WorldWideScience

Sample records for laser devices apparatus

  1. Laser-based irradiation apparatus and methods for monitoring the dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2006-03-28

    A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.

  2. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  3. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  4. Experiment of laser thomson scattering at HL-1 tokamak device

    International Nuclear Information System (INIS)

    Zuo Henian; Chen Jiafu; Yan Derong; Liu Aiping; Shi Peilan; Wang Wei; Liu Xiaomei

    1989-05-01

    The structure and performance of the Ruby Laser Thomson Scattering apparatus for HL-1 tokamak device is described. The method of acquisition and calibration of multichannel scattered signals are presented. Examples of measured electron temperature T. with experimental error are given

  5. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  6. Apparatus for producing laser targets

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Baker, W.R.

    1975-01-01

    This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection

  7. Apparatus for testing semiconductor devices and capacitors

    International Nuclear Information System (INIS)

    York, R.A.

    1984-01-01

    An apparatus is provided for testing semiconductor devices. The apparatus tests the impedance of the semiconductor devices in both conducting and non-conducting states to detect semiconductors whose impedance in the conducting state is too high or whose impedance in the non-conducting state is too low. The apparatus uses a battery source for low voltage d.c. The circuitry for detecting when the impedance is too high in the conducting state includes a lamp in series with the battery source and the semiconductor device, whereby the impedance of the semiconductor device determines whether sufficient current will flow through the lamp to cause the lamp to illuminate. A d.c. to d.c. converter is provided to boost the voltage from the battery source to a relatively high voltage d.c. The relatively high voltage d.c. can be connected by a switch to circuitry for detecting when the impedance of the semiconductor device in the non-conducting state is too low. The circuitry for detecting when the impedance of the semiconductor device is too low includes a resistor which senses the current flowing in the device and converts the current into a voltage proportional to the leakage current. This voltage is then compared against a fixed reference. Further circuitry is provided for providing a visual indication when the voltage representative of leakage in relation to the reference signal indicates that there is excessive current flow through the semiconductor device

  8. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)

    2013-01-01

    and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation......A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser...

  9. Several methods and apparatus of low-energy laser therapy in veterinary practice

    Science.gov (United States)

    Svirin, Vaytcheslav N.; Rogatkin, Dmitrii A.; Barybin, Vitalii F.

    1998-12-01

    During same years various medical effect of low-energy laser therapy in veterinary were tested. We established that the laser low-energy therapy can be very effective for treatment such animal's diseases as mastitis and demodekose when certain combinations of laser beam parameters are used. This combinations were taken as the principle of a number of laser veterinary apparatus, which we started to produce at `POLUS'. It is our series of apparatus `VEGA-MB' and `VETLAS-3', which is real used today for dogs and cows treatment in Russia.

  10. The Study Of Optometry Apparatus Of Laser Speckles

    Science.gov (United States)

    Bao-cheng, Wang; Kun, Yao; Xiu-qing, Wu; Chang-ying, Long; Jia-qi, Shi; Shi-zhong, Shi

    1988-01-01

    Based on the regularity of laser speckles movement the method of exam the uncorrected eyes is determined. The apparatus with micro-computer and optical transformation is made. Its practical function is excellent.

  11. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  12. Apparatus for precision micromachining with lasers

    Science.gov (United States)

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  13. A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students

    Science.gov (United States)

    Lisboa, Pedro; Sotomayor, Joo; Ribeiro, Paulo

    2010-01-01

    The construction of a diode laser polarimeter apparatus by undergraduate students is described. The construction of the modular apparatus by undergraduate students gives them an insight into how it works and how the measurement of a physical or chemical property is conducted. The students use the polarimeter to obtain rotation angle values for the…

  14. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  15. Teaching lasers to control molecules

    International Nuclear Information System (INIS)

    Judson, R.S.; Rabitz, H.

    1992-01-01

    We simulate a method to teach a laser pulse sequences to excite specified molecular states. We use a learning procedure to direct the production of pulses based on ''fitness'' information provided by a laboratory measurement device. Over a series of pulses the algorithm learns an optimal sequence. The experimental apparatus, which consists of a laser, a sample of molecules and a measurement device, acts as an analog computer that solves Schroedinger's equation n/Iexactly, in real time. We simulate an apparatus that learns to excite specified rotational states in a diatomic molecule

  16. Development of the medical apparatus for Doppler-controlled treatment of hemorrhoids using laser coagulation

    Directory of Open Access Journals (Sweden)

    Nikolay A. Gryaznov

    2017-12-01

    Full Text Available In the article authors present the concept of the surgical manipulator delivering laser radiation to the target area. For the implementation of Doppler-controlled treatment of hemorrhoids by laser coagulation, an important circumstance is the necessity to realize by means of the dopplerograph the possibility of controlling the efficiency of coagulation of the pathological vessel immediately after the impact, which will create the prerequisites for the formation of a program cycle with the inclusion of control elements by feedback. In this regard, the structure of the laser medical apparatus is developed, which allows determining the location, size and flow of arterial and venous vessels, performing laser coagulation of pathologically damaged sites under constant Doppler control. The developed adaptive power management system includes several functional units for the processing of the data from ultrasound scanner and the Doppler. Medical apparatus for minimally invasive treatment of hemorrhoids based on the laser coagulator and ultrasound Doppler will allow performing surgeries in automated and half-automated modes. The suggested medical apparatus helps to determine pathological vessels, choose the required radiation mode and provides vessel obliteration. Successful realization of constructive combination of real-time diagnostics and surgical manipulation with a laser can result in a unique minimally invasive solution to treat hemorrhoids that currently doesn’t have analogues.

  17. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  18. Apparatus, system, and method for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  19. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Laser fluorescence caries detection device. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1745 Laser fluorescence caries detection device. (a) Identification. A laser fluorescence caries detection device is a laser, a...

  20. A description of the apparatus to be used in interaction experiments with the ABC laser system

    International Nuclear Information System (INIS)

    Caruso, A.; Strangio, M.; Andreoli, P.L.; Cerioni, I.; Di Paolo, A.; Di Virgilio, L.

    1988-01-01

    This report contains the part of the Frascati Laboratorio Fusione Laser activity related to the Apparatus (target chamber, position and alignement system, diagnostics) to be used in the interaction experiments with the ABC laser system

  1. Graphene devices based on laser scribing technology

    Science.gov (United States)

    Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-04-01

    Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.

  2. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: A randomized, double-blind, sham device-controlled, multicentre trial.

    Science.gov (United States)

    Leavitt, Matt; Charles, Glenn; Heyman, Eugene; Michaels, David

    2009-01-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and oedema, promoting healing of wounds, deeper tissue and nerves, and preventing tissue damage has been known for almost 40 years since the invention of lasers. The HairMax LaserComb is a hand-held Class 3R lower level laser therapy device that contains a single laser module that emulates 9 beams at a wavelength of 655 nm (+/-5%). The device uses a technique of parting the user's hair by combs that are attached to the device. This improves delivery of distributed laser light to the scalp. The combs are designed so that each of the teeth on the combs aligns with a laser beam. By aligning the teeth with the laser beams, the hair can be parted and the laser energy delivered to the scalp of the user without obstruction by the individual hairs on the scalp. The primary aim of the study was to assess the safety and effectiveness of the HairMax LaserComb laser phototherapy device in the promotion of hair growth and in the cessation of hair loss in males diagnosed with androgenetic alopecia (AGA). This double-blind, sham device-controlled, multicentre, 26-week trial randomized male patients with Norwood-Hamilton classes IIa-V AGA to treatment with the HairMax LaserComb or the sham device (2 : 1). The sham device used in the study was identical to the active device except that the laser light was replaced by a non-active incandescent light source. Of the 110 patients who completed the study, subjects in the HairMax LaserComb treatment group exhibited a significantly greater increase in mean terminal hair density than subjects in the sham device group (p laser phototherapy device for the treatment of AGA in males.

  3. Laser device and method

    International Nuclear Information System (INIS)

    Myers, J.D.

    1986-01-01

    A method is described of treatment of opacity of the lens of an eye resulting from foreign matter at the back surface of the eye lens within the vitreous fluid body of the eye with a passively Q-switched laser device. The method consists of: (a) generating a single lasing pulse emitted from the laser device focused within the eye vitreous fluid body, spaced from the lens back surface, creating a microplasma dot in the vitreous fluid body (b) then increasing the frequency of the lasing pulses emitted from the lasing device having a frequency greater than the life of the microplasma to generate an elongated lasing plasma within the eye vitreous fluid moving toward the lens back surface, until the elongated lasing plasma contacts and destroys the foreign matter

  4. Precision alignment device

    Science.gov (United States)

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  5. Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining

    Science.gov (United States)

    Stuart, Brent C.; Nguyen, Hoang T.; Perry, Michael D.

    2001-01-01

    A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.

  6. Light shielding apparatus

    Science.gov (United States)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  7. Method and apparatus for obtaining very high energy laser pulses: photon cyclotron

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Goldstein, R.

    1975-01-01

    Apparatus is arranged in selected embodiments of several combinations, each sometimes being referred to as a system, and each embodiment establishing a large enclosable chamber containing a laser energy reacting medium through which a laser beam is created. When laser energy pulses of such a beam are created, they are guided in a continuous path using reflectors in this chamber, and they receive supplemental energy units from multiple spaced laser pumps. Each laser pump is effective in respect to its own inverted population laser energy source, and each laser pump is triggered by an overall excitation control system. The laser beam is thereby supplemented to a higher level at each laser pump. Yet at all times the laser energy reacting medium remains at a level below super radiance. A working unit or working pulse of a laser beam is allowed to escape from each large enclosable chamber through an escape exit only when a preselected very high energy level is reached. The escape exit of this chamber may be designed to be destroyed by the exiting high level pulse energy of the laser beam. Also an escape exit may be opened upon the operation of a piezoelectric decoupler. (U.S.)

  8. Electrolytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    An electroplating apparatus for applying uniform metallic coatings that have excellent surface finishes to discrete microparticles is described. The device is used to electrodeposit metals onto thin-walled metal, metallized glass, or plastic mandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels to be used as targets in laser fusion research

  9. Laser direct writing of micro- and nano-scale medical devices

    Science.gov (United States)

    Gittard, Shaun D; Narayan, Roger J

    2010-01-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  10. Electroless or autocatalytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    Use of a novel device for applying uniform metallic coatings to spherical microparticles is described. The apparatus deposits electroless metal coatings on hollow, thin-walled metal or sensitized nonmetallic micromandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels for use as targets in laser-initiated fusion research

  11. Laser marking method and device

    International Nuclear Information System (INIS)

    Okazaki, Yuki; Aoki, Nobutada; Mukai, Narihiko; Sano, Yuji; Yamamoto, Seiji.

    1997-01-01

    An object is disposed in laser beam permeating liquid or gaseous medium. Laser beams such as CW laser or pulse laser oscillated from a laser device are emitted to the object to apply laser markings with less degradation of identification and excellent corrosion resistance on the surface of the object simply and easily. Upon applying the laser markings, a liquid or gas as a laser beam permeating medium is blown onto the surface of the object, or the liquid or gas in the vicinity of the object is sucked, the laser beam-irradiated portion on the surface can be cooled positively. Accordingly, the laser marking can be formed on the surface of the object with less heat affection to the object. In addition, if the content of a nitrogen gas in the laser beam permeating liquid medium is reduced by degassing to lower than a predetermined value, or the laser beam permeating gaseous medium is formed by an inert gas, a laser marking having high corrosion resistance and reliability can be formed on the surface of the objective member. (N.H.)

  12. Laser decontamination device

    International Nuclear Information System (INIS)

    Michishita, Shizuo; Akagawa, Katsuhiko.

    1997-01-01

    One end of an optical fiber inserted into an inner cylinder is opposed to a wall surface to be decontaminated, and an opened top end of an intermediate cylinder circumferentially surrounding the inner cylinder is tightly in contact with the wall surface to be decontaminated, an open end of an outer cylinder circumferentially surrounding the intermediate cylinder is tightly in contact with the wall surface to be decontaminated. Dust removing holes are perforated in the vicinity of the top end of the intermediate cylinder while being in communication with the inside and the outside of the intermediate cylinder, and one end of an air supply tube is in communication with the space between the outer circumferential surface of the inner cylinder and the inner circumferential surface of the intermediate cylinder. The other end of the air supply tube is connected to an air supply device, one end of a sucking tube is in communication with the space between the outer circumferential surface of the intermediate cylinder and the inner circumferential surface of the outer cylinder, the other end of the sucking tube is connected to a sucking device, and the other end of the optical fiber is connected to a laser generation device. The laser generation device is operated while determining the air sucking amount increased than the air supply amount, the materials deposited on the wall surface are crushed and peeled off, and the peeled off materials are transferred by air flow to a filter and collected. (N.H.)

  13. Multi-point laser ignition device

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Dustin L.; Woodruff, Steven D.

    2017-01-17

    A multi-point laser device comprising a plurality of optical pumping sources. Each optical pumping source is configured to create pumping excitation energy along a corresponding optical path directed through a high-reflectivity mirror and into substantially different locations within the laser media thereby producing atomic optical emissions at substantially different locations within the laser media and directed along a corresponding optical path of the optical pumping source. An output coupler and one or more output lenses are configured to produce a plurality of lasing events at substantially different times, locations or a combination thereof from the multiple atomic optical emissions produced at substantially different locations within the laser media. The laser media is a single continuous media, preferably grown on a single substrate.

  14. Apparatus for Teaching Physics.

    Science.gov (United States)

    Gottlieb, Herbert H., Ed.

    1981-01-01

    Describes: (1) a variable inductor suitable for an inductance-capacitance bridge consisting of a fixed cylindrical solenoid and a moveable solenoid; (2) long-range apparatus for demonstrating falling bodies; and (3) an apparatus using two lasers to demonstrate ray optics. (SK)

  15. Custom-designed Laser-based Heating Apparatus for Triggered Release of Cisplatin from Thermosensitive Liposomes with Magnetic Resonance Image Guidance.

    Science.gov (United States)

    Dou, Yannan N; Weersink, Robert A; Foltz, Warren D; Zheng, Jinzi; Chaudary, Naz; Jaffray, David A; Allen, Christine

    2015-12-13

    Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.

  16. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency electrosurgical cautery apparatus... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4100 Radiofrequency electrosurgical cautery apparatus. (a) Identification. A radiofrequency electrosurgical cautery apparatus is an AC...

  17. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  18. Apparatus for rendering at least a portion of a device inoperable and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Steffler, Eric D.; Hartenstein, Steven D.; Wallace, Ronald S.

    2016-11-08

    Apparatus for rendering at least a portion of a device inoperable may include a containment structure having a first compartment that is configured to receive a device therein and a movable member configured to receive a cartridge having reactant material therein. The movable member is configured to be inserted into the first compartment of the containment structure and to ignite the reactant material within the cartridge. Methods of rendering at least a portion of a device inoperable may include disposing the device into the first compartment of the containment structure, inserting the movable member into the first compartment of the containment structure, igniting the reactant material in the cartridge, and expelling molten metal onto the device.

  19. A semiconductor laser device

    Energy Technology Data Exchange (ETDEWEB)

    Takaro, K.; Naoki, T.; Satosi, K.; Yasutosi, K.

    1984-03-17

    A device is proposed which makes it possible to obtain single vertical mode emission in the absence of noise. Noise suppression is achieved by a method which determines the relationship between the donor densities in the second and third layers of an n type semiconductor laser, and the total output optical emission of layers with respect to the emission from the entire laser. The device consists of a photoresist film with a window applied to a 100 GaAs n type conductivity substrate using a standard method. Chemical etching through this window in the substrate is used to generate a slot approximately 1 micrometer in size. After the photoresist film is removed, the following layers are deposited from the liquid phase onto the substrate in the sequence indicated: a telurium doped protective layer of n type AlxGa(1-x) As; 2) an undoped active p type AlyGa(1-6) As layer and a tellurium doped upper protective n type conductivity GaAs layer.

  20. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    Science.gov (United States)

    Cremers, David A.; Radziemski, Leon J.; Loree, Thomas R.

    1990-01-01

    A method and apparatus for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  1. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  2. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    Science.gov (United States)

    Fernandez, Felix E.

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  3. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  4. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  5. Laser working device

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kakudate, Satoshi; Oka, Kiyoshi; Terakado, Takuya; Kondo, Mitsunori; Munakata, Tadashi; Makino, Yoshinobu; Honda, Keizo.

    1995-01-01

    A transmission pipe transmits laser beams along an axis thereof, and is inserted at the top end to a pipeline to be fabricated. A flat mirror is secured to the top end of the transmission pipe, and laser beams are reflected by the mirror, passed through a fabrication nozzle and focused to a fabrication point in the pipeline to be fabricated. A lens-type light focusing system is guided to the fabrication point by a plurality of rollers rotatable in the axial direction disposed in circumferential direction each at an equal pitch at the outer circumference of the transmission pipe. A centering mechanism is disposed for keeping the transmission pipe coaxially with the pipeline to be fabricated. Further, there are also disposed a mirror-type light focusing optical system for focusing light by a paraboloidal mirror and a spherical vehicle rotatable in all directions. A laser fabrication device can be reduced in the size, and it can be used in a high temperature and highly radioactive circumstance. (N.H.)

  6. Leakage detecting method and device for water tight vessel of wet-type container apparatus

    International Nuclear Information System (INIS)

    Tanaka, Yoshimi.

    1995-01-01

    The present invention provides a method of and a device for detecting leakage of a water tight vessel of a wet-type container apparatus for containing a reactor pressure vessel while immersing it water in a reactor container. Namely, in the wet-type container apparatus, the periphery of the pressure vessel is coated with a heat insulation material and the periphery of the heat insulation material is coated with a water tight vessel. The water tight vessel is immersed under water in the reactor container. As a method of detecting leakage of the wet-type container apparatus, gases mixed with helium are supplied into the water tight vessel at a pressure higher than the inner pressure of the reactor container at a lowest position of the reactor pressure vessel. A water level in the reactor container is determined so as to form a space at the top portion of the inside of the reactor container. The helium at the top portion is detected to monitor the leakage of the water tight vessel. With such procedures, even if the water tight vessel is ruptured at any position, helium mixed to the gases is released to water in the reactor container and rise up to the top space and detected by a helium leakage detection device. (I.S.)

  7. Apparatus and method for increasing the bandwidth of a laser beam

    Science.gov (United States)

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  8. Multipactor discharge apparatus

    International Nuclear Information System (INIS)

    1976-01-01

    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  9. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich; Salama, Khaled N.; Sapsanis, Christos

    2017-01-01

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can

  10. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  11. Photodetection of early cancer by laser-induced fluorescence of a tumor-selective dye: apparatus design and realization

    Science.gov (United States)

    Wagnieres, Georges A.; Depeursinge, Christian D.; Monnier, Philippe; Savary, Jean-Francois; Cornaz, Piet F.; Chatelain, Andre; van den Bergh, Hubert

    1990-07-01

    An apparatus is designed and realized to detect "early" cancer at the surface of the hollow organs in the human body by endoscopic means. The tumor is localized by the laser induced fluorescence of a dye (HPD) which concentrates selectively in the neoplastic tissue after intravenous injection. Fluorescence contrast between the tumor and its normal surroundings is enhanced by subtracting the background autofluorescence which occurs in both types of tissue. This is done by means of 2-color digital images manipulation in real-time. Preliminary clinical tests of the apparatus demonstrated the detection of carcinoma in situ in the esophagus.

  12. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-01-01

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water

  13. Method and apparatus for Doppler frequency modulation of radiation

    Science.gov (United States)

    Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)

    1980-01-01

    A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.

  14. Spring-action Apparatus for Fixation of Eyeball (SAFE): a novel, cost-effective yet simple device for ophthalmic wet-lab training.

    Science.gov (United States)

    Ramakrishnan, Seema; Baskaran, Prabu; Fazal, Romana; Sulaiman, Syed Mohammad; Krishnan, Tiruvengada; Venkatesh, Rengaraj

    2016-10-01

    Achieving a formed and firm eyeball which is stably fixed in a holding device is a major challenge of surgical wet-lab training. Our innovation, the 'Spring-action Apparatus for Fixation of Eyeball (SAFE)' is a robust, simple and economical device to solve this problem. It consists of a hollow iron cylinder to which a spring-action syringe is attached. The spring-action syringe generates vacuum and enables reliable fixation of a human or animal cadaveric eye on the iron cylinder. The rise in intraocular pressure due to vacuum fixation can be varied as per need or nature of surgery being practised. A mask-fixed version of this device is also designed to train surgeons for appropriate hand positioning. An experienced surgeon performed various surgeries including manual small incision cataract surgery (MSICS), phacoemulsification, laser in situ keratomileusis (LASIK), femtosecond LASIK docking, Descemet's stripping endothelial keratoplasty, deep anterior lamellar keratoplasty, penetrating keratoplasty and trabeculectomy on this device, while a trainee surgeon practised MSICS and wound suturing. Skill-appropriate comfort level was much higher with SAFE than with conventional globe holders for both surgeons. Due to its stability, pressure adjustability, portability, cost-efficiency and simplicity, we recommend SAFE as the basic equipment for every wet lab. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Gas dynamic laser device

    International Nuclear Information System (INIS)

    Born, G.

    1975-01-01

    The gas dynamic laser device is provided with an expansion chamber arranged between a heating chamber for the CO-gas and the resonance chamber. The expansion chamber is initially evacuated for producing a rarefaction wave. Between the heating chamber and the expansion chamber there are arranged rapid release means such as a valve or a diaphragm. Pressure recovering means are connected to the other side of the resonance chamber

  16. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-02-14

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water or other cleaning liquids in the whole cleaning process, which makes them prominent well suited in for water-deficit environments such as deserts. In one embodiment, the solar panel cleaning apparatus comprises one or more rotatable brushes each having a rotational axis and a drive configured to move each of the one or more rotatable brushes in a direction that is not perpendicular to the rotational axis. The solar panel cleaning apparatus is may be configured such that the angle of the rotational axis of at least one of the one or more rotatable brushes is adjustable relative to the direction of travel.

  17. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    International Nuclear Information System (INIS)

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  18. High Speed Pump-Probe Apparatus for Observation of Transitional Effects in Ultrafast Laser Micromachining Processes

    Directory of Open Access Journals (Sweden)

    Ilya Alexeev

    2015-12-01

    Full Text Available A pump-probe experimental approach has been shown to be a very efficient tool for the observation and analysis of various laser matter interaction effects. In those setups, synchronized laser pulses are used to create an event (pump and to simultaneously observe it (probe. In general, the physical effects that can be investigated with such an apparatus are restricted by the temporal resolution of the probe pulse and the observation window. The latter can be greatly extended by adjusting the pump-probe time delay under the assumption that the interaction process remains fairly reproducible. Unfortunately, this assumption becomes invalid in the case of high-repetition-rate ultrafast laser material processing, where the irradiation history strongly affects the ongoing interaction process. In this contribution, the authors present an extension of the pump-probe setup that allows to investigate transitional and dynamic effects present during ultrafast laser machining performed at high pulse repetition frequencies.

  19. Apparatus for enrichment of uranium by double photoionization

    International Nuclear Information System (INIS)

    Laude, J.P.

    1983-11-01

    The present invention concerns enrichment of uranium by double photoionization. The use of a beam from a dye laser for excitation of gaseous uranium is known and the present invention concerns an apparatus of this type. The purpose of the invention is essentially to produce an apparatus having high energy efficiency. This is achieved according to the invention by using a continuous wave laser

  20. Device for frequency modulation of a laser output spectrum

    Science.gov (United States)

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  1. Method and apparatus for in-situ characterization of energy storage and energy conversion devices

    Science.gov (United States)

    Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT

    2010-03-09

    Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.

  2. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  3. Laser micromachining of biofactory-on-a-chip devices

    Science.gov (United States)

    Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.

    2002-06-01

    Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.

  4. Laser ignition device and its application to forestry, fire and land management

    International Nuclear Information System (INIS)

    Waterworth, M.D.

    1987-01-01

    A laser ignition device for controlled burning of forest logging slash has been developed and successfully tested. The device, which uses a kilowatt class carbon dioxide laser, operates at distances of 50 to 1500 meters. Acquisition and focus control are achieved by the use of a laser rangefinder and acquisition telescope. Additional uses for the device include back burning, selected undergrowth removal, safe ignition of oil spills, and deicing. A truck mounted version will be operational by fall 1987 and an airborne version by summer 1988. (author)

  5. Laser ignition device and its application to forestry, fire and land management

    Energy Technology Data Exchange (ETDEWEB)

    Waterworth, M. D.

    1987-11-15

    A laser ignition device for controlled burning of forest logging slash has been developed and successfully tested. The device, which uses a kilowatt class carbon dioxide laser, operates at distances of 50 to 1500 meters. Acquisition and focus control are achieved by the use of a laser rangefinder and acquisition telescope. Additional uses for the device include back burning, selected undergrowth removal, safe ignition of oil spills, and deicing. A truck mounted version will be operational by fall 1987 and an airborne version by summer 1988. (author)

  6. 76 FR 20840 - Medical Devices; General and Plastic Surgery Devices; Classification of the Low Level Laser...

    Science.gov (United States)

    2011-04-14

    ... looking directly at the laser beam and the wearing of appropriate laser safety eyewear by both the user...). The special control for this device is the FDA guidance document entitled ``Guidance for Industry and...

  7. Design of a Novel Servo-motorized Laser Device for Visual Pathways Diseases Therapy

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio Sarmiento

    2015-12-01

    Full Text Available We discuss a novel servo-motorized laser device and a research protocol for visual pathways diseases therapies. The proposed servo-mechanized laser device can be used for potential rehabilitation of patients with hemianopia, quadrantanopia, scotoma, and some types of cortical damages. The device uses a semi spherical structure where the visual stimulus will be shown inside, according to a previous stimuli therapy designed by an ophthalmologist or neurologist. The device uses a pair of servomotors (with torque=1.5kg, which controls the laser stimuli position for the internal therapy and another pair for external therapy. Using electronic tools such as microcontrollers along with miscellaneous electronic materials, combined with LabVIEW based interface, a control mechanism is developed for the new device. The proposed device is well suited to run various visual stimuli therapies. We outline the major design principles including the physical dimensions, laser device’s kinematical analysis and the corresponding software development.

  8. Design and reliability analysis of a novel laser acupuncture device

    Science.gov (United States)

    Pan, Boan; Zhong, Fulin; Zhao, Ke; Li, Ting

    2018-02-01

    Acupuncture has a long history of more than 2000 years in China. However, traditional acupuncture adopts metallic needles which may bring discomfort and pricking to patients. Laser acupuncture (LA) is a non-invasive and painless way to achieve some therapeutic effects. And compared to traditional acupuncture, LA is free from infection. Taking these advantages of LA into consideration, we innovatively developed a portable laser acupuncture device with therapy part and detection part together. Therapy part sends out laser at the wavelength of 650 nm onto special acupoints of patients. And detection part includes integrated light-emitting diode (LED, 735/805/850 nm) and photodiode (OPT101). The detection part is used for the data collection for calculation of hemodynamic parameters based on near-infrared spectroscopy (NIRS). In this work, we carried out current-power test for sensitivity of therapy part. And we also conducted liquid-model optical experiment and arm blocking test for the sensitivity and effectiveness of detection part. The final results demonstrated great potential and reliability of the novel laser acupuncture device. In the future, we will apply this device in clinical applications to verify the effectiveness of the device and improve the reliability for more treatment of diseases.

