WorldWideScience

Sample records for laser deflection angles

  1. Preparation of a monoenergetic sodium beam by laser cooling and deflection

    International Nuclear Information System (INIS)

    Nellessen, J.; Sengstock, K.; Muller, J.H.; Ertmer, W.; Wallis, H.

    1989-01-01

    This paper reports on a sodium atomic beam with a density of approx. 10 5 at cm 3 within a velocity interval of less than 3 m/s with a mean velocity of typically 50-160 m/s which has been produced by laser deflection of a laser cooled atomic beam. Laser cooling with the frequency chirp method decelerates and cools a considerable part of an atomic beam into a narrow velocity group with a temperature of approx 30 mK as a part of the resulting atomic beam. This velocity group has been selectively deflected up to 30 degrees - 40 degrees using a light field with k vectors always perpendicular to the atomic trajectory. If the light field is prepared by use of a cylindrical lens, the angle of deflection is nearly independent from the actual orbit radius. For a laser frequency detuning of about one natural linewidth to the red, the strong frequency dependence of the light pressure force leads to a beam collimation via detuning-locking of the atomic trajectory. To avoid optical pumping we used a frequency modulated laser beam with a sideband spacing matched to the hyperfine splitting of the ground state. As the cooling was performed by the frequency chirp method, one can use a part of the cooling laser beam as deflecting laser beam. Typical velocity distributions in the deflected and undeflected atomic beam, measured 22 cm downstream the deflection zone. It shows the perfect transfer of the cooled velocity group from the laser cooled beam into the deflected beam; curve c) shows as comparison the result for the deflection of the initial thermal atomic beam

  2. Determination of angle of light deflection in higher-derivative gravity theories

    Science.gov (United States)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  3. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    Science.gov (United States)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  4. An oilspill trajectory analysis model with a variable wind deflection angle

    Science.gov (United States)

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  5. Large angle and high linearity two-dimensional laser scanner based on voice coil actuators

    Science.gov (United States)

    Wu, Xin; Chen, Sihai; Chen, Wei; Yang, Minghui; Fu, Wen

    2011-10-01

    A large angle and high linearity two-dimensional laser scanner with an in-house ingenious deflection angle detecting system is developed based on voice coil actuators direct driving mechanism. The specially designed voice coil actuators make the steering mirror moving at a sufficiently large angle. Frequency sweep method based on virtual instruments is employed to achieve the natural frequency of the laser scanner. The response shows that the performance of the laser scanner is limited by the mechanical resonances. The closed-loop controller based on mathematical model is used to reduce the oscillation of the laser scanner at resonance frequency. To design a qualified controller, the model of the laser scanner is set up. The transfer function of the model is identified with MATLAB according to the tested data. After introducing of the controller, the nonlinearity decreases from 13.75% to 2.67% at 50 Hz. The laser scanner also has other advantages such as large deflection mirror, small mechanical structure, and high scanning speed.

  6. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  7. Effect of the cosmological constant on the deflection angle by a rotating cosmic string

    Science.gov (United States)

    Jusufi, Kimet; Övgün, Ali

    2018-03-01

    We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.

  8. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    International Nuclear Information System (INIS)

    Yuan, Dawei; Li, Yutong; Lu, Xin; Yin, Chuanlei; Su, Luning; Liao, Guoqian; Zhang, Jie; Wu, Junfeng; Wang, Lifeng; He, Xiantu; Zhong, Jiayong; Wei, Huigang; Zhang, Kai; Han, Bo; Zhao, Gang; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhu, Jianqiang

    2015-01-01

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in the laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model

  9. Correlation function of gravitational deflection angles of light paths

    International Nuclear Information System (INIS)

    Watanabe, Kazuya; Tomita, Kenji.

    1990-04-01

    The correlation function of gravitational deflection angles of light paths is investigated in a simplified cosmological model universe. Under several reasonable assumptions, an analytic formula for the correlation function is derived. The implication to the cosmic microwave background anisotropy and the distance defined by the observed angular (linear) scale of a source is also discussed. (author)

  10. Expressions for optical scalars and deflection angle at second order in terms of curvature scalars

    Science.gov (United States)

    Crisnejo, Gabriel; Gallo, Emanuel

    2018-04-01

    We present formal expressions for the optical scalars in terms of the curvature scalars in the weak gravitational lensing regime at second order in perturbations of a flat background without mentioning the extension of the lens or their shape. Also, by considering the thin lens approximation for static and axially symmetric configurations we obtain an expression for the second-order deflection angle which generalizes our previous result presented by Gallo and Moreschi [Phys. Rev. D 83, 083007 (2011)., 10.1103/PhysRevD.83.083007]. As applications of these formulas we compute the optical scalars for some known family of metrics, and we recover expressions for the deflection angle. In contrast to other works in the subject, our formalism allows a straightforward identification of how the different components of the curvature tensor contribute to the optical scalars and deflection angle. We also discuss in what sense the Schwarzschild solution can be thought as a true thin lens at second order.

  11. Deflection of slow light by magneto-optically controlled atomic media

    International Nuclear Information System (INIS)

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-01-01

    We present a semiclassical theory for light deflection by a coherent Λ-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field

  12. Simultaneous distribution between the deflection angle and the lateral displacement under the Moliere theory of multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Takao [Okayama Shoka University, Laboratory of Information Science, Okayama (Japan); Okei, Kazuhide [Kawasaki Medical School, Dept. of Information Sciences, Kurashiki (Japan); Iyono, Atsushi [Okayama university of Science, Dept. of Fundamental Science, Faculty of Science, Okayama (Japan); Bielajew, Alex F. [Univ. of Michigan, Dept. Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States)

    2015-12-15

    Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Moliere theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Moliere theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports. (orig.)

  13. The deflection angle of a gravitational source with a global monopole in the strong field limit

    International Nuclear Information System (INIS)

    Cheng Hongbo; Man Jingyun

    2011-01-01

    We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.

  14. The effects of porosity and angle of inclination on the deflection of ...

    African Journals Online (AJOL)

    The effects of porosity and angle of inclination on the deflection of fluid flow in porous media. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  15. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  16. Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection

    International Nuclear Information System (INIS)

    Vries, H.S.M. de; Harren, F.J.M.; Wyers, G.P.; Otjes, R.P.; Slanina, J.; Reuss, J.

    1995-01-01

    A recently developed non-intrusive photothermal deflection (PTD) instrument allows sensitive, rapid and quantitative detection of local ammonia concentrations in the air. Ammonia is vibrationally excited by an infrared CO 2 laser in an intracavity configuration. A HeNe beam passing over the CO 2 laser beam (multipass arrangement) is deflected by the induced refractive index gradient. The detection limit for ammonia in ambient air is 0.5 ppbv with a spatial resolution of a few mm 3 . The time resolution is 0.1 s (single line) or 15 s (multi line). The system is fully automated and suited for non-stop measuring periods of at least one week. Results were compared to those obtained with a continuous-flow denuder (CFD). (author)

  17. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    International Nuclear Information System (INIS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-01-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm"−"2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm"−"2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm"−"2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  18. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  19. Laser beam deflection-based perimeter scanning of integrated circuits for local overheating location

    International Nuclear Information System (INIS)

    Perpina, X; Jorda, X; Vellvehi, M; Altet, J; Mestres, N

    2009-01-01

    In integrated circuits, local overheating (hot spots) can be detected by monitoring the temperature gradients present in the silicon substrate at a given depth, laterally accessing the die with an infra-red laser beam probe. The sensed magnitude is the laser beam deflection, which is proportional to the temperature gradients found along the beam trajectory (mirage effect). Biasing the devices with periodic electrical functions allows employing lock-in detection strategies (noise immunity) and thermally isolating the analysed chip substrate thermal behaviour from the external boundary conditions by setting the excitation frequency (control of the thermal energy penetration depth). Measuring the first harmonic of the deflection signal components (vertical and horizontal) allows performing a fast and accurate location of devices, interconnects or circuits dissipating relatively high power levels without any calibration procedure. It has been concluded that the horizontal component of the beam deflection provides a higher spatial resolution than the vertical one when measurements are performed beyond the thermal energy penetration depth. (fast track communication)

  20. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  1. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  2. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  3. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    Energy Technology Data Exchange (ETDEWEB)

    Akkus, Harun, E-mail: physicisthakkus@gmail.com

    2013-12-15

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle.

  4. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    International Nuclear Information System (INIS)

    Akkus, Harun

    2013-01-01

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle

  5. Angle measurement with laser feedback instrument.

    Science.gov (United States)

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  6. Deflection system for charged-particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Bates, T

    1982-01-13

    A system is described for achromatically deflecting a beam of charged particles without producing net divergence of the beam comprising three successive magnetic deflection means which deflect the beam alternately in opposite directions; the first and second deflect by angles of less than 50/sup 0/ and the third by an angle of at least 90/sup 0/. Particles with different respective energies are transversely spaced as they enter the third deflection means, but emerge completely superimposed in both position and direction and may be brought to a focus in each of two mutually perpendicular planes, a short distance thereafter. Such a system may be particularly compact, especially in the direction in which the beam leaves the system. It is suitable for deflecting a beam of electrons from a linear accelerator so producing a vertical beam of electron (or with an X-ray target, of X-rays) which can be rotated about a horizontal patient for radiation therapy.

  7. Flow deflection over a foredune

    Science.gov (United States)

    Hesp, Patrick A.; Smyth, Thomas A. G.; Nielsen, Peter; Walker, Ian J.; Bauer, Bernard O.; Davidson-Arnott, Robin

    2015-02-01

    Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident winds approaching obliquely to the dune toe and crestline tend to be deflected towards a more crest-normal orientation across the stoss slope of the foredune. This paper examines field measurements for obliquely incident winds, and compares them to computational fluid dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, followed by a comparative analysis of measured and modelled flow deflection data that shows strong agreement. CFD modelling of the full range of onshore to alongshore incident winds reveals that deflection of the incident wind flow is minimal at 0° and gradually increases as the incident wind turns towards 30° to the dune crest. The greatest deflection occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends secondarily on height above the dune surface, with the greatest effect near the surface and toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and declines significantly for winds with more oblique approach angles. There is less lateral uniformity in the wind field when the incident wind approaches from > 60° because the effect of aspect ratio on topographic forcing and streamline convergence is less pronounced.

  8. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  9. Large membrane deflection via capillary force actuation

    Science.gov (United States)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  10. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat's principle

    Science.gov (United States)

    Akkus, Harun

    2013-12-01

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat's principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem.

  11. Study of the incident pion deflection in passing through atomic nucleus

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.; Pluta, J.

    1982-01-01

    Pion-xenon nucleus collision events at 3.5 GeV/c momentum are studied in which the incident pion is deflected only, without particle production; the deflection is accompanied by emission of nucleons. The multiplicity of the protons emitted is a measure of the nuclear matter layer thickness passed by the pion. It can be concluded that: a) a definite simple relation exists between the pion deflection angle and the thickness of the nuclear matter layer traversed by this pion; b) the deflection angle of the incident pion increases in a definite manner with increasing the thickness of the nuclear matter layer traversed by this pion; c) the average kinetic energy, average longitudinal momentum and average transverse momentum of the protons emitted do not depend on the pion deflection angle

  12. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.

    Science.gov (United States)

    Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas

    2018-03-25

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

  13. Lasers in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Sihota Ramanjit

    2011-12-01

    Full Text Available Lasers have been used in the treatment of primary open angle glaucoma (POAG over the years, with the hope that they would eventually replace medical and surgical therapy. Laser trabeculoplasty (LT is an application of argon, diode, or selective laser energy to the surface of the trabecular meshwork to increase the aqueous outflow. The mechanisms by which intraocular pressure (IOP is lowered could be mechanical, biologic, or by division of adjacent cells. It is commonly used as an adjunct to medical therapy, but is contraindicated if the angle is obstructed, e.g., peripheral anterior synechia (PAS or developmental glaucomas. About 75% of individuals will show a significant fall in IOP after argon laser trabeculoplasty (ALT, and the response is similar with selective laser trabeculoplasty (SLT. The effects of LT are not always long lasting, with about 10% of individuals showing a rise in IOP with every passing year. Laser thermal sclerostomy, ab interno or externo, is an alternative to other full-thickness filtration procedures. Longer wavelengths in the infrared range have water-absorptive characteristics that facilitate perforation of the sclera. These lasers can be used to avoid intraocular instrumentation and minimize conjunctival trauma.

  14. Properties of the transfer matrices of deflecting magnet systems for free electron laser

    International Nuclear Information System (INIS)

    Takao, Masaru

    1993-01-01

    The oscillation of the free electron laser (FEL) requires the high current and low emittance electron beam. The beam transport system should be achromatic and isochronous to preserve the brightness and the emittance of the electron beam. In this paper we clarify the algebraic properties of the transfer matrices of the magnetic deflection system, which is a key component in the beam transport line. (author)

  15. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    Science.gov (United States)

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  16. Deflection of light and particles by moving gravitational lenses

    International Nuclear Information System (INIS)

    Wucknitz, Olaf; Sperhake, Ulrich

    2004-01-01

    Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but the results presented so far do not appear to agree on the expected deflection angles. Some publications claim a scaling of deflection angles with 1-v to first order in the radial lens velocity v, while others obtained a scaling with 1-2v. In this paper we generalize the calculations for arbitrary lens velocities and show that the first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity, including light as a limiting case. We show that the effect of radial motion of the lens is very different for slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We demonstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test particles. Additionally we include the transversal motion of the source and observer to show that all three velocities can be combined into an effective relative transversal velocity similar to the approach used in microlensing studies

  17. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  18. Measuring contact angle and meniscus shape with a reflected laser beam.

    Science.gov (United States)

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  19. Light deflection in gadolinium molybdate ferroelastic crystals

    International Nuclear Information System (INIS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-01-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle α i on the sample at room temperature. The A and B deflected beams do not cross each other during the α i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction. (author)

  20. Deflection of massive neutrinos by gravitational fields

    International Nuclear Information System (INIS)

    Fargion, D.

    1981-01-01

    The curvature undergone by massive neutrino trajectories, passing by a mass M at a distance b from the center of a body, is examined. Calculations led to the following angle of deflection: δ rho = 2GM/b#betta# 2 sub(infinity)C 2 (1 + #betta# 2 sub(infinity)), where #betta#sub(infinity) is the dimensionless velocity of the particle at infinity. The ultrarelativistic limit (#betta#sub(infinity) = 1) coincides with the usual massless deflection. Physical consequences are considered. (author)

  1. Argon laser peripheral iridoplasty for angle-closure glaucoma in sibilings with weill-marchesani syndrome.

    Science.gov (United States)

    Ritch, R; Solomon, L D

    1992-01-01

    A patient with Weill-Marchesani syndrome and angle-closure glaucoma had persistent appositional closure after laser iridotomy that was unrelieved by topical application of either miotic or cycloplegic agents. Argon laser peripheral iridoplasty successfully opened the angle. The patient's sister also had Weill-Marchesani syndrome and angle closure unrelieved by laser iridotomy. Angle closure in Weill-Marchesani syndrome and the response to laser iridotomy and treatment with either miotic or cycloplegic agents may be complex and depends on the relative proportion of pupillary block as a mechanism underlying the angle closure, the functional status of the zonular apparatus, and the degree of angle crowding by the peripheral iris in the presence or absence of peripheral anterior synechiae.

  2. New magic angle bumps and magic translation bumps

    International Nuclear Information System (INIS)

    Seeman, J.

    1983-01-01

    SLC beams of opposite charge can be transversely deflected in the same direction by RF fields in the accelerating cavities caused by girder tilts, coupler-asymmetries, or manufacturing errors. A symmetric deflection can be corrected by a magic angle bump if the deflection is located adjacent to one of the linac quadrupoles. However, if the deflection is located between quadrupoles, two magic angle bumps or a magic angle bump and a magic translation bump are needed for the correction. Several examples of translation bumps are included. A new magic angle bump is also presented which is longitudinally compressed and has significantly reduced particle excursions. Finally, if new correctors are added midway along the girders so that the number of correctors are doubled, then the longitudinal extent and the maximum particle excursion of these new magic bumps can be further reduced

  3. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  4. The calculation of the deflection angle in a collision process between an atom of rare gas and a complex molecule of Xsub(n)Ysub(m) type

    International Nuclear Information System (INIS)

    Trisca, I.; Vasiu, M.; Vasaru, G.

