologic perspective and significant compared to the results obtained without stress testing. Problems of implementation of the functional tests into clinical practice are discussed. It was shown that they may have a potentially wide spectrum of clinical indications, from functional diagnostics and early detection of microcirculatory abnormalities in diabetes mellitus, arterial hypertension and other diseases associated with microcirculatory disorders, to the physical rationale of exposure parameters, as well as objectification of efficiency of medical procedures aimed to stimulation of the microcirculatory functions in a patient's tissues and organs.

  15. Clinical use of gold-195m in evaluation of brain perfusion

    International Nuclear Information System (INIS)

    Bourgeois, P.; Erbsmann, F.; Hebbelinck, D.; De Maertelaere, P.; Fruehling, J.

    1985-01-01

    With a Byk-Mallinckrodt /sup 195m/Au generator, brain-perfusion studies in multiple incidences or in tomoscintigraphic mode were visualized in 22 patients. Of these, 17 were referred for investigation of cerebrovascular diseases and four for search for brain metastasis. One patient was normal. All these investigations were completed by a dynamic and static classic tomoscintigraphic study by using /sup 99m/Tc glucoheptonate or DTPA. Data obtained have been compared to other investigation methods, such as X-ray arteriography, Doppler echography, and X-ray computed tomography. Dynamic, as well as morphological, data concerning arteries appeared to be equivalent to those furnished by the /sup 99m/Tc classical studies. The main contribution of these /sup 195m/Au investigations, however, which appeared at the tomoscintigraphic level was the clear delineation of the main vessels involving not only the carotids but also the vertebral and, to a lesser extent, the intracerebral arteries

  16. Association between two distinct executive tasks in schizophrenia: a functional transcranial Doppler sonography study

    Directory of Open Access Journals (Sweden)

    Theodoridou Anastasia

    2006-05-01

    Full Text Available Abstract Background Schizophrenia is a severe mental disorder involving impairments in executive functioning, which are important cognitive processes that can be assessed by planning tasks such as the Stockings of Cambridge (SOC, and tasks of rule learning/abstraction such as the Wisconsin Card Sorting Test (WCST. We undertook this study to investigate the association between performance during separate phases of SOC and WCST, including mean cerebral blood flow velocity (MFV measurements in chronic schizophrenia. Methods Functional transcranial Doppler sonography (fTCD was used to assess bilateral MFV changes in the middle (MCA and anterior (ACA cerebral arteries. Twenty-two patients with chronic schizophrenia and 20 healthy subjects with similar sociodemographic characteristics performed SOC and WCST during fTCD measurements of the MCA and the ACA. The SOC was varied in terms of easy and difficult problems, and also in terms of separate phases, namely mental planning and movement execution. The WCST performance was assessed separately for maintaining set and set shifting. This allowed us to examine the impact of problem difficulty and the impact of separate phases of a planning task on distinct intervals of WCST. Simultaneous registration of MFV was carried out to investigate the linkage of brain perfusion during the tasks. Results In patients, slowing of movement execution during easy problems (SOC was associated with slowing during maintaining set (WCST (P Conclusion The results of this study demonstrate performance and brain perfusion abnormalities in the association pattern of two different tasks of executive functioning in schizophrenia, and they support the notion that executive functions have a pathological functional correlate predominantly in the lateral hemispheres of the brain. This study also underpins the scientific potential of fTCD in assessing brain perfusion in patients with schizophrenia.

  17. [Two- and three-dimensional power Doppler ultrasound in the follow-up of placenta accreta treated conservatively].

    Science.gov (United States)

    Roulot, A; Barranger, E; Morel, O; Soyer, P; Héquet, D

    2015-02-01

    To determinate the potential of 2D and 3D-ultrasound in the follow-up of patients with placenta accreta treated conservatively. Seven patients with placenta accreta treated conservatively during June 2007 and September 2009 were included. The follow-up consisted in clinical examination and 2D/3D-ultrasound once a month. Criteria studied included clinical outcome, echogenicity at 2D-ultrasound, vascularisation at colour Doppler, Mean Grey at 3D-ultrasound and vascularisation, flow and perfusion index. Seven women with invasive placenta (3 placentas accreta and 2 percreta) were studied. The mean follow-up was 228 days [75-369]. Mean delay for complete elimination of residual placenta was 280 days [120-365]. The two main results were: presence of an increased anechogenicpart in residual placenta before complete resorption for all patients; a systematic and concomitant stop of genital haemorrhage and vascularisation at colour Doppler. High degrees of variability in parameters measured at 3D-ultrasound were observed between patients so that correlations with clinical outcome were found. Long and regular follow-up is essential after conservative management but the role of 3D-ultrasound compared to 2D-ultrasound was not demonstrated in this study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  19. Assessment of tumor vascularization with functional computed tomography perfusion imaging in patients with cirrhotic liver disease.