  9. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Science.gov (United States)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  10. Device for discharging drain in a control rod driving apparatus

    International Nuclear Information System (INIS)

    Ikeda, Tadasu; Ikuta, Takuzo; Yoshida, Tomiji; Tsukahara, Katsumi.

    1975-01-01

    Object: To efficiently and safely collect and discharge drain by a simple construction in which a drain cover and a drain tank in a control rod driving apparatus are integrally formed, and an overhauling wrench of said apparatus and a drain hose are mounted on the drain tank. Structure: When a mounting bolt is untightened by a torque wrench so as to be removed from a flange surface of the control rod driving apparatus in a nuclear reactor, axial movement of said apparatus is absorbed by a spring so that drain containing a radioactive material is discharged into a drain tank through the flange surface of said apparatus and is then guided into a collecting tank through a drain hose. (Kamimura, M.)

  11. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich

    2017-01-12

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can be used to fabricate a variety of features, including an electrode, an interconnect, a channel, a reservoir, a contact hole, a trench, a pad, or a combination thereof. A variety of devices fabricated according to the methods are also provided. In some aspects, capacitive humidity sensors are provided that can be fabricated according to the provided methods. The capacitive humidity sensors can be fabricated with intricate electrodes, e.g. having a fractal pattern such as a Peano curve, a Hilbert curve, a Moore curve, or a combination thereof.

  12. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tien-Li, E-mail: tlchang@ntnu.edu.tw; Chen, Zhao-Chi

    2015-12-30

    Graphical abstract: - Highlights: • Direct UV laser irradiation on multilayer graphene was discussed. • Multilayer graphene with screen-printed process was presented. • Surface patterning of multilayer graphene at fluence threshold was investigated. • Electrical response of glucose in sensing devices can be studied. - Abstract: The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm{sup 2}. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  13. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  14. Kinematic X-Ray Analysis Apparatus

    NARCIS (Netherlands)

    Koningsberger, D.C.; Brinkgreve, P.

    1983-01-01

    In an X-ray analysis apparatus, a moving mechanism is provided by a main guide member along which a main slide device can be displaced. Rotatably connected with the main slide device is a detector guide member along which a detection slide device is displaced. The main slide device, as well as the

  15. Dual beam translator for use in Laser Doppler anemometry

    Science.gov (United States)

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  16. An extraordinary tabletop speed of light apparatus

    Science.gov (United States)

    Pegna, Guido

    2017-09-01

    A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.

  17. Beam Steering Devices Reduce Payload Weight

    Science.gov (United States)

    2012-01-01

    Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam by swinging the entire laser apparatus toward the target. Just as the mechanical methods used for turning cars has evolved into simpler, lighter, power steering methods, so has the means by which researchers can direct lasers. Some of the typical contraptions used to redirect lasers are large and bulky, relying on steering gimbals pivoted, rotating supports to shift the device toward its intended target. These devices, some as large and awkward as a piece of heavy luggage, are subject to the same issues confronted by mechanical parts: Components rub, wear out, and get stuck. The poor reliability and bulk not to mention the power requirements to run one of the machines have made mechanical beam steering components less than ideal for use in applications where weight, bulk, and maneuverability are prime concerns, such as on an unmanned aerial vehicle (UAV) or a microscope. The solution to developing reliable, lighter weight, nonmechanical steering methods to replace the hefty steering boxes was to think outside the box, and a NASA research partner did just that by developing a new beam steering method that bends and redirects the beam, as opposed to shifting the entire apparatus. The benefits include lower power requirements, a smaller footprint, reduced weight, and better control and flexibility in steering capabilities. Such benefits are realized without sacrificing aperture size, efficiency, or scanning range, and can be applied to myriad uses: propulsion systems, structures, radiation protection systems, and landing systems.

  18. Construction of shallow land simulation apparatuses

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Takebe, Shinichi; Ohnuki, Toshihiko; Ogawa, Hiromichi; Harada, Yoshikane; Saitoh, Kazuaki; Wadachi, Yoshiki

    1984-07-01

    Shallow land simulation apparatuses in which natural soil can be used as testing soil have been constructed to investigate the migration characteristics of radionuclides in a disposal site. These apparatuses consist of aerated zone apparatus and aquifer zone one. In the aerated zone apparatus, aerated soil upon ground water level is contained in the soil column (d: 30cm x h: 120cm). In the aquifer zone apparatus, aquifer soil laying ground water level is contained in the soil vessel (b: 90cm x l: 270cm x h: 45cm). This report describes the outline of shallow land simulation apparatuses : function of apparatuses and specification of devices, analysis of obstructions, safety rules, analysis of accidents and operation manual. (author)

  19. Laser, light, and energy devices for cellulite and lipodystrophy.

    Science.gov (United States)

    Peterson, Jennifer D; Goldman, Mitchel P

    2011-07-01

    Cellulite affects all races, and it is estimated that 85% of women older than 20 years have some degree of cellulite. Many currently accepted cellulite therapies target deficiencies in lymphatic drainage and microvascular circulation. Devices using radiofrequency, laser, and light-based energies, alone or in combination and coupled frequently with tissue manipulation, are available for improving cellulite. Laser assisted liposuction may improve cellulite appearance. Although improvement using these devices is temporary, it may last several months. Patients who want smoother skin with less visible cellulite can undergo a series of treatments and then return for additional treatments as necessary. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Fuel exchanging apparatus

    International Nuclear Information System (INIS)

    Imada, Takahiko; Sato, Hideo.

    1975-01-01

    Object: To provide a centripetal device, which has an initial spring force greater than a frictional force in an oscillating direction of a telescope mast, on a mast fixing device mounted on a body of fuel exchanging apparatus so that the telescope mast may be secured quickly returning to a predetermined initial position. Structure: When the body of fuel exchanging apparatus is stopped at a predetermined position, a tension spring, which has an initial spring force greater than a frictional force in an oscillating direction of the telescope mast, causes a lug to be forced by means of a push rod to position a sliding base plate to its original position. At the same time, a device of similar structure causes an operating arm to be positioned to the original position, and a lock pin urged by a cylinder is inserted into a through hole in the sliding base plate and operating arm so that the telescope mast may be fixed and retained. (Hanada, M.)

  1. Powerful lasers for thermonuclear fusion

    International Nuclear Information System (INIS)

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  2. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  3. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  4. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Science.gov (United States)

    2010-04-01

    ... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be used in conjunction with a ventilator or other breathing gas administration system. (b) Classification...

  5. Creating compact and microscale features in paper-based devices by laser cutting.

    Science.gov (United States)

    Mahmud, Md Almostasim; Blondeel, Eric J M; Kaddoura, Moufeed; MacDonald, Brendan D

    2016-11-14

    In this work we describe a fabrication method to create compact and microscale features in paper-based microfluidic devices using a CO 2 laser cutting/engraving machine. Using this method we are able to produce the smallest features with the narrowest barriers yet reported for paper-based microfluidic devices. The method uses foil backed paper as the base material and yields inexpensive paper-based devices capable of using small fluid sample volumes and thus small reagent volumes, which is also suitable for mass production. The laser parameters (power and laser head speed) were adjusted to minimize the width of hydrophobic barriers and we were able to create barriers with a width of 39 ± 15 μm that were capable of preventing cross-barrier bleeding. We generated channels with a width of 128 ± 30 μm, which we found to be the physical limit for small features in the chromatography paper we used. We demonstrate how miniaturizing of paper-based microfluidic devices enables eight tests on a single bioassay device using only 2 μL of sample fluid volume.

  6. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device.

    Science.gov (United States)

    Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel

    2010-04-01

    Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.

  7. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    Science.gov (United States)

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  8. OPTICAL DEFLECTOR CREATION FOR LASER THERAPEUTIC DEVICES

    Directory of Open Access Journals (Sweden)

    V. N. Baranov

    2014-03-01

    Full Text Available The paper deals with creation of optical deflector for management of laser radiation in physiotherapeutic devices. Design features and operation principles of electro-optical, optical-acoustic and mechanical deflectors, giving the possibility to carry out continuous or discrete scanning of a laser beam are shown. Operation mechanism of the mechanical type deflector on the example of domestic laser therapeutic scanners is described in detail. Application possibility in clinical practice for heating technique of the acupuncture points by volumetric scanning of tissues by the radiation of semiconductor lasers on wave lengths equal to 0,67 and 0,85 μm is investigated. Creation justification of the new type deflector is given. Comparison between stable and labile techniques of radiation is carried out. It is shown that more intensive warming up of a skin surface in acupuncture point projection is observed at volumetric scanning, rather than at planar scanning by laser beams. Temperature increase on a skin surface in projection of acupuncture points is detected at radiation in both the visible spectrum range (0,67 μm and the infrared range (0,85 μm. It gives the possibility to apply this scanning method to thermal photo-activation of the point and to extend an existing arsenal of laser reflexology methods. The optical deflector is offered for medical industry, making it possible to carry out volumetric scanning of a laser beam and to facilitate the medical personnel’s work in laser therapy and reflexology consulting rooms.

  9. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  10. Demonstrator study for micro-ranging-laser device

    Science.gov (United States)

    Henkel, Hartmut; Bernhardt, Bodo; Pereira do Carmo, J.

    2017-11-01

    Within ESA's Innovation Triangle Initiative (ITI) a demonstrator breadboard for a micro-ranging-laser device "MYLRAD" has been developed. Its working principle is the measurement of the round-trip delay time of a laser beam as a phase shift. The demonstrator consists of the laser diode (30 mW, square wave AM), optics, APD detector, narrowband preamplifier, limiter, and a phase digitiser based on a novel noise-shaping synchroniser (NSS) circuit; this works without ADCs and can be built from rad-hard components for space. The system timing and the digitiser algorithm are performed by an FPGA. The demonstrator has been tested at ranges from 1 m to 30 m. With a static non-cooperative target an RMS noise of 1 mm at a result rate of 60 Hz was reached. The demonstrator needs less than 2.5 W power.

  11. Encephalographic apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    An X-ray apparatus is described for determining the size and location of brain tumours by tomography during pneumoencephalography. The apparatus comprises an image recording device arranged opposite an X-ray source and a frame mounted on a tiltable patient table and rotatable with respect to the table. A patient support is arranged in the frame and is rotatable with respect to the frame. Air injected into the patients' spinal column travels up into the brain and displaces some of the cerebral fluid. Tomographic X-ray exposures are made of the air bubble which moves around in the brain cavities as the patient is rotated. (U.K.)

  12. Radiography apparatus

    International Nuclear Information System (INIS)

    Sashin, D.; Sternglass, E.J.

    1982-01-01

    The apparatus of the present invention provides radiography apparatus wherein the use of a flat, generally rectangular beam or a fan-shaped beam of radiation in combination with a collimator, scintillator and device for optically coupling a self-scanning array of photodiodes to the scintillator means will permit production of images or image data with high contrast sensitivity and detail. It is contemplated that the self-scanning array of photodiodes may contain from about 60 to 2048, and preferably about 256 to 2048, individual photodiode elements per inch of object width, thereby permitting maximum data collection to produce a complete image or complete collection of image data

  13. Apparatus for generating x-ray holograms

    Science.gov (United States)

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  14. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  15. Apparatus for the laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  16. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei

    2013-10-10

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  17. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.; Kodzius, Rimantas

    2013-01-01

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  18. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  19. Laser patterning and welding of transparent polymers for microfluidic device fabrication

    Science.gov (United States)

    Pfleging, W.; Baldus, O.

    2006-02-01

    CO II-laser-assisted micro-patterning of polymethylmethacrylate (PMMA) or cyclo-olefin copolymer (COC) has a great potential for the rapid manufacturing of polymeric devices including cutting and structuring. Channel widths of about 50 μm as well as large area patterning of reservoir structures or drilling of vias are established. For this purpose a high quality laser beam is necessary as well as an appropriate beam forming system. In combination with laser transmission welding a fast fabrication of two- and three-dimensional micro-fluidic devices was possible. Welding as well as multilayer welding of transparent polymers was investigated for different polymers such as PMMA, polyvinylidene fluoride (PVDF), COC, and polystyrene (PS). The laser transmission welding process is performed with a high-power diode laser (wavelength 940 nm). An absorption layer with a thickness of several nanometers is deposited onto the polymer surfaces. The welding process has been established for the welding of polymeric parts containing microchannels, if the width of the channels is equal or larger than 100μm. For smaller feature sizes the absorption layer is structured by UV-laser radiation in order to get a highly localized welding seam, e.g., for the limitation of thermal penetration and thermal damaging of functional features such as channels, thin walls or temperature-sensitive substances often contained in micro-fluidic devices. This process strategy was investigated for the welding of capillary electrophoresis chips and capillary blood separation chips, including channel widths of 100 μm and 30 μm. Analysis of the thickness of the absorption layer was carried out with optical transmission spectroscopy.

  20. Protection device for a thermonuclear device

    International Nuclear Information System (INIS)

    Kawashima, Shuichi.

    1986-01-01

    Purpose: To exactly detect the void coefficients of coolants even under high magnetic fields thereby detect the overheat of a thermonuclear device at an early stage. Constitution: The protecting device of this invention comprises a laser beam generation device, a laser beam detection device and an accident detection device. The laser generation device always generates laser beams, which are permeated through coolants and detected by the laser beam detection device, the optical amount of which is transmitted to the accident detection device. The accident detection device judges the excess or insufficiency of the detected optical amount with respect to the optical amount of the laser beams under the stationary state as a reference and issues an accident signal. Since only the optical cables that do not undergo the effect of the magnetic fields are exposed to high magnetic fields in the protection device of this invention, a high reliability can be maintained. (Kamimura, M.)

  1. Evaluation of 3D laser device for characterizing shape and surface properties of aggregates used in pavements

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available program for the 3D laser device using fifteen different spherical and twelve cubic shaped objects. The laser device was evaluated for accuracy and repeatability to compute aggregate surface area and volume properties. The results showed that the laser...

  2. Electrical apparatus lockout device

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, R.

    1999-10-12

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  3. Electrical apparatus lockout device

    International Nuclear Information System (INIS)

    Gonzales, R.

    1999-01-01

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards

  4. Waveguide embedded plasmon laser with multiplexing and electrical modulation

    Science.gov (United States)

    Ma, Ren-min; Zhang, Xiang

    2017-08-29

    This disclosure provides systems, methods, and apparatus related to nanometer scale lasers. In one aspect, a device includes a substrate, a line of metal disposed on the substrate, an insulating material disposed on the line of metal, and a line of semiconductor material disposed on the substrate and the insulating material. The line of semiconductor material overlaying the line of metal, disposed on the insulating material, forms a plasmonic cavity.

  5. Development of cryo-cell for infrared Raman laser

    International Nuclear Information System (INIS)

    Harada, Tetsuro; Ohmori, Takao; Saito, Hideaki

    1984-01-01

    Laser isotope separation (LIS) for uranium enrichment is remarkable for its higher efficiency and cost effectiveness over the gaseous diffusion process. A prototype Raman Laser apparatus for uranium enrichment was developed and manufactured by IHI for the Institute of Physical and Chemical Research. This apparatus is capable of emitting tunable infrared Laser beam of a wave length from 13 μm to 17 μm from its multiple pass resonator by injecting a highly coherent CO 2 Laser beam into the para-hydrogen gas vessel (kept at 100 K) to induce Raman scattering. This paper describes the Laser oscillation mechanism and the structure of the multiple pass cell; it also discusses the technical aspects that are essential for a Raman Laser apparatus. Moreover, the cooling characteristics of the present apparatus are reported by analyzing the results of tests conducted in actual service thermal conditions. (author)

  6. Hydraulic Apparatus for Mechanical Testing of Nuts

    Science.gov (United States)

    Hinkel, Todd J.; Dean, Richard J.; Hacker, Scott C.; Harrington, Douglas W.; Salazar, Frank

    2004-01-01

    The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes

  7. Apparatus and Method for Communication over Power Lines

    Science.gov (United States)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, III, Lawrence C. (Inventor); Nappier, Jennifer M. (Inventor)

    2017-01-01

    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.

  8. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  9. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  10. Industrial processes control with He-Ne laser devices for aligning and guiding

    International Nuclear Information System (INIS)

    Ursu, I.; Ivascu, M.; Vasiliu, V.; Ristici, M.; Gradisteanu, I.; Vilcu, G.; Pelle, V.; Botezatu, I.; Vasnea, V.; Orac, N.; Fernea, V.

    1988-03-01

    A brief presentation of the He-Ne laser devices main application fields in the national economy is given. The utilization of the devices we did in: industrial constructions, metalurgy, hydroelectric arrangements, wood industry, ship's construction, and other is presented. (authors)

  11. Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing

    Science.gov (United States)

    Ng, Jason Clement

    Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 -11/W-cm-2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0

  12. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization

    DEFF Research Database (Denmark)

    Mackenzie, David; Buron, Jonas Christian Due; Whelan, Patrick Rebsdorf

    2015-01-01

    Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 140......-effect mobility, doping level, on–off ratio, and conductance minimum before and after laser ablation fabrication....

  13. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces

    Directory of Open Access Journals (Sweden)

    Thomas E. Rams

    2017-10-01

    Conclusions: Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  14. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  15. Remote Blood Pressure Waveform Sensing Method and Apparatus

    National Research Council Canada - National Science Library

    Antonelli, Lynn T

    2008-01-01

    The invention as disclosed is a non-contact method and apparatus for continuously monitoring a physiological event in a human or animal, such as blood pressure, which involves utilizing a laser-based...

  16. Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials

    Science.gov (United States)

    Kaminski, Adam

    2017-08-22

    A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.

  17. Apparatus for neutralization of accelerated ions

    International Nuclear Information System (INIS)

    Fink, J.H.; Frank, A.M.

    1979-01-01

    Apparatus is described for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H - ), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (lambda = 8000 A for H - ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (approx. 85%) of neutralization

  18. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.

    1981-01-01

    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  19. Laser scattering in a hanging drop vapor diffusion apparatus for protein crystal growth in a microgravity environment

    Science.gov (United States)

    Casay, G. A.; Wilson, W. W.

    1992-01-01

    One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.

  20. Quantum dot lasers: From promise to high-performance devices

    Science.gov (United States)

    Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.

    2009-03-01

    Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.

  1. A compact chaotic laser device with a two-dimensional external cavity structure

    International Nuclear Information System (INIS)

    Sunada, Satoshi; Adachi, Masaaki; Fukushima, Takehiro; Shinohara, Susumu; Arai, Kenichi; Harayama, Takahisa

    2014-01-01

    We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

  2. Silicon light-emitting diodes and lasers photon breeding devices using dressed photons

    CERN Document Server

    Ohtsu, Motoichi

    2016-01-01

    This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.

  3. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  4. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    International Nuclear Information System (INIS)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao

    1996-01-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; 1) Hyper ion microbeam analysis apparatus, 2) Fourier conversion infrared microscopy, 3) Pico second two-dimensional fluorescence measuring apparatus, 4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  5. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; (1) Hyper ion microbeam analysis apparatus, (2) Fourier conversion infrared microscopy, (3) Pico second two-dimensional fluorescence measuring apparatus, (4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  6. Data visualization methods, data visualization devices, data visualization apparatuses, and articles of manufacture

    Science.gov (United States)

    Turner, Alan E.; Crow, Vernon L.; Payne, Deborah A.; Hetzler, Elizabeth G.; Cook, Kristin A.; Cowley, Wendy E.

    2015-06-30

    Data visualization methods, data visualization devices, data visualization apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a data visualization method includes accessing a plurality of initial documents at a first moment in time, first processing the initial documents providing processed initial documents, first identifying a plurality of first associations of the initial documents using the processed initial documents, generating a first visualization depicting the first associations, accessing a plurality of additional documents at a second moment in time after the first moment in time, second processing the additional documents providing processed additional documents, second identifying a plurality of second associations of the additional documents and at least some of the initial documents, wherein the second identifying comprises identifying using the processed initial documents and the processed additional documents, and generating a second visualization depicting the second associations.

  7. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  8. Simultaneous 3D-vibration measurement using a single laser beam device

    Science.gov (United States)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  9. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  10. Radiographic apparatus

    International Nuclear Information System (INIS)

    Dalton, B.L.

    1984-01-01

    This patent application describes a radiographic apparatus including an array of radiation sensors, a source of radiation for projecting a beam through a body and means for moving one of said source and array relative to the body and for producing an electrical signal representative of the movement of the other of said source and array needed to bring the array into register with the beam. Drive means are arranged to move the other of said source and array in response to the electrical signal. In one embodiment, the source is rotated by an amount measured by a grating and associated electronics. The required movement of the array to maintain registration is calculated and transmitted to a driver. Alternatively, a laser may be mounted with the same and the array driven so that the laser beam continuously impinges on a photocell mounted with the array. (author)

  11. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    Science.gov (United States)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  12. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  13. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240 Section 864.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  14. An optoelectronic integrated device including a laser and its driving circuit

    Energy Technology Data Exchange (ETDEWEB)

    Matsueda, H.; Nakano, H.; Tanaka, T.P.

    1984-10-01

    A monolithic optoelectronic integrated circuit (OEIC) including a laser diode, photomonitor and driving and detecting circuits has been fabricated on a semi-insulating GaAs substrate. The OEIC has a horizontal integrating structure which is suitable for realising high-density multifunctional devices. The fabricating process and the static and dynamic characteristics of the optical and electronic elements are described. The preliminary results of the co-operative operation of the laser and its driving circuit are also presented.

  15. Interim report - performance of laser and radar ranging devices in adverse environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Hillier; Julian Ryde; Eleonora WidzykCapehart; Graham Brooker; Javier Martinez; Andrew Denman [CSIRO (Australia)

    2008-10-15

    CSIRO in conjunction with CRC Mining and the Australian Centre for Field Robotics (ACFR) conducted a series of controlled experiments to examine the performance of three scanning range devices: two scanning infrared laser range finders and millimetrewave radar. Within the controlled environment, the performance of the devices were tested in various rain, mist and dustcloud conditions. Subsequently, these sensors were installed on a P&H 2800BLE electric rope shovel at the Bracalba Quarry, near Caboolture, Queensland, and the system performance was evaluated. The three scanning range sensors tested as part of this study were: 1. A Riegl LMSQ120 scanning laser range finder; 2. A SICK LMS291S05 scanning laser range finder; and, 3. ACFR's prototype 95GHz millimetrewave radar (2D HSS). The range data from these devices is to be used to construct accurate models of the environment in which the electric rope shovel operates and to, subsequently, make control decisions for its operation. Of the currently available range sensing technologies, it is considered that the infrared laser range finders and millimetrewave radar offer the best means of obtaining this data. This report summarises the results of both the controlled (laboratory) and field testing and presents key findings on sensor performance that are likely to impact the creation of digital models of the terrain surrounding a mining shovel.

  16. A Simple Device for Lens-to-Sample Distance Adjustment in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Cortez, Juliana; Farias Filho, Benedito B; Fontes, Laiane M; Pasquini, Celio; Raimundo, Ivo M; Pimentel, Maria Fernanda; de Souza Lins Borba, Flávia

    2017-04-01

    A simple device based on two commercial laser pointers is described to assist in the analysis of samples that present uneven surfaces and/or irregular shapes using laser-induced breakdown spectroscopy (LIBS). The device allows for easy positioning of the sample surface at a reproducible distance from the focusing lens that conveys the laser pulse to generate the micro-plasma in a LIBS system, with reproducibility better than ±0.2 mm. In this way, fluctuations in the fluence (J cm -2 ) are minimized and the LIBS analytical signals can be obtained with a better precision even when samples with irregular surfaces are probed.

  17. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  18. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  19. A laser activated ion source

    International Nuclear Information System (INIS)

    Hughes, J.; Luther-Davies, B.; Hora, H.; Kelly, J.

    1978-01-01

    Apparatus for generating energetic ions of a target material from a cold plasma of the material is described. A pulsed laser beam is directed onto the target to produce the cold plasma. Laser beam pulses are short in relation to the collision time in the plasma. Non-linear elctrodynamic forces within the plasma act to accelerate and eject ions from the plasma. The apparatus can be used to separate ions of isotopes of an element

  20. [Rehabilitation of women suffering chronic cystitis in the postmenopausal period with the use of an AMUS-01 - Intramag apparatus equipped with a Rektomassazher device].

    Science.gov (United States)

    Azizov, A P; Azizova, P A; Beliaev, A A; Konova, A N; Raĭgorodskiĭ, Iu M

    2011-01-01

    The objective of the present study was to develop a rationale for the local treatment of chronic recurring cystitis in the postmenopausel period. To this effect, 76 patients at the mean age of 66.4 years with this pathology were examined and the data obtained were compared with observations of control postmenopausel women receiving traditional local substitution hormonal therapy. In the patients of the study group, this treatment was supplemented by intravaginal vibro-magnetotherapy and the conventional antibacterial therapy was replaced by local electrophoresis. All local physiotherapeutic procedures were performed with the use of a AMUS-01 - Intramag apparatus equipped with a Rektomassazher device an AMUS-01 - Intramag apparatus equipped with a Rektomassazher device. The immunological analysis of vaginal secretion coupled to bacterial and clinical investigations have demonstrated the advantages of the combined local treatment including physiotherapy. The integral efficacy index was by a factor of 1.8 higher than in the control group.

  1. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent

  2. Reference on shooting-blasting apparatus. Spravochnik po prostrelochno-vzryvnoy apparature

    Energy Technology Data Exchange (ETDEWEB)

    Fridlyander, L Ya

    1983-01-01

    Purpose, device, technical characteristics of the preforators, powder generators, blasting packers, core lifter, torpedoes, equipment and technology of charging, storage, transporting and testing of apparatus, characteristic errors and elimination of them are presented. Recommendations are made for safe work and efficient use of apparatus in different geological-technical conditions.

  3. Characterization of thermoelectric devices by laser induced Seebeck electromotive force (LIS-EMF) measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Luis-David Patino [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Dilhaire, Stefan [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Grauby, Stephane [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Salhi, M Amine [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Ezzahri, Younes [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Claeys, Wilfrid [Universite de Bordeaux 1, Centre de Physique Moleculaire Optique et Hertzienne, 351, cours de la liberation, 33405 Talence (France); Batsale, Jean-Christophe [Laboratoire TREFLE, Esplanade des Arts et Metiers, 33405 Talence Cedex (France)

    2005-05-21

    An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties.

  4. Characterization of thermoelectric devices by laser induced Seebeck electromotive force (LIS-EMF) measurement

    International Nuclear Information System (INIS)

    Lopez, Luis-David Patino; Dilhaire, Stefan; Grauby, Stephane; Salhi, M Amine; Ezzahri, Younes; Claeys, Wilfrid; Batsale, Jean-Christophe

    2005-01-01

    An in-depth study related to a new method of characterizing properties in thermoelectrics is proposed in this paper. This technique is appropriate for single or multi-layered thermoelectric devices. A modulated laser beam is used as a heater in order to generate a Seebeck electromotive force (EMF). The laser beam, line shaped, can be focused at any location along the sample surface, allowing spatially resolved measurements. Seebeck EMF measurements, associated with a versatile model based on the thermal quadrupoles method, allow determination of the sample Seebeck EMF profile and identifying of the sample thermal contact resistances, and should be useful for identification of devices and material thermoelectric properties

  5. Analytical transient analysis of Peltier device for laser thermal tuning

    Science.gov (United States)

    Sheikhnejad, Yahya; Vujicic, Zoran; Almeida, Álvaro J.; Bastos, Ricardo; Shahpari, Ali; Teixeira, António L.