    1987-01-01

    We report a classical method for the calculation of the angle of deflection in a nonresonant collision in Xsub(n)Ysub(m)-Z physical active systems. The classical turning point versus temperature, for UF 6 -Ar system was calculated. For small temperature has been pointed out the association interaction. (authors)

  5. Peripheral laser iridoplasty opens angle in plateau iris by thinning the cross-sectional tissues

    Directory of Open Access Journals (Sweden)

    Liu J

    2013-09-01

    Full Text Available Ji Liu,1,2 Tania Lamba,1 David A Belyea1 1Department of Ophthalmology, The George Washington University, Washington DC, USA; 2Yale Eye Center, Yale University, New Haven, CT, USA Abstract: Plateau iris syndrome has been described as persistent angle narrowing or occlusion with intraocular pressure elevation after peripheral iridotomy due to the abnormal plateau iris configuration. Argon laser peripheral iridoplasty (ALPI is an effective adjunct procedure to treat plateau iris syndrome. Classic theory suggests that the laser causes the contraction of the far peripheral iris stroma, "pulls" the iris away from the angle, and relieves the iris-angle apposition. We report a case of plateau iris syndrome that was successfully treated with ALPI. Spectral domain optical coherence tomography confirmed the angle was open at areas with laser treatment but remained appositionally closed at untreated areas. Further analysis suggested significant cross-sectional thinning of the iris at laser-treated areas in comparison with untreated areas. The findings indicate that APLI opens the angle, not only by contracting the iris stroma, but also by thinning the iris tissue at the crowded angle. This is consistent with the ALPI technique to aim at the iris as far peripheral as possible. This case also suggests that spectral domain optical coherence tomography is a useful adjunct imaging tool to gonioscopy in assessing the angle condition. Keywords: plateau iris, optic coherence tomography, argon laser peripheral iridoplasty, angle-closure glaucoma

  6. Strong deflection lensing by charged black holes in scalar-tensor gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2014-11-15

    We examine a class of charged black holes in scalar-tensor gravity as gravitational lenses. We find the deflection angle in the strong deflection limit, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to the Reissner-Norstroem spacetime and we analyze the observational aspects in the case of the Galactic supermassive black hole. (orig.)

  7. Optical beam deflection sensor: design and experiments.

    Science.gov (United States)

    Sakamoto, João M S; Marques, Renan B; Kitano, Cláudio; Rodrigues, Nicolau A S; Riva, Rudimar

    2017-10-01

    In this work, we present a double-pass optical beam deflection sensor and its optical design method. To accomplish that, a mathematical model was proposed and computational simulations were performed, in order to obtain the sensor's characteristic curves and to analyze its behavior as function of design parameters. The mathematical model was validated by comparison with the characteristic curves acquired experimentally. The sensor was employed to detect acoustic pulses generated by a pulsed laser in a sample surface, in order to show its potential for monitoring applications handling high energy input as laser welding or laser ablation.

  8. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe.

    Science.gov (United States)

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-04-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42-1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.

  9. All-optical optoacoustic microscopy based on probe beam deflection technique

    OpenAIRE

    Maswadi, Saher M.; Ibey, Bennett L.; Roth, Caleb C.; Tsyboulski, Dmitri A.; Beier, Hope T.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2016-01-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separa...

  10. Management of intermittent angle closure glaucoma with Nd: yag laser iridotomy as a primary procedure

    International Nuclear Information System (INIS)

    Ahmed, M.

    2006-01-01

    To assess the efficacy and complications of Nd: YAG laser iridotomy in patients with intermittent (sub-acute) angle closure glaucoma. Twenty-five eyes of twenty-three patients with periodic (intermittent) angle closure, selected in outpatient department, were kept on pilocarpine until YAG laser iridotomy was performed. After YAG laser iridotomy oral acetazolamide and topical dexamethasone was used to control post laser rise of IOP and inflammation respectively. Patency of iridotomy was confirmed and intra-ocular pressure was measured one hour after the procedure. Immediate complication, if any, was noted. Follow-up was done for six months. Prophylactic laser iridotomy was done in fellow eye with occludable angle. Levene's test for equality of variance and t-test for equality of means were used for statistical analysis. This study revealed a significant difference in IOP before and after YAG laser iridotomy (p = .002). Complete follow-up of 6 months was possible in 25 eyes of 23 subjects. After YAG Laser iridotomy, 21 (84%) eyes showed negative provocative test, intraocular pressure below 19mm Hg without medication and anterior chamber angle no more occludable and were labeled successful. Iridotomy remained patent in 96% of eyes. Iridotomy failed to reduce IOP in 4 (16%) eyes. The complications were minimal and transient. (author)

  11. Angle observation of laser peripheral iridoplasty for the treatment of acute angle-closure glaucoma which could not be controlled by drugs

    Directory of Open Access Journals (Sweden)

    Wei Han

    2013-07-01

    Full Text Available AIM: To evaluate the effect of laser peripheral iridoplasty(LPIPto treat acute angle-closure glaucoma(AACGwhich could not controlled by drugs and with persistent ocular hypertension. METHODS: Totally 67 patients(69 eyeswith AACG were performed LPIP when intraocular pressure(IOPwas still over 30mmHg after the medicine therapy for 3-6 hours. Visual acuity and intraocular pressure were under detection before laser treatment and 30 minutes, 60 minutes and 2 hours after laser treatment. We measured the anterior chamber depth, width of angle, iris thickness with ultrasound biomicroscope(UBM. Dynamic gonioscopy was used to evaluate the degree of peripheral anterior synechia(PAS.RESULTS: Angle open distance(AODafter iridoplasty was increased(PPF=151.79, PCONCLUSION: LPIP can deepen peripheral anterior chamber, increase the angle access and lower the IOP immediately. It is an important ongoing adjuvant treatment, which can reduce the patients suffering by lowering the IOP quickly, reduce the damage of visual function caused by long-term high intraocular pressure, avoid side effect of the drugs, and can improve the prognosis.

  12. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    International Nuclear Information System (INIS)

    Kaplan, A. F. H.

    2012-01-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO 2 -laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  13. Statistics of light deflection in a random two-phase medium

    International Nuclear Information System (INIS)

    Sviridov, A P

    2007-01-01

    The statistics of the angles of light deflection during its propagation in a random two-phase medium with randomly oriented phase interfaces is considered within the framework of geometrical optics. The probabilities of finding a randomly walking photon in different phases of the inhomogeneous medium are calculated. Analytic expressions are obtained for the scattering phase function and the scattering phase matrix which relates the Stokes vector of the incident light beam with the Stokes vectors of deflected beams. (special issue devoted to multiple radiation scattering in random media)

  14. Laser Tracker Calibration - Testing the Angle Measurement System -

    Energy Technology Data Exchange (ETDEWEB)

    Gassner, Georg; Ruland, Robert; /SLAC

    2008-12-05

    Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. A test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.

  15. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  16. Angular dispersion and deflection function for heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bai Zhen; Han Jianlong; Hu Zhengguo; Chinese Academy of Sciences, Beijing

    2007-01-01

    The differential cross sections for elastic scattering products of 17 F on 208 Pb have been measured. The angular dispersion plots of ln(dσ/dθ) versus θ 2 are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena. (authors)

  17. Use of photothermal deflection spectrometry (PDS) for studies of analytes in aqueous solutions

    International Nuclear Information System (INIS)

    Bohnert, B.; Faubel, W.; Ache, H.J.

    1990-01-01

    A crossed-beam photothermal deflection spectrophotometer (PSD) instrument was built, evaluated and applied to the determination of lanthanide neodymium. A dye laser filled with rhodamine 6 G and pumped by an argon ion laser at 514 nm was operated with outputs between 4 and 500 mW at the cuvette position and chopped at 2 Hz. The deflection of a He-Ne probe laser beam, crossing the exciting dye laser, was measured by a two-dimensional position sensitive device and two lock-in amplifiers. The setup was evaluated with a solid carbon sample and the liquids toluene and Nd 3+ /HClO 4 . A calibration curve for Nd 3+ in HClO 4 was obtained and the limit of detection (LOD) for Nd 3+ was determined to be 2x10 -6 mol/l. This LOD is, on the one hand, by 2 orders of magnitudes lower than the value obtained with the Cary 2400 spectrophotometer and, on the other hand, this transverse PDS technique is highly competitive to collinear thermal lensing and laser-induced photoacoustic spectroscopy. (orig.)

  18. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  19. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 20 to 90 deg. 3: Influence of control deflection on predicted model D spin modes

    Science.gov (United States)

    Ralston, J. N.; Barnhart, B. P.

    1984-01-01

    The influence of control deflections on the rotational flow aerodynamics and on predicted spin modes is discussed for a 1/6-scale general aviation airplane model. The model was tested for various control settings at both zero and ten degree sideslip angles. Data were measured, using a rotary balance, over an angle-of-attack range of 30 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omegab/2V range of 0 to 0.5.

  20. Structure-function correlations using scanning laser polarimetry in primary angle-closure glaucoma and primary open-angle glaucoma.

    Science.gov (United States)

    Lee, Pei-Jung; Liu, Catherine Jui-Ling; Wojciechowski, Robert; Bailey-Wilson, Joan E; Cheng, Ching-Yu

    2010-05-01

    To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry and visual field (VF) sensitivity in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Prospective, comparative, observational cases series. Fifty patients with POAG and 56 patients with PACG were examined using scanning laser polarimetry with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, Inc.) and Humphrey VF analyzer (Carl Zeiss Meditec, Inc.) between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity in both decibel and 1/Lambert scales, were estimated by the Spearman rank correlation coefficient (r(s)) and multivariate median regression models (pseudo R(2)). The correlations were determined globally and for 6 RNFL sectors and their corresponding VF regions. The correlation between RNFL thickness and mean sensitivity (in decibels) was weaker in the PACG group (r(s) = 0.38; P = .004; pseudo R(2) = 0.17) than in the POAG group (r(s) = 0.51; P polarimetry. Compared with eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  2. Gravitational light deflection in the Solar System

    International Nuclear Information System (INIS)

    Cowling, S.A.

    1984-01-01

    The problems of defining the bending of a light path in general stationary space-times are discussed. It is shown how in situations of axial symmetry the use of 'triangulation lines' leads to a coordinate invariant definition of the bending angle between arbitrary points on a light path. An exact expression is derived for the bending angle in a static, spherically symmetric space-time of arbitrarily strong curvature. This formulation is used to calculate, to second PPN order, the apparent positional shift which is measured when observing, for example, an asteroid or a spacecraft situated close to superior conjunction with the Sun. The possibilities of measuring light deflection effects using modern observational facilities are considered. (author)

  3. Experimental validation of a newly designed 6 degrees of freedom scanning laser head: Application to three-dimensional beam structure

    International Nuclear Information System (INIS)

    Di Maio, D.; Copertaro, E.

    2013-01-01

    A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of the conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure

  4. Nd:Yag laser iridotomy in Shaffer-Etienne grade 1 and 2:angle widening in our case studies

    Directory of Open Access Journals (Sweden)

    Sandra Cinzia Carlesimo

    2015-08-01

    Full Text Available AIM:To obtain widening of a potentially occludable angle, in according to Kanski’s indications, through preventive Nd:Yag laser iridotomy. The observational study was performed by using gonioscopy for the selection and follow-up of 1165 treated eyes and exploiting Shaffer-Etienne gonioscopic classification as a quality/quantity test of the angle recession.METHODS:Between September 2000 and July 2012, 586 patients were selected at the Outpatients’ Ophthalmological Clinic of the Policlinico Umberto I of Rome in order to undergo Nd:Yag laser iridotomy. A Goldmann type contact lens, Q-switched mode, 2-3 defocus, and 7-9 mJ intensity with 2-3 impulse discharges were used for surgery.RESULTS:From as early as the first week, a whole 360° angle widening were evident in the patients, thus showing the success of Nd:Yag laser iridotomy in solving relative pupil block. The angle remained narrow by 270° in 14 eyes only, despite repetitions of further treatment with laser iridotomy in a different part of the iris, twice in 10 eyes and three times in 4 eyes.CONCLUSION:Nd:Yag laser iridotomy revealed itself as being a safe and effective treatment in widening those critical Shaffer-Etienne grade 1 and 2 potentially occludable angles.

  5. Which Flexible Ureteroscopes (Digital vs. Fiber-Optic) Can Easily Reach the Difficult Lower Pole Calices and Have Better End-Tip Deflection: In Vitro Study on K-Box. A PETRA Evaluation.

    Science.gov (United States)

    Dragos, Laurian B; Somani, Bhaskar K; Sener, Emre T; Buttice, Salvatore; Proietti, Silvia; Ploumidis, Achilles; Iacoboaie, Catalin T; Doizi, Steeve; Traxer, Olivier

    2017-07-01

    Modern flexible ureteroscopes (fURSs) have good deflection, but despite this, approaching an acute angled calix can still be difficult. The goals of our in vitro study were to assess the ability of the available modern fURSs to effectively access the sharp angled calices and to compare the end-tip deflection of the various fiber-optic and digital fURSs. Using a bench-training model for FURS (K-Box, Porgès-Coloplast), we tried to access an acute angled calix with nine different fURSs (BOA vision, COBRA vision, R.Wolf; FLEX X 2 , FLEX Xc, K.Storz; LithoVue, Boston Scientific; URF-P5, URF-P6, URF-V, URF-V2, Olympus). Passing the fURSs through a ureteral access sheath (ReTrace, Porgès-Coloplast), the maximum end-tip deflection for every fURS was measured with the tip extended out from the sheath at 1, 2, 3, and 4 cm. Two ranking methods were designed for scoring the fURSs, one based on total ranking points and the other on total degrees of deflection. While all fiber-optic fURSs (except URF-P6) were able to access the sharp angled calix, none of the digital fURSs (except FLEX Xc) reached the difficult angled calix. Similarly, all fiber-optic fURSs had better end-tip deflection compared with the digital fURSs, except FLEX Xc, which was as deflectable as the fiber-optic fURSs. The fURSs showed an end-tip deflection (median difference of almost 21°) in favor of fiber-optic fURSs. Based on the scoring, the highest ranked fURS (best deflection) was FLEX X2 and the lowest ranked fURS (worst deflection) was URF-V2. Digital fURSs were less effective in accessing the sharp angled calix and they had lesser end-tip deflection compared with the fiber-optic counterparts. When approaching a difficult lower pole calix, it might be better to use a fiber-optic fURS.

  6. Demonstration of angle widening using EyeCam after laser peripheral iridotomy in eyes with angle closure.

    Science.gov (United States)

    Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin

    2010-06-01

    To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Compensation of aberrations of deflected electron probe by means of dynamical focusing with stigmator

    International Nuclear Information System (INIS)

    Baba, Norio; Ebe, Toyoe; Ikehata, Koichi; Ito, Yasuhiro; Terada, Hiroshi

    1979-01-01

    Electron beam passing through a deflecting field is in general, subjected to aberrations such as distortion, astigmatism and coma in accordance with the deflecting angle. Accordingly the aberration defect of deflected beam is the most serious limiting factor in the performances of micromachining, microminiaturization and high resolution scanning electron microscopes. From many investigators' results, it is obvious that three important compensation methods to aberrations exist in principle, i.e., double deflection system, dynamical focusing, and the dynamical correction using a stigmator. In this paper, based on the aberration formula derived from the eikonal or the path method, the practical data of the aberration constants of deflected electron beam for the sequential deflection system with parallel plates are calculated, and using its result, the distorted spot patterns of an electron probe deflected in two-dimensional directions for various defocusings are graphically displayed by the aid of a computer. Further, by means of the dynamical focusing with a stigmator, the conditions to completely compensate the second order astigmatic aberration are derived, and spot patterns and the electron density distributions within the spots in the case when the compensating conditions are satisfied are also graphically displayed. (Wakatsuki, Y.)

  8. The laser astrometric test of relativity mission

    International Nuclear Information System (INIS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.