    Science.gov (United States)

    Li, Jin-Ping; Zhao, De-Li; Jiang, Hui-Jie; Huang, Ya-Hua; Li, Da-Qing; Wan, Yong; Liu, Xin-Ding; Wang, Jin-E

    2011-02-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor in China, and early diagnosis is critical for patient outcome. In patients with HCC, it is mostly based on liver cirrhosis, developing from benign regenerative nodules and dysplastic nodules to HCC lesions, and a better understanding of its vascular supply and the hemodynamic changes may lead to early tumor detection. Angiogenesis is essential for the growth of primary and metastatic tumors due to changes in vascular perfusion, blood volume and permeability. These hemodynamic and physiological properties can be measured serially using functional computed tomography perfusion (CTP) imaging and can be used to assess the growth of HCC. This study aimed to clarify the physiological characteristics of tumor angiogenesis in cirrhotic liver disease by this fast imaging method. CTP was performed in 30 volunteers without liver disease (control subjects) and 49 patients with liver disease (experimental subjects: 27 with HCC and 22 with cirrhosis). All subjects were also evaluated by physical examination, laboratory screening and Doppler ultrasonography of the liver. The diagnosis of HCC was made according to the EASL criteria. All patients underwent contrast-enhanced ultrasonography, pre- and post-contrast triple-phase CT and CTP study. A mathematical deconvolution model was applied to provide hepatic blood flow (HBF), hepatic blood volume (HBV), mean transit time (MTT), permeability of capillary vessel surface (PS), hepatic arterial index (HAI), hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP) data. The Mann-Whitney U test was used to determine differences in perfusion parameters between the background cirrhotic liver parenchyma and HCC and between the cirrhotic liver parenchyma with HCC and that without HCC. In normal liver, the HAP/HVP ratio was about 1/4. HCC had significantly higher HAP and HAI and lower HPP than background liver parenchyma adjacent to the HCC. The value of HBF at the tumor

  20. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  1. Diode Laser Diagnostics of High Speed Flows (Postprint)

    National Research Council Canada - National Science Library

    Williams, Skip; Barone, Dominic; Barhorst, Todd; Jackson, Kevin; Lin, K. C; Masterson, Pat; Zhao, Qingchun; Sappey, Andrew D

    2006-01-01

    ... of 60,000-90,000 ft with an average Mach number of 7.5 over this range. The concept involves the direct measurement of oxygen concentration via absorption spectroscopy, and gas velocity via the Doppler shift of laser light transiting the flowpath...

  2. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    Science.gov (United States)

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  3. Color doppler imaging of subclavian steal phenomenon

    International Nuclear Information System (INIS)

    Cho, Nari Ya; Chung, Tae Sub; Kim, Jai Keun

    1997-01-01

    To evaluate the characteristic color doppler imaging of vertebral artery flow in the subclavian steal phenomenon. The study group consisted of eight patients with reversed vertebral artery flow proved by color Doppler imaging. We classified this flow into two groups:(1) complete reversal;(2) partial reversal, as shown by Doppler velocity waveform. Vertebral angiography was performed in six of eight patients;color Doppler imaging and angiographic findings were compared. On color Doppler imaging, all eight cases with reversed vertebral artery flow showed no signal at the proximal subclavian or brachiocephalic artery. We confirmed shunting of six cases by performing angiography from the contralateral vertebral and basilar artery to the ipsilateral vertebral artery. On the Doppler spectrum, six cases showed complete reversal and two partial reversal. On angiography, one partial reversal case showed complete occlusion of the subclavian artery with abundant collateral circulation of muscular branches of the vertebral artery. On color Doppler imaging, a reversed vertebral artery suggests the subclavian steal phenomenon. In particular, partial reversal waveform may reflect collateral circulation

  4. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Im