    2017-08-01

    Recently, industrial trends strongly favor the concepts of high density, low power consumption and low cost applications of Datacom and Telecom pluggable transceiver modules. Hence, thermal management plays an important role, especially in the design of high-performance compact optical transceivers. Extensive care should be taken on wavelength drift for thermal tuning lasers using thermoelectric cooler and indeed, accurate expression is needed to describe transient characteristics of the Peltier device to achieve maximum controllability. In this study, the exact solution of governing equation is presented, considering Joule heating, heat conduction, heat flux of laser diode and thermoelectric effect in one dimension.

  6. Experimental devices for the spatio-temporal characterization of femtosecond high-power laser chains

    International Nuclear Information System (INIS)

    Gallet, Valentin

    2014-01-01

    One of the advantages of high-power femtosecond lasers (TW-PW) is to obtain, at the focus of a focusing optic, very high intensities up to 10 22 W.cm -2 (i.e. an electric field of 2.7 PV.m -1 . Therefore, these lasers chains necessarily deliver beams with large diameter (up to 40 cm) and very short pulses (of the order of tens of femto-seconds). As a consequence, the spatial and temporal properties of the pulse are generally not independent. Such dependence, called spatial-temporal coupling has the effect of increasing the pulse duration and the size of the focal spot, which can lead to a significant reduction of the maximum intensity at the focus. Metrology devices commonly used on these high-power femtosecond lasers allow retrieving the spatial and temporal profiles of the pulse only in an independent manner. The aim of this thesis was to develop techniques for measuring spatio-temporal couplings in order to quantify their effect and correct them in order to obtain the maximum intensity at focus. First of all, we adapted an existing technique of spatio-temporal characterization to the measurement of TW lasers. To avoid the issues induced at the focus, such as those related to jittering, measurements were performed on the collimated beam. By adding a reference source to the original device, we managed to take into account the measurement artifacts due to thermal and mechanical variations affecting the interferometer. With this improvement, it was possible to reconstruct the complete spatio-temporal profile of the beam, particularly its wavefront. However, the limitations imposed by this technique led to the development of a new measurement device. Based on a cross-correlation, this technique consists of making the laser beam to interfere with a part of itself, small enough not to be spatio-temporally distorted. We have also implemented a variant of this device for a single-shot measurement along one transverse dimension of the pulse. Using these techniques, we

  7. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  8. Data structures and apparatuses for representing knowledge

    Science.gov (United States)

    Hohimer, Ryan E; Thomson, Judi R; Harvey, William J; Paulson, Patrick R; Whiting, Mark A; Tratz, Stephen C; Chappell, Alan R; Butner, Robert S

    2014-02-18

    Data structures and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

  9. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  10. Engineering fluidic delays in paper-based devices using laser direct-writing.

    Science.gov (United States)

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2015-10-21

    We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

  11. Sub-micron-scale femtosecond laser ablation using a digital micromirror device

    International Nuclear Information System (INIS)

    Mills, B; Feinaeugle, M; Sones, C L; Eason, R W; Rizvi, N

    2013-01-01

    Commercial digital multimirror devices offer a cheap and effective alternative to more expensive spatial light modulators for ablation via beam shaping. Here we present femtosecond laser ablation using the digital multimirror device from an Acer C20 Pico Digital Light Projector and show ablation of complex features with feature sizes ranging from sub-wavelength (400 nm) up to ∼30 µm. Simulations are presented that have been used to optimize and understand the experimentally observed resolution. (paper)

  12. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  13. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  14. Exploding conducting film laser pumping apparatus

    Science.gov (United States)

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  15. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  16. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

    International Nuclear Information System (INIS)

    Gu, E.; Jeon, C.W.; Choi, H.W.; Rice, G.; Dawson, M.D.; Illy, E.K.; Knowles, M.R.H.

    2004-01-01

    Gallium nitride (GaN) and sapphire are important materials for fabricating photonic devices such as high brightness light emitting diodes (LEDs). These materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high resolution processing and machining techniques for these materials is important in fabricating novel photonic devices. In this work, a repetitively pulsed UV copper vapour laser (255 nm) has been used to machine and dice sapphire, GaN and micro LED devices. Machining parameters were optimised so as to achieve controllable machining and high resolution. For sapphire, well-defined grooves 30 μm wide and 430 μm deep were machined. For GaN, precision features such as holes on a tens of micron length scale have been fabricated. By using this technique, compact micro LED chips with a die spacing 100 and a 430 μm thick sapphire substrate have been successfully diced. Measurements show that the performances of LED devices are not influenced by the UV laser machining. Our results demonstrate that the pulsed UV copper vapour laser is a powerful tool for micromachining and dicing of photonic materials and devices

  17. Study on blood compatibility of the radiation sterilized disposable burette transfusion apparatus

    International Nuclear Information System (INIS)

    Chen Guochong; Liu Wen; Liu Qingfang

    2011-01-01

    The blood compatibility of the radiation sterilized disposable burette transfusion apparatus was investigated to provide evidence for the safety of radiation sterilized medical devices. The initial bacteria burden of the disposable burette transfusion apparatus was examined according to the ISO11737 standard, and the whole blood clotting time, prothrombin time, partial thromboplastin time and hemolysis rate of the samples were determined. There was no significant difference between the radiation sterilized samples and negative controls on WBCT, PT and PTT (p>0.05). Haemolysis test showed that the haemolysis rate of the sample sterilized by irradiation was 1.38%, which was coincidence with the criteria of the medical devices. After sterilization by irradiation, disposable burette transfusion apparatus show good blood compatibility, which could be considered that radiation sterilization is a biologically safe method for the medical apparatus. (authors)

  18. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon

    Science.gov (United States)

    Tokel, Onur; Turnalı, Ahmet; Makey, Ghaith; Elahi, Parviz; ćolakoǧlu, Tahir; Ergeçen, Emre; Yavuz, Ã.-zgün; Hübner, René; Zolfaghari Borra, Mona; Pavlov, Ihor; Bek, Alpan; Turan, Raşit; Kesim, Denizhan Koray; Tozburun, Serhat; Ilday, Serim; Ilday, F. Ã.-mer

    2017-10-01

    Silicon is an excellent material for microelectronics and integrated photonics1-3, with untapped potential for mid-infrared optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow the fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realized with techniques like reactive ion etching. Embedded optical elements7, electronic devices and better electronic-photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1-µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has an optical index different to that in unmodified parts, enabling the creation of numerous photonic devices. Optionally, these parts can be chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface—that is, `in-chip'—microstructures for microfluidic cooling of chips, vias, micro-electro-mechanical systems, photovoltaic applications and photonic devices that match or surpass corresponding state-of-the-art device performances.

  19. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon.

    Science.gov (United States)

    Tokel, Onur; Turnali, Ahmet; Makey, Ghaith; Elahi, Parviz; Çolakoğlu, Tahir; Ergeçen, Emre; Yavuz, Özgün; Hübner, René; Borra, Mona Zolfaghari; Pavlov, Ihor; Bek, Alpan; Turan, Raşit; Kesim, Denizhan Koray; Tozburun, Serhat; Ilday, Serim; Ilday, F Ömer

    2017-10-01

    Silicon is an excellent material for microelectronics and integrated photonics1-3 with untapped potential for mid-IR optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realised with techniques like reactive ion etching. Embedded optical elements, like in glass7, electronic devices, and better electronic-photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1 µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has a different optical index than unmodified parts, which enables numerous photonic devices. Optionally, these parts are chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface, i.e. , " in-chip" microstructures for microfluidic cooling of chips, vias, MEMS, photovoltaic applications and photonic devices that match or surpass the corresponding state-of-the-art device performances.

  20. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    Science.gov (United States)

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  1. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    Science.gov (United States)

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  2. Automatic grinding apparatus to control uniform specimen thicknesses

    Science.gov (United States)

    Bryner, Joseph S.

    1982-01-01

    This invention is directed to a new and improved grinding apparatus comprising (1) a movable grinding surface, (2) a specimen holder, (3) a displacing device for moving the holder and/or grinding surface toward one another, and (4) at least three devices for limiting displacement of the holder to the grinding surface.

  3. Method and apparatus for isotope separation from a gas stream

    International Nuclear Information System (INIS)

    Szoke, A.

    1978-01-01

    A method and apparatus are described for isotope separation and in particular for separating the desired isotope from the gas in which it is contained by irradiating it with a laser. The laser selectively provides kinetic energy to the isotope through inelastic events, monomolecular or bimolecular, in order to cause it to segregate within or fly out of the gas stream in which it is contained

  4. Apparatus and method for assembling fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.

    1978-01-01

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  5. Lithographic linear motor, lithographic apparatus, and device manufacturing method

    NARCIS (Netherlands)

    2006-01-01

    A linear motor having a high driving force, high efficiency and low normal force comprises two opposed magnet tracks and an armature comprising three open coil sets. The linear motor may be used to drive a stage, such as, for example, a mask or wafer stage, in a lithographic apparatus.

  6. DEVICE FOR MEASURING OF THERMAL LENS PARAMETERS IN LASER ACTIVE ELEMENTS WITH A PROBE BEAM METHOD

    Directory of Open Access Journals (Sweden)

    A. N. Zakharova

    2015-01-01

    Full Text Available We have developed a device for measuring of parameters of thermal lens (TL in laser active elements under longitudinal diode pumping. The measurements are based on the probe beam method. This device allows one to determine sign and optical power of the lens in the principal meridional planes, its sensitivity factor with respect to the absorbed pump power and astigmatism degree, fractional heat loading which make it possible to estimate integral impact of the photoelastic effect to the formation of TL in the laser element. The measurements are performed in a linearly polarized light at the wavelength of 532 nm. Pumping of the laser element is performed at 960 nm that makes it possible to study laser materials doped with Yb3+ and (Er3+, Yb3+ ions. The precision of measurements: for sensitivity factor of TL – 0,1 m-1/W, for astigmatism degree – 0,2 m-1/W, for fractional heat loading – 5 %, for the impact of the photoelastic effect – 0,5 × 10-6 K-1. This device is used for characterization of thermal lens in the laser active element from an yttrium vanadate crystal, Er3+,Yb3+:YVO .

  7. Categorisation of full waveform data provided by laser scanning devices

    Science.gov (United States)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  8. Rescue apparatus for a high working oil derrick

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.P.; Yagudin, S.Z.

    1980-05-18

    In order to improve reliability of the rescue apparatus a device for lowering a basket is made in the form of a collapsible forked support installed in the vertical plane inclined away from the tower. Its lower ends are attached by hinges to the base of the derrick. The upper end is connected to the derrick by means of a fastener. The apparatus has brakes with shock straps for receiving forked support.

  9. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  10. Bidirectional current triggering in planar devices based on serially connected VO2 thin films using 965 nm laser diode.

    Science.gov (United States)

    Kim, Jihoon; Park, Kyongsoo; Kim, Bong-Jun; Lee, Yong Wook

    2016-08-08

    By incorporating a 965 nm laser diode, the bidirectional current triggering of up to 30 mA was demonstrated in a two-terminal planar device based on serially connected vanadium dioxide (VO2) thin films grown by pulsed laser deposition. The bidirectional current triggering was realized by using the focused beams of laser pulses through the photo-thermally induced phase transition of VO2. The transient responses of laser-triggered currents were also investigated when laser pulses excited the device at a variety of pulse widths and repetition rates of up to 4.0 Hz. A switching contrast between off- and on-state currents was obtained as ~8333, and rising and falling times were measured as ~39 and ~29 ms, respectively, for 50 ms laser pulses.

  11. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.

    Science.gov (United States)

    Thompson, Brandon L; Ouyang, Yiwen; Duarte, Gabriela R M; Carrilho, Emanuel; Krauss, Shannon T; Landers, James P

    2015-06-01

    We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.

  12. Processes, data structures, and apparatuses for representing knowledge

    Science.gov (United States)

    Hohimer, Ryan E [West Richland, WA; Thomson, Judi R [Guelph, CA; Harvey, William J [Richland, WA; Paulson, Patrick R [Pasco, WA; Whiting, Mark A [Richland, WA; Tratz, Stephen C [Richland, WA; Chappell, Alan R [Seattle, WA; Butner, R Scott [Richland, WA

    2011-09-20

    Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

  13. Laser biostimulation in pediatrics

    Science.gov (United States)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  14. Longitudinal studies on the microcirculation around the TheraCyte immunoisolation device, using the laser Doppler technique.

    Science.gov (United States)

    Rafael, E; Gazelius, B; Wu, G S; Tibell, A

    2000-01-01

    Encapsulation of cellular grafts in an immunoisolation membrane device may make it possible to perform transplantation without having to give immunosuppressive drugs. A common problem is the development of an avascular fibrotic zone around the implants, leading to impaired graft survival. The TheraCyte macroencapsulation device has therefore been designed to facilitate neovascularization of the device's surface. In this study, we evaluated the microcirculation around empty TheraCyte devices implanted SC in rats at various times after implantation, using a laser Doppler probe introduced via the device port. Studies were performed on day 1 or at 1, 2, and 4 weeks or at 2, 3, and 12 months after implantation. The mean flow was 158+/-42, 148+/-50, 133+/-28, 72+/-17, 138+/-41, 165+/-43, and 160+/-29 perfusion units (PU), respectively. Thus, the microcirculation around the device was significantly reduced at 4 weeks after implantation (p TheraCyte macroencapsulation devices that agree with our previous microdialysis studies on in vivo exchange of insulin and glucose between the device and the circulation. Laser Doppler flowmetry seems to provide a reliable technique for screening blood perfusion around macroencapsulation devices.

  15. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Science.gov (United States)

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  16. Ablation of intervertebral discs in dogs using a MicroJet-assisted dye-enhanced injection device coupled with the diode laser

    Science.gov (United States)

    Bartels, Kenneth E.; Henry, George A.; Dickey, D. Thomas; Stair, Ernest L.; Powell, Ronald; Schafer, Steven A.; Nordquist, Robert E.; Frederickson, Christopher J.; Hayes, Donald J.; Wallace, David B.

    1998-07-01

    Use of holmium laser energy for vaporization/coagulation of the nucleus pulposus in canine intervertebral discs has been previously reported and is currently being applied clinically in veterinary medicine. The procedure was originally developed in the canine model and intended for potential human use. Since the pulsed (15 Hz) holmium laser energy exerts photomechanical and photothermal effects, the potential for extrusion of additional disc material to the detriment of the patient is possible using the procedure developed for the dog. To reduce this potential complication, use of diode laser (805 nm - CW mode) energy, coupled with indocyanine green (ICG) as a selective laser energy absorber, was formulated as a possible alternative. Delivery of the ICG and diode laser energy was through a MicroJet device that could dispense dye interactively between individual laser 'shots.' Results have shown that it is possible to selectively ablate nucleus pulposus in the canine model using the device described. Acute observations (gross and histopathologic) illustrate that accurate placement of the spinal needle before introduction of the MicroJet device is critically dependent on the expertise of the interventional radiologist. In addition, the success of the overall technique depends on consistent delivery of both ICG and diode laser energy. Minimizing tissue carbonization on the tip of the MicroJet device is also of crucial importance for effective application of the technique in clinical veterinary medicine.

  17. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  18. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  19. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    Science.gov (United States)

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  20. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2013-01-03

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily desalinated at very low pressures. Thus, a device consumes less energy when recovering water. The apparatus, system and method comprise an immersed forward osmosis cell.

  1. Visualization of cavitation bubbles induced by a laser pulse

    International Nuclear Information System (INIS)

    Testud-Giovanneschi, P.; Dufresne, D.; Inglesakis, G.

    1987-01-01

    The I.M.F.M. researchers working on Laser-Matter Interaction are studying the effects induced on matter by a pulsed radiation energy deposit. In this research, the emphasis is on the laser liquids interaction field and more particularly the cavitation induced by a laser pulse or ''optical-cavitation'' as termed by W. Lauterborn (1). For bubbles investigations, the visualizations form a basic diagnostic. This paper presents the experimental apparatus of formation of bubbles, the visualization apparatus and different typical examples of photographic recordings

  2. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    Science.gov (United States)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  3. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  4. Device for cutting protrusions

    Science.gov (United States)

    Bzorgi, Fariborz M [Knoxville, TN

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  5. Alignment and focusing device for a multibeam laser system

    International Nuclear Information System (INIS)

    Sweatt, W.C.

    1980-01-01

    Large inertial confinement fusion laser systems have many beams focusing on a small target. The Antares system is a 24-beam CO 2 pulse laser. To produce uniform illumination, the 24 beams must be individually focused on (or near) the target's surface in a symmetric pattern. To assess the quality of a given beam, we will locate a Smartt (point diffraction) interferometer at the desired focal point and illuminate it with an alignment laser. The resulting fringe pattern shows defocus, lateral misalignment, and beam aberrations; all of which can be minimized by tilting and translating the focusing mirror and the preceding flat mirror. The device described in this paper will remotely translate the Smartt interferometer to any position in the target space and point it in any direction using a two-axis gimbal. The fringes produced by the interferometer are relayed out of the target vacuum shell to a vidicon by a train or prisms. We are designing four separate snap-in heads to mount on the gimbal; two of which are Smartt interferometers (for 10.6 μm and 633 nm) and two for pinholes, should we wish to put an alignment beam backwards through the system

  6. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 May 1978-31 July 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Kothandaraman, G.; Taylor, R.L.

    1978-08-01

    Emphasis on this program has shifted to the design and construction of two proof-of-concept laser device experiments based on azide chemistry. The laser concepts and the resulting experiments are briefly described in this quarterly report. Preliminary shake-down of the apparatus is now underway. In addition, measurements to provide critical kinetic and spectroscopic data in support of these laser-demonstration experiments have continued at a reduced level of effort. In particular, the solid azide pyrolysis experiment has been reactivated to obtain more quantitative data on branching ratios of certain critical processes. Finally, design and construction has begun on a system to provide 4.9 ..mu.. radiation to explore multiphoton dissociation of C1N/sub 3/ as an initiation technique.

  7. Therapeutic radiation apparatus having an optical pointer

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a therapeutic irradiating apparatus including a radiation source arranged to provide a beam of penetrating radiation and an optical alignment indicator comprising at least two light sources each provided with means to provide a planar divergent beam of light located so that at least two light beams intersect along a line substantially coincident with the central axis of the path of the radiation beam. The claim relates to cylindrical lenses providing the means of providing the divergent beams, and to lasers as the light sources. Claims are also made for the apparatus providing means of supporting and aligning the patient, and for disposing the light sources so that the exit point of the radiation beam is illuminated. (U.K.)

  8. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit; Mayet, Abdulilah M.

    2014-01-01

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  9. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  10. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.

    Science.gov (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6  mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100  ps, ∼0.5  nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Observation of theoretical power saturation by the KHI free electron laser device

    International Nuclear Information System (INIS)

    Oda, Fumihiko; Yokoyama, Minoru; Kawai, Masayuki; Miura, Hidenori; Koike, Hidehito; Sobajima, Masaaki; Nomaru, Keiji; Kuroda, Haruo

    2002-01-01

    The saturation of free electron laser (FEL) output power by the KHI-FEL device was achieved on 3rd, October 2000 at the wavelength of 9.3 μm. The FEL device has operated thereafter successfully in the wavelength region between 4.0 and 16.0 μm. The macropulse average FEL power of 37.5 kW, which is the theoretical saturation level, has been obtained at the wavelength of 7.9 μm. The net FEL gain was estimated to be 16%. (author)

  12. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  13. Diminution of acute radiation reaction of mouse skin with low-intensity infrared laser/red diodes-emitted light

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Klimakov, B.D.; Goldobenko, G.V.; Vajnson, A.A.

    2000-01-01

    Efficiency of the application of different regimes of laser treatment of radiation-induced skin reactions in mice feet is compared. Posterior limb feet of mice were exposed to acute X radiation at 30-36 Gy dose or fractionated radiation at 45 Gy dose. In the day of primary irradiation or different time later the feet were treated using magnetic infrared laser therapeutic MILTA-01 apparatus. Magnetic and light components of the MILTA-01 apparatus reduce the effect of radiation on mice skin corresponding two time decrease in X-radiation dose [ru

  14. Apparatus and method of optical marker projection for the three-dimensional shape measurement

    Science.gov (United States)

    Chen, Zhe; Qu, Xinghua; Geng, Xin; Zhang, Fumin

    2015-08-01

    Optical photography measurement and three-dimensional (3-D) scanning measurement have been widely used in the field of the fast dimensional and surface metrology. In the measurement process, however, retro-reflective markers are often pasted on the surface in advance for image registration and positioning the 3-D measuring instruments. For the large-scale workpiece with freeform surface, the process of pasting markers is time consuming, which reduces the measurement efficiency. Meanwhile, the measurement precision is impaired owing to the thickness of the marker. In this paper, we propose a system that projects two-dimensional (2-D) array optical markers with uniform energy on the surface of the workpiece instead of pasting retro-reflective markers, which achieves large-range and automated optical projection of the mark points. In order to conjunction with the 3-D handheld scanner belonging to our team, we develop an apparatus of optical marker projection, which is mainly composed of the high-power laser, the optical beam expander system, adjustable aperture stop and Dammann grating of dibasic spectrophotometric device. The projection apparatus can achieve the function of beams of 15 * 15 uniformly light of the two-dimensional lattice. And it's much cheaper than the existing systems.

  15. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  16. Laser Transcutaneous Bilirubin Meter: A New Device For Bilirubin Monitoring In Neonatal Jaundice

    Science.gov (United States)

    Hamza, Mostafa; Hamza, Mohammad

    1988-06-01

    Neonates with jaundice require monitoring of serum bilirubin which should be repeated at frequent intervals. However, taking blood samples from neonates is not always an easy job, plus being an invasive and traumatising procedure with the additional risk of blood loss. In this paper the authors present the theory and design of a new noninvasive device for transcutaneous bilirubinometry, using a differential absorption laser system. The new technique depends upon illuminating the skin of the neonate with radiation from a two wave-length oscillation laser. The choice of the wavelengths follows the principles of optical bilirubinometry. For obtaining more accurate measurements, different pairs of two wave-lengths are incorporated in the design. The presence of hemoglobin is corrected for by appropriate selection of the laser wavelengths. The new design was tested for accuracy and precision using an argon ion laser. Correlation study between serum bilirubin determination by laser transcutaneous bilirubinometry and by American optical bilirubinometer was highly significant.

  17. Temperature stabilization of injection lasers

    International Nuclear Information System (INIS)

    Albanese, A.

    1987-01-01

    Apparatus which stabilizes the temperature, and thereby the output wavelength, of an injection laser. Means monitor the laser terminal voltage across a laser and derive a voltage therefrom which is proportional to the junction voltage of the laser. Means compares the voltage to a reference value from source and a temperature controller adjusts the laser temperature in response to the results of the comparison. Further embodiments of the present invention vary the output wavelength of the laser by varying the reference value from source against which the laser junction voltage is compared. (author)

  18. Method and apparatus for optical phase error correction

    Science.gov (United States)

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  19. Development of optical apparatus with remote analysis in nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Cha, Byung Heon; Ko, Do Kyeong; Cha, Hyeong Ky

    1999-12-01

    Optical apparatus with remote analysis was developed. It is composed with Dye laser, optical fiber and optical transmitter, and optical corrector. Laser light is arming in untested sample, and there is back scattered fluorescence. Material is identified by detecting and analysis of this fluorescence. Liquid and solid dye laser was carry out. The maximum efficiency was up to 34 percent. and the divergency and bandwidth of laser light are 2 mrad and 4.2 GHz, respectively. A dye laser with two wavelength was also carry out. 3 inch optical transmitter with fluorite lens was developed and the spatial resolution was less than 2 arc sec. And large optical corrector with 6 inch was developed and that mirror was coated by enhanced aluminum. Thus the efficiency was up to 92 percent. (author)

  20. Apparatus and method for generating high density pulses of electrons

    International Nuclear Information System (INIS)

    Lee, C.; Oettinger, P.E.

    1981-01-01

    An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)

  1. Calibration apparatus for a machine-tool

    International Nuclear Information System (INIS)

    Crespin, G.

    1985-01-01

    The invention proposes a calibration apparatus for a machine-tool comprising a torque measuring device, where the tool is driven by a motor of which supply electric current is proportional to the torque applied upon the tool and can be controlled and measured, a housing having an aperture through which the rotatable tool can pass. This device alloys to apply a torque on the tool and to measure it from the supply current of the motor. The invention applies, more particularly to the screwing machines used for the mounting of the core containment plates [fr

  2. Laser frequency modulation with electron plasma

    Science.gov (United States)

    Burgess, T. J.; Latorre, V. R.

    1972-01-01

    When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.

  3. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  4. Method and apparatus for vibrating a substrate during material formation

    Science.gov (United States)

    Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA

    2008-10-21

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  5. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    Science.gov (United States)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  6. 21 CFR 868.5430 - Gas-scavenging apparatus.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace gases or vapors from a patient's breathing system, ventilator, or extracorporeal pump-oxygenator, and to conduct these gases out of the area by means of an exhaust system. (b) Classification. Class II...

  7. Modeling the DBR laser used as wavelength conversion device

    DEFF Research Database (Denmark)

    Braagaard, Carsten; Mikkelsen, Benny; Durhuus, Terji

    1994-01-01

    In this paper, a novel and efficient way to model the dynamic field in optical DBR-type semiconductor devices is presented. The model accounts for the longitudinal carrier, photon, and refractive index distribution. Furthermore, the model handles both active and passive sections that may include...... gratings. Thus, simulations of components containing, e.g., gain sections, absorptive sections, phase sections, and gratings, placed arbitrarily along the longitudinal direction of the cavity, are possible. Here, the model has been used for studying the DBR laser as a wavelength converter. Particularly...

  8. Laser device

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material...

  9. Hand-held triangulation laser profilometer with audio output for blind people Profilométre laser à triangulation tenu en main avec sortie sonare pour non-voyants

    Science.gov (United States)

    Farcy, R.; Damaschini, R.

    1998-06-01

    We describe a device currently under industrial development which will give to the blind a means of three-dimensional space perception. It consists of a 350 g hand-held triangulating laser telemeter including electronic parts and batteries, with auditory feedback either inside the apparatus or close to the ear. The microprocessor unit converts in real time the distance measured by the telemeter into a musical note. Scanning the space with an adequate movement of the hand produces musical lines corresponding to the profiles of the environment. We discuss the optical configuration of the system relative to our first year of clinical experimentation.

  10. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    Science.gov (United States)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  11. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  12. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Feldman, B. J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  13. Laser beam cutting method. Laser ko ni yoru kaitai koho

    Energy Technology Data Exchange (ETDEWEB)

    Kutsumizu, A. (Obayashi Corp., Osaka (Japan))

    1991-07-01

    In this special issue paper concerning the demolition of concrete structures, was introduced a demolition of concrete structures using laser, of which practical application is expected due to the remarkable progress of generating power and efficiency of laser radiator. The characteristics of laser beam which can give a temperature of one million centigrade at the irradiated spot, the laser radiator consisting of laser medium, laser resonator and pumping apparatus, and the laser kinds for working, such as CO{sub 2} laser, YAG laser and CO laser, were described. The basic constitution of laser cutting equipment consisting of large generating power radiator, beam transmitter, beam condenser, and nozzle for working was also illustrated. Furthermore, strong and weak points in the laser cutting for concrete and reinforcement were enumerated. Applications of laser to cutting of reinforced and unreinforced concrete constructions were shown, and the concept and safety measure for application of laser to practical demolition was discussed. 5 refs., 8 figs.

  14. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  15. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    International Nuclear Information System (INIS)

    Molpeceres, C.; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L.; Fernandez, S.; Gandia, J.J.; Villar, F.; Nos, O.; Bertomeu, J.