    2004-01-01

    This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength, ∝ G 2 . The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station (ISS). The interferometer is used for measuring the angles between the two spacecraft. In Euclidean geometry, determination of a triangle's three sides determines any angle therein; with gravity changing the optical lengths of sides passing close by the Sun and deflecting the light, the Euclidean relationships are overthrown. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter γ to unprecedented levels of accuracy of 10 -8 , it will also reach ability to measure effects of the next post-Newtonian order (c -4 ) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic effects including Lense-Thirring precession. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments

  9. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillin, I.V. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); Shul' ga, N.F. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); V.N. Karazin Kharkov National University, Kharkov (Ukraine); Bandiera, L. [INFN Sezione di Ferrara, Ferrara (Italy); Guidi, V.; Mazzolari, A. [INFN Sezione di Ferrara, Ferrara (Italy); Universita degli Studi di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy)

    2017-02-15

    An investigation on stochastic deflection of high-energy negatively charged particles in a bent crystal was carried out. On the basis of analytical calculation and numerical simulation it was shown that there is a maximum angle at which most of the beam is deflected. The existence of a maximum, which is taken in the correspondence of the optimal radius of curvature, is a novelty with respect to the case of positively charged particles, for which the deflection angle can be freely increased by increasing the crystal length. This difference has to be ascribed to the stronger contribution of incoherent scattering affecting the dynamics of negative particles that move closer to atomic nuclei and electrons. We therefore identified the ideal parameters for the exploitation of axial confinement for negatively charged particle beam manipulation in future high-energy accelerators, e.g., ILC or muon colliders. (orig.)

  10. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation

    International Nuclear Information System (INIS)

    Junqueira Junior, Duilio Naves

    2002-01-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  11. Deflection tomography of a complex flow field based on the visualization of projection array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bin; Miao Zhanli, E-mail: zb-sh@163.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061 (China)

    2011-02-01

    Tomographic techniques are used for the investigation of complex flow fields by means of deflectometric methods. A new deflection tomographic setup for obtaining an array of multidirectional deflectograms is presented. Deflection projections in different angles of view can be captured synchronously in same optical path condition and arranged on the camera in two rows with three views in each row. Tikhonov regularization method is used to reconstruct temperature distribution from deflectometric projection data. The conjugate gradient method is used to compute the regularized solution for the least-square equations. The asymmetric flame temperature distribution in the horizontal section was reconstructed from limited view angle projections. The experimental results of reconstruction from real projection data were satisfactory when compared with the direct thermocouple measurements.

  12. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  13. Argon laser iridoplasty : A primary mode of therapy in primary angle closure glaucoma

    Directory of Open Access Journals (Sweden)

    Agarwal H

    1991-01-01

    Full Text Available Argon laser iridoplasty was performed in 40 eyes of 33 patients of primary angle closure glaucoma. There were 12 male and 21 female patients. The mean ages of the male and female patients were 51 years and 48.4 years respectively. Forty eyes were divided into two groups. Group I consisted of ten eyes of subacute angle closure glaucoma and group II included thirty eyes of chronic angle closure glaucoma. Argon laser iridoplasty was performed with Coherent 9000 model using laser settings of spot size 200 micron, duration 0.2 second and power 0.7 watt. A total of 80 spots were applied over 360 degree circumference. The intraocular pressure control (below 22 mm Hg was achieved after iridoplasty in all the eyes (100% in group I, where as in group II the intraocular pressure was controlled in 70% eyes. The follow up period varied from 3 months to one year with a mean of eight months. The success rate with iridoplasty was directly related to the extent of peripheral anterior synechiae, optic disc cupping and presence of visual field changes.

  14. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  15. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    Science.gov (United States)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  16. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  17. Implementation of a beam deflection system for studies of liquid interfaces on beamline I07 at Diamond.

    Science.gov (United States)

    Arnold, Thomas; Nicklin, Chris; Rawle, Jonathan; Sutter, John; Bates, Trevor; Nutter, Brian; McIntyre, Gary; Burt, Martin

    2012-05-01

    X-ray optics, based on a double-crystal deflection scheme, that enable reflectivity measurements from liquid surfaces/interfaces have been designed, built and commissioned on beamline I07 at Diamond Light Source. This system is able to deflect the beam onto a fixed sample position located at the centre of a five-circle diffractometer. Thus the incident angle can be easily varied without moving the sample, and the reflected beam is tracked either by a moving Pilatus 100K detector mounted on the diffractometer arm or by a stationary Pilatus 2M detector positioned appropriately for small-angle scattering. Thus the system can easily combine measurements of the reflectivity from liquid interfaces (Q(z) > 1 Å(-1)) with off-specular data collection, both in the form of grazing-incidence small-angle X-ray scattering (GISAXS) or wider-angle grazing-incidence X-ray diffraction (GIXD). The device allows operation over the energy range 10-28 keV.

  18. Effect of laser peripheral iridotomy on anterior chamber angle anatomy in primary angle closure spectrum eyes

    Science.gov (United States)

    Kansara, Seema; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose To evaluate the change in trabecular-iris circumference volume (TICV) after laser peripheral iridotomy (LPI) in primary angle closure (PAC) spectrum eyes Patients and Methods Forty-two chronic PAC spectrum eyes from 24 patients were enrolled. Eyes with anterior chamber abnormalities affecting angle measurement were excluded. Intraocular pressure, slit lamp exam, and gonioscopy were recorded at each visit. Anterior segment optical coherence tomography (ASOCT) with 3D mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after LPI. Forty-two pre-LPI ASOCT scans and 34 post-LPI ASOCT scans were analyzed using the Anterior Chamber Analysis and Interpretation (ACAI, Houston, TX) software. A mixed-effect model analysis was used to compare the trabecular-iris space area (TISA) changes among 4 quadrants, as well as to identify potential factors affecting TICV. Results There was a significant increase in all average angle parameters after LPI (TISA500, TISA750, TICV500, and TICV750). The magnitude of change in TISA500 in the superior angle was significantly less than the other angles. The changes in TICV500 and TICV750 were not associated with any demographic or ocular characteristics. Conclusion TICV is a useful parameter to quantitatively measure the effectiveness of LPI in the treatment of eyes with PAC spectrum disease. PMID:26066504

  19. Comparison of circumferential peripheral angle closure using iridotrabecular contact index after laser iridotomy versus combined laser iridotomy and iridoplasty.

    Science.gov (United States)

    Cho, Hyun-Kyung; Kee, Changwon; Yang, Heon; Huh, Hyoun Do; Kim, Su Jin; Park, Young Min; Park, Jong Moon

    2017-11-01

    To compare the quantitative changes of peripheral angle after laser iridotomy (LI) alone (group A) or combined LI and Iridoplasty (group B) using iridotrabecular contact (ITC) index by swept-source anterior segment optical coherence tomography (AS-OCT). In this prospective comparative observational study, OCT images were obtained before and after the procedure. In each image frame, scleral spur (SS) and the ITC end point (EP) were marked and ITC index was calculated as a percentage of the angle closure from 360°. Age, gender, diagnosis and initial ITC index in Group B were matched with group A. Changes in ITC index, anterior chamber angle parameters, and intraocular pressure (IOP) were inspected. Thirty-three eyes (20 patients) with shallow anterior chamber were included in each group. Initial ITC index and initial IOP were not significantly different between the two groups (both p > 0.05). However, ITC index and IOP after the procedure were significantly lower in group B than those in group A (ITC index: 31.3 ± 23.2 in group A, 19.0 ± 21.3 in group B, p = 0.011, IOP: p = 0.004). All anterior chamber angle parameters in group B and all parameters in group A except nasal trabecular-iris angles (TIA) were significantly increased after the laser procedure (all p angle better than LI alone. Iridoplasty may be able to additionally relieve the peripheral angle closure caused by other mechanisms than pupillary block. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  1. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    Science.gov (United States)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  2. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  3. Coherent Bichromatic Force Deflection of Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  4. Methods and apparatus for laser beam scanners with different actuating mechanisms

    Science.gov (United States)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  5. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  6. A new method to butt weld pipes with laser at different angles

    International Nuclear Information System (INIS)

    Gualini, M.M.S.

    1999-01-01

    Laser butt welding of pipes at different angles may be cumbersome and may require very expensive tooling. The pipe size may not allow using the laser for large volume throughputs. We propose a rotary optical head composed by an adjustable focus lens system and two reflecting mirrors. The laser beam is bent at 90 deg. C. so that weld can be performed inwards outwards. The optic head design compensates the rotary backlash and vibrations, like a penta prism thus ensuring a perfect follow up of the weld track. The optic head can be inclined at 45 deg. C. to laser butt weld pipe each other at 90 deg. C. In this case the laser beam focus position is computer controlled in order to keep the focus point always on the elliptical weld profile. The paper covers theoretical and practical aspects of the proposed device. (author)

  7. Changes in Anterior Segment Morphology and Predictors of Angle Widening after Laser Iridotomy in South Indian Eyes.

    Science.gov (United States)

    Zebardast, Nazlee; Kavitha, Srinivasan; Krishnamurthy, Palaniswamy; Friedman, David S; Nongpiur, Monisha E; Aung, Tin; Quigley, Harry A; Ramulu, Pradeep Y; Venkatesh, Rengaraj

    2016-12-01

    To compare anterior segment optical coherence tomography (ASOCT) angle morphology before and after laser peripheral iridotomy (LPI) in a cohort of South Indian subjects with primary angle-closure suspect (PACS) or primary angle-closure/primary angle-closure glaucoma (PAC/PACG) and to examine baseline parameters associated with angle widening. Prospective observational study. A total of 244 subjects aged ≥30 years with PACS or PAC/PACG in at least 1 eye. The ASOCT images and angle gonioscopic grades were analyzed for all subjects at baseline and 2 weeks after LPI. Multivariable linear and logistic regression models were used to determine predictors of angle widening (change in mean angle opening distance [AOD750]) and angle opening (all 4 quadrants with trabecular meshwork [TM] visible on gonioscopy after LPI). Change in ASOCT parameters with LPI and baseline predictors of angle widening. Laser peripheral iridotomy resulted in angle widening on ASOCT with significant increases in AOD750, angle recess area, and trabecular iris surface area (P gonioscopy, although some degree of persistent iridotrabecular contact was present in approximately half of PACS eyes and approximately two thirds of PAC/PACG eyes on gonioscopy. The greatest widening by ASOCT was observed in eyes with features most consistent with greater baseline pupillary block. Copyright © 2016 American Academy of Ophthalmology. All rights reserved.

  8. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Nengchao Lyu

    2017-02-01

    Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  9. Light deflection, lensing, and time delays from gravitational potentials and Fermat's principle in the presence of a cosmological constant

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2008-01-01

    The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that Λ contributes to the gravitational time delay, it is shown here that a new Λ term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.

  10. Argon laser trabeculoplasty as primary therapy in open angle glaucoma

    International Nuclear Information System (INIS)

    Mahar, P.S.; Jamali, K.K.

    2008-01-01

    To determine the effect of Argon Laser Trabeculoplasty (ALT) as a primary mode of therapy in reducing the intraocular Pressure (IOP) of patients diagnosed with Primary Open Angle Glaucoma (POAG). A total of 35 eyes of 35 patients with the gender distribution of 27 men and 8 women who were newly diagnosed with POAG, were included in this study. Mean age of the patients was 55.2 years with the range of 32 to 76 years. All of them were treated with argon laser trabeculoplasty as a primary mode of therapy. Intra ocular pressure was measured objectively using Goldman applanation tonometer, pre-and-post laser therapy. The pre-laser mean IOP was 27.63 mmHg (range 21-40 mmHg). The post-laser mean IOP measured at 6 months follow up was 15.5 mmHg (range 11 - 33 mmHg) with mean decrease of 12.1 mmHg. The decrease in IOP was seen in 32 eyes (95%) with no change observed in 3 (5%) eyes. The result shows a marked decline in IOP in patients with POAG who underwent ALT as a primary mode of treatment. Further studies with large sample size and longer follow-up will help in making future recommendations. (author)

  11. Lateral displacement in small angle multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bichsel, H.; Hanson, K.M.; Schillaci, K.M. (Los Alamos National Lab., NM (USA))

    1982-07-01

    Values have been calculated for the average lateral displacement in small angle multiple scattering of protons with energies of several hundred MeV. The calculations incorporate the Moliere distribution which does not make the gaussian approximations of the distribution in projected angle and lateral deflections. Compared to other published data, such approximations can lead to errors in the lateral displacement of up to 10% in water.

  12. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation; Estudo da influencia da angulacao do feixe laser na morfologia de esmalte e dentina irradiados com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira Junior, Duilio Naves

    2002-07-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  13. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2012-01-01

    We report on a polarization-adjustable picosecond deep-ultraviolet (DUV) laser at 177.3 nm. The DUV laser was produced by second harmonic generation from a mode-locked laser at 355 nm in nonlinear optical crystal KBBF. The laser delivered a maximum average output power of 1.1 mW at 177.3 nm. The polarization of the 177.3 nm beam was adjusted with linear and circular polarization by means of λ/4 and λ/2 wave plates. To the best of our knowledge, the laser has been employed as the circularly polarized and linearly polarized DUV light source for a spin- and angle-resolved photoemission spectroscopy with high resolution for the first time. (fundamental areas of phenomenology(including applications))

  14. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    International Nuclear Information System (INIS)

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.; Grabiec, P.; Janus, P.; Sierakowski, A.

    2011-01-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  15. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  16. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.

    Science.gov (United States)

    Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M

    2009-12-01

    To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.

  17. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  18. Field distribution analysis in deflecting structures

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V.V. [Joint Inst. for Nuclear Research, Moscow (Russian Federation)

    2013-02-15

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE{sub 1} and HM{sub 1}. The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  19. Field distribution analysis in deflecting structures

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2013-02-01

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE 1 and HM 1 . The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  20. Modified method for registration of particle deflection by bent crystal

    International Nuclear Information System (INIS)

    Afanas'ev, S.V.; Kovalenko, A.D.; Kuznetsov, V.N.; Romanov, S.V.; Sajfulin, Sh.Z.; Taratin, A.M.; Volkov, V.I.; Voevodin, M.A.; Bojko, V.V.

    2003-01-01

    The modified method for registration of particle deflection by a bent crystal was proposed and studied at the external proton beam of the Nuclotron. The telescope of scintillation counters was placed at the angle that was smaller than a crystal bending angle. The count dependence of the telescope on the crystal orientation was formed by the particles, which passed in channeling states only some part of the crystal length. Two maximums were observed in the dependencies due to particles captured into the channeling states on the crystal surface and in the crystal volume. This allows one to obtain, using the telescope and high-intensity beams, useful data about the particle channeling and the crystal, which usually demands more complicated registration by means of the coordinate detectors

  1. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  2. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  3. Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas

    International Nuclear Information System (INIS)

    Kubiak, G.D.; Tichenor, D.A.; Sweatt, W.C.; Chow, W.W.

    1995-06-01

    Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera

  4. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  5. Elevator deflections on the icing process

    Science.gov (United States)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  6. Coupling effects of refractive index discontinuity, spot size and spot location on the deflection sensitivity of optical-lever based atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Yu; Yang Jun

    2008-01-01

    Atomic force microscopy (AFM) plays an essential role in nanotechnology and nanoscience. The recent advances of AFM in bionanotechnology include phase imaging of living cells and detection of biomolecular interactions in liquid biological environments. Deflection sensitivity is a key factor in both imaging and force measurement, which is significantly affected by the coupling effects of the refractive index discontinuity between air, the glass window and the liquid medium, and the laser spot size and spot location. The effects of both the spot size and the spot location on the sensitivity are amplified by the refractive index discontinuity. The coupling effects may govern a transition of the deflection sensitivity from enhancement to degradation. It is also found that there is a critical value for the laser spot size, above which the deflection sensitivity is mainly determined by the refractive index of the liquid. Experimental results, in agreement with theoretical predication, elucidate the coupling effects

  7. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  8. All-optical optoacoustic microscopy based on probe beam deflection technique.

    Science.gov (United States)

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  9. Analysis of the 'dilemma effect' in fifth-order deflection aberration

    International Nuclear Information System (INIS)

    Zhang Xiaobing; Yin Hanchun; Lei Wei; Xue Kunxing; Tong Linsu

    1999-01-01

    In this paper, the coma of the fifth-order aberration at a large deflection angle has been analyzed by using multipole field theory. The dilemma effect exists in the comas of fifth-order aberration. The dilemma effect, whose value D r is constant and independent of the 10-pole field, is the linear combination of coma aberrations. The coma of the fifth-order aberration is corrected by adjusting the 10-pole field distribution when D r is zero or small. The factors that influence the dilemma effect have been calculated and analyzed

  10. A novel hybrid surface micromachined segmented mirror for large aperture laser applications

    Science.gov (United States)

    Li, Jie; Chen, Haiqing; Yu, Hongbin

    2006-07-01

    A novel hybrid surface micromachined segmented mirror array is described. This device is capable of scaling to large apertures for correcting time-varying aberrations in laser applications. Each mirror is composed of bottom electrode, support part, and mirror plate, in which a T-shaped beam structure is used to support the mirror plate. It can provide mirror with vertical movement and rotation around two horizontal axes. The test results show that the maximum deflection along the vertical direction of the mirror plate is 2 microns, while the rotation angles around x and y axes are +-2.3 deg. and +-1.45 deg., respectively.

  11. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  12. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  13. Early intraocular pressure change after peripheral iridotomy with ultralow fluence pattern scanning laser and Nd:YAG laser in primary angle-closure suspect: Kowloon East Pattern Scanning Laser Study Report No. 3.

    Science.gov (United States)

    Chan, Jeffrey Chi Wang; Choy, Bonnie Nga Kwan; Chan, Orlando Chia Chieh; Li, Kenneth Kai Wang

    2018-02-01

    Our purpose was to assess the early intraocular pressure (IOP) changes of ultralow fluence laser iridotomy using pattern scanning laser followed by neodymium:yttrium-aluminum-gamet (Nd:YAG) laser. This is a prospective interventional study. Thirty-three eyes of 33 adult Chinese primary angle-closure suspect subjects were recruited for prophylactic laser peripheral iridotomy. Sequential laser peripheral iridotomy was performed using pattern scanning laser followed by Nd:YAG laser. Visual acuity (VA) and IOP were measured before treatment, at 1 h, 1 day, 1 week, 1 month, 3 months and 6 months after laser. Laser energy used and complications were documented. Corneal endothelial cell count was examined at baseline and 6 months. Patency of the iridotomy was assessed at each follow-up visit. All subjects achieved patent iridotomy in a single session. The mean energy used was 0.335+/-0.088 J for the pattern scanning laser, and 4.767+/-5.780 mJ for the Nd:YAG laser. The total mean energy was 0.339+/-0.089 J. None of the eyes developed a clinically significant IOP spike (≥ 8 mmHg) at 1 h and 1 day after laser use. Only four eyes developed higher IOP at 1 h and all were ≤3 mmHg compared to baseline. The mean IOP was 13.8+/-2.5 mmHg at 1 h and 11.5+/-2.2 mmHg at 1 day, both were significantly lower than baseline (15.8+/-2.1 mmHg) (P laser compared to baseline (0.23 vs 0.26). There was also no statistically significant difference in mean VA at other follow-up visits compared to baseline. Peripheral iridotomy closure was encountered in two (6.1%) eyes, one at 1 month and another at 6 months follow-up. There were no complications including hyphema, peripheral anterior synechia formation nor prolonged inflammation throughout the follow-up period. There was no significant loss in corneal endothelial cell counts at 6 months (2255+/-490) compared to baseline (2303+/-386) (P = 0.347). Sequential LPI using an ultralow fluence pattern scanning laser

  14. Effect of irradiation angle on the efficiency of formation of multiply charged ions in a laser-produced plasma

    International Nuclear Information System (INIS)

    Bedilov, M R; Beisembaeva, Kh B; Tsoi, T G; Satybaldiev, T B; Sabitov, M S

    2000-01-01

    Mass spectrometry is used to investigate the emission behaviour and the characteristics of multiply charged ions in a plasma produced at small angles of incidence of laser radiation (α∼20 0 ) and also at grazing incidence (α∼85 0 ). It is found that upon grazing incidence of the laser radiation onto a target, the efficiency of production of multiply charged ions is reduced compared to that for α∼20 0 . However, this geometry of laser irradiation of solids can be used for the elemental analysis of surface layers of a sample. (interaction of laser radiation with matter. laser plasma)

  15. Laser Doppler vibrometry on rotating structures in coast-down: resonance frequencies and operational deflection shape characterization

    International Nuclear Information System (INIS)

    Martarelli, M; Castellini, P; Santolini, C; Tomasini, E P

    2011-01-01

    In rotating machinery, variations of modal parameters with rotation speed may be extremely important in particular for very light and undamped structures, such as helicopter rotors or wind turbines. The natural frequency dependence on rotation speed is conventionally measured by varying the rotor velocity and plotting natural frequencies versus speed in the so-called Campbell diagram. However, this kind of analysis does not give any information about the vibration spatial distribution i.e. the mode shape variation with the rotation speed must be investigated with dedicated procedures. In several cases it is not possible to fully control the rotating speed of the machine and only coast-down tests can be performed. Due to the reduced inertia of rotors, the coast-down process is usually an abrupt transient and therefore an experimental technique, able to determine operational deflection shapes (ODSs) in short time, with high spatial density and accuracy, appears very promising. Moreover coast-down processes are very difficult to control, causing unsteady vibrations. Hence, a very efficient approach for the rotation control and synchronous acquisition must be developed. In this paper a continuous scanning system able to measure ODSs and natural frequencies excited during rotor coast-down is shown. The method is based on a laser Doppler vibrometer (LDV) whose laser beam is driven to scan continuously over the rotor surface, in order to measure the ODS, and to follow the rotation of the rotor itself even in coast-down. With a single measurement the ODSs can be recovered from the LDV output time history in short time and with huge data saving. This technique has been tested on a laboratory test bench, i.e. a rotating two-blade fan, and compared with a series of non-contact approaches based on LDV: - traditional experimental modal analysis (EMA) results obtained under non-rotating conditions by measuring on a sequence of points on the blade surface excited by an impact

  16. Modulus of Subgrade Reaction and Deflection

    Directory of Open Access Journals (Sweden)

    Austin Potts

    2009-01-01

    Full Text Available Differential equations govern the bending and deflection of roads under a concentrated load. Identifying critical parameters, such as the maximum deflection and maximum bending moments of a street supported by an elastic subgrade, is key to designing safe and reliable roadways. This project solves the underlying differential equation in pavement deflection and tests various parameters to highlight the importance in selecting proper foundation materials.

  17. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    , governs deflections produced by prisms of refractive index n. The refractive power, n − 1, of most materials is of the order of unity for visible light, which therefore gets deflected through several degrees by a prism. X-rays and neutrons however ...

  18. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian; Tian, Zhen; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2013-01-01

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A multichannel deflection plates control system for the ALF facility at the APS

    International Nuclear Information System (INIS)

    Deriy, B.

    2006-01-01

    A deflection plates control system was developed as part of SPIRIT (Single Photon Ionization/Resonant Ionization to Threshold), a new secondary neutral mass spectrometry (SNMS) instrument that uses tunable vacuum ultraviolet light from the APS ALF (Argonne Linear Free-electron laser) facility for postionization. The system comprises a crate controller with PC104 embedded computer, 32 amplifiers, and two 1-kV power supplies. Thirty-two D/A converters are used to control voltages at the deflection plates within ± 400 V with 100-mV resolution. An algorithm for simultaneous sweeping of up to 16 XY areas with 10-(micro)s time resolution also has been implemented in the embedded computer. The purpose of the system is to supply potentials to various ion optical elements for electrostatic control of keV primary and secondary ion beams in this SNMS instrument. The control system is of particular value in supplying (1) bipolar potentials for steering ions, (2) multiple potentials for octupole lenses that shape the ion beams, and (3) ramped deflection potentials for rastering the primary ion beam. The system has been in use as part of the SPIRIT instrument at the ALF facility since 2002.

  1. A real-time deflection monitoring system for wind turbine blades using a built-in laser displacement sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong-Cheol; Giri, Paritosh; Lee, Jung-Ryul [Korea Chonbuk National Univ., Jeonbuk (Korea, Republic of). Dept. of Aerospace Engineering and LANL-CBNU Engineering Inst.

    2012-07-01

    Renewable energy is considered a good alternative to deal with the issues related to fossil fuel and environmental pollution. Wind energy as one of such renewable energy alternatives has seen a substantial growth. With commercially viable global wind power potential, wind energy penetration is further expected to rise, and so will the related problems. One of the issues is the collision of wind blade and tower during operation. To improve safety during operation, to minimize the risk of sudden failure or total breakdown, and to ensure reliable power generation and reduce wind turbine life cycle costs, a structural health monitoring (SHM) technology is required. This study proposes a single laser displacement sensor (LDS) system, where all of the rotating blades could be evaluated effectively. The system is cost-effective as well, as the system costs only a mere thousand dollars. If the blade bolt loosening occurs, it causes deflection in the affected blade. In a similar manner, nacelle tilt or mass loss damage in the blade will result in change of blade's position and the proposed system can identify such problems with ease. With increased demand of energy, the sizes of wind blades are getting bigger and bigger due to which people are installing wind turbines very high above the ground level or offshore. It is impractical to monitor the deflection through wired connection in these cases and hence can be replaced by a wireless solution. This wireless solution is achieved using Zigbee technology which operates in the industrial, scientific and medical (ISM) radio bands, typically 2.4 GHz, 915 MHz and 868 MHz. The output from the LDS is fed to the microcontroller which acts as an analog to digital converter which in turn is connected to the Zigbee transceiver module, which transmits the data. At the other end, the Zigbee reads the data and displays on the PC from where user can monitor the condition of wind blades. (orig.)

  2. The impact imperative: Laser ablation for deflecting asteroids, meteoroids, and comets from impacting the earth

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jonathan W [Advanced Projects/FD02, National Space Science and Technology Center, NASA/MSFC, Huntsville, Alabama, 35812 (United States); Phipps, Claude [Photonics Associates 200A Ojo de la Vaca Road Santa Fe, NM 87505 (United States); Smalley, Larry [Department of Physics, University of Alabama, Huntsville (United States); Reilly, James [Northeast Science and Technology, East Sandwich, MA (United States); Boccio, Dona [Queensborough Community College of the City, University of New York, New York (United States)

    2003-05-14

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula area. This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes{exclamation_point} By using an intelligent combination of Earth and space based sensors coupled with an infra-structure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span.

  3. The impact imperative: Laser ablation for deflecting asteroids, meteoroids, and comets from impacting the earth

    International Nuclear Information System (INIS)

    Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, James; Boccio, Dona

    2003-01-01

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula area. This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infra-structure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span

  4. Nonlinear core deflection in injection molding

    Science.gov (United States)

    Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.

    2018-05-01

    Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.

  5. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    Science.gov (United States)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  6. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2016-05-01

    Full Text Available Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs.Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT, nickel titanium (NiTi, and multi-strand NiTi (MSNT archwires engaged in passive self-ligating (PSL brackets, active self-ligating (ASL brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance.Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force.Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly.

  7. Measurement methods of building structures deflections

    Directory of Open Access Journals (Sweden)

    Wróblewska Magdalena

    2018-01-01

    Full Text Available Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures’ constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  8. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    DEFF Research Database (Denmark)

    Thøgersen, Emil; Tranberg, Bo; Herp, Jürgen

    2017-01-01

    deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple...... wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using...... the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain...

  9. Optical fibre angle sensor used in MEMS

    International Nuclear Information System (INIS)

    Golebiowski, J; Milcarz, Sz; Rybak, M

    2014-01-01

    There is a need for displacement and angle measurements in many movable MEMS structures. The use of fibre optical sensors helps to measure micrometre displacements and small rotation angles. Advantages of this type of transducers are their simple design, high precision of processing, low costs and ability of a non-contact measurement. The study shows an analysis of a fibre-optic intensity sensor used for MEMS movable structure rotation angle measurement. An intensity of the light in the photodetector is basically dependent on a distance between a reflecting surface and a head surface of the fibre transmitting arm, and the deflection angle. Experimental tests were made for PMMA 980/1000 plastic fibres, Θ NA =33°. The study shows both analytical and practical results. It proves that calculated and experimental characteristics for the analysed transducers are similar.

  10. Positively deflected anomaly mediation

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2002-01-01

    We generalize the so-called 'deflected anomaly mediation' scenario to the case where threshold corrections of heavy messengers to the sparticle squared masses are positive. A concrete model realizing this scenario is also presented. The tachyonic slepton problem can be fixed with only a pair of messengers. The resultant sparticle mass spectrum is quite different from that in the conventional deflected anomaly mediation scenario, but is similar to the one in the gauge mediation scenario. The lightest sparticle is mostly B-ino

  11. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  12. Evaluation of the efficacy of laser peripheral iridoplasty in reversing the darkroom provocative test result in Chinese patients with primary angle closure status post laser iridotomy

    Institute of Scientific and Technical Information of China (English)

    Ping; Huang; Ling-Ling; Wu

    2015-01-01

    AIM: To investigate the efficacy and safety of krypton laser peripheral iridoplasty(LPIP) for Chinese patients with primary angle closure(PAC) or primary angle-closure glaucoma(PACG) status post laser iridotomy in reversing the positive results of the dark room provocative test(DRPT).METHODS: This study was prospective, noncomparative,interventional case series. Thirty-three patients(thirty-eight eyes) with PAC or PACG status post patent laser iridotomy and maintained normal intraocular pressure(IOP) but with positive DRPT results were enrolled. All the subjects were treated with krypton LPIP. DRPT was repeated after krypton LPIP. Results of DRPT were recorded. The visual acuity, IOP and gonioscopy were analyzed before and after krypton LPIP. A minimum time limit for follow-up was 6mo.RESULTS: Thirty-three patients(thirty-eight eyes)were followed for 17.7 ±8.37mo(range 7-41mo) after LPIP. Positive results of DRPT decreased from 38 eyes to9 eyes(23.7%) after LPIP. Peripheral anterior synechiae of angle in 34 of 38 eyes(89.5%) remained unchanged at dynamic gonioscopy throughout the follow-up period after LPIP.CONCLUSION: LPIP decreased positive rates of the DRPT significantly. The mechanism may be that LPIP minimized contact between the peripheral iris and trabecular meshwork, which is a key factor for developing peripheral anterior synechiae.

  13. Evaluation of the efficacy of laser peripheral iridoplasty in reversing the darkroom provocative test result in Chinese patients with primary angle closure status post laser iridotomy

    Directory of Open Access Journals (Sweden)

    Ping Huang

    2015-06-01

    Full Text Available AIM: To investigate the efficacy and safety of krypton laser peripheral iridoplasty (LPIP for Chinese patients with primary angle closure (PAC or primary angle-closure glaucoma (PACG status post laser iridotomy in reversing the positive results of the dark room provocative test (DRPT.METHODS:This study was prospective, noncomparative, interventional case series. Thirty-three patients (thirty-eight eyes with PAC or PACG status post patent laser iridotomy and maintained normal intraocular pressure (IOP but with positive DRPT results were enrolled. All the subjects were treated with krypton LPIP. DRPT was repeated after krypton LPIP. Results of DRPT were recorded. The visual acuity, IOP and gonioscopy were analyzed before and after krypton LPIP. A minimum time limit for follow-up was 6mo.RESULTS:Thirty-three patients (thirty-eight eyes were followed for 17.7±8.37mo (range 7-41mo after LPIP. Positive results of DRPT decreased from 38 eyes to 9 eyes (23.7% after LPIP. Peripheral anterior synechiae of angle in 34 of 38 eyes (89.5% remained unchanged at dynamic gonioscopy throughout the follow-up period after LPIP.CONCLUSION:LPIP decreased positive rates of the DRPT significantly. The mechanism may be that LPIP minimized contact between the peripheral iris and trabecular meshwork, which is a key factor for developing peripheral anterior synechiae.

  14. Diode laser trabeculoplasty in open angle glaucoma: 50 micron vs. 100 micron spot size.

    Science.gov (United States)

    Veljko, Andreić; Miljković, Aleksandar; Babić, Nikola

    2011-01-01

    The study was aimed at evaluating the efficacy of diode laser trabeculoplsaty in lowering intraocular pressure in patients with both primary open-angle glaucoma and exfoliation glaucoma by using different size of laser spot. This six-month, unmasked, controlled, prospective study included sixty-two patients with the same number of eyes, who were divided into two groups. Trabeculoplasty was performed with 50 micron and 100 micron laser spot size in the group I and group II, respectively. Other laser parameters were the same for both groups: the wave length of 532 nm, 0.1 second single emission with the power of 600-1200 mW was applied on the 180 degrees of the trabeculum. The mean intraocular pressure decrease in the 50 micron group (group 1) on day 7 was 24% from the baseline and after six-month follow-up period the intraocular pressure decrease was 29.8% (p < 0.001). In the 100 micron group (group II), the mean intraocular pressure decrease on day 7 was 26.5% and after six months it was 39% (p < 0.001).