    2009-01-01

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  16. Passivation layer breakdown during laser-fired contact formation for photovoltaic devices

    International Nuclear Information System (INIS)

    Raghavan, A.; DebRoy, T.; Palmer, T. A.

    2014-01-01

    Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO 2 passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result, low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.

  17. Development of acoustic partial discharge detection device; Bubun hoden kenshutsusochi wo riyo shita onkyo niyoru hendensetsubi no zetsuen rekka shindan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suenaga, Kiyoka [Kawasaki Steel Corp., Tokyo (Japan)

    1999-06-15

    This paper introduces an acoustic partial discharge detection device, consisting of a microphone, amplifier circuit for analog signals, A/D (Digital Signal Processor). This device has the following unique characteristics: (1) Judging whether or not there is partial discharge by analyzing supersonic signals. (2) High sensitivity for detecting discharge ; 100 pC from a distance of 1.2 m. (3)Locating the position of discharge occurrence by using a sharpe directional parabola microphone and laser beam pointer. The detector was used in the steel works to detect partial discharge on high-voltage electrical apparatus, where faults due to partial discharge were found in the potential transformer and current transformer. The effectiveness of the device was thus verified. (author)

  18. Use of the AlGaAs native oxide in AlGaAs-GaAs quantum well heterostructure laser devices

    International Nuclear Information System (INIS)

    Ries, M.J.; Chen, E.I.; Holonyak, Chen N. Jr.

    1995-01-01

    At atmospheric conditions high Al Composition Al x Ga 1-x As (x ≥0.7) in Al x Ga 1-x As-GaAs heterostructures is subject to failure via hydrolyzation. In contrast, open-quotes wetclose quotes oxidation at higher temperatures (≥400 degrees C) produces stable AlGaAs native oxides that prove to be useful in quantum well heterostructure devices. The open-quotes wetclose quotes oxidation process results in the conversion of high Al composition heterostructure material into a stable low refractive index, current-blocking native oxide, which can be used to define cavities and current paths. The oxidation can be used to passivate exposed Al-bearing surfaces. Its selective, anisotropic nature is also useful for the fabrication of both planar and non-planar devices, including buried-oxide heterostructures. The III-V native oxide has been used in the fabrication of single-stripe and stripe array lasers, ring lasers, coupled-cavity lasers, buried-oxide verticle cavity lasers, deep-oxide waveguides, deep-oxide lasers, and high reliability LED's. Also, the native oxide of A1As has been demonstrated in field effect transistor operation. The use of the III-V native oxide in various device applications is described

  19. Laser carved micro-crack channels in paper-based dilution devices.

    Science.gov (United States)

    Liu, Qian; Xu, Chaoping; Liang, Heng

    2017-12-01

    We developed novel laser carved micro-crack (LCC) paper-based channels to significantly accelerate the liquid flow without an external pump. For the aqueous solutions they increased the flow velocity 59 times in 16% laser power-8 micro-cracks-LCC channel compared with it in solely-printed channels. All experimental data from both LCC and solely-printed channels were well-fitted by the time-distance quadratic trinomial that we developed on laser power and micro-crack number. We designed and fabricated T-junction microstructures of LCCs. Further, the microfluidic paper-based analytical device (μPAD) of LCC on dye mixing gradient and pH gradient were developed with the characteristics, fast self-acting transportation and high-performance mixing of liquid flows. In the dye mixing gradient the time cost was reduced from 2355s in the solely-printed one to only 123s in the five-stage of this LCC-μPAD. It was useful for quick and long-distance transferences through the multiple units of μPADs. Certainly, this LCC-μPAD was inexpensive, disposable, portable and applicable to resource-limited environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Test results of the experimental laser device for potato tubers radiation treatment

    International Nuclear Information System (INIS)

    Anufrik, S.S.; Korzun, O.S.

    2007-01-01

    Results of 3 year investigation of the influence of the presowing low intensity laser radiation treatment of potato (Solanum tuberosum L.) tubers with the help of laser device with various spectral composition and exposition on plant growth, development and productivity and potato tubers quality and starch content in the conditions of the Republic of Belarus were presented. Presowing tubers treatment of potato cultivars Sante, Yavar and Arkhideya was realized by He-Ne, Ar-, Cu (in course of 3 and 5 minutes) and CO2 (in course of 5 seconds) lasers. Research results have shown that presowing treatment with CO2 laser promoted the higher (on 1,7-6,6%) potato germination capacity in comparison with the control variant without radiation treatment. Height of potato plants of Sante variety after radiation treatment fell behind the control ones. Haulm quantity per one plant and yield quality did not depend on radiation treatment Treatment with CO2 laser exercised the stimulatory action on productivity of Sante variety without changing the starch content in tubers. Tuber weight increased up to 0,4 kg (0,2 kg in the control variant). Similar effect for Arkhideya and Yavar varieties was obtained after Cu-laser treatment in course of 5 minutes. Radiation treatment with He-Ne laser caused the increased starch accumulation (on 0,4-0,6% in comparison with the control variant) in potato tubers of all studied varieties

  1. Laser Journal (Selected Articles),

    Science.gov (United States)

    1982-09-10

    laser is described. The apparatus structure and some experimental results are reported. MATERIAL AND ELEMENT MAGNETO -OPTIC PROPERTIES OF Pr dYb),(1oAI...with a magneto -optical modulator. The measuring system is simple and sensitive, with reading accuracy of ±0.0050 and error 45%. STUDY ON EXPERIMENTAL...laser radiation therapy . He Fang de East Chiia Hospital APPLICATION OF N4d,:Y q LASER TO TREAT INTERNAL HEMERRHOID Zhuo Ruilin Zu Songlin (Shanghai

  2. A new method to induce transitions in muonic atoms using a high-power tunable dye laser coupled to a stopping muon beam

    CERN Document Server

    Bertin, A; Duclos, J; Gastaldi, Ugo; Gorini, G; Neri, G; Picard, J; Pitzurra, O; Placci, A; Polacco, E; Stefanini, G; Torelli, G; Vitale, A; Zavattini, E

    1974-01-01

    An apparatus is described in which a ruby-pumped dye laser is used to induce transitions from the 2S to the 2P levels of the muonic ion ( mu He)/sup +/. The dye laser supplies infra-red radiation pulses in the wavelengths (8040-8180) AA, at typical repetition rates of 1 pulse every 4 s, with an energy release per pulse of 300 mJ for 1.2 J pumping energy. A special synchronization procedure is followed to trigger the laser in close coupling with the incoming muon beam which is stopped in a helium target at pressures between 40 and 50 atm. The other performances of the device are fully discussed with reference both to the laser facility and to the special high-pressure helium target. (23 refs).

  3. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  4. Laser transmitter system

    International Nuclear Information System (INIS)

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  5. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    Science.gov (United States)

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  6. 75 FR 70112 - Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered Suction...

    Science.gov (United States)

    2010-11-17

    .... FDA-2010-N-0513] Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered... risks. Adverse tissue reaction Material degradation Improper function of suction apparatus (e.g., reflux.... Material degradation Section 8. Stability and Shelf Life. [[Page 70113

  7. Robotic UV-Vis apparatus for long-term characterization of drug release from nanochannels

    International Nuclear Information System (INIS)

    Geninatti, T; Grattoni, A; Small, E

    2014-01-01

    Reliable monitoring of the kinetics of molecular release from drug delivery devices is crucial for their therapeutic success. Commercially available UV-Vis spectrophotometers provide reliable quantification of analyte concentrations directly correlated to the absorbance of fluids. However, they are not suitable for long-term measurements requiring high frequency of sampling from a large number of replicates and continuous fluid mixing, all of which are necessary for evaluation of drug delivery devices. To address this need, we developed a novel robotic apparatus serially connected to a commercial UV-Vis spectrophotometer. The robotic apparatus enables us to automatically and reliably acquire long-term data for up to 48 samples with high frequency of measurements and independent magnetic stirring. We equipped the robotic apparatus with independent connectors that allowed us to apply an electric potential to each sample for electrokinetic studies. The apparatus repeatability and accuracy was demonstrated in comparison to a commercial UV-Vis spectrophotometer. The system was successfully employed to characterize the diffusion kinetics of acetone and doxorubicin through nanochannel membranes (nDS) designed for long-term drug delivery. Dendritic fullerene 1 was used to show that the robotic apparatus routes the electric potential to nanochannel membranes enabling us to investigate the actively controlled release of molecules. Our results demonstrate that the robotic apparatus could widely broaden the range of applications of UV-Vis spectrophotometry, especially in the case of large sample processing and for long-term diffusive and electrokinetic studies in drug delivery. (technical design note)

  8. An apparatus comprising a waveguide-modulator and laser-diode and a method of manufacture thereof

    KAUST Repository

    Ooi, Boon S.; Shen, Chao; Ng, Tien Khee; Alyamani, Ahmed Y.; Eldesouki, Munir M.

    2017-01-01

    Example apparatuses are provided for simultaneous generation of high intensity light and modulated light signals at low modulation bias operating characteristics. An example apparatus includes a semipolar or nonpolar GaN-based substrate, a reverse- biased waveguide modulator section, and a forward-biased gain section based on InGaN/GaN quantum-well active regions, wherein the forward-biased gain section is grown on the semipolar or nonpolar GaN-based substrate. Methods of manufacturing the apparatuses described herein are also contemplated and described herein.

  9. An apparatus comprising a waveguide-modulator and laser-diode and a method of manufacture thereof

    KAUST Repository

    Ooi, Boon S.

    2017-04-13

    Example apparatuses are provided for simultaneous generation of high intensity light and modulated light signals at low modulation bias operating characteristics. An example apparatus includes a semipolar or nonpolar GaN-based substrate, a reverse- biased waveguide modulator section, and a forward-biased gain section based on InGaN/GaN quantum-well active regions, wherein the forward-biased gain section is grown on the semipolar or nonpolar GaN-based substrate. Methods of manufacturing the apparatuses described herein are also contemplated and described herein.

  10. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    Science.gov (United States)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  11. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  12. Helical-type device and laser fusion. Rivals for tokamak-type device at n-fusion development in Japan

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Under the current policy on the research and development of nuclear fusion in Japan, as enunciated by the Atomic Energy Commission of Japan, the type of a prototype fusion reactor will be chosen after 2020 from tokamak, helical or some other type including the inertial confinement fusion using lasers. A prototype fusion reactor is the next step following the tokamak type International Thermonuclear Experimental Reactor (ITER). With the prototype reactor, the feasibility as a power plant will be examined. At present the main research and development of nuclear fusion in Japan are on tokamak type, which have been promoted by Japan Atomic Energy Research Institute (JAERI). As for the other types of nuclear fusion, researches have been carried out on the helical type in Kyoto University and National Institute for Fusion Science (NIFS), the mirror type in Tsukuba University, the tokamak type using superconductive coils in Kyushu University, and the laser fusion in Osaka University. The features and the present state of research and development of the Large Helical Device and the laser fusion which is one step away from the break-even condition are reported. (K.I.)

  13. Apparatus comprising trace element dosage and method for treating raw water in biofilter

    DEFF Research Database (Denmark)

    2015-01-01

    the inlet (2) to the outlet (3) or in the reverse direction, - the trace element dosage device (13) is positioned upstream of the porous filter material and microbial biomass and is configured to dose trace element(s) to the water flowing through the filter. A method for treating raw water by microbial......Apparatus for treating raw water in a biofilter The present invention relates to an apparatus in which raw water is treated through microbial activity where microbial activity is controlled by nutrients and other parameters. Some of the nutrients controlling the microbial activity are trace...... elements such as certain metals (Cu, Co, Cr, Mo, Ni, W, Zn or a mixture thereof). The apparatus comprising - a volume provided with an inlet (2) for raw water and an outlet (3) for water having been subjected to microbial activity, a filter and a trace element dosage device (13) are placed in this volume...

  14. Adiabatic interpretation of a two-level atom diode, a laser device for unidirectional transmission of ground-state atoms

    International Nuclear Information System (INIS)

    Ruschhaupt, A.; Muga, J. G.

    2006-01-01

    We present a generalized two-level scheme for an 'atom diode', namely, a laser device that lets a two-level ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation. The conditions to break down the approximation, which imply also the diode failure, are analyzed

  15. Tunable organic distributed feedback dye laser device excited through Förster mechanism

    Science.gov (United States)

    Tsutsumi, Naoto; Hinode, Taiki

    2017-03-01

    Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.

  16. Diabetic peripheral angiopathy treatment using a multi-laser therapy device

    OpenAIRE

    Zabulonov, Y.; Chukhraiyeva, O.; Vladimirov, A.; Chukhraiyev, M.; Zukow, W.

    2015-01-01

    Zabulonov Y., Chukhraiyeva O., Vladimirov A., Chukhraiyev M., Zukow W. Diabetic peripheral angiopathy treatment using a multi-laser therapy device. Journal of Education, Health and Sport. 2015;5(10):227-233. ISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.32801 http://ojs.ukw.edu.pl/index.php/johs/article/view/2015%3B5%2810%29%3A227-233 https://pbn.nauka.gov.pl/works/662978 Formerly Journal of Health Sciences. ISSN 1429-9623 / 2300-665X. Archives 2011–2014 http://journal.rsw....

  17. Diabetic peripheral angiopathy treatment using a multi-laser therapy device

    OpenAIRE

    Y. Zabulonov; O. Chukhraiyeva; A. Vladimirov; M. Chukhraiyev; W. Zukow

    2015-01-01

    Zabulonov Y., Chukhraiyeva O., Vladimirov A., Chukhraiyev M., Zukow W. Diabetic peripheral angiopathy treatment using a multi-laser therapy device. Journal of Education, Health and Sport. 2015;5(10):227-233. ISSN 2391-8306. DOIhttp://dx.doi.org/10.5281/zenodo.32801 http://ojs.ukw.edu.pl/index.php/johs/article/view/2015%3B5%2810%29%3A227-233 https://pbn.nauka.gov.pl/works/662978 Formerly Journal of Health Sciences. ISSN 1429-9623 / 2300-665X. Archives 2011–2014http://journal.rsw.ed...

  18. A very sensitive ion collection device for plasma-laser characterization.

    Science.gov (United States)

    Cavallaro, S; Torrisi, L; Cutroneo, M; Amato, A; Sarta, F; Wen, L

    2012-06-01

    In this paper a very sensitive ion collection device, for diagnostic of laser ablated-target plasma, is described. It allows for reducing down to few microvolts the signal threshold at digital scope input. A standard ion collector is coupled to a transimpedance amplifier, specially designed, which increases data acquisition sensitivity by a gain ≈1100 and does not introduce any significant distortion of input signal. By time integration of current intensity, an amount of charge as small as 2.7 × 10(-2) pC can be detected for photopeak events.

  19. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  20. Automatic gamma spectrometry analytical apparatus

    International Nuclear Information System (INIS)

    Lamargot, J.-P.; Wanin, Maurice.

    1980-01-01

    This invention falls within the area of quantitative or semi-quantitative analysis by gamma spectrometry and particularly refers to a device for bringing the samples into the counting position. The purpose of this invention is precisely to provide an automatic apparatus specifically adapted to the analysis of hard gamma radiations. To this effect, the invention relates to a gamma spectrometry analytical device comprising a lead containment, a detector of which the sensitive part is located inside the containment and additionally comprising a transfer system for bringing the analyzed samples in succession to a counting position inside the containment above the detector. A feed compartment enables the samples to be brought in turn one by one on to the transfer system through a duct connecting the compartment to the transfer system. Sequential systems for the coordinated forward feed of the samples in the compartment and the transfer system complete this device [fr

  1. Maskless fabrication of a microfluidic device with interdigitated electrodes on PCB using laser ablation

    Science.gov (United States)

    Contreras-Saenz, Michael; Hassard, Christian; Vargas-Chacon, Rafael; Gordillo, Jose Luis; Camacho-Leon, Sergio

    2016-03-01

    This paper reports the maskless fabrication of a microfluidic device with interdigitated electrodes (IDE) based on the technology of MicroElectroMechanical Systems on Printed Circuit Board (PCB-MEMS) and laser ablation. The device has flame retardant (FR)-4 resin as substrate, cooper (Cu) as active material and SU-8 polymer as structural material. By adjusting the laser parameters, Cu IDEs and SU-8 microchannels were successfully patterned onto the FR-4 substrate. The respective width, gap and overlap of the IDEs were 50 μm, 25 μm and 500 μm. The respective width, depth and length of the microchannels were 210 μm, 24.6 μm and 6.3 mm. The resolution and repeatability achieved in this approach, along with the low cost of the involved materials and techniques, enable an affordable micromachining platform with rapid fabrication-test cycle to develop active multiphysic microdevices with several applications in the fields of biosensing, cell culture, drug delivery, transport and sorting of molecules, among others.

  2. Technology of solid-fuel-layer targets for laser-fusion experiments

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Pattinson, T.R.; Tarvin, J.A.

    1979-01-01

    An apparatus which produces uniform solid-fuel layers in glass-shell targets for laser irradiation is described. A low-power cw laser pulse is used to vaporize the fuel within a previously frozen target which is maintained in a cold-helium environment by a cryogenic shroud. The rapid refreezing that follows the pulse forms a uniform fuel layer on the inner surface of the glass shell. This apparatus and technique meet the restrictions imposed by the experimental target chamber. The method does not perturb the target position; nor does it preclude the usual diagnostic experimets since the shroud is retracted before the main laser pulse arrives. Successful laser irradiation and implosion of solid-fuel-layer targets at KMSF have confirmed the effectiveness and reliability of this system and extended the range of laser-target-interaction studies in the cryogenic regime

  3. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  4. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  5. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  6. Gas measuring apparatus with standardization means, and method therefor

    International Nuclear Information System (INIS)

    Typpo, P.M.

    1980-01-01

    An apparatus and a method for standardizing a gas measuring device has a source capable of emitting a beam of radiation aligned to impinge a detector. A housing means encloses the beam. The housing means has a plurality of apertures permitting the gas to enter the housing means, to intercept the beam, and to exit from the housing means. The device further comprises means for closing the apertures and a means for purging said gas from the housing means

  7. Apparatus and method for mapping an area of interest

    Science.gov (United States)

    Staab, Torsten A. Cohen, Daniel L.; Feller, Samuel [Fairfax, VA

    2009-12-01

    An apparatus and method are provided for mapping an area of interest using polar coordinates or Cartesian coordinates. The apparatus includes a range finder, an azimuth angle measuring device to provide a heading and an inclinometer to provide an angle of inclination of the range finder as it relates to primary reference points and points of interest. A computer is provided to receive signals from the range finder, inclinometer and azimuth angle measurer to record location data and calculate relative locations between one or more points of interest and one or more primary reference points. The method includes mapping of an area of interest to locate points of interest relative to one or more primary reference points and to store the information in the desired manner. The device may optionally also include an illuminator which can be utilized to paint the area of interest to indicate both points of interest and primary points of reference during and/or after data acquisition.

  8. Experiments with Coler magnetic current apparatus

    Science.gov (United States)

    Ludwig, T.

    Experiments with a replica of the famous Coler "Magnetstromapparat" (magnetic current apparatus) were conducted. The replica was built at the same institute at the Technical University of Berlin where the original was tested by Prof. Kloss in 1925. The details of the setup will be presented in this paper. The investigation of the Coler device was done with modern methods. The output was measured with a digital multi meter (DMM) and a digital storage oscilloscope (DSO). The results of the measurements will be presented. Did Coler convert vacuum fluctuations via magnetic, electric and acoustic resonance into electricity? There is a strong connection between magnetism and quantum field radiation energy. The magnetic moment of the electron is in part an energy exchange with the radiation field. The energy output of the Coler apparatus is measured. Furthermore the dynamics of the ferromagnetic magnets that Coler reported as the working principle of his device was investigated with magnetic force microscopy (MFM) and the spectroscopy mode of an atomic force microscope (AFM). The magnetic and acoustic resonance was investigated with magnetic force microscopy (MFM). The connection between ZPE and magnetism will be discussed as well as the perspective of using magnetic systems as a means to convert vacuum fluctuations into usable electricity.

  9. A new automatic design method to develop multilayer thin film devices for high power laser applications

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Apparao, K.V.S.R.

    1992-01-01

    Optical thin film devices play a major role in many areas of frontier technology like development of various laser systems to the designing of complex and precision optical systems. Design and development of these devices are really challenging when they are meant for high power laser applications. In these cases besides desired optical characteristics, the devices are expected to satisfy a whole range of different needs like high damage threshold, durability etc. In the present work a novel completely automatic design method based on Modified Complex Method has been developed for designing of high power thin film devices. Unlike most of the other methods it does not need any suitable starting design. A quarterwave design is sufficient to start with. If required, it is capable of generating its own starting design. The computer code of the method is very simple to implement. This report discusses this novel automatic design method and presents various practicable output designs generated by it. The relative efficiency of the method along with other powerful methods has been presented while designing a broadband IR antireflection coating. The method is also incorporated with 2D and 3D electric field analysis programmes to produce high damage threshold designs. Some experimental devices developed using such designs are also presented in the report. (author). 36 refs., 41 figs

  10. Method and apparatus for resonant frequency waveform modulation

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  11. Laser alignment measurement model with double beam

    Science.gov (United States)

    Mo, Changtao; Zhang, Lili; Hou, Xianglin; Wang, Ming; Lv, Jia; Du, Xin; He, Ping

    2012-10-01

    Double LD-Double PSD schedule.employ a symmetric structure and there are a laser and a PSD receiver on each axis. The Double LD-Double PSD is used, and the rectangular coordinate system is set up by use of the relationship of arbitrary two points coordinates, and then the parameter formula is deduced by the knowledge of solid geometry. Using the data acquisition system and the data processing model of laser alignment meter with double laser beam and two detector , basing on the installation parameter of the computer, we can have the state parameter between the two shafts by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated using the computer. This will instruct us to move the apparatus to align the shafts.

  12. A mathematical analysis of drug dissolution in the USP flow through apparatus

    Science.gov (United States)

    McDonnell, David; D'Arcy, D. M.; Crane, L. J.; Redmond, Brendan

    2018-03-01

    This paper applies boundary layer theory to the process of drug dissolution in the USP (United States Pharmacopeia) Flow Through Apparatus. The mass transfer rate from the vertical planar surface of a compact within the device is examined. The theoretical results obtained are then compared with those of experiment. The paper also examines the effect on the dissolution process caused by the interaction between natural and forced convection within the apparatus and the introduction of additional boundaries.

  13. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  14. Lasers and optoelectronics fundamentals, devices and applications

    CERN Document Server

    Maini, Anil K

    2013-01-01

    With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diag

  15. Portable apparatus for measurement of nuclear radiation

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1975-01-01

    The apparatus described is stated to be particularly applicable to the measurement of tritium contamination of a surface, although it may have other applications to the determination of radioactivity on surfaces. The mean range of a tritium β particle in air at normal atmospheric pressure is only 1.5 mm. and when monitoring such radiation with the apparatus it is necessary to exclude light. The apparatus comprises a plastic scintillator sheet located in the base of a housing, with a sealing ring mounted in the base so as to make a hermetic and light-tight seal between a support surface and the base of the housing. Photomultiplier means are optically coupled to the scintillator sheet to detect and amplify the scintillations, and a pump device is provided to reduce the air pressure in the vicinity of the sheet to below atmospheric pressure. The scintillator sheet and the photomultiplier means are movable as one unit within the housing, the unit being arranged to be acted upon by atmospheric pressure so as to move the unit into an operative position against a spring when the air pressure in the vicinity of the sheet is reduced to below atmospheric pressure. A shutter is provided to prevent exposure of the scintillator sheet to light when the apparatus is not in use. (U.K.)

  16. Rotational Raman scattering using molecular nitrogen gas for calibration of Thomson-scattering apparatus

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro

    1987-01-01

    Anti-Stokes rotational Raman lines in molecular nitrogen gas were used for the calibration of Thomson-scattering apparatus. It was found that molecular nitrogen gas is suitable for a vessel having strong stray light. The polarization ratio was 0.16 using linear-polarized laser light. (author)

  17. Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers

    International Nuclear Information System (INIS)

    Menon, P.S.; Kandiah, K.; Burhanuddin Yeop Majlis; Shaari, S.

    2011-01-01

    Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs) have profound advantages compared to traditional edge-emitting lasers offering improved properties with respect to mode selectivity, fibre coupling, threshold currents and integration into 2D arrays or with other electronic devices. Its commercialization is gaining momentum as the local and access network in optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based multi-quantum wells (MQW) and GaAs-based distributed Bragg reflectors (DBRs) is presented in this paper. Emphasis is on the device and mesa/pillar diameter design parameter comparison and its effect on the device characteristics. (author)

  18. Localized environment characterization device

    KAUST Repository

    Alzain, Hashim

    2016-07-21

    Various apparatuses and methods are provided for measuring the likely environmental impact of a particular geographic location on power generation properties of potential solar installations at the particular location. In an example embodiment of one such apparatus, a measurement device is provided. The measurement device includes a base portion comprising a base frame element disposed on a plurality of supporting legs, and a top panel comprising a series of connected members and one or more measurement modules whose planar dimensions are defined by the series of connected members. The top panel is connected to the base portion by a joint such that the top panel can rotate about the joint, and a panel support element is configured to fasten the top panel immovably at a desired degree of rotation in relation to the base portion.

  19. Growth and Characterization of III-V Semiconductors for Device Applications

    Science.gov (United States)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  20. Regenerative laser system

    International Nuclear Information System (INIS)

    Biancardi, F.R.; Landerman, A.; Melikian, G.

    1975-01-01

    Regenerative apparatus for exhausting the working medium from the optical cavity of a laser and for supplying preheated diluent to the reaction chamber of a laser is disclosed. In an aftercooler thermal energy is exchanged between the working medium exhausted from the optical cavity and a cryogenic coolant which is subsequently utilized as the motive fluid for an ejector and as a diluent in the production of laser gas. Highly toxic and corrosive gases are condensed out of the working medium as the cryogenic coolant is evaporated and superheated. A preheater transfers additional heat to the diluent before the diluent enters the reaction chamber. (U.S.)

  1. Apparatus for monitoring two-phase flow

    Science.gov (United States)

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  2. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  3. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  4. Construction of an apparatus for the magnetic capture of fermionic lithium atoms

    International Nuclear Information System (INIS)

    Jochim, S.

    2000-01-01

    This thesis reports on the construction of an apparatus for the magneto-optical trapping of the fermionic 6 Li-Isotope. This represents a first step towards experiments on the quantum degeneracy of dilute fermionic gases. The magneto-optical trap (MOT) will serve as a cold atom source for loading an optical trap. The apparatus consists of a laser system that excites the two 6 Li-D 2 -lines at 671 nm, an arrangement of coils generating the magnetic fields necessary to operate the MOT and a Zeeman slower, and a UHV-apparatus. The MOT is loaded from a thermal atomic beam. The Zeeman slower decelerates atoms with a velocity smaller than 600 m/s to about 40 m/s, so that they can be captured in the MOT. We expect to trap at least 10 8 atoms at a temperature of about 400 μK. (orig.)

  5. Device geometry considerations for ridge waveguide quantum dot mode-locked lasers

    International Nuclear Information System (INIS)

    Mee, J K; Raghunathan, R; Lester, L F; Wright, J B

    2014-01-01

    Quantum dot mode-locked lasers have emerged as a leading source for the efficient generation of high-quality optical pulses from a compact package, attracting considerable attention for support of multiple high-speed applications, owing to characteristics such as low noise operation and high pulse peak power, in addition to the ability to multiplex the output pulse train in temporal and frequency domains in order to obtain hundreds of GHz pulse repetition rates potentially operating at 1 Tbps. This topical review provides a detailed explanation into the primary advantages of quantum dots, identifying the key features that have made them superior to other material systems for passive mode-locking in semiconductor lasers. Following this account, the impact of the device's cavity geometry on the operational range of two-section, monolithic passively mode-locked lasers is investigated both experimentally and analytically. A model is described that predicts regimes of pulsed operation as a function of absorber length to gain length ratio. Experimental measurements of the pulse time-domain characteristics over a wide range of operating temperatures are found to be in excellent agreement with analytical predictions. The impact of ridge waveguide design on the operational range is also examined and the key dimensions that most strongly impact efficient operation are identified. (topical review)

  6. Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    Science.gov (United States)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2018-01-01

    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.