  15. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    Science.gov (United States)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  16. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  17. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    Science.gov (United States)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  18. Characterization and optimization of an X-ray laser for the spectroscopy of Li-like heavy-ions

    Energy Technology Data Exchange (ETDEWEB)

    Zielbauer, B.

    2007-10-24

    Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated. (orig.)

  19. Characterization and optimization of an X-ray laser for the spectroscopy of Li-like heavy-ions

    International Nuclear Information System (INIS)

    Zielbauer, B.

    2007-01-01

    Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated. (orig.)

  20. A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.

    Science.gov (United States)

    Zhang, Chi; Zhang, Gaofei; You, Zheng

    2009-01-01

    A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.

  1. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  2. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  3. Computer simulations of laser hot spots and implosion symmetry kiniform phase plate experiments on Nova

    International Nuclear Information System (INIS)

    Peterson, R. R.; Lindman, E. L.; Delamater, N. D.; Magelssen, G. R.

    2000-01-01

    LASNEX computer code simulations have been performed for radiation symmetry experiments on the Nova laser with vacuum and gas-filled hohlraum targets [R. L. Kauffman et al., Phys. Plasmas 5, 1927 (1998)]. In previous experiments with unsmoothed laser beams, the symmetry was substantially shifted by deflection of the laser beams. In these experiments, laser beams have been smoothed with Kiniform Phase Plates in an attempt to remove deflection of the beams. The experiments have shown that this smoothing significantly improves the agreement with LASNEX calculations of implosion symmetry. The images of laser produced hot spots on the inside of the hohlraum case have been found to differ from LASNEX calculations, suggesting that some beam deflection or self-focusing may still be present or that emission from interpenetrating plasmas is an important component of the images. The measured neutron yields are in good agreement with simulations for vacuum hohlraums but are far different for gas-filled hohlraums. (c) 2000 American Institute of Physics

  4. Angle-dependent light emission from aligned multiwalled carbon nanotubes under CO2 laser irradiation

    International Nuclear Information System (INIS)

    Zhang, Y; Gong, T; Liu, W J; Wei, J Q; Zhang, X F; Wang, K L; Zhong, M L; Wu, D H

    2007-01-01

    This paper reports the light emission from aligned multiwalled carbon nanotubes (MWNTs) under continuous wave CO 2 laser (λ = 10.6 μm) irradiation. Results indicate that the light emission is dependent on the angle θ between the laser incident direction and the nanotube axis. The relative intensity of the light emission at certain wavelengths shows a Lorentzian feature when θ varies from 0 0 to 90 0 . The Lorentzian fitting curve displays a distinct tendency between shorter (λ 700 nm). A minimum intensity was observed at θ m close to 67 0 under shorter wavelength, whereas a maximum intensity was shown at θ m of about 60 0 at longer wavelength. These results show the anisotropic property of aligned MWNTs

  5. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  6. Study on pipe deflection by using numerical method

    Science.gov (United States)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  7. Determination of the contents of A- and B-starches in barley using low angle laser light scattering

    Czech Academy of Sciences Publication Activity Database

    Bohačenko, I.; Chmelík, Josef; Psota, V.

    2006-01-01

    Roč. 24, č. 1 (2006), s. 11-18 ISSN 1212-1800 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : starch * barley * low angle laser light scattering Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.387, year: 2006

  8. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  9. Brachytherapy needle deflection evaluation and correction

    International Nuclear Information System (INIS)

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively

  10. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    Science.gov (United States)

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  11. Trabeculoperforation? Trabeculoretraction? Trabeculoplasty? Review of the various designations used for laser treatment in primary open-angle glaucoma.

    Science.gov (United States)

    Moulin, F; Haut, J; Abboud, E

    1985-01-01

    A historical recall and an attempt to simplify the numerous terms used to designate laser treatments for primary open-angle glaucoma (POAG) are presented. There are two main types of laser treatment for POAG involving two entirely different procedures. The first one, contemporary with the beginning of laser photocoagulation, imitates the action of the scalpel, namely goniotomy ab interno or trabeculotomy ab externo. The goal of this early procedure was to produce a through and through trabecular hole but instead of the cutting edge of the knife, it uses the explosive effect of the laser. This procedure has been given numerous names. Among the most frequent ones, we find: 'laser trabeculopuncture', 'laseropuncture', 'goniopuncture', 'laser trabeculectomy', 'laser trabeculotomy', 'laser trabeculopexy'. We prefer to gather them under an explicit generic term: 'laser trabeculoperforation'. The results of this procedure have been very disappointing until now, particularly with conventional lasers, e.g. continuous-wave argon laser, owing to the predominance of their thermal effect over their explosive effect and also to the great scarring property of the trabecular meshwork. In the second type of glaucoma laser treatment, instead of trying to make a patent hole in the trabecular meshwork, the surgeon seeks to reshape the inner trabecular surface by means of argon laser microscars in order to produce a reversal of the trabecular collapse, which is now considered to be one of the major etiologies of POAG.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Short-term and long-term deflection of reinforced hollow core ...

    African Journals Online (AJOL)

    This paper presents a study on different methods of analysis that are currently used by design codes to predict the short-term and long-term deflection of reinforced concrete slab systems and compares the predicted deflections with measured deflections. The experimental work to measure deflections involved the testing of ...

  13. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  14. A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors

    Directory of Open Access Journals (Sweden)

    Zheng You

    2009-01-01

    Full Text Available A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26º × 23º. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.

  15. Angle-sensitive and fast photovoltage of silver nanocluster embeded ZnO thin films induced by 1.064-μm pulsed laser

    International Nuclear Information System (INIS)

    Song-Qing, Zhao; Li-Min, Yang; Wen-Wei, Liu; Kun, Zhao; Yue-Liang, Zhou; Qing-Li, Zhou

    2010-01-01

    Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from −90° to 90°, its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached ∼2 ns with an open-circuit photovoltage of ∼2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect

    Science.gov (United States)

    Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping

    2018-04-01

    A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.

  17. Comparative analysis of the anterior and posterior length and deflection angle of the cranial base, in individuals with facial Pattern I, II and III

    Directory of Open Access Journals (Sweden)

    Guilherme Thiesen

    2013-02-01

    Full Text Available OBJECTIVE: This study evaluated the variations in the anterior cranial base (S-N, posterior cranial base (S-Ba and deflection of the cranial base (SNBa among three different facial patterns (Pattern I, II and III. METHOD: A sample of 60 lateral cephalometric radiographs of Brazilian Caucasian patients, both genders, between 8 and 17 years of age was selected. The sample was divided into 3 groups (Pattern I, II and III of 20 individuals each. The inclusion criteria for each group were the ANB angle, Wits appraisal and the facial profile angle (G'.Sn.Pg'. To compare the mean values obtained from (SNBa, S-N, S-Ba each group measures, the ANOVA test and Scheffé's Post-Hoc test were applied. RESULTS AND CONCLUSIONS: There was no statistically significant difference for the deflection angle of the cranial base among the different facial patterns (Patterns I, II and III. There was no significant difference for the measures of the anterior and posterior cranial base between the facial Patterns I and II. The mean values for S-Ba were lower in facial Pattern III with statistically significant difference. The mean values of S-N in the facial Pattern III were also reduced, but without showing statistically significant difference. This trend of lower values in the cranial base measurements would explain the maxillary deficiency and/or mandibular prognathism features that characterize the facial Pattern III.OBJETIVO: o presente estudo avaliou as variações da base craniana anterior (S-N, base craniana posterior (S-Ba, e ângulo de deflexão da base do crânio (SNBa entre três diferentes padrões faciais (Padrão I, II e III. MÉTODOS: selecionou-se uma amostra de 60 telerradiografias em norma lateral de pacientes brasileiros leucodermas, de ambos os sexos, com idades entre 8 anos e 17 anos. A amostra foi dividida em três grupos (Padrão I, II e III, sendo cada grupo constituído de 20 indivíduos. Os critérios de seleção dos indivíduos para cada grupo

  18. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  19. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  20. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles; Avaliacao morfologica das superficies do esmalte e do cimento dental apos a irradiacao do laser de Er:YAG em diferentes angulacoes

    Energy Technology Data Exchange (ETDEWEB)

    Tannous, Jose Trancoso

    2001-07-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 {mu}m, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  1. Numerical simulation of axisymmetric valve operation for different outer cone angle

    Science.gov (United States)

    Smyk, Emil

    One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.

  2. Analysis of Krypton Laser Combined With ND:YAG Laser in the Treatment of Angle Closure Glaucoma Effect%氪激光联合ND:YAG激光治疗闭角型青光眼效果分析

    Institute of Scientific and Technical Information of China (English)

    张海涛; 刘岚; 王宇蕾

    2015-01-01

    青光眼位列全球不可逆致盲眼病第二位,致盲率高。我们用氪绿激光联合Nd:YAG激光,对原发性闭角型青光眼行周边虹膜成形术与周边虹膜切除术,采用超声生物显微镜(UBM)和房角镜对联合激光手术的有效性进行评价,结果证明联合激光治疗初次发作的急性闭角型青光眼安全、有效。%Glaucoma is a global irreversible blindness in the second rank, high rate of blindness. We use krypton green laser peripheral iris of primary angle closure glaucoma plasty. Combined Nd:YAG laser peripheral iris excision, the effectiveness of the combined laser surgery was evaluated by using the ultrasonic biological microscope (UBM) and the angle of the lens. The results show that the combined laser treatment of acute angle closure glaucoma is safe and effective.

  3. Study on the causes and methods of influencing concrete deflection

    Science.gov (United States)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  4. A small-gap electrostatic micro-actuator for large deflections

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  5. Improvements in or relating to electron beam deflection arrangements

    International Nuclear Information System (INIS)

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  6. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    Science.gov (United States)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  7. Evalutation of efficiency of dynamic laser magnetic stimulation of eye drainage system of patients with open angle glaucomatosis

    Directory of Open Access Journals (Sweden)

    Sidelnikova V.S.

    2014-06-01

    Full Text Available The purpose of the study is to develop a comprehensive treatment aimed at improving uveoscleral outflow in the application of dynamic laser magnetic stimulation of the drainage system of the eye and evaluation of its effectiveness in treating patients with primary open-angle glaucoma (POAG. Material. 106 patients diagnosed POAG I, II, III stages were examined. Group 1 consisted of 62 patients treated with medical therapy and dynamic laser magnetic stimulation of the drainage system of the eye using the "AMO-ATOS-ICL", produced by JSC "TRIMA", Saratov. Group 2 consisted of 64 patients who received only medical therapy. Comprehensive survey including standard eye examination, static perimetry, visual evoked potentials study, the study of intraocular blood flow was conducted to all patients. Analysis of the results of the complex therapeutic effects showed that as the result of treatment 73% of patients had a decrease of intraocular pressure and the ease factor outflow increase. 52% of patients had a decrease in the number and area of relative. 63% of patients had activation of intraocular blood flow. These indices remained stable for three months. Conclusion. The treatment with the technique of dynamic laser magnetic stimulation of the drainage system of the eye of patients with primary open-angle glaucoma leads to lower intraocular pressure, and to the improvement of dopple-rographic and perimetric indications.

  8. Calibration of optical cantilever deflection readers

    International Nuclear Information System (INIS)

    Hu Zhiyu; Seeley, Tim; Kossek, Sebastian; Thundat, Thomas

    2004-01-01

    Because of its ultrahigh sensitivity, the optical lever detection method similar to that used in the atomic force microscope (AFM) has been widely employed as a standard technique for measuring microcantilever deflection. Along with the increasing interest in using the microcantilever as a sensing platform, there is also a requirement for a reliable calibration technique. Many researchers have used the concept of optical lever detection to construct microcantilever deflection readout instruments for chemical, physical, and biological detection. However, without an AFM piezo z scanner, it is very difficult to precisely calibrate these instruments. Here, we present a step-by-step method to conveniently calibrate an instrument using commercially available piezoresistive cantilevers. The experimental results closely match the theoretical calculation. Following this procedure, one can easily calibrate any optical cantilever deflection detection system with high reproducibility, precision, and reliability. A detailed discussion of the optical lever readout system design has been addressed in this article

  9. Coupler induced monopole component and its minimization in deflecting cavities

    Directory of Open Access Journals (Sweden)

    P. K. Ambattu

    2013-06-01

    Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.

  10. Shielded helix traveling wave cathode ray tube deflection structure

    Science.gov (United States)

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  11. A new possibility for production of sub-picosecond x-ray pulses using a time dependent radio frequency orbit deflection

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    2015-10-21

    It is shown that two radio frequency deflecting cavities with slightly different frequencies can be used to produce time-dependent orbit deflection to a few special electron bunches circulating in a synchrotron without affecting the majority of the electron bunches. These special bunches produce an x-ray pulse in which transverse position or angle, or both, are correlated with time. The x-ray pulse is then shortened, either with an asymmetrically cut crystal that acts as a pulse compressor, or with an angular aperture such as a narrow slit positioned downstream. The implementation of this technique creates a highly flexible environment for synchrotrons in which users of most beamlines will be able to easily select between the x-rays originated by the standard electron bunches and the short x-ray pulses originated by the special electron bunches carrying a time-dependent transverse correlation.

  12. A New Possibility for Production of Sub-picosecond X-ray Pulses using a Time Dependent Radio Frequency Orbit Deflection

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    It is shown that two radio frequency deflecting cavities with slightly different frequencies can be used to produce time-dependent orbit deflection to a few special electron bunches while keeping the majority of the electron bunches unaffected. These special bunches produce an x-ray pulse in which transverse position or angle, or both, are correlated with time. The x-ray pulses are then shortened, either with an asymmetrically cut crystal that acts as a pulse compressor, or with an angular aperture such as a narrow slit positioned downstream. The implementation of this technique creates a highly flexible environment for synchrotrons in which users of most beamlines will be able to easily select between the x-rays originated by the standard electron bunches and the short x-ray pulses originated by the special electron bunches carrying a time-dependent transverse correlation.

  13. Relativistic attosecond electron bunch emission from few-cycle laser irradiated nanoscale droplets

    Directory of Open Access Journals (Sweden)

    Laura Di Lucchio

    2015-02-01

    Full Text Available Attosecond electron bunches produced at the surface of nanometer-scale droplets illuminated by a two-cycle laser pulse are investigated for the purpose of determining their optimal emission characteristics. Significant departures from Mie theory are found for electron bunch emission from droplets whose radii satisfy the condition δ_{r}deflection by the ponderomotive pressure of the copropagating laser field in vacuum, depending on the initial droplet parameters. Final emission angles are estimated, together with the energy spectrum of the bunches.

  14. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  15. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  16. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  17. Effect of laser UV radiation on the eye scleral tissue in patients with open-angle glaucoma

    Science.gov (United States)

    Razhev, A. M.; Iskakov, I. A.; Churkin, D. S.; Orishich, A. M.; Maslov, N. A.; Tsibul'skaya, E. O.; Lomzov, A. A.; Ermakova, O. V.; Trunov, A. N.; Chernykh, V. V.

    2018-05-01

    We report the results of an experimental study of the effect of short-pulse laser UV radiation on the eye scleral tissue. As samples, we used isolated flaps of the eye scleral tissue from the patients with open-angle glaucoma of the second and third stages. The impact was implemented using the radiation of an excimer XeCl laser with a wavelength of 308 nm and a laser with a wavelength tunable within from 210 to 355 nm. Depending on the problem to be solved, the energy density on the surface of the irradiated tissue varied from a fraction of mJ cm-2 to 15 J cm-2. For the first time we studied the optical properties of the intraocular fluid in the UV and blue spectral range. The study of the ablation process under the action of radiation with a wavelength of 308 nm showed that the rate of material evaporation can vary within 24%–30% at an energy density above 7 J cm-2, depending on the glaucoma stage and the individual features of a patient. The excitation–emission matrices of laser-induced fluorescence (LIF) of the eye scleral tissue were studied experimentally using a laser with a wavelength tuned in the range 210–355 nm. We found the differences in the LIF spectra caused by the excitation wavelength and the openangle glaucoma stage.

  18. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  19. Characterization of the photocurrents generated by the laser of atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Iglesias, Vanessa [International Iberian Nanotechnology Laboratory, 4715-330 Braga (Portugal); Lewis, David [Nanonics Imaging, Har Hotzvim, Jerusalem 91487 (Israel); Niu, Jiebin; Long, Shibing; Liu, Ming [Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Hofer, Alexander; Frammelsberger, Werner; Benstetter, Guenther [Deggendorf Institute of Technology, Edlmairstr. 6+8, 94469 Deggendorf (Germany); Scheuermann, Andrew; McIntyre, Paul C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-08-15

    The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.

  20. Optofluidic laser scanner based on a rotating liquid prism.

    Science.gov (United States)

    Kopp, Daniel; Lehmann, Lukas; Zappe, Hans

    2016-03-20

    We demonstrate an electrowetting-actuated optofluidic system based on a rotatable liquid prism implemented as a two-dimensional laser scanner. The system is fabricated through a novel technology using a patterned flexible polymeric foil on which a high density of electrodes is structured and which is subsequently inserted into a cylindrical housing. The resulting radial electrode array is used for electrowetting actuation of two fluids filled into the cylinder, which allows a controllable tilt and orientation of the planar liquid interface and thus represents a tunable rotating prism. Finite element simulations and subsequent experimental verification show that this highly planar and precisely positionable liquid/liquid interface may be actuated to a deflection angle of ±6.4°, with a standard deviation of ±0.18°, and rotated 360° about the vertical axis. Power consumption is limited to several microwatts, and switching times of several hundred milliseconds were determined.

  1. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    Science.gov (United States)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  2. Deflecting Rayleigh surface acoustic waves by a meta-ridge with a gradient phase shift

    Science.gov (United States)

    Xu, Yanlong; Yang, Zhichun; Cao, Liyun

    2018-05-01

    We propose a non-resonant meta-ridge to deflect Rayleigh surface acoustic waves (RSAWs) according to the generalized Snell’s law with a gradient phase shift. The gradient phase shift is predicted by an analytical formula, which is related to the path length of the traveling wave. The non-resonant meta-ridge is designed based on the characteristics of the RSAW: it only propagates along the interface with a penetration depth, and it is dispersion-free with a constant phase velocity. To guarantee that the characteristics are still valid when RSAWs propagate in a three-dimensional (3D) structure, grooves are employed to construct the supercell of the meta-ridge. The horizontal length, inclined angle, and thickness of the ridge, along with the filling ratio of the groove, are parametrically examined step by step to investigate their influences on the propagation of RSAWs. The final 3D meta-ridges are designed theoretically and their capability of deflecting the incident RSAWs are validated numerically. The study presents a new method to control the trajectory of RSAWs, which will be conducive to developing innovative devices for surface acoustic waves.

  3. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    Science.gov (United States)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  4. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  5. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  6. Heavy colored SUSY partners from deflected anomaly mediation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [Department of Physics and Engineering, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Wang, Wenyu [Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Yang, Jin Min; Zhang, Yang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China)

    2015-07-27

    We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven g{sub μ}−2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the g{sub μ}−2 anomaly at 1σ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.

  7. Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions

    Science.gov (United States)

    Telnov, V. I.

    2018-03-01

    At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.

  8. A novel wireless piezoelectric tire sensor for the estimation of slip angle

    International Nuclear Information System (INIS)

    Erdogan, G; Alexander, L; Rajamani, R

    2010-01-01

    This paper introduces a simple approach for the analysis of tire deformation and proposes a new piezoelectric tire sensor for physically meaningful measurements of tire deformations. Tire deformation measurements in the contact patch can be used for the estimation of slip angle, tire forces, slip ratio and tire–road friction coefficient. The specific case of a wireless tire deformation sensor for the estimation of slip angle is taken up in this paper. A sensor in which lateral sidewall deformation can be decoupled from radial deformation is designed. The slope of the lateral deflection curve in the contact patch is used to calculate slip angle. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed sensor. Results show that the developed sensor can accurately estimate slip angles up to values of 5°

  9. Evaluation of circumferential angle closure using iridotrabecular contact index after laser iridotomy by swept-source optical coherence tomography.

    Science.gov (United States)

    Cho, Hyun-Kyung; Ahn, Dongsub; Kee, Changwon

    2017-05-01

    To investigate the quantitative changes of circumferential angle closure after laser iridotomy (LI) using the iridotrabecular contact (ITC) index by Swept-Source optical coherence tomography (OCT). In this prospective observational study conducted in a hospital setting, 42 eyes of 36 patients (five males, 31 females) who underwent LI were included. The mean age was 65.00 ± 8.13 years old and the diagnosis included primary angle closure (PAC, 21 eyes), PAC suspect (16 eyes) and PAC glaucoma (five eyes). Optical coherence tomography (OCT) images were obtained pre-LI and at 1 week post-LI. In each image frame, the scleral spur (SS) and the ITC end-point were marked, from which the ITC index was calculated as a percentage of the angle closure across 360°. Measurements inspected before and after LI included: central anterior chamber depth (ACD), anterior chamber volume (ACV), lens vault (LV), nasal and temporal angle opening distance (AOD), angle recess area (ARA), trabecular-iris space area (TISA), trabecular-iris angle (TIA) at 500 μm and 750 μm from the SS and intraocular pressure (IOP). The ITC index and IOP decreased significantly after LI from 71.52 ± 26.29 to 35.31 ± 27.19 and from 20.64 ± 12.72 mmHg to 14.02 ± 3.49 mmHg, respectively (p  0.05), but ACV increased significantly after LI (p angle parameters except for nasal TIAs increased significantly after LI (all p angle showed a significant decrease after LI, but part of the angle closure was not relieved after LI. Other mechanisms besides pupillary block may play a role together in causing angle closure. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  11. Shielded serpentine traveling wave tube deflection structure

    Science.gov (United States)

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  12. Superconducting multi-cell trapped mode deflecting cavity

    Science.gov (United States)

    Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander

    2017-10-10

    A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.

  13. Assessment of the anterior chamber parameters after laser iridotomy in primary angle close suspect using Pentacam and gonioscopy.

    Science.gov (United States)

    Esmaeili, Alireza; Barazandeh, Behzad; Ahmadi, Sina; Haghi, Alireza; Ahmadi Hosseini, Seyed Mahdi; Abolbashari, Fereshteh

    2013-01-01

    To evaluate the changes in the anterior segment parameters of the subjects with primary angle closure suspect (PACS) before and after laser iridotomy (LI) using the Pentacam and gonioscopy. Forty-eight eyes of 48 PACS were included. Anterior chamber angle (ACA), central anterior chamber depth (ACD), anterior chamber volume (ACV) and central corneal thickness (CCT) were recorded from the Pentacam before and one month after LI. ACA was graded according to Shaffer classification using the Goldmann gonioscopy. ACA increased significantly from 25.59±4.41 to 26.46±4.33 degrees (P=0.009) and ACV changed from 85.97±16.07mm(3) to 99.25±15.83mm(3) (P=0.000). The changes in ACD, CCT and intraocular pressure were non-significant (P>0.05). Gonioscopy showed significant widening of the Shaffer angle in 4 quadrants (P<0.001). Pentacam can serve as the objective instrument in assessing the efficacy of LI.

  14. Performance and safety of holmium: YAG laser optical fibers.

    Science.gov (United States)

    Knudsen, Bodo E; Glickman, Randolph D; Stallman, Kenneth J; Maswadi, Saher; Chew, Ben H; Beiko, Darren T; Denstedt, John D; Teichman, Joel M H

    2005-11-01

    Lower-pole ureteronephroscopy requires transmission of holmium:YAG energy along a deflected fiber. Current ureteroscopes are capable of high degrees of deflection, which may stress laser fibers beyond safe limits during lower-pole use. We hypothesized that optical fiber and safety measures differ among manufacturers. Small (200-273-microm) and medium-diameter (300-400-microm) Ho:YAG fibers were tested in a straight and 180 degrees bent configuration. Energy transmission was measured by an energy detector. Fiber durability was assessed by firing the laser in sequentially tighter bending diameters. The fibers were bent to 180 degrees with a diameter of 6 cm and run at 200- to 4000-mJ pulse energy to determine the minimum energy required to fracture the fiber. The bending diameter was decreased by 1-cm increments and testing repeated until a bending diameter of 1 cm was reached. The maximum deflection of the ACMI DUR-8E ureteroscope with each fiber in the working channel was recorded. The flow rate through the working channel of the DUR-8E was measured for each fiber. The mean energy transmission differed among fibers (P < 0.001). The Lumenis SL 200 and the InnovaQuartz 400 were the best small and medium-diameter fibers, respectively, in resisting thermal breakdown (P < 0.01). The Dornier Lightguide Super 200 fractured repeatedly at a bend diameter of 2 cm and with the lowest energy (200 mJ). The other small fibers fractured only at a bend diameter of 1 cm. The Sharplan 200 and InnovaQuartz Sureflex 273T were the most flexible fibers, the Lumenis SL 365 the least. The flow rate was inversely proportional to four times the power of the diameter of the fiber. Optical performance and safety differ among fibers. Fibers transmit various amounts of energy to their cladding when bent. During lower-pole nephroscopy with the fiber deflected, there is a risk of fiber fracture from thermal breakdown and laser-energy transmission to the endoscope. Some available laser fibers

  15. Argon laser peripheral iridoplasty versus systemic intraocular pressure-lowering medications as immediate management for acute phacomorphic angle closure

    Directory of Open Access Journals (Sweden)

    Lee JW

    2013-01-01

    Full Text Available Jacky WY Lee,1 Jimmy SM Lai,1 Doris WF Yick,2 Can YF Yuen21Department of Ophthalmology, University of Hong Kong, 2Department of Ophthalmology, The Caritas Medical Centre, Kowloon West Cluster, Hong Kong, People’s Republic of ChinaBackground: The purpose of this study was to compare the efficacy and safety of argon laser peripheral iridoplasty (ALPI and systemic intraocular pressure (IOP-lowering medications in the immediate management of acute phacomorphic angle closure.Methods: Consecutive cases of acute phacomorphic angle closure were randomized to receive ALPI and an intravenous or oral carbonic anhydrase inhibitor as initial treatment. Intravenous mannitol was administered for presenting IOP > 60 mmHg or IOP > 40 mmHg 2 hours posttreatment in both arms.Results: Of 10 consecutive cases, six received medical therapy and four received ALPI. Fifty percent in the medical group and none in the ALPI group required intravenous mannitol. The ALPI group took less time to achieve IOP < 25 mmHg (18.8 ± 7.5 minutes versus 115.0 ± 97.0 minutes, P = 0.001, F test; had a greater IOP reduction within 30 minutes (69.8% ± 7.7% versus 40.9 ± 23.9%, P = 0.03, t-test; and had a consistently smaller post-attack cup to disc ratio (0.50 ± 0.02 versus 0.60 ± 0.20, P = 0.002, F test.Conclusion: ALPI offers greater safety, consistency, and efficacy than systemic IOP-lowering medications as initial treatment for phacomorphic angle closure.Keywords: phacomorphic, glaucoma, argon laser peripheral iridoplasty, medical, intraocular pressure

  16. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  17. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  18. Focused ion beam induced deflections of freestanding thin films

    International Nuclear Information System (INIS)

    Kim, Y.-R.; Chen, P.; Aziz, M. J.; Branton, D.; Vlassak, J. J.

    2006-01-01

    Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50 keV gallium focused ion beam for ion doses between 10 14 and 10 17 ions/cm 2 . Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation

  19. Development of sacrificial support fixture using deflection analysis

    Science.gov (United States)

    Ramteke, Ashwini M.; Ashtankar, Kishor M.

    2018-04-01

    Sacrificial support fixtures are the structures used to hold the part during machining while rotating the part about the fourth axis of CNC machining. In Four axis CNC machining part is held in a indexer which is rotated about the fourth axis of rotation. So using traditional fixturing devices to hold the part during machining such as jigs, v blocks and clamping plates needs a several set ups, manufacturing time which increase the cost associated with it. Since the part is rotated about the axis of rotation in four axis CNC machining so using traditional fixturing devices to hold the part while machining we need to reorient the fixture each time for particular orientation of part about the axis of rotation. So our proposed methodology of fixture design eliminates the cost associate with the complicated fixture design for customized parts which in turn reduces the time of manufacturing of the fixtures. But while designing the layout of the fixtures it is found out that the machining the part using four axis CNC machining the accurate machining of the part is directly proportional to the deflection produced in a part. So to machine an accurate part the deflection produced in a part should be minimum. We assume that the deflection produced in a part is a result of the deflection produced in a sacrificial support fixture while machining. So this paper provides the study of the deflection checking in a part machined using sacrificial support fixture by using FEA analysis.

  20. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  1. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  2. Experimental investigation of separated shear layer from a leading ...

    Indian Academy of Sciences (India)

    from a leading edge subjected to various angles of attack with tail flap deflections .... the PXI module to enable data multiplexing. ... generating machine and a laser of 136 mJ capacity produces the required light sheet optics that is used in ...

  3. Ray-tracing studies for a whole-viewing-angle retroreflector

    International Nuclear Information System (INIS)

    Yang, B.; Friedsam, H.

    2000-01-01

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retroreflectors for tracking the path of the laser interferometer. Currently in use are open-air corner cubes with an acceptance angle of ±20 degree, corner cube prisms with an acceptance angle of ±50degree, and a Cat's eye with an acceptance angle of ±60degree. Best measurement results can be achieved by using an open-air corner cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. has proposed the creation of a full-viewing-angle retroreflector. Based on the notion that the radius R 1 of a common Cat's eye is proportional to R 2 , one can write: R 1 = (n minus 1)R 2 . In the case that n, the refractive index of glass, equals 2, the radii R 1 and R 2 are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of their ray tracing calculations characterizing the geometrical optics

  4. Structure-Function Correlations using Scanning Laser Polarimetry in Primary Angle-Closure Glaucoma and Primary Open Angle Glaucoma

    Science.gov (United States)

    Lee, Pei-Jung; Liu, Catherine Jui-Ling.; Wojciechowski, Robert; Bailey-Wilson, Joan E.; Cheng, Ching-Yu

    2010-01-01

    Purpose To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry (SLP) and visual field (VF) sensitivity in primary open angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Design Prospective, comparative, observational cases series Methods Fifty patients with POAG and 56 with PACG were examined using SLP with variable corneal compensation (GDx VCC) and Humphrey VF analyzer between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity (MS) in both decibel (dB) and 1/Lambert (L) scales, were estimated by Spearman's rank correlation coefficient (rs) and multivariate median regression models (pseudo R2). The correlations were determined globally and for six RNFL sectors and their corresponding VF regions. Results The correlation between RNFL thickness and MS (in dB) was weaker in the PACG group (rs = 0.38, P = 0.004, pseudo R2 = 0.17) than in the POAG group (rs = 0.51, P <0.001, pseudo R2 = 0.31), but the difference in the magnitude of correlation was not significant (P = 0.42).With Bonferroni correction, the structure-function correlation was significant in the superotemporal (rs = 0.62), superonasal (rs = 0.56), inferonasal (rs = 0.53), and inferotemporal (rs = 0.50) sectors in the POAG group (all P <0.001), while it was significant only in the superotemporal (rs = 0.53) and inferotemporal (rs = 0.48) sectors in the PACG group (both P <0.001). The results were similar when MS was expressed as 1/L scale. Conclusions Both POAG and PACG eyes had moderate structure-function correlations using SLP. Compared to eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. PMID:20202618

  5. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    International Nuclear Information System (INIS)

    Thøgersen, E; Tranberg, B; Greiner, M; Herp, J

    2017-01-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms. (paper)

  6. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    Science.gov (United States)

    Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M.

    2017-05-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.

  7. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  8. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  9. Trace gas detection by laser intracavity photothermal spectroscopy

    International Nuclear Information System (INIS)

    Fung, K.H.; Lin, H.h.

    1986-01-01

    A novel laser intracavity photothermal detector is described. In this scheme, sample absorption of the pump laser power takes place within the cavity of a probe He-Ne laser causing modulation in the gain and in turn the output power. Comparison of this intracavity detector with two other photothermal techniques, namely, phase fluctuation optical heterodyne spectroscopy and thermal beam deflection, is made in terms of practicality and sensitivity. For in situ measurements, sensitivity of 0.5 x 10 -7 cm -1 for a probe length of 3 cm has been achieved

  10. Method to measure the position offset of multiple light spots in a distributed aperture laser angle measurement system.