  7. Apparatus and method for detection and characterization of particles using light scattered therefrom

    Science.gov (United States)

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  8. Sample-taking apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Tanov, Y I; Ismailov, R A; Orazov, A

    1980-10-07

    The invention refers to the equipment for testing water-bearing levels in loose rocks. Its purpose is to simultaneously remove with the rock sample a separate fluid sample from the assigned interval. The sample-taking apparatus contains a core lifter which can be submerged into the casting string with housing and front endpiece in the form of a rod with a piston which covers the cavity of the core lifter, as well as mechanism for fixing and moving the endpiece within the core lifter cavity. The device differs from the known similar devices because the upper part of the housing of the core lifter is equipped with a filter and mobile casting which covers the filter. In this case the casing is connected to the endpiece rod and the endpiece is installed with the possibility of movement which is limited with fixing in the upper position and in the extreme upper position it divides the core lifter cavity into two parts, filter settling tank and core-receiving cavity.

  9. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices.

    Science.gov (United States)

    Dorrer, C; Wei, S K-H; Leung, P; Vargas, M; Wegman, K; Boulé, J; Zhao, Z; Marshall, K L; Chen, S H

    2011-10-15

    Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30 J/cm2.

  10. SUPPORTING UAVS IN LOW VISIBILITY CONDITIONS BY MULTIPLE-PULSE LASER SCANNING DEVICES

    Directory of Open Access Journals (Sweden)

    A. Djuricic

    2013-04-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are nowadays promising platforms for capturing spatial information, because they are low cost solutions, which are easy to bring to the surveying field and can operate automatically. Usually these devices are equipped with visual sensors to support the navigation of the platform or to transmit observations of the environment to the operator. By collecting the data and processing the captured images even an estimation of the observed environment in form of 3D information is available. Therefore Simultaneous Localization and Mapping (SLAM algorithms are well known for processing data which is captured in the visible domain. However, situations can occur where gathering visual information is difficult due to given limitations in form of low visibility. For example if soft obstacles in form of translucent materials are given in disaster scenarios with smoke and operating has still to be ensured, active optical sensors (e.g. laser scanners are gaining interest because they can penetrate the soft obstacle and allow to acquire information behind it. A new lightweight (210 g, simplified and minimized scanning unit is now available which allows to capture multiple reflections for each transmitted laser pulse, namely the Hokuyo UTM-30LX-EW. With such a device, it is possible to overcome the above mentioned restrictions or limitations of low visibility by soft obstacles and even measure under critical circumstances. A multi-pulse system can provide accurate measurements on, within, and behind the soft obstacle. This research focuses on investigating the ability and performance of a laser scanner to penetrate the soft obstacle. Thus, investigations on a system that overcomes these limitations and provides a solution will be given. First promising experimental results considering soft obstacle are described.

  11. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation

    Science.gov (United States)

    Figueiras, E.; Campos, R.; Semedo, S.; Oliveira, R.; Requicha Ferreira, L. F.; Humeau-Heurtier, A.

    2012-03-01

    Laser Doppler flowmetry (LDF) is now commonly used in clinical research to monitor microvascular blood flow. However, the dependence of the LDF signal on the microvascular architecture is still unknown. That is why we propose a new laser Doppler flowmeter for depth dependent monitoring of skin microvascular perfusion. This new laser Doppler flowmeter combines for the first time, in a device, several wavelengths and different spaced detection optical fibres. The calibration of the new apparatus is herein presented together with in vivo validation. Two in vivo validation tests are performed. In the first test, signals collected in the ventral side of the forearm are analyzed; in the second test, signals collected in the ventral side of the forearm are compared with signals collected in the hand palm. There are good indicators that show that different wavelengths and fibre distances probe different skin perfusion layers. However, multiple scattering may affect the results, namely the ones obtained with the larger fibre distance. To clearly understand the wavelength effect in LDF measurements, other tests have to be performed.

  12. 21 CFR 886.4390 - Ophthalmic laser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic laser. 886.4390 Section 886.4390 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4390 Ophthalmic laser. (a) Identification. An ophthalmic laser is an AC-powered device intended to coagulate or cut tissue of the eye, orbit, or surrounding skin...

  13. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  14. Microwave modeling of laser plasma interactions. Final report

    International Nuclear Information System (INIS)

    1983-08-01

    For a large laser fusion targets and nanosecond pulse lengths, stimulated Brillouin scattering (SBS) and self-focusing are expected to be significant problems. The goal of the contractual effort was to examine certain aspects of these physical phenomena in a wavelength regime (lambda approx.5 cm) more amenable to detailed diagnostics than that characteristic of laser fusion (lambda approx.1 micron). The effort was to include the design, fabrication and operation of a suitable experimental apparatus. In addition, collaboration with Dr. Neville Luhmann and his associates at UCLA and with Dr. Curt Randall of LLNL, on analysis and modelling of the UCLA experiments was continued. Design and fabrication of the TRW experiment is described under ''Experiment Design'' and ''Experimental Apparatus''. The design goals for the key elements of the experimental apparatus were met, but final integration and operation of the experiment was not accomplished. Some theoretical considerations on the interaction between Stimulated Brillouin Scattering and Self-Focusing are also presented

  15. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  16. Apparatus for monitoring two-phase flow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Tong, L.S.

    1977-01-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods. 3 claims, 9 figures

  17. Mixing-settling apparatus for liquid-liquid extraction

    International Nuclear Information System (INIS)

    Skolokin, L.I.; Leif, V.E.; Sednev, J.M.

    1989-01-01

    A mixing-settling apparatus for liquid-liquid extraction comprises a casing. A first partition is mounted along its longitudinal axis and above an overflow device. The mixing device is connected to a means of feeding at least one of the phases and is shaped as at least one hollow element mounted essentially perpendicularly to the longitudinal axis of the casing. The walls of the hollow element are provided with openings, the outlet cross-sections of which are directed to the first partition. The first partition is provided with a means for regulating the height of the layer of the mixed phases M in the mixing zone, said means being located in the partition at the point most distant from the means for feeding phases L, S in the longitudinal direction. A second transporting device is mounted in the settling zone. It is fixed on to the casing and is located after the overflow device in the direction of movement of the light phase l. (author) 10 figs

  18. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  19. Apparatus for checking the dimensions of nuclear fuel pellets

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1978-01-01

    The description is given of an apparatus for checking the dimensions of pellets comprising a housing, a feeding device near this housing to move a pellet towards the latter and away from it, and a platform with a hole, this platform being fitted to the housing near the feeding system in order to hold the pellet [fr

  20. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    Science.gov (United States)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  1. 无烟无创痛针灸治疗仪的研制及应用%The Development and Application of Acupuncture Therapeutic Apparatus with no Smoke,Wound and Pain

    Institute of Scientific and Technical Information of China (English)

    许浒; 汪志新; 沈雪勇; 陈君政; 姚鼎山; 张景隆

    2008-01-01

    Objective To search for new therapeutic apparatus and method of acupuncture. Methods 650-660 nm semiconductor laser and 10.6 um CO2 infrared laser were coupled to generate integrated laser acupuncture. Controllable infrared electric heating device with negative ion smokeless moxa was mounted on this integrated laser acupuncture machine to compose the smokeless and pain-free acupuncture therapeutic apparatus. Results The integrated laser acupuncture has both the conventional acupuncture effect and heated effect generated by laser; Negative ion moxa under the control of infrared electric heating device can be electrically distillatod without open fire at the temperature lowering than the burning point and generate both warming effects and chemical effects. The negative ion moxa composed Tourmaline can send off massive negative ion when burning, which can decrease harmful gas and purify environment. Conclusion The new type of acupuncture therapeutic apparatus conquered insufficiencies of conventional acupuncture as pain, breakdown of needle,bleeding, infection, smoking, bad smell, burning, and blistering, and retain and enforce the acupuncture functions of treatment,health-care, and cosmetology.%目的 寻求新的针灸治疗工具和针灸方法.方法 采用650~660 nm半导体激光与10.6 μm CO2红外激光耦合成复合激光针灸,加上置有负离子无烟艾素的可控式红外电热装置,组合成无烟无创痛针灸治疗仪,并在社区医院和美容院进行应用研究.结果 复合激光针灸具有激光针灸穿透的针刺样光针作用,又有激光产热的温热光灸效果;负离子艾素在可控式红外电热装置作用下,使艾素在燃点以下无明火电子蒸馏,既可产生物理的温热效应,又可产生艾挥发油作用的化学效应;由托玛琳等复合成分研制而成的负离子艾素,燃烧时产生大量的负离子,可减少有害气体和净化环境.结论 新型无烟无创痛针灸治疗仪克服了传统针灸疼痛、断针、出血、感染、传染以及烟熏、气味、烧伤、起泡等不足,保留、加强了针灸的治疗、保健、养生、美容功效.

  2. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  3. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  4. An apparatus for separating and continuously recovering a particulate material carried by a gas stream

    International Nuclear Information System (INIS)

    Becker, W.R.; Dada, A.G.; Dehollander, W.R.; Sloat, R.J.

    1974-01-01

    Description is given of an apparatus adapted to separate and recover a particulate material carried by hot corrosive gases. The apparatus comprises a flow-channel connected to a gas stream source carrying a particulate material, a first and second tubes connected to said flow-channel, filtrating devices, recovery containers and flow-restricting valves. This can be applied to the recovery of uranium oxides generated by flame reactions [fr

  5. 3.5. Apparatus for plasma electron temperature measurement by Thomson scattering

    International Nuclear Information System (INIS)

    Kolacek, K.; Babicky, V.

    1981-01-01

    Equipment was developed and tested for measuring time-resolved local electron plasma temperature and density by the Thomson scattering of ruby laser light. The laser consists of a Q-switched generator (ruby 12 mm in diameter by 150 mm long) followed by one amplifier (ruby 16 mm indi long) followed by one amplifier (ruby 16 mm in diameter by 250 mm long). For Q-switching a Pockels cell with a z-cut ADP crystal was used. The laser is capable of delivering 4 J of energy in a pulse of 50 ns in duration. The spectrum of the laser light scattered at an angle of 9a degrees is analyzed by a six-channel polychromator. Fibre optics and photomultipliers with gated amplifiers are used. Output signals are transmitted via a parallel-to-series converter to a single-trace oscilloscope. The whole Thomson scattering apparatus was successfully tested by the Rayleigh scattering in the air at atmospheric pressure. (J.U.)

  6. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.

    2011-01-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  7. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei

    2011-11-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  8. Method and apparatus to trigger superconductors in current limiting devices

    Science.gov (United States)

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  9. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    Science.gov (United States)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  10. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  11. Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating

    Science.gov (United States)

    Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong

    2017-05-01

    The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.

  12. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  13. Infrared thermal annealing device

    International Nuclear Information System (INIS)

    Gladys, M.J.; Clarke, I.; O'Connor, D.J.

    2003-01-01

    A device for annealing samples within an ultrahigh vacuum (UHV) scanning tunneling microscopy system was designed, constructed, and tested. The device is based on illuminating the sample with infrared radiation from outside the UHV chamber with a tungsten projector bulb. The apparatus uses an elliptical mirror to focus the beam through a sapphire viewport for low absorption. Experiments were conducted on clean Pd(100) and annealing temperatures in excess of 1000 K were easily reached

  14. Hermetic Seal Leak Detection Apparatus

    Science.gov (United States)

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  15. Evaluation of the Radiological Safety of 192 Ir Apparatus for Industrial Gamma Radiography

    International Nuclear Information System (INIS)

    Aquino, J. O.; Silva, F. C. A. da; Ramalho, A. T.; Godoy, J. M. O.

    2004-01-01

    The majority of the 192Ir apparatus for industrial gamma radiography have been in usage in Brazil for more than 20 years. They are portable, and almost all operate according to category II. The main objective of this work was to assess the radiological safety of the 11 models of 192Ir apparatus most used in Brazil. The 11 models of 192Ir apparatus were studied with respect to compliance with the main safety requirements of three editions of international Standards ISO 3999. Six models were already manufactured incorporating the safety devices specified in the first edition of ISO 3999, issued in 1977. However, five models were not. The validity of their type B certificates for transport packages was also evaluated. (Author) 8 refs

  16. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  17. Maintenance and control of apparatus for radiotherapy

    International Nuclear Information System (INIS)

    Wakui, Sho

    1979-01-01

    In order to perform the safe operation of radiotherapy apparatuses and to secure the accuracy in positioning patients and in setting up radiation beam, proper checking-up and maintenance schedule is necessary. Such schedule is described briefly and also the mechanical or electrical equipments designed for securing the safety and accuracy or eliminating in adequate operation are explained, especially on treatment tables and accessories, such as wedge filters, irradiation field indicators and pointers, and the devices for observing patients. The structures and the practical control of the following equipments are explained; standard treatment table, treatment table with a lifting column by oil pressure, mobile positioning control pedestal, positioning control pendaut, mechanical fuse cutter for the safeguard of table height movement, safety interlock to protect table from physical contact with radiation head in rotation and safeguard for arms of a patient in longitudinal movement of treatment table. For the maintenance and control of wedge filters, the kind of filter angle in use, the direction of filter in use and whether filter is used or not are exactly confirmed by adequate display. The direction mechanism of radiation field and the pointers are required to be strict for exact focusing of radiation. Various control apparatuses and monitoring apparatuses are described. (Kobatake, H.)

  18. Magnetically switched power supply system for lasers

    Science.gov (United States)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  19. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices.

    Science.gov (United States)

    Nie, Jinfang; Liang, Yuanzhi; Zhang, Yun; Le, Shangwang; Li, Dunnan; Zhang, Songbai

    2013-01-21

    In this paper, we report a simple, low-cost method for rapid, highly reproductive fabrication of paper-based microfluidics by using a commercially available, minitype CO(2) laser cutting/engraving machine. This method involves only one operation of cutting a piece of paper by laser according to a predesigned pattern. The hollow microstructures formed in the paper are used as the 'hydrophobic barriers' to define the hydrophilic flowing paths. A typical paper device on a 4 cm × 4 cm piece of paper can be fabricated within ∼7-20 s; it is ready for use once the cutting process is finished. The main fabrication parameters such as the applied current and cutting rate of the laser were optimized. The fabrication resolution and multiplexed analytical capability of the hollow microstructure-patterned paper were also characterized.

  20. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    International Nuclear Information System (INIS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C.; Winske, D.

    2014-01-01

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations

  1. Laser pumped lasers for isotope separation

    International Nuclear Information System (INIS)

    Fry, S.M.

    1976-01-01

    A study of the isotope separation laser requirements reveals that high pressure polyatomic molecular gas laser pumped lasers can attain the necessary characteristics including tunability, energy output, pulse width, and repetition rate. The results of a search, made for molecules meeting the appropriate requirements for one of several pump schemes utilizing a CO 2 laser and with output in the 12 μm or 16μm wavelength range, are presented. Several methods of pumping are reviewed and two novel pump schemes are presented. A laser pumped laser device design is given, and operation of this device and associated diagnostic equipment is confirmed by repeating experiments in OCS and NH 3 . The results of OCS laser experiments show that an improvement in pump rate and output per unit length is obtained with the device, using a wedged transverse pumping scheme. A new multi-line laser system in NH 3 pumped by a TEA CO 2 laser is reported. More than forty transitions spanning the wavelength range of 9.2 to 13.8 μm are observed and identified. A strong output at 12.08 μm is one of the closest lines yet found to the required laser isotope separation wavelength. Far infrared emission near 65 μm is observed and is responsible for populating levels which lase in pure ammonia near 12.3 μm. Buffer gas (e.g., N 2 or He) pressures of approximately 40--800 torr cause energy transfer by collision-induced rotationaltransitions from the pumped antisymmetric to the lasing symmetric levels in the nu 2 = 1 band of ammonia. Most of the observed lines are aP(J,K) transitions which originate from the nu 2 /sup s/ band. Measurements of the pressure dependence of the laser output shows that some lines lase at pressures greater than one atmosphere. Transient behavior of the 12.08 μm line is calculated from a simplified analytic model and these calculations are compared to the experimental results

  2. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  3. ROLLER FILTRATION APPARATUS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter and liquid from a m...

  4. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    Science.gov (United States)

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  5. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  6. 21 CFR 884.6200 - Assisted reproduction laser system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device...

  7. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.

    1977-07-01

    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  8. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  9. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.

    1988-01-01

    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)

  10. Design, manufacture and in-vitro evaluation of a new microvascular anastomotic device.

    Science.gov (United States)

    Huang, Shao-Fu; Wang, Tien-Hsiang; Wang, Hsuan-Wen; Huang, Shu-Wei; Lin, Chun-Li; Kuo, Hsien-Nan; Yu, Tsung-Chih

    2013-01-01

    Many microvascular anastomoses have been proposed for use with physical assisted methods, such as cuff, ring-pin, stapler, clip to the anastomose blood vessel. The ring-pin type anastomotic device (e.g., 3M Microvascular Anastomotic System) is the most commonly used worldwide because the anastomotic procedure can be conducted more rapidly and with fewer traumas than using sutures. However, problems including vessel leakage, ring slippage, high cost and high surgical skill demand need to be resolved. The aim of this study is to design and manufacture a new anastomotic device for microvascular anastomosis surgery and validate the device functions with in-vitro testing. The new device includes one pair of pinned rings and a set of semi-automatic flap apparatus designed and made using computer-aided design / computer-aided manufacture program. A pair of pinned rings was used to impale vessel walls and establish fluid communication with rings joined. The semi-automatic flap apparatus was used to assist the surgeon to invert the vessel walls and impale onto each ring pin, then turning the apparatus knob to bring the rings together. The device was revised until it became acceptable for clinical requires. An in-vitro test was performed using a custom-made seepage micro-fluid system to detect the leakage of the anastomotic rings. The variation between input and output flow for microvascular anastomoses was evaluated. The new microvascular anastomotic device was convenient and easy to use. It requires less time than sutures to invert and impale vessel walls onto the pinned rings using the semi-automatic flap apparatus. The in-vitro test data showed that there were no tears from the joined rings seam during the procedures. The new anastomotic devices are effective even with some limitations still remaining. This device can be helpful to simplify the anastomosis procedure and reduce the surgery time.

  11. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study.

    Science.gov (United States)

    Jimenez, Joaquin J; Wikramanayake, Tongyu C; Bergfeld, Wilma; Hordinsky, Maria; Hickman, Janet G; Hamblin, Michael R; Schachner, Lawrence A

    2014-04-01

    Male and female pattern hair loss are common, chronic dermatologic disorders with limited therapeutic options. In recent years, a number of commercial devices using low-level laser therapy have been promoted, but there have been little peer-reviewed data on their efficacy. To determine whether treatment with a low-level laser device, the US FDA-cleared HairMax Lasercomb®, increases terminal hair density in both men and women with pattern hair loss. Randomized, sham device-controlled, double-blind clinical trials were conducted at multiple institutional and private practices. A total of 146 male and 188 female subjects with pattern hair loss were screened. A total of 128 male and 141 female subjects were randomized to receive either a lasercomb (one of three models) or a sham device in concealed sealed packets, and were treated on the whole scalp three times a week for 26 weeks. Terminal hair density of the target area was evaluated at baseline and at 16- and 26-week follow-ups, and analyzed to determine whether the hypothesis formulated prior to data collection, that lasercomb treatment would increase terminal hair density, was correct. The site investigators and the subjects remained blinded to the type of device they dispensed/received throughout the study. The evaluator of masked digital photographs was blinded to which trial arm the subject belonged. Seventy-eight, 63, 49, and 79 subjects were randomized in four trials of 9-beam lasercomb treatment in female subjects, 12-beam lasercomb treatment in female subjects, 7-beam lasercomb treatment in male subjects, and 9- and 12-beam lasercomb treatment in male subjects, compared with the sham device, respectively. Nineteen female and 25 male subjects were lost to follow-up. Among the remaining 122 female and 103 male subjects in the efficacy analysis, the mean terminal hair count at 26 weeks increased from baseline by 20.2, 20.6, 18.4, 20.9, and 25.7 per cm2 in 9-beam lasercomb-treated female subjects, 12-beam

  12. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    Science.gov (United States)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-11-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.

  13. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    International Nuclear Information System (INIS)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-01-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method. (paper)

  14. A simple dental caries detection system using full spectrum of laser-induced fluorescence

    Science.gov (United States)

    Rocha-Cabral, Renata Maciel; Mendes, Fausto Medeiros; Maldonado, Edison Puig; Zezell, Denise Maria

    2015-06-01

    Objectives: to develop an apparatus for the detection of early caries lesions in enamel using the full extent of the tooth fluorescence spectrum, through the integration of a laser diode, fiber optics, filters and one portable spectrometer connected to a computer, all commercially available; to evaluate the developed device in clinical and laboratory tests, and compare its performance with commercial equipment. Methods: clinical examinations were performed in patients with indication for exodontics of premolars. After examinations, the patients underwent surgery and the teeth were stored individually. The optical measurements were repeated approximately two months after extraction, on the same sites previously examined, then histological analysis was carried out. Results: the spectral detector has presented high specificity and moderate sensitivity when applied to differentiate between healthy and damaged tissues, with no significant differences from the performance of the commercial equipment. The developed device is able to detect initial damages in enamel, with depth of approximately 300 μm. Conclusions: we successfully demonstrated the development of a simple and portable system based in laser-induced fluorescence for caries detection, assembled from common commercial parts. As the spectral detector acquires a complete recording of the spectrum from each tissue, it is possible to use it for monitoring developments of caries lesions.

  15. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  16. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  17. Apparatus for isotopic separation using a high-frequency wave and coherent radiation

    International Nuclear Information System (INIS)

    Mourier, G.

    1983-11-01

    The purpose of the present invention is an apparatus for industrial separation of isotopes, using a high-frequency electromagnetic field and coherent radiation such as that from a laser. Separation of isotopes by isotopically selective ionization, followed by entrainment of the ions by means of a magnetic field, is known. The selective ionization operation can be carried out in two consecutive stages: excitation of the chosen isotope, from the ground energy state to a specified excited level, near ionization; the energy required for this first stage can be supplied by means of a laser, the laser radiation being characterized for high power and well-defined frequency; this stage offers the advantage of being easily made isotopically selective; then ionization of the excited atoms by means of supplying relatively weak energy which should be insufficient to ionize the nonexcited ions; this second stage can also be carried out by means of a laser

  18. Development of Measurement Device of Working Radius of Crane Based on Single CCD Camera and Laser Range Finder

    Science.gov (United States)

    Nara, Shunsuke; Takahashi, Satoru

    In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.

  19. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  20. Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices

    KAUST Repository

    In, Jung Bin

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications. © 2012 American Chemical Society.

  1. “SMART” LASER SCALPELS FOR ROBOTIC SURGERY

    Directory of Open Access Journals (Sweden)

    A. K. Dmitriev

    2016-01-01

    Full Text Available Background: Elaboration of automatized and robotic systems for precision and minimally traumatic surgery is one of the main areas of modern surgery. The concept of the so-called “smart” laser scalpels seems a  promising technical solution in this field. Aim: To develop organizational principles of a  feedback smart surgical laser devices based on CO₂ and fiber lasers. Materials and methods: As laser sources, we used a one mode wave CO₂ laser with a power of up to 25 W, high frequency pumping of the active media and radiation wavelength of 10.6 mcm, as well as a one mode fiber Er laser with a power of up to 5 W and radiation wavelength of 1.54  mcm. The laser device feedback was organized with an autodynic control of laser evaporation of biological tissues. The “smart” laser scalpel effects were studied in the porcine tissues in  vitro. The feedback laser devices were tested on normal and tumor animal tissues (white rats in vitro and in vivo. Also, we tested the possibility of diagnostics of laser evaporation on human tumor tissues. Results: Taking the one mode CO₂ laser and one mode fiber Er laser as examples, it was shown that an autodynic signal arising during evaporation of various biological tissues has different spectral characteristics. This makes the bases for organization of a  feedback in surgical devices functioning as a  “smart” scalpel. A “smart” surgical feedback device based on CO₂ laser and a  decoy of a  “smart” surgical device based on a fiber Er laser were developed. We studied the possibilities of differential diagnostics of a type of a tissue being evaporated in vitro with the use of the data from laser scalpels. Also, pre-clinical trials of a CO₂ laser-based “smart” surgical device on biological tissues were performed. The trials showed that such a “smart” laser scalpel allows for intra-operative differentiation between normal and tumor tissues that would give the

  2. High data rate atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash

    2015-07-21

    A light-pulse atomic interferometry (LPAI) apparatus is provided. The LPAI apparatus comprises a vessel, two sets of magnetic coils configured to magnetically confine an atomic vapor in two respective magneto-optical traps (MOTs) within the vessel when activated, and an optical system configured to irradiate the atomic vapor within the vessel with laser radiation that, when suitably tuned, can launch atoms previously confined in each of the MOTs toward the other MOT. In embodiments, the magnetic coils are configured to produce a magnetic field that is non-zero at the midpoint between the traps. In embodiments, the time-of-flight of the launched atoms from one MOT to the other is 12 ms or less. In embodiments, the MOTs are situated approximately 36 mm apart. In embodiments, the apparatus is configured to activate the magnetic coils according to a particular temporal magnetic field gradient profile.

  3. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    International Nuclear Information System (INIS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-01-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features. - Highlights: • Mobile, hand-guided LIBS apparatus for metal analysis, even for steel • Comparable results as state-of-the-art SD-OES instrument • New sectioned calibration function resulting in smaller deviations • Comparison of univariate and multivariate analysis methods

  4. Active magnetic regenerator method and apparatus

    Science.gov (United States)

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  5. Analysis of Contemporary Methods for Designing Rotary Type Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    E. P. Banin

    2015-01-01

    Full Text Available The research object is inlet apparatus of ventricular assist device, namely inlet cannula and straightener.The purpose of the study is to reveal features of blood flow in inlet apparatus of ventricular assist device. The mathematical modeling is carried out by computational fluid dynamics analysis in a stationary setting.The first part of study concerns the analysis of existing approaches to the numerical and experimental studies in designing the ventricular assist devices of rotary type. It reveals the features of each approach for their further application in practice. The article presents an original design of developed hydraulic test bench to verify the results of mathematical modeling. Analysis of foreign authors’ studies showed that there is no enough attention paid to design of the adjacent pump assemblies of ventricular assist device. The second part of study considers direct mathematical modeling of input apparatus of ventricular assist device. The study examined straightener with three or four blades. Mathematical modeling has revealed the presence of potentially dangerous stagnation zones and essential asymmetry of the outlet flow from the input unit. The found features must be taken in consideration in designing the ventricular assist device pumps. In the future we plan to use obtained data to create a parametric model of the rotor and the diffuser considering the abovementioned features.