    Science.gov (United States)

    Jing, Xiaoli; Cheng, Haobo; Xu, Chunyun; Feng, Yunpeng

    2017-02-20

    In this paper, an accurate measurement method of multiple spots' position offsets on a four-quadrant detector is proposed for a distributed aperture laser angle measurement system (DALAMS). The theoretical model is put forward, as well as the corresponding calculation method. This method includes two steps. First, as the initial estimation, integral approximation is applied to fit the distributed spots' offset function; second, the Boltzmann function is employed to compensate for the estimation error to improve detection accuracy. The simulation results attest to the correctness and effectiveness of the proposed method, and tolerance synthesis analysis of DALAMS is conducted to determine the maximum uncertainties of manufacturing and installation. The maximum angle error is less than 0.08° in the prototype distributed measurement system, which shows the stability and robustness for prospective applications.

  11. Next generation Er:YAG fractional ablative laser

    Science.gov (United States)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  12. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  13. Investigation of the phase space distribution of electron bunches at the FLASH-linac using a transverse deflecting structure

    Energy Technology Data Exchange (ETDEWEB)

    Roehrs, M.

    2008-06-15

    The operation of a high-gain free-electron laser (FEL) puts stringent demands on the peak current, transverse emittance and energy spread of the electron beam. At the Free Electron Laser in Hamburg (FLASH), a transverse deflecting structure (TDS) has been installed to investigate these electron beam parameters. The radio-frequency electromagnetic field in the TDS is utilized to deflect the beam electrons vertically as a function of time so that the charge distribution in the longitudinal-horizontal plane can be imaged with optical transition radiation screens. Using this technique, the single-bunch current profile was measured with an unprecedented resolution of about 10 {mu}m (30 fs) under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Appropriate variations of the focal strengths of quadrupole magnets allowed for the measurement of the horizontal emittance as a function of the longitudinal position within a bunch (slice emittance) with a longitudinal resolution in the order of 10 {mu}m. While the slice emittance in the peak current region was measured to be significantly larger than deduced from properties of the FEL radiation, tomographic methods revealed a bunch region of small horizontal emittance and high current. The observed increase in slice emittance in the peak current region was found to be caused by coherent emission of synchrotron radiation within bending magnets. (orig.)

  14. Investigation of the phase space distribution of electron bunches at the FLASH-linac using a transverse deflecting structure

    International Nuclear Information System (INIS)

    Roehrs, M.

    2008-06-01

    The operation of a high-gain free-electron laser (FEL) puts stringent demands on the peak current, transverse emittance and energy spread of the electron beam. At the Free Electron Laser in Hamburg (FLASH), a transverse deflecting structure (TDS) has been installed to investigate these electron beam parameters. The radio-frequency electromagnetic field in the TDS is utilized to deflect the beam electrons vertically as a function of time so that the charge distribution in the longitudinal-horizontal plane can be imaged with optical transition radiation screens. Using this technique, the single-bunch current profile was measured with an unprecedented resolution of about 10 μm (30 fs) under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Appropriate variations of the focal strengths of quadrupole magnets allowed for the measurement of the horizontal emittance as a function of the longitudinal position within a bunch (slice emittance) with a longitudinal resolution in the order of 10 μm. While the slice emittance in the peak current region was measured to be significantly larger than deduced from properties of the FEL radiation, tomographic methods revealed a bunch region of small horizontal emittance and high current. The observed increase in slice emittance in the peak current region was found to be caused by coherent emission of synchrotron radiation within bending magnets. (orig.)

  15. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    Science.gov (United States)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  16. Measurement of defects on the wall by use of the inclination angle of laser slit beam and position tracking algorithm of camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hwan; Yoon, Ji Sup; Jung, Jae Hoo; Hong, Dong Hee; Park, Gee Yong

    2001-01-01

    In this paper, a method of measuring the size of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation which uses the declination angle of the line slit beam. To reconstruct the image, an algorithm of estimating the horizontally inclined angle of CCD camera is presented. This algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the LASER beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed into the image which is obtained by a camera normal to the wall. From the result of a series of experiment shows that the measuring accuracy of the defect is within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. Also, the accuracy is deteriorates with the error rate of 1% for every 10 degree increase of the horizontally inclined angle. The estimation error increases in the range of 30{approx}50 degree due to the existence of dead zone of defect depth, and defect length can not be measured due to the disappearance of image data above 70 degree. In case of under water condition, the measuring accuracy is also influenced due to the changed field of view of both the camera and the laser slit beam caused by the refraction rate in the water. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary camera orientation into the image which is obtained by a camera normal to the wall and thus it enables the accurate measurement of the defect lengths only by using a single camera and a laser slit beam.

  17. Some aspects of precise laser machining - Part 1: Theory

    Science.gov (United States)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  18. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Cluster of Excellence Engineering of Advanced Materials (EAM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Altenhoff, Michael [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany)

    2016-05-15

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  19. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    International Nuclear Information System (INIS)

    Huber, Franz J. T.; Will, Stefan; Altenhoff, Michael

    2016-01-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  20. A proton microbeam deflection system to scan target surfaces

    International Nuclear Information System (INIS)

    Heck, D.

    1978-12-01

    A system to deflect the proton beam within the Karlsruhe microbeam setup is described. The deflection is achieved whithin a transverse electrical field generated between parallel electrodes. Their tension is controlled by a pattern generator, thus enabling areal and line scans with a variable number of scan points at variable scan speed. The application is demonstrated at two different examples. (orig.) [de

  1. Force-deflection analysis of offset indentations on pressurised pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2007-01-01

    The indenter force vs. deflection characteristics of pressurised pipes with long offset indentations under plane strain conditions have been investigated using finite element (FE) and analytical methods with four experimental tests performed on aluminium rings. Two different materials and five different geometries were used to investigate their effects on the elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results indicates that the analytical formulation developed in this paper, for predicting the force-deflection curves for pressurised pipes with offset indenters, is reasonably accurate. Also, all of the analyses presented in this paper indicate that by using a representative flow stress, which is defined as the average of the yield and ultimate tensile stresses, the analytical method can accurately predict the force-deflection curves

  2. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial.

    Science.gov (United States)

    Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J

    2014-09-01

    To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by

  3. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  4. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  5. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    Science.gov (United States)

    Barlow, Nathaniel S.; Weinstein, Steven J.; Faber, Joshua A.

    2017-07-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math. 70 21-48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations.

  6. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  7. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  8. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses

  9. Large deflection of viscoelastic beams using fractional derivative model

    International Nuclear Information System (INIS)

    Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad

    2013-01-01

    This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.

  10. Laser based micro forming and assembly.

    Energy Technology Data Exchange (ETDEWEB)

    MacCallum, Danny O' Neill; Wong, Chung-Nin Channy; Knorovsky, Gerald Albert; Steyskal, Michele D.; Lehecka, Tom (Pennsylvania State University, Freeport, PA); Scherzinger, William Mark; Palmer, Jeremy Andrew

    2006-11-01

    It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination of laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.

  11. Efficacy of laser peripheral iridoplasty and iridotomy on medically refractory patients with acute primary angle closure: a three year outcome

    Institute of Scientific and Technical Information of China (English)

    FU Jing; QING Guo-ping; WANG Ning-li; WANG Huai-zhou

    2013-01-01

    Background Argon laser peripheral iridoplasty (ALPI) is proved to be effective in lowering intraocular pressure (IOP) of patients with mild acute primary angle closure (APAC).It is unclear whether this laser treatment is equally efficient in managing patients with severe APAC.This study aimed to evaluate the IOP-lowering efficacy of ALPI and laser peripheral iridotomy (LPI) on patients with refractory APAC,who have previously responded poorly to intensive medical therapy.Methods Thirty-six patients (8 men and 28 women) were identified as medically refractory APAC,who still had ocular pain,red eye,hazy cornea,closed anterior chamber (AC) angle,and IOP of not less than 21 mmHg after two days or more of anti-glaucoma medication.All enrolled patients underwent ophthalmologic examinations including measurement of visual acuity (VA),best corrected VA (BCVA),IOP,biomicroscopy,and gonioscopy followed by ALPI immediately in the APAC eye and LPI in both eyes.Results All patients were affected unilaterally,with average age of (54.6±11.7) (range,37.0-75.0) years old.The mean IOP value of the affected eyes dropped from (31.6±7.7) (range,21.0-39.0) mmHg at enrollment to (18.4±8.7) (range,10.0-27.0) mmHg 2 hours after ALPI.At follow-up day 7,the mean IOP value maintained at (14.8±4.2) (range,9.0-21.0)mmHg,which was significantly different (P=0.000) compared with baseline.The average decrease of IOP in the APAC eyes was (16.8±7.4) (range,12.0-21.0) mmHg.At follow-up three years later,the mean IOP of the APAC eyes stabilized at (16.3±3.2) (range,9.0-20.0) mmHg with at least 180° of AC angle opened.Conclusion ALPI and LPI lower the IOP of medically refractory cases of APAC though they have responded poorly to anti-glaucoma medication.

  12. Mexico North-South Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  13. Mexico East-West Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  14. Directional Wide-Angle Range Finder (DWARF)

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation, the Directional Wide-Angle Range Finder (DWARF) is the creation of a laser range-finder with a wide field-of-view (FOV) and a directional...

  15. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole

    Directory of Open Access Journals (Sweden)

    Wenyi Huo

    2016-01-01

    Full Text Available The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.

  16. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    Science.gov (United States)

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1.3–2.0) in untreated eyes (P<0.001). Conclusions Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the

  17. Alaska North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  18. Alaska East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  19. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    Science.gov (United States)

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin restorative for class II MOD cavities resulted in reduced cuspal deflection in comparison to the two other bulk-fill composite resins tested. The silorane-based Filtek LS restorative resulted in the least cuspal deflection in

  20. Simulation on a limited angle beam gamma ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Moon, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Limited angle beam tomography was introduced in the medical field more than two decades ago, where it was mainly used for cardiovascular diagnostics. Later, it was also used to trace multiphase flows. In these studies, the detection systems were fixed and a scanning electron beam was rapidly swept across an xray target using deflection coils. Thus very fast scanning was possible in these studies, but their geometry resulted in a heavy and bulky system because of a complex control system and vacuum tube. Because of its heavy hardware, limited angle beam tomography has remained as indoor equipment. If the source section is replaced by a gamma ray source, limited angle beam tomography will have a very light source device. In addition, limited angle beam tomography with a gamma ray source can be designed using an open type portable gantry because it does not need a vacuum guide for an electron beam. There is a lot of need for a portable tomographic system but so far no definitive solution has been created. The inspection of industrial on-line pipes, wood telephone poles, and cultural assets are some application areas. This study introduces limited angle beam gamma ray tomography, its simulation, and image reconstruction results. Image reconstruction was performed on the virtual experimental data from a Monte Carlo simulation. Image reconstruction algorithms that are known to be useful for limited angle data were applied and their results compared

  1. Energy and zenith angle dependence of atmospheric muons

    CERN Document Server

    Maeda, K

    1973-01-01

    The recently proposed new process for energetic-muon production in the atmosphere should be tested at Mt. Chacaltaya. Rigorous calculations of zenith-angle distribution of atmospheric muons have been made for the altitude of 5200 m above sea level with energy range from 100 GeV to 100 TeV and for zenith angles from 0 degrees to 92.3 degrees . Calculations are based on the extension of the Chapman function to the case of a non-isothermal atmosphere, taking into account (i) energy- dependent nuclear-interaction mean free path of cosmic-ray hadrons in air, (ii) different magnitudes of photonuclear cross-section in the energy-loss process of muons in the atmosphere, (iii) contributions of atmospheric muons arriving below the horizontal directions, and (iv) atmospheric structure and geomagnetic deflection. Results are compared with those corresponding to sea level. Range straggling, particularly its effect on horizontally incident muons, is investigated by Monte Carlo calculation, indicating that its effects and t...

  2. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    International Nuclear Information System (INIS)

    Barlow, Nathaniel S; Faber, Joshua A; Weinstein, Steven J

    2017-01-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math . 70 21–48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations. (paper)

  3. Femtosecond laser-induced herringbone patterns

    Science.gov (United States)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  4. Simulating and visualizing deflections of a remote handling mechanism

    International Nuclear Information System (INIS)

    Saarinen, Hannu; Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko; Esqué, Salvador; Hamilton, David

    2013-01-01

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  5. Simulating and visualizing deflections of a remote handling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu, E-mail: hannu.saarinen@vtt.fi [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Esqué, Salvador [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  6. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  7. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  8. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-01-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  9. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    International Nuclear Information System (INIS)

    Blais, A; Proulx, P; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop Δφ all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I and conductor current I conductor and decreases with the flow rate Q and x 0 , the arc-conductor distance. These deflection behaviours are explained using physical arguments

  10. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    Science.gov (United States)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  11. Contemporary Approach to the Diagnosis and Management of Primary Angle-Closure Disease.

    Science.gov (United States)

    Razeghinejad, M Reza; Myers, Jonathan S

    2018-05-16

    Primary angle closure disease spectrum varies from a narrow angle to advanced glaucoma. A variety of imaging technologies may assist the clinician in determining the pathophysiology and diagnosis of primary angle closure, but gonioscopy remains a mainstay of clinical evaluation. Laser iridotomy effectively eliminates the pupillary block component of angle closure; however, studies show that in many patients the iridocorneal angle remains narrow from underlying anatomic issues, and increasing lens size often leads to further narrowing over time. Recent studies have further characterized the role of the lens in angle closure disease, and cataract or clear lens extraction is increasingly used earlier in its management. As a first surgical step in angle closure glaucoma, lens extraction alone often effectively controls the pressure with less risk of complications than concurrent or stand alone glaucoma surgery, but may not be sufficient in more advanced or severe disease. We provide a comprehensive review on the primary angle-closure disease nomenclature, imaging, and current laser and surgical management. Copyright © 2018. Published by Elsevier Inc.

  12. A simulation methodology of spacer grid residual spring deflection for predictive and interpretative purposes

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, H. K.; Yoon, K. H.

    1994-01-01

    The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by spacer grid residual spring deflection. In order to predict the spacer grid residual spring deflection as a function of burnup for various spring designs, a simulation methodology of spacer grid residual spring deflection has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key parameters affecting the residual spring deflection. The simulation methodology developed in this study can be utilized as an effective tool in evaluating the capability of a newly designed spacer grid spring to prevent the fretting wear-induced damage

  13. Permanent deformation and deflection relationship from pavement condition assessment

    Directory of Open Access Journals (Sweden)

    Fabricio Leiva-Villacorta

    2017-07-01

    Full Text Available The development of permanent deformation in flexible pavements has been a research topic for several decades. Currently there are models included in the structural design of pavements that can predict this type of failure. However, the variables required for the prediction of this distress are complex or difficult to obtain in the field, making its application in pavement evaluation also difficult. Measurement of the deflection of pavement structures by means of non-destructive testing is a technique used to assess the condition of the pavement. This research study seeks to correlate data from deflections of the pavement surface with probable permanent deformation in time. In addition, prediction of the remaining life of the pavement structure using a specified criterion is also analyzed. In order to accomplish these objectives, data acquired from 4 different full scale accelerated pavement test tracks was used to develop a permanent deformation model as a function of deflection, load repetitions and pavement layer thickness. The developed model considered a time series model that incorporates an Auto-regressive parameter of order 1. The proposed model presents an advantage over currently available models because it reduces the required parameters to predict the permanent deformation and/or remaining life in the structure and because these variables can be easily found and updated in a pavement management system. Keywords: HVS, Permanent deformation, Deflections, APT, Time series, Instrumentation

  14. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    Science.gov (United States)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  15. Servo-Elastic Dynamics of a Hydraulic Actuator Pitching a Blade with Large Deflections

    International Nuclear Information System (INIS)

    Hansen, M H; Kallesoee, B S

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based on the Ziegler-Nichols method. Computed transfer functions from reference to actual pitch angles indicate that the actuator can be approximated as a low-pass filter with some appropriate limitations on pitching speed and acceleration. The structural blade model includes the geometrical coupling of edgewise bending and torsion for large flapwise deflections. This coupling is shown to introduce edgewise bending response for pitch reference oscillations around the natural frequency of the edgewise bending mode, in which frequency range the transfer function from reference to actual pitch angle cannot be modeled as a simple low-pass filter. The pitch bearing is assumed to be frictionless as a first approximation

  16. Optical forces through guided light deflections

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton

    2013-01-01

    . In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order...