  6. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  7. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  8. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  9. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    Science.gov (United States)

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  11. Developing a compact multiple laser diode combiner with a single fiber stub output for handheld IoT devices

    Science.gov (United States)

    Lee, Minseok; June, Seunghyeok; Kim, Sehwan

    2018-01-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources ( e.g., fluorescence and absorbance imaging). We present a compact 6 channel combiner that couples the output of independent solid-state light sources into a single 400-μm-diameter fiber stub for handheld Internet of Things (IoT) devices. We demonstrate average coupling efficiencies > 80% for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity-modulated laser diodes. This fiber-stub-type beam combiner could be used to construct custom multi-wavelength sources for tissue oximeters, microscopes and molecular imaging technologies. In order to validate its suitability, we applied the developed fiber-stub-type beam combiner to a multi-wavelength light source for a handheld IoT device and demonstrated its feasibility for smart healthcare through a tumor-mimicking silicon phantom.

  12. Remote detection of electronic devices

    Science.gov (United States)

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  13. Lessons learned from nanoscale specimens tested by MEMS-based apparatus

    Science.gov (United States)

    Elhebeary, Mohamed; Saif, M. Taher A.

    2017-06-01

    The last two decades were marked by the innovative synthesis of nanomaterials and devices. The success of these devices hinges on the mechanical properties of nanomaterials and an understanding of their deformation and failure mechanisms. Many novel testing techniques have been developed to test materials at small scale. This paper reviews the state-of-the-art microelectromechanical systems (MEMS) apparatus developed to characterize materials at nanoscale, and the key insights gained on structure-property relations of materials through these characterizations. Finally, new applications of MEMS in testing living materials, such as tissues and cells, for disease diagnosis and prognosis are discussed.

  14. Lessons learned from nanoscale specimens tested by MEMS-based apparatus

    International Nuclear Information System (INIS)

    Elhebeary, Mohamed; Saif, M Taher A

    2017-01-01

    The last two decades were marked by the innovative synthesis of nanomaterials and devices. The success of these devices hinges on the mechanical properties of nanomaterials and an understanding of their deformation and failure mechanisms. Many novel testing techniques have been developed to test materials at small scale. This paper reviews the state-of-the-art microelectromechanical systems (MEMS) apparatus developed to characterize materials at nanoscale, and the key insights gained on structure-property relations of materials through these characterizations. Finally, new applications of MEMS in testing living materials, such as tissues and cells, for disease diagnosis and prognosis are discussed. (topical review)

  15. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.

    1999-05-01

    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  16. Linerless label device and method

    KAUST Repository

    Binladen, Abdulkari

    2016-01-01

    This apparatus and method for applying a linerless label to an end user product includes a device with a printer for printing on a face surface of a linerless label, and a release coat applicator for applying a release coat to the face surface

  17. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  18. Analysis the prospects of use of mobile X-ray diagnostic apparatus of the C-arm type

    International Nuclear Information System (INIS)

    Blinov, N.N.; Mazurov, A.I.

    2000-01-01

    The efficiency of using the mobile X-ray apparatus with the C-arm multi-positional support, equipped with a medium-frequency generator and roentgen image amplifier with a digital channel, and device for obtaining hard copies in the diagnostic, surgical and therapeutic practice, is shown and the basis requirements, imposed in various areas on the apparatus of this type (traumatology, orthopedics, hospital wards studies, X-ray endoscopy, X-ray operational units, intervention roentgenology, angiography), are formulated. The technical characteristics are presented and the operation of the national surgical mobile apparatus RTS-612 is described. The experience in the apparatus operation showed, that x-ray surgical complexes, meeting the requirements of the modern public health in the area of traumatology, orthopedics, cardiosurgery, endoscopy, urology and other areas, wherein the X-ray control during the operation is accomplished, may be created on its basis [ru

  19. An experimental apparatus to simulate body-powered prosthetic usage: Development and preliminary evaluation.

    Science.gov (United States)

    Gao, Fan; Rodriguez, Johanan; Kapp, Susan

    2016-06-01

    Harness fitting in the body-powered prosthesis remains more art than science due to a lack of consistent and quantitative evaluation. The aim of this study was to develop a mechanical, human-body-shaped apparatus to simulate body-powered upper limb prosthetic usage and evaluate its capability of quantitative examination of harness configuration. The apparatus was built upon a torso of a wooden mannequin and integrated major mechanical joints to simulate terminal device operation. Sensors were used to register cable tension, cable excursion, and grip force simultaneously. The apparatus allowed the scapula to move up to 127 mm laterally and the load cell can measure the cable tension up to 445 N. Our preliminary evaluation highlighted the needs and importance of investigating harness configurations in a systematic and controllable manner. The apparatus allows objective, systematic, and quantitative evaluation of effects of realistic harness configurations and will provide insightful and working knowledge on harness fitting in upper limb amputees using body-powered prosthesis. © The International Society for Prosthetics and Orthotics 2015.

  20. Investigation of concept of efficient short wavelength laser. Interim progress report, 1 April 1977-30 April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Taylor, R.L.

    1978-05-01

    Under this program PSI is investigating the photolytic decomposition of a class of endoergic molecules - azides. Because these compounds contain substantial chemical energy, they offer a potentially more efficient approach for the production of electronically excited fragments. The goal of the present program was to acquire sufficient data and understanding of certain fundamental processes to permit the critical evaluation of this approach for laser development. An apparatus was built to study the wavelength-selected photolysis of gaseous, covalent azides. The photolysis source is a frequency doubled, tuneable dye laser. Detection of fragment species is accomplished by observation of primary fluorescence, or by laser-induced fluorescence (LIF) using a second tuneable dye laser. The design of the apparatus is discussed in detail.

  1. Compact blue laser devices based on nonlinear frequency upconversion

    International Nuclear Information System (INIS)

    Risk, W.P.

    1989-01-01

    This paper reports how miniature sources of coherent blue radiation can be produced by using nonlinear optical materials for frequency upconversion of the infrared radiation emitted by laser diodes. Direct upconversion of laser diode radiation is possible, but there are several advantages to using the diode laser to pump a solid-state laser which is then upconverted. In either case, the challenge is to find combinations of nonlinear materials and laser for efficient frequency upconversion. Several examples have been demonstrated. These include intracavity frequency doubling of a diode-pumped 946-nm Nd:YAG laser, intracavity frequency mixing of a 809-nm GaAlAs laser diode with a diode- pumped 1064-nm Nd:YAG laser, and direct frequency doubling of a 994-nm strained-layer InGaAs laser diode

  2. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  3. Vorrichtung zur Thermokoagulation mittels Laserstrahlung

    OpenAIRE

    Wehner, Martin; Aden, Mirko

    2012-01-01

    The apparatus has diode lasers (2,4) which emit laser radiation with different central wavelength. The laser radiations from diode lasers are superimposed with each other. A control device (12) is provided for controlling laser power of diode laser. The thermal coagulation process is performed with respect to simultaneous emission of laser radiation from diode laser in processing mode. The ratio of laser power of diode laser in processing mode is changed according to specific pattern and/or a...

  4. Fuel injection apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, H; Kobayashi, H; Nagata, S

    1975-01-07

    A fuel injection apparatus for a rapid cut of fuel supply to internal combustion engines during deceleration is described. The fuel cut is achieved by an electromagnetic switch. The number of engine revolutions are determined by the movement of cam shafts, and one of the cam shafts is made of electroconductive and nonconductive materials which generate an intermittent electrical signal to the magnetic switch. The device can cut the fuel in any deceleration condition, therefore it is more advantageous than fuel injection utilizing the intake load variation which can operate only under certain deceleration conditions.

  5. A radiation research apparatus sensitive to wavelength

    International Nuclear Information System (INIS)

    1980-01-01

    The apparatus described is equipped with a radiation source with a tuning device for the generation of X radiation of at least two different wavelength spectra. The detector with ionisation chamber is able to discriminate between these spectra. This is done with the aid of an auxillary electrode between the entrance window and a high voltage electrode. With a lower source of voltage this electrode has a potential equal to the high voltage electrode potential and with a higher voltage source it has a potential equal to the signal electrode potential. (Th.P.)

  6. System for remote control of underground device

    Science.gov (United States)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  7. System for remote control of underground device

    International Nuclear Information System (INIS)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-01-01

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics

  8. Memory properties of a Ge nanoring MOS device fabricated by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2008-07-09

    The non-volatile charge-storage properties of memory devices with MOS structure based on Ge nanorings have been studied. The two-dimensional Ge nanorings were prepared on a p-Si(100) matrix by means of pulsed laser deposition (PLD) using the droplet technique combined with rapid annealing. Complete planar nanorings with well-defined sharp inner and outer edges were formed via an elastic self-transformation droplet process, which is probably driven by the lateral strain of the Ge/Si layers and the surface tension in the presence of Ar gas. The low leakage current was attributed to the small roughness and the few interface states in the planar Ge nanorings, and also to the effect of Coulomb blockade preventing injection. A significant threshold-voltage shift of 2.5 V was observed when an operating voltage of 8 V was implemented on the device.

  9. Spent fuel container alignment device and method

    Science.gov (United States)

    Jones, Stewart D.; Chapek, George V.

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  10. Training apparatus

    International Nuclear Information System (INIS)

    Monteith, W.D.

    1983-01-01

    Training apparatus for use in contamination surveillance uses a mathematical model of a hypothetical contamination source (e.g. nuclear, bacteriological or chemical explosion or leak) to determine from input data defining the contamination source, the contamination level at any location within a defined exercise area. The contamination level to be displayed by the apparatus is corrected to real time from a real time clock or may be displayed in response to a time input from a keyboard. In a preferred embodiment the location is defined by entering UTM grid reference coordinates using the keyboard. The mathematical model used by a microprocessor of the apparatus for simulation of contamination levels in the event of a nuclear explosion is described. (author)

  11. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  12. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    Science.gov (United States)

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  13. Experimental laser fusion devices and related vacuum problems

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Campbell, D.E.; Glaros, S.S.; Hurley, C.A.; Kobierecki, M.W.; McFann, C.B. Jr.; Monjes, J.A.; Patton, H.G.; Rienecker, F. Jr.

    1977-01-01

    Laser fusion experiments require hard vacuum in the laser-beam spatial filters, target chambers and for target diagnostics instruments. Laser focusing lenses and windows, and target alignment windows must hold vacuum without optical distortion, and must be protected from target debris. The vacuum must be sufficient to prevent residual gas breakdown in focused laser light, avoid arcing at high voltage terminals, minimize contamination and melting of cryogenic targets, and prevent adsorption of the target's microfusion radiation before it reaches the diagnostics instruments

  14. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  15. Radioactive rare gas recoverying device

    International Nuclear Information System (INIS)

    Kasai, Shigeo

    1989-01-01

    The apparatus of the present invention comprises a vessel for containing coolants, an introduction valve and an introduction pipe for introducing radioactive rare gases and an adsorption floor disposed in the coolants. A josephson device is disposed being immersed in the coolants between a radiation detector for detecting the radioactive level adsorbed to the adsorption floor and a driving section for driving the introduction valve by the signal from the detector. With this constitution, radioactive rare gases introduced into the coolants and then cooled and liquefied are recovered by the adsorption floor. As the adsorption proceeds and when the radioactivity level exceeds a maximum level in the effective shielding range of the recovery apparatus, the signal current from the radiation detector also exceeds a predetermined level. If radioactivity exceeds the maximum level, the electrical resistance of the josephson device is increased infinitely by the josephson effect to close the introduction valve. Accordingly, the radioactivity is not absorbed beyond the effective shielding range. (I.S.)

  16. Multistage method and apparatus for separating substances of different atomic weights using a plasma centrifuge

    International Nuclear Information System (INIS)

    Hirshfield, J.L.; Krishnan, M.

    1986-01-01

    This invention provides a method and apparatus for separating isotopes using a plasma centrifuge; in particular, it provides a multistage method and apparatus wherein a laser-initiated vacuum arc is used to fully ionize and form a plasma of the substances to be separated. The substances to be separated are positioned in an evacuated vessel which has a longitudinal axis. A magnetic field is generated in the vessel parallel to the axis of the vessel, and a target comprised of the substances to be separated is positioned at one end of the vessel. Pulsed laser energy is focused on the substances, thereby completely ionizing at least a portion of the substances and forming a plasma. Immediately following the arrival of the laser energy, a current is passed through the substances to be separated, which causes further complete ionization. The plasma is rotated and moved from the target to the collector by the application of a magnetic field. A plurality of skimmers is positioned in the vessel between the target and the collector such that a portion of the rotating plasma strikes the skimmer and is collected thereon. The remainder of the plasma continues moving towards the collector. The material which finally strikes the collector is only a percentage of the starting material, but it is highly enriched or concentrated

  17. Thermal Effect on a CIGS Thin-Film Solar Cell P2 Layer by Using a UV Laser

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-07-01

    Full Text Available This study used ANSYS simulation software for analyzing an ultraviolet (UV (355 nm laser processing system. The laser apparatus was used in a stainless steel CIGS solar cell P2 layer for simulation analysis. CIGS films process order according to SiO2 layer, molybdenum electrode, CIGS absorbed layer, CdS buffered layer, i-ZnO penetrate light layer, TCO front electrode, MgF resist reflected materials, andelectrode materials. The simulation and experimental results were compared to obtain a laser-delineated P2 laser with a low melting and vaporization temperature. According to the simulation results, the laser function time was 135 μs, the UV laser was 0.5 W, and the P2 layer thin films were removed. The experimental results indicated that the electrode pattern of the experiment was similar to that of the simulation result, and the laser process did not damage the base plate. The analysis results confirm that the laser apparatus is effective when applied to a stainless steel CIGS solar cell P2 layer.

  18. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...

  19. Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  20. Design and fabrication of an apparatus to study stress corrosion cracking

    International Nuclear Information System (INIS)

    Buscarlet, Carol

    1977-01-01

    In this research thesis, the author first gives a large overview of tests methods of stress corrosion cracking: definition and generalities, stress corrosion cracking in the laboratory (test methods with imposed deformation, load or strain rate, theories of hydrogen embrittlement, of adsorption, of film breaking, and electrochemical theories), stress corrosion cracking in alkaline environment (in light water reactors, of austenitic stainless steels), and conventional tests on polycrystals and monocrystals of stainless steels in sodium hydroxide. The next parts address the core of this research, i.e. the design of an autoclave containing a tensile apparatus, the fabrication of this apparatus, the stress application device, the sample environment, pressurization, control and command, preliminary tests in a melt salt, and the first cracking tests [fr

  1. Diode laser for abdominal tissue cauterization

    Science.gov (United States)

    Durville, Frederic M.; Rediker, Robert H.; Connolly, Raymond J.; Schwaitzberg, Steven D.; Lantis, John

    1999-06-01

    We have developed a new device to effectively and quickly stop bleeding. The new device uses a small, 5 W diode laser to heat-up the tip of a modified medical forceps. The laser beam is totally contained within a protective enclosure, satisfying the requirements for a Class I laser system, which eliminates the need to protective eyewear. The new device is used in a manner similar to that of a bipolar electrocautery device. After visual location, the bleeding site or local vessel(s) is grabbed and clamped with the tips of the forceps-like instrument. The laser is then activated for a duration of typically 5 sec or until traditional visual or auditory clues such as local blubbling and popping indicate that the targeted site is effectively cauterized. When the laser is activated, the tip of the instrument, thus providing hemostasis. The new device was evaluated in animal models and compared with the monopolar and bipolar electrocautery, and also with the recently developed ultrasound technology. It has new been in clinical trials for abdominal surgery since September 1997.

  2. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  3. Assembly for electrical conductivity measurements in the piston cylinder device

    Science.gov (United States)

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  4. Fraxelated radiofrequency device for acne scars

    Science.gov (United States)

    Rao, Babar K.; Khokher, Sairah

    2012-09-01

    Acne scars can be improved with various treatments such as topical creams, chemical peels, dermal fillers, microdermabrasion, laser, and radiofrequency devices. Some of these treatments especially lasers and deep chemical peels can have significant side effects such as post inflammatory hyperpigmentation in darker skin types. Fraxelated RF Laser devices have been reported to have lower incidence of side effects in all skin phototypes. Nine patients between ages 18 and 35 of various skin phototypes were selected from a private practice and treated with a RF fraxelated device (E-matrix) for acne scars. Outcomes were measured by physician observation, subjective feedback received by patients, and comparison of before and after photographs. In this small group of patients with various skin phototypes, fraxelated radiofrequency device improved acne scars with minimal side effects and downtime.

  5. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  6. Multipurpose modular experimental station for the DiProI beamline of Fermi-Elettra free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Kaulich, Burkhard; Menk, Ralf H; Locatelli, Andrea; Mentes, Tevfik O; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M; Kiskinova, Maya [Fermi, Elettra Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Zangrando, Marco [Fermi, Elettra Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); IOM CNR, Laboratorio TASC, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Bajt, Sasa; Barthelmess, Miriam [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Barty, Anton; Schulz, Joachim; Gumprecht, Lars [Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Chapman, Henry N [Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Nelson, A J; Frank, Matthias [Physical and Life Sciences, LLNL, 7000 East Avenue, Livermore, California 94550 (United States); others, and

    2011-04-15

    We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi-Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi-Elettra free electron laser in 2011.

  7. Multipurpose modular experimental station for the DiProI beamline of Fermi-Elettra free electron laser

    International Nuclear Information System (INIS)

    Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Kaulich, Burkhard; Menk, Ralf H.; Locatelli, Andrea; Mentes, Tevfik O.; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M.; Kiskinova, Maya; Zangrando, Marco; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Chapman, Henry N.; Nelson, A. J.; Frank, Matthias

    2011-01-01

    We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi-Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi-Elettra free electron laser in 2011.

  8. Water intake fish diversion apparatus

    International Nuclear Information System (INIS)

    Taft, E.P. III; Cook, T.C.

    1995-01-01

    A fish diversion apparatus uses a plane screen to divert fish for variety of types of water intakes in order to protect fish from injury and death. The apparatus permits selection of a relatively small screen angle, for example ten degrees, to minimize fish injury. The apparatus permits selection of a high water velocity, for example ten feet per second, to maximize power generation efficiency. The apparatus is especially suitable retrofit to existing water intakes. The apparatus is modular to allow use plural modules in parallel to adjust for water flow conditions. The apparatus has a floor, two opposite side walls, and a roof which define a water flow passage and a plane screen within the passage. The screen is oriented to divert fish into a fish bypass which carries fish to a safe discharge location. The dimensions of the floor, walls, and roof are selected to define the dimensions of the passage and to permit selection of the screen angle. The floor is bi-level with a level upstream of the screen and a level beneath screen selected to provide a uniform flow distribution through the screen. The apparatus may include separation walls to provide a water flow channel between the apparatus and the water intake. Lead walls may be used to adjust water flow conditions into the apparatus. The apparatus features stoplog guides near its upstream and downstream ends to permit the water flow passage to be dewatered. 3 figs

  9. Validation of a laser-assisted wound measurement device in a wound healing model.

    Science.gov (United States)

    Constantine, Ryan S; Bills, Jessica D; Lavery, Lawrence A; Davis, Kathryn E

    2016-10-01

    In the treatment and monitoring of a diabetic or chronic wound, accurate and repeatable measurement of the wound provides indispensable data for the patient's medical record. This study aims to measure the accuracy of the laser-assisted wound measurement (LAWM) device against traditional methods in the measurement of area, depth and volume. We measured four 'healing' wounds in a Play-Doh(®) -based model over five subsequent states of wound healing progression in which the model was irregularly filled in to replicate the healing process. We evaluated the LAWM device against traditional methods including digital photograph assessment with National Institutes of Health ImageJ software, measurements of depth with a ruler and weight-to-volume assessment with dental paste. Statistical analyses included analysis of variance (ANOVA) and paired t-tests. We demonstrate that there are significantly different and nearly statistically significant differences between traditional ruler depth measurement and LAWM device measurement, but there are no statistically significant differences in area measurement. Volume measurements were found to be significantly different in two of the wounds. Rate of percentage change was analysed for volume and depth in the wound healing model, and the LAWM device was not significantly different than the traditional measurement technique. While occasionally inaccurate in its absolute measurement, the LAWM device is a useful tool in the clinician's arsenal as it reliably measures rate of percentage change in depth and volume and offers a potentially aseptic alternative to traditional measurement techniques. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. Current role of resurfacing lasers.

    Science.gov (United States)

    Hantash, B M; Gladstone, H B

    2009-06-01

    Resurfacing lasers have been the treatment of choice for diminishing rhytids and tightening skin. The carbon dioxide and erbium lasers have been the gold and silver standards. Despite their effectiveness, these resurfacing lasers have a very high risk profile including scarring, hyperpigmentation and hypopigmentation. Because of these side effects, various practitioners have tried alternative settings for these lasers as well as alternative wavelengths, particularly in the infrared spectrum. These devices have had less downtime, but their effectiveness has been limited to fine wrinkles. As with selective photothemolysis, a major advance in the field has been fractionated resurfacing which incorporates grids of microthermal zones that spares islands of skin. This concept permits less tissue damage and quicker tissue regeneration. Initially, fractionated resurfacing was limited to the nonablative mid-infrared spectrum. These resurfacing lasers is appropriate for those patients with acne scars, uneven skin tone, mild to moderate photodamage, and is somewhat effective for melasma. Importantly, because there is less overall tissue damage and stimulation of melanocytes, these lasers can be used in darker skin types. Downtime is 2-4 days of erythema and scaling. Yet, these nonablative fractionated devices required 5-6 treatments to achieve a moderate effect. Logically, the fractionated resurfacing has now been applied to the CO2 and the Erbium:Yag lasers. These devices can treat deeper wrinkles and tighten skin. Downtime appears to be 5-7 days. The long term effectiveness and the question of whether these fractionated devices will approach the efficacy of the standard resurfacing lasers is still in question. Ultimately either integrated devices which may use fractionated resurfacing, radiofrequency and a sensitizer, or combining different lasers in a single treatment may prove to be the most effective in reducing rhtyides, smoothing the skin topography and tightening the

  11. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    Science.gov (United States)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  12. High-temperature apparatus for chaotic mixing of natural silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: diego.perugini@unipg.it [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)

    2015-10-15

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  13. High-temperature apparatus for chaotic mixing of natural silicate melts

    International Nuclear Information System (INIS)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D.

    2015-01-01

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10 6 Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment

  14. A safety control device for detecting undesirable conditions

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-26

    The invention relates to safety control devices. It deals with a device adapted to transmit a warning signal and to the detection of an undesirable condition in an associated apparatus, said device comprising switching means comprising transistors mounted in a reaction path, feeding means for opening the switching means whenever an undesirable condition has been detected by sensors, whereby an oscillator is caused to stop oscillating, and an outlet device controlled by the oscillator stoppage. This can be applied to the supervision of nuclear reactor.

  15. Method and apparatus for monitoring two-phase flow. [PWR

    Science.gov (United States)

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  16. Design of neutral particle incident heating apparatus for large scale helical apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Osamu; Oka, Yoshihide; Osakabe, Masaki; Takeiri, Yasuhiko; Tsumori, Katsuyoshi; Akiyama, Ryuichi; Asano, Eiji; Kawamoto, Toshikazu; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the Institute of Nuclear Fusion Science, construction of the large scale helical apparatus has been progressed favorably, and constructions of the heating apparatus as well as of electron resonance apparatus were begun in their orders under predetermined manner since 1994 fiscal year. And, on 1995 fiscal year, construction of neutral particle incident heating apparatus, leading heat apparatus, was begun under 3 years planning. The plasma heating study system adopted the study results developed in this institute through the large scale hydrogen negative ion source and also adopted thereafter development on nuclear fusion study by modifying the original specification set at the beginning of the research plan before 7 years. As a result, system design was changed from initial 125 KeV to 180 KeV in the beam energy and to execute 15 MW incidence using two sets beam lines, to begin its manufacturing. Here is described on its new design with reason of its modifications. (G.K.)

  17. Text analysis methods, text analysis apparatuses, and articles of manufacture

    Science.gov (United States)

    Whitney, Paul D; Willse, Alan R; Lopresti, Charles A; White, Amanda M

    2014-10-28

    Text analysis methods, text analysis apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a text analysis method includes accessing information indicative of data content of a collection of text comprising a plurality of different topics, using a computing device, analyzing the information indicative of the data content, and using results of the analysis, identifying a presence of a new topic in the collection of text.

  18. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  19. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1986-01-01

    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  20. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  1. 1.8kW laser diode pumped YAG laser; Shutsuryoku 1.8kW no handotai laser reiki YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba Corporation, as a participant in Ministry of International Trade and Industry`s `photon measurement and processing technology project` since August, 1997, is engaged in the development of an energy-efficient LD (laser diode) pumped semiconductor YAG (yttrium-aluminum-garnet) laser device to be used for welding and cutting. It is a 5-year project and the goal is a mean output of 10kW and efficiency of 20%. In this article, a simulation program is developed which carries out calculation about element technology items such as the tracking of the beam from the pumping LD and the excitation distribution, temperature distribution, thermal stress distribution, etc., in the YAG rod. An oscillator is constructed, based on the results of the simulation, and it exhibits a world-high class continuous laser performance of a 1.8kW output and 13% efficiency. The record of 13% efficiency is five times higher than that achieved by the conventional lamp-driven YAG laser device. (translated by NEDO)

  2. Comparative study of acute lateral skin damage during radio wave and laser exposure

    Directory of Open Access Journals (Sweden)

    Dubensky V.V.

    2017-09-01

    Full Text Available The purpose was to study the depth and nature of the zones of thermal damage to the skin under radio wave and laser skin dissection during experiment. Material and Methods. The model of acute thermal damage was full-liner skin wounds of 20 nonlinear rats that were divided into 2 groups and operated by different methods. In the 1st group, the incisions were made by the apparatus of radio wave surgery (Surgitron DF S5, in the 2nd group the animals were operated with a laser surgical apparatus. The magnitude and structure of the lateral thermal damage was evaluated when analyzing the biopsy material. Results. During the study of experimental wounds, the extent of carbonation in the first group (operated with Surgitron DF S5 was 11.56±3.056 urn, coagulation necrosis 116.5±26.78 urn, and the hyper-thermiazone 148.42±60.171 urn. In the group of animals operated with a laser apparatus, the carbonization zone was 22.58±6.62 urn, the coagulation necrosis zone was 331.1±79.08 urn, and the hyperthermia extent was 376.2±53.27 urn. Conclusion. A comparative study of lateral skin damage in radio wave and laser skin dissection revealed a deeper thermal change in the skin and an increase in the extent of thermally altered structures under laser action: the carbonization zone was larger than for radio waves by 11.02 urn, coagulation necrosis by 214.6 urn, and the hyperthermia zone by 227.78 urn.

  3. Process and apparatus for reacting laser radiation with a reactive medium

    International Nuclear Information System (INIS)

    Vanderleeden, J.C.

    1980-01-01

    The invention is based on the concept of irradiating the reaction medium with laser radiation in a reaction zone bounded by two longitudinally spaced reflecting surfaces, the beam of laser radiation being reflected back and forth between the surfaces which are contoured in such a way that the radiation flux density profile at substantially all transverse cross sections of the reaction zone is matched to the transverse distribution profile, that is the transverse distribution of the availability of a reactive species in the medium. A necessary condition for achieving this is that the beam be successively reflected between the surfaces along successive paths of progressively changing cross-sectional area intersected by respective, contiguous, non-overlapping areas of these surfaces. This process may be applied in particular to the selective laser-induced decomposition of HDCO to yield HD and CO

  4. Laser Nanosoldering of Golden and Magnetite Particles and its Possible Application in 3D Printing Devices and Four-Valued Non-Volatile Memories

    Directory of Open Access Journals (Sweden)

    Jaworski Jacek

    2015-12-01

    Full Text Available In recent years the 3D printing methods have been developing rapidly. This article presents researches about a new composite consisted of golden and magnetite nanoparticles which could be used for this technique. Preparation of golden nanoparticles by laser ablation and their soldering by laser green light irradiation proceeded in water environment. Magnetite was obtained on chemical way. During experiments it was tested a change of a size of nanoparticles during laser irradiation, surface plasmon resonance, zeta potential. The obtained golden - magnetite composite material was magnetic after laser irradiation. On the end there was considered the application it for 3D printing devices, water filters and four-valued non-volatile memories.

  5. Apparatus of irradiation of steel test pieces in the Marcoule pile G 1

    International Nuclear Information System (INIS)

    Marinot, R.; Wallet, Ph.

    1960-01-01

    Test pieces of steel were irradiated in the reactor G1 at Marcoule, in convectors replacing fuel elements, and in vertical channels in furnace-heated containers. The apparatus designed for this irradiation is described: containers, converter-rods, suspension fixtures and clamps, temperature measurement devices, lead castles and unloading set-ups. (author) [fr

  6. Negative ion production by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko

    1997-02-01

    The status of the development of Li{sup -} production by generating a neutral Li flux with an intense radiation of a laser beam onto the surface of Li metal has been reported. The experimental apparatus was arranged to detect a mass separated Li{sup +} and Li{sup -} ion beams. A Li sputtering probe, immersed in the extraction region of a compact (6cm diam. 7cm long) magnetic multipole ion source was irradiated with a Nd-YAG laser of 0.4 J/pulse. The production of mass-separated positive ions of Li by laser irradiation has been confirmed, but the production of Li{sup -} has not been confirmed yet due to the noise caused by a temporal discharge. (author)

  7. [The new-generation universal laser apparatus Optodan for the laser physio-, magneto- and reflexotherapy of stomatological diseases].

    Science.gov (United States)

    Prokhonchukov, A A; Zhizhina, N A; Vasil'ev, K V; Metel'nikov, M A

    2000-01-01

    Presents the design of a new-generation semiconductor laser with automated regulation (wavelength 0.85-0.95 micron, power up to 4 W, and frequency 0.1-3 kHz) and potentialities of its use for laser physio-, magneto-, and reflex therapy of dental and general somatic diseases in accordance with authors patented methods.

  8. Computed tomography apparatus

    International Nuclear Information System (INIS)

    Fairbairn, I.A.

    1984-01-01

    In fan-beam computed tomography apparatus, timing reference pulses, normally occurring at intervals t, for data transfer and reset of approx. 500 integrators in the signal path from the detector array, are generated from the scan displacement, e.g. using a graticule and optical sensor to relate the measurement paths geometrically to the body section. Sometimes, a slow scan rate is required to provide a time-averaged density image, e.g. for planning irradiation therapy, and then the sensed impulses will occur at extended intervals and can cause integrator overload. An improvement is described which provides a pulse generator which responds to a reduced scan rate by generating a succession of further transfer and reset pulses at intervals approximately equal to t starting a time t after each timing reference pulse. Then, using an adding device and RAM, all the transferred signals integrated in the interval t' between two successive slow scan reference pulses are accumulated in order to form a corresponding measurement signal. (author)

  9. Histologic effects of resurfacing lasers.

    Science.gov (United States)

    Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B

    2014-02-01

    By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. International registry results for an interstitial laser BPH treatment device

    Science.gov (United States)

    Conn, Richard L.; Muschter, Rolf; Adams, Curtis S.; Esch, Victor C.

    1996-05-01

    Benign prostatic hyperplasia (BPH) can significantly impair quality of life in older men. Most men over 60 experience some symptoms due to BPH and it is thought that essentially all men would eventually be affected by it if they lived long enough. At present, transurethral resection of the prostate (TURP), a surgical treatment for BPH, is one of the more common procedures performed in the developed world, particularly in the United States. A number of other treatments are also often used, including open prostatectomy, side-firing lasers, and drug therapy. With the population in the developed world rapidly aging, BPH is expected to affect an even larger group of men in the future. Current methods of therapy carry significant disadvantages. Open prostatectomy carries a fairly high risk of impotence and incontinence, as well as sometimes significant risk of death depending on the patient's age and medical conditions. TURP also carries similar risks, albeit reduced, including the risk of substantial blood loss and a small but meaningful risk of death. Side-firing lasers are thought to have a reduced risk of death compared to TURP due to significantly reduced bleeding; however, patients often experience an extended period of pain during voiding due to prolonged tissue sloughing. Drug treatment, although useful for some patients, does not strongly improve symptoms in the majority of patients. Even with the current range of treatments, many patients with symptomatic BPH elect to avoid any current treatment due to risks and side effects. As a possible solution to this problem, previous writers have suggested the possibility of treating BPH through interstitial thermotherapy. In this treatment, prostatic tissue is heated from within the prostate to the point of irreversible necrosis. Healing processes then reduce the volume of the affected tissue, even in the absence of sloughing. This study covers initial human use of such a device, using an 810 nm wavelength diode laser

  11. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  12. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    International Nuclear Information System (INIS)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-01-01

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 10 5 w/cm 2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  13. An apparatus to measure water optical attenuation length for LHAASO-MD

    Science.gov (United States)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  14. Nuclear Storage Overpack Door Actuator and Alignment Apparatus

    International Nuclear Information System (INIS)

    Andreyko, Gregory M.

    2005-01-01

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage

  15. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  16. Apparatus for transferring nuclear fuel pellets to a plate loader

    International Nuclear Information System (INIS)

    Huggins, T.B.

    1978-01-01

    An apparatus is described for transferring nuclear fuel pellets from a grinding machine to a plate loader. It includes a frame, an endless belt fitted to the frame, a control system provided on it for actuating the belt at a preset speed, a V shaped vessel fitted directly above the belt and extending along its length to guide the pellets on the belt and a device to receive the pellets coming from the belt [fr

  17. 10-channel neutral particle energy analyser apparatus and its application to tokamak plasmas

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Funahashi, Akimasa; Takahashi, Koki; Shirakata, Hirofumi; Yano, Syukuro.

    1976-07-01

    A 10-channel neutral particle energy analyser apparatus for measurement of charge-exchange fast atoms emitted from a hot tokamak plasma has been constructed to determine the ion temperature of plasma from fewer discharge shots and to improve the accuracy of measurement. It consists of a 45-degrees parallel plate electrostatic analyser with ten ion detectors (Ceratron multipliers), a charge stripping cell, a dry vacuum pumping system and pulse-counting circuits for data acquisition. A calibration experiment of the apparatus is made for the particle energy and the energy resolution with electron beams of 100 to 1000 eV. The transmission efficiency of particles in the energy analyser is measured with proton beams of 1, 2 and 3 keV, and the conversion efficiency for H 2 gas in a charge stripping cell is also determined with hydrogen-atom beams of 2, 3 and 4 keV. Ion temperatures of JFT-2a and JFT-2 devices were measured with this apparatus, in order to check the usefulness and reliability of the apparatus and to investigate the parameter dependence of ion temperatures. It is found that an ion temperature can be measured with sufficient accuracy from six plasma shots (three shots to determine particle signals and three shots to determine background noises). The peak ion temperatures 80 to 400 eV are about (1/2 - 1/3) of the central electron temperatures. Dependence of the ion temperatures on plasma current I sub(p), toroidal magnetic field B sub(t) and average electron density anti n sub(e) is investigated for I sub(p) = 15 to 170 kAmp, B sub(t) = 10 to 18 kGauss and anti n sub(e) = (0.8 to 1.8) x 10 13 cm -3 on JFT-2a and JFT-2 devices. It is shown that the ion temperatures are in good agreement with the scaling law by Artsimovich Tsub(i) proportional to (Isub(p)Bsub(t) anti n sub(e)R 2 )sup(1/3), with R as the major radius of a tokamak device. (J.P.N.)

  18. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  19. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  20. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  1. Investigation on Nd:YAG laser weldability of zircaloy-4 end cap closure for nuclear fuel elements

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yung; Yang, Myung Seung

    2001-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulty in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed. The effects of irradiation on the properties of the laser apparatus were also being studied

  2. Method and apparatus for balancing the magnetic field detecting loops of a cryogenic gradiometer using trimming coils and superconducting disks

    International Nuclear Information System (INIS)

    Lutes, C.L.

    1982-01-01

    An apparatus for and a method of measuring the difference in intensity between two coplanar magnetic field vector components at two different points in space. The device is comprised of two interconnected, relatively large, loop patterns of opposite, flux cancelling, winding sense. One or both loops include a trimming element that is itself formed of two interconnected, relatively small, loop patterns of opposite, flux cancelling, winding sense. The device is analyzed for imbalance between the two large loops and is then balanced by placing a balancing superconducting disk of the proper characteristic in or near one of the two small loops of the trimming element. The so-trimmed apparatus forms a gradiometer of substantially improved mensuration

  3. Fusion pumped laser

    Science.gov (United States)

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  4. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  5. Innovations: laser-cutting nickel-titanium

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, T.R.; Moore, B.; Toyama, N. [LPL Systems, Inc., Mountain View, CA (United States)

    2002-07-01

    Laser-cutting is well established as the preferred method for manufacturing many endovascular medical devices. Sometimes laser processing has been poorly understood by nickel-titanium (NiTi) material suppliers, medical device manufacturers, and device designers, but the field has made important strides in the past several years. A variety of sample, nonspecific applications are presented for cutting tubing and sheet stock. Limiting constraints, key considerations, and areas for future development are identified. (orig.)

  6. Conduit grinding apparatus

    Science.gov (United States)

    Nachbar, Henry D.; Korytkowski, Alfred S.

    1991-01-01

    A grinding apparatus for grinding the interior portion of a valve stem receiving area of a valve. The apparatus comprises a faceplate, a plurality of cams mounted to an interior face of the faceplate, a locking bolt to lock the faceplate at a predetermined position on the valve, a movable grinder and a guide tube for positioning an optical viewer proximate the area to be grinded. The apparatus can either be rotated about the valve for grinding an area of the inner diameter of a valve stem receiving area or locked at a predetermined position to grind a specific point in the receiving area.

  7. Method and apparatus for evaluating structural weakness in polymer matrix composites

    Science.gov (United States)

    Wachter, Eric A.; Fisher, Walter G.

    1996-01-01

    A method and apparatus for evaluating structural weaknesses in polymer matrix composites is described. An object to be studied is illuminated with laser radiation and fluorescence emanating therefrom is collected and filtered. The fluorescence is then imaged and the image is studied to determine fluorescence intensity over the surface of the object being studied and the wavelength of maximum fluorescent intensity. Such images provide a map of the structural integrity of the part being studied and weaknesses, particularly weaknesses created by exposure of the object to heat, are readily visible in the image.

  8. High power laser downhole cutting tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  9. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  10. Laser welding by dental Nd:YAG device

    Science.gov (United States)

    Fornaini, Carlo; Bertrand, Caroline; Merigo, Elisabetta; Bonanini, Mauro; Rocca, Jean-Paul; Nammour, Samir

    2009-06-01

    Welding laser was introduced in jewellery during years 70 and, just after, was successfully used also by dental technicians. Welding laser gives a great number of advantages, versus traditional welding and, for this reason, this procedure had a great diffusion in the technician laboratories and stimulated the companies to put in the market more and more evolutes appliances. Some aspects, such great dimensions, high costs and delivery system today still characterize these machines by fixed lenses, which have strictly limited its use only to technician laboratories. The aim of this study is to demonstrate the possibility, by using a fibber-delivered laser normally utilized in the dental office, to make, by dentist himself in his office, welding on different metals and to evaluate advantages and possibilities of this new technique.

  11. Determining position inside building via laser rangefinder and handheld computer

    Science.gov (United States)

    Ramsey, Jr James L. [Albuquerque, NM; Finley, Patrick [Albuquerque, NM; Melton, Brad [Albuquerque, NM

    2010-01-12

    An apparatus, computer software, and a method of determining position inside a building comprising selecting on a PDA at least two walls of a room in a digitized map of a building or a portion of a building, pointing and firing a laser rangefinder at corresponding physical walls, transmitting collected range information to the PDA, and computing on the PDA a position of the laser rangefinder within the room.

  12. Remote vacuum or pressure sealing device and method for critical isolated systems

    Science.gov (United States)

    Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA

    2012-07-10

    A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.

  13. Simulator scene display evaluation device

    Science.gov (United States)

    Haines, R. F. (Inventor)

    1986-01-01

    An apparatus for aligning and calibrating scene displays in an aircraft simulator has a base on which all of the instruments for the aligning and calibrating are mounted. Laser directs beam at double right prism which is attached to pivoting support on base. The pivot point of the prism is located at the design eye point (DEP) of simulator during the aligning and calibrating. The objective lens in the base is movable on a track to follow the laser beam at different angles within the field of vision at the DEP. An eyepiece and a precision diopter are movable into a position behind the prism during the scene evaluation. A photometer or illuminometer is pivotable about the pivot into and out of position behind the eyepiece.

  14. Pipework inspection apparatus

    International Nuclear Information System (INIS)

    Wrigglesworth, K.J.; Knowles, J.F.

    1987-01-01

    The patent concerns a pipework inspection apparatus, which is capable of negotiating bends in pipework. The apparatus comprises a TV camera system, which contains an optical section and an electronics section, which are connected by a flexible coupling. The system can be pulled or pushed along the bore of the pipework. (U.K.)

  15. Microcomponents manufacturing for precise devices by copper vapor laser

    Science.gov (United States)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  16. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    International Nuclear Information System (INIS)

    Fletcher, J.C.

    1978-01-01

    Apparatus for the separation and extraction of molecular isotopes is claimed. Molecules of one and the same isotope are preferentially photo-dissociated by a laser and an ultraviolet source, or by multi-photon absorption of laser radiation. The resultant ions are confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photo-dissociation region by means of screening and accelerating grids, and collected in ducts

  17. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  18. Start-effect measurement of high FEL [free-electron laser] electric fields in MTX [Microwave Tokamak Experiment] by laser-aided particle-probe spectroscopy

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Odajima, K.; Ohasa, K.; Shiho, M.; Mizuno, K.; Foote, J.H.; Nilson, D.G.

    1990-01-01

    We are constructing a diagnostic system to measure the electric field (>100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, ∼1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field (rvec E), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E 2 . Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower rvec E of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations

  19. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  20. Brain-controlled body movement assistance devices and methods

    Energy Technology Data Exchange (ETDEWEB)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob; Moran, Daniel W.

    2017-01-10

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of the brain-controlled body movement assistance device.

  1. Automatic Laser Pointer Detection Algorithm for Environment Control Device Systems Based on Template Matching and Genetic Tuning of Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    F.

    2012-04-01

    Full Text Available In this paper we propose a new approach for laser-based environment device control systems based on the automatic design of a Fuzzy Rule-Based System for laser pointer detection. The idea is to improve the success rate of the previous approaches decreasing as much as possible the false offs and increasing the success rate in images with laser spot, i.e., the detection of a false laser spot (since this could lead to dangerous situations. To this end, we propose to analyze both, the morphology and color of a laser spot image together, thus developing a new robust algorithm. Genetic Fuzzy Systems have also been employed to improve the laser spot system detection by means of a fine tuning of the involved membership functions thus reducing the system false offs, which is the main objective in this problem. The system presented in this paper, makes use of a Fuzzy Rule-Based System adjusted by a Genetic Algorithm, which, based on laser morphology and color analysis, shows a better success rate than previous approaches.

  2. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana; Banavoth, Murali; Alsinan, Yara; Parida, Manas R.; Aly, Shawkat Mohammede; Mohammed, Omar F.

    2016-01-01

    of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy

  3. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  4. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  5. Apparatus for localizing disturbances in pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    Sykora, D.

    1989-01-01

    The invention according to CS-PS 177386, entitled ''Apparatus for increasing the efficiency and passivity of the functioning of a bubbling-vacuum system for localizing disturbances in nuclear power plants with a pressurized water reactor'', concerns an important area of nuclear power engineering that is being developed in the RGW member countries. The invention solves the problems of increasing the reliability and intensification during the operation of the above very important system for guaranteeing the safety of the standard nuclear power plants of Soviet design. The essence of the invention consists in the installation of a simple passively operating supplementary apparatus. Consequently, the following can be observed in the system: first an improvement and simultaneous increase in the reliability of its function during the critical transition period, which follows the filling of the second space with air from the first space; secondly, elimination of the hitherto unavoidable initiating role of the active sprinkler-condensation device present; thirdly, a more effective performance and subjection of the elements to disintegration of the water flowing from the bubbling condenser into the first space; and fourthly, an enhanced utilization of the heat-conducting ability of the water reservoir of the bubbling condenser. Representatives of the supplementary apparatus are autonomous and local secondary systems of the sprinkler-sprayer without an insert, which spray the water under the effect of gravity. 1 fig

  6. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    Science.gov (United States)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  7. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  8. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  9. Analysis of opto-thermal interaction of porcine stomach tissue with 808-nm laser for endoscopic submucosal dissection

    Directory of Open Access Journals (Sweden)

    Seongjun Kim

    2015-11-01

    Full Text Available In endoscopic submucosal dissection (ESD, the narrow gastrointestinal space can cause difficulty in surgical interventions. Tissue ablation apparatuses with high-power CO2 lasers or Nd:YAG lasers have been developed to facilitate endoscopic surgical procedures. We studied the interaction of 808-nm laser light with a porcine stomach tissue, with the aim of developing a therapeutic medical device that can remove lesions at the gastrointestinal wall by irradiating a near-infrared laser light incorporated in an endoscopic system. The perforation depths at the porcine fillet and the stomach tissues linearly increased in the range of 2–8 mm in proportion to the laser energy density of 63.7–382 kJ/cm2. Despite the distinct structural and compositional difference, the variation of the perforation depth between the stomach and the fillet was not found at 808-nm wavelength in our measurement. We further studied the laser–tissue interaction by changing the concentration of the methyl blue solution used conventionally as a submucosal fluidic cushion (SFC in ESD procedures. The temperature of the mucosal layer increased more rapidly at higher concentration of the methyl blue solution, because of enhanced light absorption at the SFC layer. The insertion of the SFC would protect the muscle layer from thermal damage. We confirmed that more effective laser treatment should be enabled by tuning the opto-thermal properties of the SFC. This study can contribute to the optimization of the driving parameters for laser incision techniques as an alternative to conventional surgical interventions.

  10. Measurements required to construct the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Rien, H.J.

    1979-01-01

    The construction of a large laser fusion system involves all aspects of metrology. This report covers some of the technical problems encountered and how the science of weights and measures was used to identify and solve them. The techniques used range from very simple and inexpensive handheld equipment to sophisticated scientific apparatus costing thousands of dollars. The success of the 30 trillion watt Shiva laser system would not have been possible without reliable and accurate measurements

  11. Pulsed liquid jet dissector using holmium: YAG laser - a novel neurosurgical device for brain incision without imparing vessels

    International Nuclear Information System (INIS)

    Hirano, T.; Nakagawa, A.; Jokura, H.; Shirane, R.; Uenohara, H.; Ohyama, H.; Takayama, K.

    2003-01-01

    Neurosurgery has long required a method for dissecting brain tissue without damaging principal vessels and adjacent tissue, so as to prevent neurological complications after operation. In this study we constructed a prototype of such a device and used it in an attempt to resect beagle brain cortex. The prototype device consisted of an optical fiber, a Y adapter, and a nozzle whose internal exit diameter was 100 μm. Cold physiological saline (4 o C) was supplied to it at a rate of 40 ml/h. Pulsed liquid jets were ejected from the nozzle by a pulsed Holmium:YAG) (Ho:YAG) laser at an irradiation energy of 300 mJ/pulse. The profile of the liquid jet was observed with a high-speed camera while changing the distance between the optical fiber end and nozzle exit (equivalent to the Standoff distance). With this device (3 Hz operation), brain dissection of anesthetized beagles was attempted while measuring the local temperature of the target. A histological study of the incised parts was also performed. When the Standoff distance was 24 mm, the liquid jet was emitted straight from the nozzle at a maximum initial velocity of 50 m/s. The brain parenchyma was cut with this device while preserving vessels larger than 200 μm in diameter and keeping the operative field clear. The local temperature rose to no more than 41 o C, below the functional heat damage threshold of brain tissue. Histological findings showed no signs of thermal tissue damage around the dissected margin. The Ho:YAG laser-induced liquid jet dissector can be applied to neurosurgery after incorporating some minor improvements. (author)

  12. Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device.

    Science.gov (United States)

    Ohki, Tomohiro; Nakagawa, Atsuhiro; Hirano, Takayuki; Hashimoto, Tokitada; Menezes, Viren; Jokura, Hidefumi; Uenohara, Hiroshi; Sato, Yasuhiko; Saito, Tsutomu; Shirane, Reizo; Tominaga, Teiji; Takayama, Kazuyoshi

    2004-01-01

    Although water jet technology has been considered as a feasible neuroendoscopic dissection methodology because of its ability to perform selective tissue dissection without thermal damage, problems associated with continuous use of water and the ensuing fountain-effect-with catapulting of the tissue-could make water jets unsuitable for endoscopic use, in terms of safety and ease of handling. Therefore, the authors experimented with minimization of water usage during the application of a pulsed holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced liquid jet (LILJ), while assuring the dissection quality and the controllability of a conventional water jet dissection device. We have developed the LILJ generator for use as a rigid neuroendoscope, discerned its mechanical behavior, and evaluated its dissection ability using the cadaveric rabbit ventricular wall. The LILJ generator is incorporated into the tip of a stainless steel tube (length: 22 cm; internal diameter: 1.0 mm; external diameter: 1.4 mm), so that the device can be inserted into a commercial, rigid neuroendoscope. Briefly, the LILJ is generated by irradiating an internally supplied water column within the stainless steel tube using the pulsed Ho:YAG laser (wave length: 2.1 microm, pulse duration time: 350 microseconds) and is then ejected through the metal nozzle (internal diameter: 100 microm). The Ho:YAG laser pulse energy is conveyed through optical quartz fiber (core diameter: 400 microm), while cold water (5 degrees C) is internally supplied at a rate of 40 ml/hour. The relationship between laser energy (range: 40-433 mJ/pulse), standoff distance (defined as the distance between the tip of the optical fiber and the nozzle end; range: 10-30 mm), and the velocity, shape, pressure, and average volume of the ejected jet were analyzed by means of high-speed camera, PVDF needle hydrophone, and digital scale. The quality of the dissection plane, the preservation of blood vessels, and the penetration depth

  13. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    Science.gov (United States)

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  14. Research on propane leak detection system and device based on mid infrared laser

    Science.gov (United States)

    Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling

    2017-10-01

    Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.

  15. Laser lipolysis: skin tightening in lipoplasty using a diode laser.

    Science.gov (United States)

    Wolfenson, Moisés; Hochman, Bernardo; Ferreira, Lydia Massako

    2015-05-01

    New devices have been developed for surgical repair of deformities caused by localized fat deposits associated with skin laxity. The use of these devices requires the adoption of safety parameters. The aim of this study was to investigate skin tightening by laser lipolysis, using a dual-wavelength diode laser. This prospective, cross-sectional study was conducted between June of 2008 and July of 2010 with 41 consecutive patients who underwent laser lipolysis to correct contour deformities. Laser lipolysis was performed with a diode laser operating at two wavelengths (924 and 975 nm) controlled independently, and using three different tip lengths, allowing treatment of small, medium, and large areas of adipose tissue. The procedure was performed under local anesthesia in a surgical setting. To calculate the optimal cumulative energy, a total energy dose of 5 kJ/10 × 10-cm skin area was used as a safety parameter to prevent treatment complications. The circumferences of body regions were measured preoperatively, immediately after surgery, and 90 days later. Measurements were compared using the Wilcoxon test at a significance level of 0.05 (p Laser lipolysis results in progressive skin tightening over time. Therapeutic, IV.

  16. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  17. The Evaluation of Bacterial Contamination of Active Radiography Apparatus in Dental Centers of Hamadan City

    Directory of Open Access Journals (Sweden)

    A. Eskandarloo

    2006-01-01

    Full Text Available Introduction & Objective: During the most dental procedures, contamination of devices with blood, saliva and other body fluids, which is the most important factor for transmission of infectious diseases, is inevitable. Therefore principles of infection control should be carefully considered in the dentistry. The purpose of this study was the evaluation of bacterial contamination of active radiographic apparatus in dental centers of Hamadan city in year 2003. Materials & Methods : In this cross-sectional study 37 radiographic apparatus in dental centers of Hamadan were evaluated. Samples were collected from four area (25 cm2 each that are frequently touched by dentists, personnel, etc. using a swab. The swab was inserted into the carrier media containing thioglycolate, a smear was obtained from the solution and remaining solution was cultured in blood agar. Smear and blood agar cultures were transferred to microbiology lab to determine bacterial contamination level as well as bacterial typing. According to WHO criteria the area which has more than 10 microorganism/cm2 is considered as contaminated. Results: It was found that 13 of radiographic apparatus(35% were contaminated, the most frequent bacterial type detected in this study was micrococcus (75.7% and the least were enterobacter and nocardia (2.7% each. Antiseptic materials used for decontamination of the devices were as follow : Alcohol (43.2% , Deconex (32.4% , Micro10 (18.9% , Savlon (10.8% , Hypochlorid (5.4% , Glutaraldehyde (2.7%. Conclusion: Based on the results (35% bacterial contamination it can be concluded that careful performance of infection control principles, daily decontamination of devices and offering periodic instructions for dental personnel are essential.

  18. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  19. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  20. Dynamically variable spot size laser system

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  1. 21 CFR 886.1360 - Visual field laser instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Visual field laser instrument. 886.1360 Section 886.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument...

  2. Development of remote laser welding technology

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Kim, Woong-Ki; Lee, Jung-Won; Yang, Myung-Seung; Park, Hyun-Soo

    1999-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding process are widely used for manufacturing of the commercial fuel elements, it can not be recommended for the remote seal welding of fuel element at PIE facility due to its complexity of the electrode alignment, difficulty in the replacement of parts in the remote manner and its large heat input for thin sheath. Therefore, Nd:YAG laser system using the optical fiber transmission was selected for Zircaloy-4 end cap welding. Remote laser welding apparatus is developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The laser weldability is satisfactory in respect of the microstructures and mechanical properties comparing with the TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in remote manner have been developed. (author)

  3. Nuclear activated cw chemical laser

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1982-01-01

    A cw chemical laser which uses processed radioactive waste to produce active atoms from a chemically inactive gas before being mixed with another molecule such as hydrogen or deuterium is disclosed. This laser uses no toxic or corrosive fuels and does not require any electrical or other type of auxiliary power supply. The energy released by the radioactive material is used to produce the active atoms such as fluorine. This is accomplished by using the radiation products from processed radioactive waste to dissociate the inert gas in the plenum of the laser. The radioactive material is held in the passageway walls of a device similar to a heat exchanger. The exchanger device may be located in the gas generator section of a chemical laser. The inactive gas is passed through the exchanger device and while passing through it the radiation from the radioactive material dissociates the gas, producing a concentration of free active atoms. This active atom generator then feeds the nozzle bank or mixing section of a laser to produce a lasing action

  4. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  5. New experimental device for high-temperature normal spectral emissivity measurements of coatings

    International Nuclear Information System (INIS)

    Honnerová, Petra; Martan, Jiří; Kučera, Martin; Honner, Milan; Hameury, Jacques

    2014-01-01

    A new experimental device for normal spectral emissivity measurements of coatings in the infrared spectral range from 1.38 μm to 26 μm and in the temperature range from 550 K to 1250 K is presented. A Fourier transform infrared spectrometer (FTIR) is used for the detection of sample and blackbody spectral radiation. Sample heating is achieved by a fiber laser with a scanning head. Surface temperature is measured by two methods. The first method uses an infrared camera and a reference coating with known effective emissivity, the second method is based on the combination of Christiansen wavelength with contact and noncontact surface temperature measurement. Application of the method is shown on the example of a high-temperature high-emissivity coating. Experimental results obtained with this apparatus are compared with the results performed by a direct method of Laboratoire National d’Essais (LNE) in France. The differences in the spectra are analyzed. (paper)

  6. Establishment and application of standard devices for radioactivity measurement

    International Nuclear Information System (INIS)

    Zhou Changgui; Li Xingyuan; Chen Zigen

    1991-03-01

    In order to establish the radioactivity measurement standards a 4πβ-γ coincidence apparatus and a 4πγ ionization chamber have been installed in the laboratory. The 4πβ-γ coincidence apparatus is for absolute measurement, and its uncertainty is ±(0.3∼5)%. The 4πγ ionization chamber is for working standard, and its uncertainty is ±(1∼5)%. The combination of these devices can meet the quality requirements controlled by National Verification System in the transfer of radioactivity values

  7. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  8. ALS insertion device block measurement and inspection

    International Nuclear Information System (INIS)

    Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

    1991-05-01

    The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs

  9. Radioimmunoassay apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus for performing a quantitative radioimmunoassay comprising: a substantially spherical bead for carrying an antibody and a gripper for gripping said bead, said gripper comprising an integrally formed unit having a single elongate handle portion and a plurality of resilient fingers arranged at the base of the handle so that when said bead is secured within said fingers, said bead may be freely rotated about any diametric axis of the bead. In particular the invention relates to an apparatus for a two site immunoradiometric assay for serum ferritin in human blood samples. (author)

  10. TRANSFORMER APPARATUS

    Science.gov (United States)

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  11. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  12. A simple and accurate method for the quality control of the I.I.-DR apparatus using the CCD camera

    International Nuclear Information System (INIS)

    Igarashi, Hitoshi; Shiraishi, Akihisa; Kuraishi, Masahiko

    2000-01-01

    With the advancing development of CCD cameras, the I.I.-DR apparatus has been introduced into the x-ray fluoroscopy television system. Consequently, quality control of the system has become a complicated task. We developed a simple, accurate method for quality control of the I.I.-DR apparatus using the CCD camera. Experiments were separately performed for the imager system [laser imager, DDX (dynamic digital x-ray system)] and the imaging system (I.I., ND-filter, IRIS, CCD camera). Quality control of the imager system was done by simply examining both input and output characteristics with a sliding pattern. Quality control of the imaging system was also conducted by estimating AVE (the average volume element), which was obtained using a phantom under the constant conditions. The results indicated that this simplified method is useful as a weekly quality control check of the I.I.-DR apparatus using the CCD camera. (author)

  13. Photonic devices prepared by embossing in PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Jandura, D., E-mail: jandura@fyzika.uniza.sk; Pudis, D.; Berezina, S.

    2017-02-15

    Highlights: • Fabrication technology of photonic devices based on embossing in PDMS is presented. • Analysis of morphological properties of prepared devices in PDMS by CLSM and AFM. • Spectral characterization of PDMS ring resonator proved the resonator functionality. - Abstract: In this paper, we present useful technique for fabrication of novel photonic devices created in the polydimethylsiloxane (PDMS). We use combination of direct laser writing in thin photoresist layer with embossing process of liquid PDMS. We prepared ring resonator and Mach-Zehnder interferometer in PDMS. The shape of prepared PDMS photonic devices was analyzed by confocal laser microscope and atomic force microscope. Optical characterization of these devices reveals extinction ratios of up to 20 dB.

  14. Measurement of buried undercut structures in microfluidic devices by laser fluorescent confocal microscopy

    International Nuclear Information System (INIS)

    Li Shiguang; Liu Jing; Nguyen, Nam-Trung; Fang Zhongping; Yoon, Soon Fatt

    2009-01-01

    Measuring buried, undercut microstructures is a challenging task in metrology. These structures are usually characterized by measuring their cross sections after physically cutting the samples. This method is destructive and the obtained information is incomplete. The distortion due to cutting also affects the measurement accuracy. In this paper, we first apply the laser fluorescent confocal microscopy and intensity differentiation algorithm to obtain the complete three-dimensional profile of the buried, undercut structures in microfluidic devices, which are made by the soft lithography technique and bonded by the oxygen plasma method. The impact of material wettability and the refractive index (n) mismatch among the liquid, samples, cover layer, and objective on the measurement accuracy are experimentally investigated.

  15. Use of intelligent devices in high-energy physics experiments

    International Nuclear Information System (INIS)

    Verkerk, C.

    1981-01-01

    In these lectures we concentrate on two areas for which special devices have been developed: On line data processing, generally to perform event selection and/or to achieve compaction of data before recording. Preparation of experimental apparatus: testing of detectors, optimimization of operating conditions and calibration. Much attention will be given to the event-selection process and the devices used for this purpose. (orig./HSI)

  16. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  17. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-01-01

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  18. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  19. Radiographic film digitizing devices

    International Nuclear Information System (INIS)

    McFee, W.H.

    1988-01-01

    Until recently, all film digitizing devices for use with teleradiology or picture archiving and communication systems used a video camera to capture an image of the radiograph for subsequent digitization. The development of film digitizers that use a laser beam to scan the film represents a significant advancement in digital technology, resulting in improved image quality compared with video scanners. This paper discusses differences in resolution, efficiency, reliability, and the cost between these two types of devices. The results of a modified receiver operating characteristic comparison study of a video scanner and a laser scanner manufactured by the same company are also discussed

  20. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-01-01

    pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad

  1. Multi-chamber nucleic acid amplification and detection device

    Science.gov (United States)

    Dugan, Lawrence

    2017-10-25

    A nucleic acid amplification and detection device includes an amplification cartridge with a plurality of reaction chambers for containing an amplification reagent and a visual detection reagent, and a plurality of optically transparent view ports for viewing inside the reaction chambers. The cartridge also includes a sample receiving port which is adapted to receive a fluid sample and fluidically connected to distribute the fluid sample to the reaction chamber, and in one embodiment, a plunger is carried by the cartridge for occluding fluidic communication to the reaction chambers. The device also includes a heating apparatus having a heating element which is activated by controller to generate heat when a trigger event is detected. The heating apparatus includes a cartridge-mounting section which positioned a cartridge in thermal communication with the heating element so that visual changes to the contents of the reaction chambers are viewable through the view ports.

  2. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  3. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  4. A novel thermal acoustic device based on porous graphene

    Science.gov (United States)

    Tao, Lu-Qi; Liu, Ying; Tian, He; Ju, Zhen-Yi; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    A thermal acoustic (TA) device was fabricated by laser scribing technology. Polyimide (PI) can be converted into patterned porous graphene (PG) by laser's irradiation in one step. The sound pressure level (SPL) of such TA device is related to laser power. The theoretical model of TA effect was established to analyze the relationship between the SPL and laser power. The theoretical results are in good agreement with experiment results. It was found that PG has a flat frequency response in the range of 5-20 kHz. This novel TA device has the advantages of one-step procedure, high flexibility, no mechanical vibration, low cost and so on. It can open wide applications in speakers, multimedia, medical, earphones, consumer electronics and many other aspects.

  5. Radiation imaging apparatus

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to a radiation imaging apparatus. It relates more particularly to apparatus of this general type which employs stationary X-ray source and detector arrays capable of acquiring multiple ultrafast scans per second to facilitate the dynamic study of moving human organs such as the beating heart. While the invention has many applications, it has particular utility in connection with computerized tomographic (CT) scanners. (Auth.)

  6. 32P-postlabeling assay for carcinogen-DNA adducts: description of beta shielding apparatus and semi-automatic spotting and washing devices that facilitate the handling of multiple samples

    International Nuclear Information System (INIS)

    Reddy, M.V.; Blackburn, G.R.

    1990-01-01

    The utilization of the 32 P-postlabeling assay in combination with TLC for the sensitive detection and estimation of aromatic DNA adducts has been increasing. The procedure consists of 32 P-labeling of carcinogen-adducted 3'-nucleotides in the DNA digests using γ- 32 P ATP and polynucleotide kinase, separation of 32 P-labeled adducts by TLC, and their detection by autoradiography. During both 32 P-labeling and initial phases of TLC, a relatively high amount of γ- 32 P ATP is handled when 30 samples are processed simultaneously. We describe the design of acrylic shielding apparatus, semi-automatic TLC spotting devices, and devices for development and washing of multiple TLC plates, which not only provide substantial protection from exposure to 32 P beta radiation, but also allow quick and easy handling of a large number of samples. Specifically, the equipment includes: (i) a multi-tube carousel rack having 15 wells to hold capless Eppendorf tubes and a rotatable lid with an aperture to access individual tubes; (ii) a pipette shielder; (iii) two semi-automatic spotting devices to apply radioactive solutions to TLC plates; (iv) a multi-plate holder for TLC plates; and (v) a mechanical device for washing multiple TLC plates. Item (i) is small enough to be held in one-hand, vortexed, and centrifuged to mix the solutions in each tube while beta radiation is shielded. Items (iii) to (iv) aid in the automation of the assay. (author)

  7. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    Science.gov (United States)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  8. Contour forming of metals by laser peening

    Science.gov (United States)

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  9. Future prospects of laser diodes and fiber lasers

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  10. Metallic DFB lasers

    NARCIS (Netherlands)

    Marell, M.J.H.; Nötzel, R.; Smit, M.K.; Hill, M.T.; Pozo, J.; Mortensen, M.; Urbach, P.; Leijtens, X.; Yousefi, M.

    2010-01-01

    In this paper we present our latest results on the design, fabrication and characterization of metal coated DFB lasers. These devices are based on a specialform of the metal-insulator-metal waveguides, which support plasmon gap modes. The distributed feedback provides control over the laser ~

  11. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  12. Method and device for incinerating radioactive wastes and preparing burnable wastes for non-polluting storage

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1975-01-01

    An apparatus for incinerating radioactive wastes includes a furnace which has air inlet conduits and a flue gas outlet conduit and air heaters as well as blowers connected to the air inlets for forcing hot air into the furnace. The apparatus further has a feeding device connected to the charging end of the furnace for introducing liquid or solid wastes thereinto and a device which communicates with the discharge end of the furnace for removing solid reaction products from the furnace. In the flue gas conduit there is connected a plurality of flue gas filters each containing filter candles, a flue gas chamber and a mechanism for removing ashes from the flue gas chamber. The apparatus also includes a mixer section connected with the outlet of each flue gas filter and having a mechanism for mixing cool air with the flue gas filtered by the flue gas filters. Gas blowers connected to the output of the mixer section draw the gas from the apparatus. 18 Claims, 8 Drawing Figures

  13. Auxiliary collimating device for obtaining irradiation fields of any shape for high energy radiotherapy apparatus

    International Nuclear Information System (INIS)

    Piret, P.; Fraikin, H.; Hubert, A.

    1976-01-01

    An auxiliary collimator is added to the main collimator of a radiotherapy apparatus and comprises a master-container filled with mercury and a localizing container containing a block of nonabsorbent material having a predetermined shape; means being provided for automatically positioning these containers with respect to the main collimator and for allowing the mercury to enter the localizing container when once it has taken its working position

  14. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  15. Radioactive gas solidification apparatus

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji; Yabu, Tomohiko; Matsunaga, Hiroyuki.

    1990-01-01

    Handling of a solidification container from the completion for the solidifying processing to the storage of radioactive gases by a remote control equipment such as a manipulator requires a great cost and is difficult to realize. In a radioactive gas solidification device for injection and solidification in accumulated layers of sputtered metals by glow discharge, radiation shieldings are disposed surrounding the entire container, and cooling water is supplied to a cooling vessel formed between the container and the shielding materials. The shielding materials are divided into upper and lower shielding materials, so that solidification container can be taken out from the shielding materials. As a result, the solidification container after the solidification of radioactive gases can be handled with ease. Further, after-heat can be removed effectively from the ion injection electrode upon solidifying treatment upon storage, to attain a radioactive gas solidifying processing apparatus which is safe, economical and highly reliable. (N.H.)

  16. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  17. Design of practical alignment device in KSTAR Thomson diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: jhlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); University of Science and Technology (UST), Daejeon (Korea, Republic of); Lee, S. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yamada, I. [National Institute for Fusion Science, Toki (Japan)

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.

  18. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  19. Informationization nuclear apparatus communication technique

    International Nuclear Information System (INIS)

    Yu Tiqi; Fang Zongliang; Wen Qilin

    2006-01-01

    The paper explains the request of communication ability in nuclear technique application area. Based on the actuality of nuclear apparatus communication ability, and mainly combining with the development of communication technique, the authors analyzes the application trend of communication technique applying in nuclear apparatus, for the apparatus and system needing communication ability, they need selecting suitable communication means to make them accomplish the task immediately and effectively. (authors)

  20. Liquid steel analysis by laser-induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Gruber, J.

    2002-11-01

    When a nanosecond pulsed laser is focused onto a sample and the intensity exceeds a certain threshold, material is vaporized and a plasma is formed above the sample surface. The laser-light becomes increasingly absorbed by inverse bremsstrahlung and by photo-excitation and photo-ionization of atoms and molecules. The positive feedback, by which the number of energetic electrons for ionization is increased in an avalanche-like manner under the influence of laser-light, is the so-called optical breakdown. Radiating excited atoms and ions within the expanding plasma plume produce a characteristic optical emission spectrum. A spectroscopic analysis of this optical emission of the laser-induced plasma permits a qualitative and quantitative chemical analysis of the investigated sample. This technique is therefore often called laser-induced plasma spectroscopy (LIPS) or laser-induced breakdown spectroscopy (LIBS). LIPS is a fast non-contact technique, by which solid, liquid or gaseous samples can be analyzed with respect to their chemical composition. Hence, it is an appropriate tool for the rapid in-situ analysis of not easily accessible surfaces for process control in industrial environments. In this work, LIPS was studied as a technique to determine the chemical composition of solid and liquid steel. A LIPS set-up was designed and built for the remote and continuous in-situ analysis of the steel melt. Calibration curves were prepared for the LIPS analysis of Cr, Mn, Ni and Cu in solid steel using reference samples with known composition. In laboratory experiments an induction furnace was used to melt steel samples in crucibles, which were placed at a working distance of 1.5 m away from the LIPS apparatus. The response of the LIPS system was monitored on-line during the addition of pure elements to the liquid steel bath within certain concentration ranges (Cr: 0.11 - 13.8 wt%, Cu: 0.044 - 0.54 wt%, Mn: 1.38 - 2.5 wt%, Ni: 0.049 - 5.92 wt%). The analysis of an element

  1. Immediate implant-supported oral rehabilitation using a photocurable plastic skull model and laser welding. A technical note on the screw-retained type: Part 1.

    Science.gov (United States)

    Tomotake, Yoritoki; Ishida, Osamu; Kanitani, Hideo; Ichikawa, Tetsuo

    2002-01-01

    This article describes a new procedure for immediate implant-supported oral rehabilitation using a photocurable resin skull model and a laser-welding apparatus. Preoperatively, the framework was fabricated on a photocurable resin skull model produced from a CT scan and individually designed guide template. The implants were immediately placed using the guide template; laser welding connected the components of framework. Despite the custom-made prosthesis, the total treatment from implant placement to superstructure placement can be completed within only 1 day. This procedure for immediate implant-supported oral rehabilitation using a photocurable resin skull model and a laser-welding apparatus may be useful for any implant system and patient.

  2. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  3. Exploration of a Buried Building Foundation and a Septic Tank Plume Dispersion Using a Laboratory-fabricated Resistivity Apparatus

    Science.gov (United States)

    Lachhab, A.; Stepanik, N.; Booterbaugh, A.

    2010-12-01

    In the following study, an electrical resistivity device was built and used in both a laboratory setup and in the field to accurately identify the location of a septic tank and the foundation of Gustavus Adolphus (GA); a building that was burned at Susquehanna University in 1964. The entire apparatus, which costs a fraction of the price of a typical electrical resistivity device, was tested for accuracy in the laboratory prior to its use in the field. The electrical resistivity apparatus consists of a deep-cycle twelve volt battery, an AC to DC inverter and two multimeters to measure the potential and the current intensity from four linear electrodes via a wireless data transmission system. This apparatus was constructed by using basic inexpensive electrical and electronic equipments. The recorded potential and current values were used to calculate the apparent resistivity of different materials adopting the Wenner array for both investigations. Several tests were performed on the tabletop bench, producing consistent results when applied to find small bricks structures with different geometrical arrangement buried under a mixed sand-soil formation. The apparatus was also used to investigate a subsurface salty water plume in the same formation. The horizontal resistivity profile obtained over the vertical small brick wall matched the theoretical apparent resistivity of resistivity versus displacement on a vertical dike in a homogeneous material. In addition, the two-dimensional resistivity profile replicate the salty plume size conformably. Following the success on the small-scale laboratory tabletop bench, the electrical resistivity apparatus was implemented in the field to explore the foundation of GA in one location and the septic tank in another. An array of transects were performed, analyzed and plotted using MATLAB. The three dimensional contours of apparent resistivity depicted exactly the locations of the buried foundation walls, the septic tank and the

  4. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  5. Laser Beam delivering and shaping device for transfer of organic film

    International Nuclear Information System (INIS)

    Lee, Kangin; Kwon, Jin Hyuk; Yi, Jonghoon

    2008-01-01

    The laser based organic material transfer methods are developed by several groups for OLED (organic light emitting diode)fabrication. Well developed laser based methods are LITI (Laser Induced Thermal Imaging)and LIPS (Laser Induced Pattern wise Sublimation). These methods are proved to be suitable for large OLED panel fabrication. At an early stage of development, TEM"00"mode Nd:YAG laser was used for pattering organic material. The focused focused Nd:YAG laser beam generated heat in the film and the heat caused expansion of organic material coated layer. The organic film on the layer is transferred to the display panel due to pressure exerted on the display panel by the layer. Recently developed system prefers to employ a diode laser with wavelength of 800nm. Diode laser is cheaper and smaller photon source compared with the Nd:YAG laser. In this work, we use Nd doped fiber laser (wavelength=1070nm, power=10W)because the laser has stable output and well defined Gaussian beam profile compared with diode laser. We also employed fiber coupled diode laser (808nm)because it also has well defined beam distribution. In laser methods, spatially shaped beam is required for clean and sharp transfer. There are several methods for the beam shaping such as aspheric lens, diffractive optical elements, and micro lens array etc. We found that Gaussian beam can be shaped to a square hat like beam just by using simple commercial spherical lens set

  6. High-speed automated NDT device for niobium plate using scanning laser acoustic microscopy

    International Nuclear Information System (INIS)

    Oravecz, M.G.; Yu, B.Y.; Riney, K.; Kessler, L.W.; Padamsee, H.

    1988-01-01

    This paper presents a nondestructive testing (NDT) device which rapidly and automatically identifies defects throughout the volume of a 23.4 cm x 23.4 cm x 0.3 cm, pure niobium plate using Scanning Laser Acoustic Microscope (SLAM), high-resolution, 60 MHz, ultrasonic images. A principle advantage of the SLAM technique is that it combines a video scan rate with a high scan density (130 lines/mm at 60 MHz). To automate the inspection system they integrated under computer control the following: the SLAM RS-170/330 video output, a computerized XY plate scanner, a real-time video digitizer/integrator, a computer algorithm for defect detection, a digital mass storage device, and a hardcopy output device. The key element was development of an efficient, reliable defect detection algorithm using a variance filter with a locally determined threshold. This algorithm is responsible for recognizing valid flaws in the midst of random texture. This texture was seen throughout the acoustic images and was caused by the niobium microstructure. The images, as analyzed, contained 128 x 120 pixels with 64 grey levels per pixel. This system allows economical inspection of the large quantities (eg. 100 tons) of material needed for future particle accelerators based on microwave superconductivity. Rapid nondestructive inspection of pure niobium sheet is required because current accelerator performance is largely limited by the quality of commercially available material. Previous work documented critical flaws that are detectable by SLAM techniques. 15 references, 9 figures

  7. Prototype Design of Plasma-Nitriding Apparatus for Components of Industries

    International Nuclear Information System (INIS)

    Bandriyana, B.; Tutun Nugraha; Silakhuddin

    2003-01-01

    An apparatus to carry-out plasma-nitriding surface treatment has been designed. The construction was planned as a prototype for a larger system at industrial scale. The design was based on a similar apparatus currently operating at the Accelerator Laboratory at the P3TM-BATAN, in Yogyakarta. The system consists of a main vacuum chamber from steel SS-304, 45 cm OD, 55 cm height and is equipped with a nitriding chamber in the inner part that also functions as a plasma container (Quartz, cylindrical, 38 cm OD, 40 cm height). The system utilized an anode-cathode pair to generate nitrogen plasma, as well as to accelerate and direct the positively-charged-plasma toward the surface of the material to be treated. The pressure inside the chamber is designed to be in the region of 10 -3 mb with a temperature between 350-590 o C. Pulsated DC high voltage can be set at 1-50 kV at a frequency between 100-1000 Hz and current 1- 50 mA. The safety and reliability features have been designed to obtain nitriding results that are in accordance with the required technical specification as well as economical constrain. It is hoped that this device can become a prototype for future development of an industrial scale plasma-nitriding apparatus. (author)

  8. Development of underwater laser cutting technology

    International Nuclear Information System (INIS)

    Sato, Seiichi; Inaba, Takanori; Inose, Koutarou; Matsumoto, Naoyuki; Sakakibara, Yuji

    2015-01-01

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  9. Scanning mid-IR laser apparatus with eye tracking for refractive surgery

    Science.gov (United States)

    Telfair, William B.; Yoder, Paul R., Jr.; Bekker, Carsten; Hoffman, Hanna J.; Jensen, Eric F.

    1999-06-01

    A robust, real-time, dynamic eye tracker has been integrated with the short pulse mid-infrared laser scanning delivery system previously described. This system employs a Q- switched Nd:YAG laser pumped optical parametric oscillator operating at 2.94 micrometers. Previous ablation studies on human cadaver eyes and in-vivo cat eyes demonstrated very smooth ablations with extremely low damage levels similar to results with an excimer. A 4-month healing study with cats indicated no adverse healing effects. In order to treat human eyes, the tracker is required because the eyes move during the procedure due to both voluntary and involuntary motions such as breathing, heartbeat, drift, loss of fixation, saccades and microsaccades. Eye tracking techniques from the literature were compared. A limbus tracking system was best for this application. Temporal and spectral filtering techniques were implemented to reduce tracking errors, reject stray light, and increase signal to noise ratio. The expanded-capability system (IRVision AccuScan 2000 Laser System) has been tested in the lab on simulated eye targets, glass eyes, cadaver eyes, and live human subjects. Circular targets ranging from 10-mm to 14-mm diameter were successfully tracked. The tracker performed beyond expectations while the system performed myopic photorefractive keratectomy procedures on several legally blind human subjects.

  10. Management of Retrograde Peri-Implantitis Using an Air-Abrasive Device, Er,Cr:YSGG Laser, and Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Nikolaos Soldatos

    2018-01-01

    Full Text Available Background. The placement of an implant in a previously infected site is an important etiologic factor contributing to implant failure. The aim of this case report is to present the management of retrograde peri-implantitis (RPI in a first maxillary molar site, 2 years after the implant placement. The RPI was treated using an air-abrasive device, Er,Cr:YSGG laser, and guided bone regeneration (GBR. Case Description. A 65-year-old Caucasian male presented with a draining fistula associated with an implant at tooth #3. Tooth #3 revealed periapical radiolucency two years before the implant placement. Tooth #3 was extracted, and a ridge preservation procedure was performed followed by implant rehabilitation. A periapical radiograph (PA showed lack of bone density around the implant apex. The site was decontaminated with an air-abrasive device and Er,Cr:YSGG laser, and GBR was performed. The patient was seen every two weeks until suture removal, followed by monthly visits for 12 months. The periapical X-rays, from 6 to 13 months postoperatively, showed increased bone density around the implant apex, with no signs of residual clinical or radiographic pathology and probing depths ≤4 mm. Conclusions. The etiology of RPI in this case was the placement of an implant in a previously infected site. The use of an air-abrasive device, Er,Cr:YSGG, and GBR was utilized to treat this case of RPI. The site was monitored for 13 months, and increased radiographic bone density was noted.

  11. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  12. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  13. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  14. Development of Cloud Chamber by Using Peltier Device

    International Nuclear Information System (INIS)

    Woo, Jong Kwan; Kwon, Jin Young; Park, Sang Tae

    2011-01-01

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10 -5 ml.mm -3 . Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  15. Development of Cloud Chamber by Using Peltier Device

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong Kwan [Jae Hyun High School, Seoul (Korea, Republic of); Kwon, Jin Young [Jeon Min High School, Daejeon (Korea, Republic of); Park, Sang Tae [Dept. of Physics Education, Kongju National University, Kongju (Korea, Republic of)

    2011-09-15

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10{sup -5}ml.mm{sup -3}. Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  16. CASTING METHOD AND APPARATUS

    Science.gov (United States)

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  17. A new apparatus for the determination of adsorption isotherms and adsorption enthalpies on microporous and meso-porous media

    International Nuclear Information System (INIS)

    Mouahid, A.

    2010-01-01

    A specific thermostated experimental device comprising a differential heat flow calorimeter coupled with a home built manometric system has been built for the simultaneous determination of adsorption isotherms and adsorption enthalpies. The differential heat flow calorimeter is a Tian Calvet Setaram C80 model which measures the heat flux of a gas and can be operated isothermally, the manometric system is a stainless steel homemade apparatus. This coupled apparatus allows measurements for pressure up to 2.5 MPa and temperature up to 423.15 K. On the one hand, the apparatus and the experimental procedures are described. On the second hand the reliability and reproducibility were established by measuring adsorption isotherms on a benchmark (Filtrasorb F400) at 318.15 K. The gravimetric method has been used at higher pressure at various temperatures. These devices allowed us to study the adsorption of supercritical fluid (nitrogen N 2 , methane CH 4 , carbon dioxide CO 2 ) in activated carbons and microporous or meso-porous silica. The adsorption of methane on a rock of type (TGR) was also studied. These experimental results are used for the study of the interactions fluid / solid that must be taken into account in molecular simulations or DFT theory. (author)

  18. The con focal laser scanning microscope: a powerful tool for the investigation of micro devices and nano structures

    International Nuclear Information System (INIS)

    Montereali, R.M.; Baldacchini, G.; Bonfigli, F.; Vincenti, M.A.; Almaviva, S.

    2008-01-01

    In the last years the Con focal Laser Scanning Microscope (CLSM), a versatile and powerful optical instrument, gained a strong increase of interest in the scientific community, not only for biological applications, but also for the characterization of materials, microstructures and devices. The conditions that favoured its wide diffusion are surely the large availability of laser sources and powerful computer-imaging and data-processing systems at relatively low cost; however, the main reason that contributed to its popularity is the ability to obtain tri dimensional reconstruction of a great variety of biological and non-biological samples with sub micrometric resolution. In this report we show the main properties and characteristics of the Con focal Microscope Nikon Eclipse 80-i C1, which has operated sinc more than two years in the Solid State Laser and Spectroscopy Laboratory of the ENEA Research Center in Frascati. Some of the results obtained in the characterization of luminescent micro and nano structures based on lithium fluoride color centers will be presented [it

  19. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    Science.gov (United States)

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  20. Identification marking by means of laser peening

    Science.gov (United States)

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.