  17. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites

    International Nuclear Information System (INIS)

    Shaikh, F.U.A.

    2013-01-01

    Highlights: • Deflection hardening behaviour is achieved in the DFRGC similar to that observed in DFRCC. • The first crack load or in other word the limit of proportionality (LOP) of DFRGC is similar to that of DFRCC. • The DFRGC also exhibited higher deflection at peak load than DFRCC. • The toughness at peak load of DFRGC is also high than that of DFRCC. • The ductility of DFRGC is also higher than that of DFRCC. - Abstract: This paper reports the newly developed ductile fibre reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behaviour. The binder of the above composite is different from that used in conventional cement based system. The class F fly ash is used instead of Portland cement in DFRGC and is activated by alkaline liquids (sodium hydroxide and sodium silicate). In this study, two types of fibres namely steel (ST) and polyvinyl alcohol (PVA) fibres are used in mono as well as in ST–PVA hybrid form, with a total volume fraction of 2%. The deflection hardening behaviour of newly developed DFRGC is also compared with that of conventional ductile fibre reinforced cementitious composites (DFRCC). The effects of two different sizes of sand (1.18 mm, and 0.6 mm) and sand/binder ratios of 0.5 and 0.75 on the deflection hardening and multiple cracking behaviour of both DFRGC and DFRCC are also evaluated. Results revel that the deflection hardening and multiple cracking behaviour is achieved in geopolymer based DFRGC similar to that of cement based system. For a given sand size and sand content, comparable deflection hardening behaviour, ultimate flexural strength and the deflection at peak load are observed in both cement and geopolymer based composites irrespective of fibre types and combination. The deflection hardening behaviour of DFRGC is also confirmed by the calculated toughness index values of I 20 > 20. The scanning electron microscope (SEM) study shows no degradation of PVA and steel fibres in the

  18. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  19. Optodynamics: dynamic aspects of laser beam-surface interaction

    International Nuclear Information System (INIS)

    Možina, J; Diaci, J

    2012-01-01

    This paper presents a synthesis of the results of our original research in the area of laser-material interaction and pulsed laser material processing with a special emphasis on the dynamic aspects of laser beam-surface interaction, which include the links between the laser material removal and the resulting material motion. In view of laser material processing, a laser beam is not only considered as a tool but also as a generator of information about the material transformation. The information is retained and conveyed by different kinds of optically induced mechanical waves. Several generation/detection schemes have been developed to extract this information, especially in the field of non-destructive material evaluation. Blast and acoustic waves, which propagate in the air surrounding the work-piece, have been studied using microphone detection as well as various setups of the laser beam deflection probe. Stress waves propagating through the work-piece have been studied using piezoelectric transducers and laser interferometers.

  20. Flight Investigation at Low Angles of Attack to Determine the Longitudinal Stability and Control Characteristics of a Cruciform Canard Missile Configuration with a Low-Aspect-Ratio Wing and Blunt Nose at Mach Numbers from 1.2 to 2.1

    Science.gov (United States)

    Brown, Clarence A , Jr

    1957-01-01

    A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.

  1. Deflection of weakly magnetic materials by superconducting OGMS

    International Nuclear Information System (INIS)

    Boehm, J.; Gerber, R.; Fletcher, D.; Parker, M.R.

    1988-01-01

    Applications of a superconducting Open Gradient Magnetic Separator to fractional separation in air of weakly magnetic materials are presented. The dependence of particle deflection of these materials on the magnetic field strength, release location, magnetic susceptibility, particle density and other properties is investigated. The aim is to maximise the deflection of the magnetically stronger component of the feed to facilitate its separation from the particle stream round the magnet. Materials (e.g. CuSO/sub 4/, MnO/sub 2/) with chi/rho- ratios of the order of 7 x 10/sup -8/ m/sup 3//kg have been deflected. The applicability of dry magnetic separation has thus been considerably extended since up to now the separation of such materials has been restricted to High Gradient Magnetic Separation. The dependence of the separation efficiency upon the method of feeding and the influence of the residence time are studied in order to establish the optimum parameters for the recovery of the desired fraction. The experimental results are compared with predictions of a theory that is based upon novel approximative calculations of magnetic fields in which the use of elliptic integrals is avoided

  2. Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field

    International Nuclear Information System (INIS)

    Yao Jinping; Zeng Bin; Fu Yuxi; Chu Wei; Ni Jielei; Li Yao; Xiong Hui; Xu Han; Cheng Ya; Xu Zhizhan; Liu Xiaojun; Chen, J.

    2010-01-01

    We theoretically investigate the high-order harmonic generation (HHG) in helium using a two-color laser field synthesized by an intense 25-fs laser pulse at 800 nm and a relatively weak ∼43-fs laser pulse at 1400 nm. When the polarization between the two pulses is arranged at an angle of ∼73 deg., supercontinuum spectra are dramatically broadened to 180 eV, which is sufficient to support an isolated ∼73-as pulse without any phase compensation. The physical mechanisms behind the phenomenon are well explained in terms of quantum and classical analyses. Furthermore, in the long-pulse regime, this method of extending the supercontinuum spectrum shows the significant advantage over previous two-color HHG schemes.

  3. Primary angle closure glaucoma in a myopic kinship.

    Science.gov (United States)

    Hagan, J C; Lederer, C M

    1985-03-01

    Three related myopic individuals with primary angle closure glaucoma are reported. They had true myopia and not pseudomyopia secondary to increased lenticular index of refraction. We believe one of these individuals (-8.62 spherical equivalent) to have the most myopic case of primary angle closure glaucoma reported in the literature. Although myopia is associated with anatomical factors that offer considerable protection from primary angle closure glaucoma, its presence does not eliminate the possibility of this disease. Laser iridectomy was effective in the treatment of these patients.

  4. Electromagnetic and structural coupled analysis with the effect of large deflection

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Niho, Tomoya

    1997-01-01

    In the designs of future fusion reactors and magnetic levitated vehicles, thin shell conducting structures are located in a high electromagnetic field. The transient magnetic field induces the eddy current on the conductive structure. While the Lorentz force by the eddy current and the magnetic field is loaded to the thin shell structure, the electromotive force by the deflection velocity and magnetic field reduces the eddy current. Therefore, the electromagnetic and structural coupled analysis is required for the design of these components. This paper describes a coupled finite element analysis for the eddy current and the structure. A formulation is presented considering the effect of the large deflection of shell structures by the total Lagrangian formulation. Both matrix equations for the eddy current and the structure are solved simultaneously using coupling sub-matrices. A coupled problem of a cantilever bending plate is analyzed. Based on the analysis results, the influence of the large deflection on the coupling effect is discussed. The condition that the large deflection analysis is required is examined through some parametric analyses

  5. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    Science.gov (United States)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  6. U.S. East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  7. U.S. North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  8. Ray-tracing studies for a whole-viewing-angle retro-reflector

    International Nuclear Information System (INIS)

    Yang, B.; Friedsam, H.

    1999-01-01

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retro-reflectors for tracking the path of the laser interferometer. Currently in use are open-air comer cubes with an acceptance angle of ±20 deg C, comer cube prisms with an acceptance angle of ±50 deg C, and a Cat's eye with an acceptance angle of ±60 deg C. Best measurement results can be achieved by using an open-air comer cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. have proposed the creation of a full-viewing-angle retro-reflector. Based on the notion that the radius R 1 of a common Cat's eye is proportional to R 2 , one can write: R 1 = (n-1)R 2 In the case that n, the refractive index of glass, equals 2, the radii R 1 and R 2 are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of our ray tracing calculations characterizing the geometrical optics. In Section 2 we derived the analytical expressions for choosing the index of refraction n of a glass sphere based on the specifications of the reflected beam. We also provided an approximation for calculating the minimum radius of a reflector sphere based on efficiency considerations. Finally, in section 3, the analytically derived results were confirmed in a design study for a Cat's eye. (authors)

  9. Effect of shear strain on the deflection of a clamped magnetostrictive film-substrate system

    International Nuclear Information System (INIS)

    Ming Zhenghui; Ming Li; Bo Zou; Xia Luo

    2011-01-01

    The effect of in-plane shear strain of a clamped bimorph on the deflection produced by magnetization of the film is investigated. The deflection is found by minimizing the Gibbs free energy with respect to four parameters, strains and curvatures along x and y directions at the interface, by assuming that the curvature in the y direction varies as a function of aspect ratio w/l along x. A set of standard linear equations of four parameters are obtained and the deflection is expressed in terms of the four parameters by solving the equations using Cramer rules. The inconsistencies pointed out by previous authors are also reviewed. For actuators made of thick and short clamped film-substrate system, the in-plane shear deformation should not be omitted. The present calculation model can give a relatively simple and accurate prediction of deflection for thick and short specimens of aspect ratio w/l<10, which supports the results obtained by finite element modeling. - Highlights: → We model the deflection of a thick magnetostrictive film-substrate cantilever plate. → Total stress along z from magnetic field is not zero without external force. → Effect of in-plane shear strain in calculating deflection examined. → Analytical solution of deflection obtained by assuming a curvature function. → Shear strain for short cantilever film-substrate plate considered.

  10. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  11. The importance of being elastic: deflection of a badminton racket during a stroke.

    Science.gov (United States)

    Kwan, Maxine; Rasmussen, John

    2010-03-01

    The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.

  12. Hawaiian Islands East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  13. Hawaiian Islands North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  14. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    CERN Document Server

    Blais, A; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop DELTA phi all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I...

  15. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    Science.gov (United States)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  16. PR/VI North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  17. PR/VI East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  18. Predictors of success in selective laser trabeculoplasty for primary open angle glaucoma in Chinese

    Directory of Open Access Journals (Sweden)

    Lee JW

    2014-09-01

    Full Text Available Jacky WY Lee,1,2 Catherine CL Liu,3 Jonathan CH Chan,4 Raymond LM Wong,5 Ian YH Wong,2 Jimmy SM Lai2 1The Department of Ophthalmology, Caritas Medical Centre, Hong Kong, SAR, People’s Republic of China; 2The Department of Ophthalmology, The University of Hong Kong, Hong Kong, SAR, People’s Republic of China; 3Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, SAR, People’s Republic of China; 4The Department of Ophthalmology, Queen Mary Hospital, Hong Kong, SAR, People’s Republic of China; 5The Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, Hong Kong, SAR, People’s Republic of China Purpose: To determine the predictors of success for adjuvant selective laser trabeculoplasty (SLT in Chinese primary open angle glaucoma (POAG patients. Methods: This prospective study recruited Chinese subjects with unilateral or bilateral POAG currently taking medication to reduce intraocular pressure (IOP. All subjects received a single session of 360° SLT treatment and continued their medications for 1 month. SLT success was defined as IOP reduction ≥20% at 1 month. The following covariates were analyzed in both groups via univariate and multivariate analyses: age, sex, lens status, initial IOPs, post-SLT IOPs, number and type of medications, SLT shots and energy, and pre-SLT investigations.Results: In 51 eyes of 33 POAG subjects, the success rate of SLT was 47.1%. Certain groups of patients were associated with greater success using univariate analysis. These groups included the following: older age (coefficient =0.1; OR: 1.1; P=0.0003, a higher pre-SLT IOP (coefficient =0.3; OR: 1.3; P=0.0005, using four types of antiglaucoma medication (coefficient =2.1; OR: 8.4; P=0.005, a greater degree of spherical equivalent (coefficient =2.1; OR: 8.4; P=0.005, and the use of a topical carbonic anhydrase inhibitor (coefficient =1.7; OR: 6.0; P=0.003. None of the covariates were significant using

  19. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  20. Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave

    International Nuclear Information System (INIS)

    Bellan, P. M.

    2013-01-01

    The interaction between a circularly polarized wave and an energetic gyrating particle is described using a relativistic pseudo-potential that is a function of the frequency mismatch. Analysis of the pseudo-potential provides a means for interpreting numerical results. The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves show that the energetic electron pitch angle can be deflected 5°towards the loss cone when transiting a 10 ms long coherent wave packet having realistic parameters.

  1. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  2. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  3. Consistent comparison of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided LASIK for myopia by EX500 excimer laser.

    Science.gov (United States)

    Sun, Ming-Shen; Zhang, Li; Guo, Ning; Song, Yan-Zheng; Zhang, Feng-Ju

    2018-01-01

    To evaluate and compare the uniformity of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided ablation of laser in situ keratomileusis (LASIK) by EX500 excimer laser for myopia. Totally 145 cases (290 consecutive eyes )with myopia received LASIK with a target of emmetropia. The ablation for 86 cases (172 eyes) was guided manually based on Oculyzer topography (study group), while the ablation for 59 cases (118 eyes) was guided automatically by Topolyzer Vario topography (control group). Measurement of adjustment values included data respectively in horizontal and vertical direction of cornea. Horizontally, synclastic adjustment between manually actual values (dx manu ) and Oculyzer topography guided data (dx ocu ) accounts 35.5% in study group, with mean dx manu /dx ocu of 0.78±0.48; while in control group, synclastic adjustment between automatically actual values (dx auto ) and Oculyzer topography data (dx ocu ) accounts 54.2%, with mean dx auto /dx ocu of 0.79±0.66. Vertically, synclastic adjustment between dy manu and dy ocu accounts 55.2% in study group, with mean dy manu /dy ocu of 0.61±0.42; while in control group, synclastic adjustment between dy auto and dy ocu accounts 66.1%, with mean dy auto /dy ocu of 0.66±0.65. There was no statistically significant difference in ratio of actual values/Oculyzer topography guided data in horizontal and vertical direction between two groups ( P =0.951, 0.621). There is high consistency in angle Kappa adjustment guided manually by Oculyzer and guided automatically by Topolyzer Vario topography during corneal refractive surgery by WaveLight EX500 excimer laser.

  4. Modification of polyimide wetting properties by laser ablated conical microstructures

    International Nuclear Information System (INIS)

    Least, Brandon T.; Willis, David A.

    2013-01-01

    Laser texturing of Kapton ® HN polyimide was performed by low-fluence ablation using a pulsed, frequency tripled (349 nm) Nd:YLF laser. The laser was scanned in two dimensions in order to generate texture over a large area. The laser overlap percentage and fluence were varied and the resulting texture was studied. The texture features were inspected by electron microscopy and energy dispersive X-Ray spectroscopy (EDS), while the static contact angle of de-ionized water was measured by a contact angle goniometer. Rounded bump features were formed at all fluences, which decreased in areal density with fluence and number of laser pulses. Conical microstructures or “cones” were also formed at most fluences. Cones were larger than the bumps and thus had lower areal density, which increased as a function of the number of laser pulses. The polyimide was hydrophilic before texturing, with a contact angle of approximately 76°. For most of the experimental conditions the contact angle increased as a result of texturing, with the contact angle exceeding 90° for some textured surfaces, and reaching values as high as 118°. In general, the surfaces with significant increases in contact angle had high density of texture features, either bumps or cones. The surfaces that experienced a decrease in contact angle generally had low density of texture features. The increase in contact angle from a wetting (θ 90°) cannot be explained by texturing alone. EDS measurements indicate that textured regions had higher carbon content than the untextured regions due to depletion of oxygen species. The increase in carbon content relative to the oxygen content increased the native contact angle of the surface, causing the transition from hydrophilic to hydrophobic behavior. The contact angle of a textured surface increased as the relative spacing of features (diameter to spacing) decreased.

  5. Dynamic Correction of Higher-Order Deflection Aberrations in the Environmental SEM

    Czech Academy of Sciences Publication Activity Database

    Oral, Martin; Neděla, Vilém

    2015-01-01

    Roč. 21, S4 (2015), s. 194-199 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : environmental SEM * ESEM * shifted deflection pivot point * Higher order deflection aberrations * vignetting * dynamic focusing * dynamic stigmator * dynamic correction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  6. Diagnostics of Particles emitted from a Laser generated Plasma: Experimental Data and Simulations

    Science.gov (United States)

    Costa, Giuseppe; Torrisi, Lorenzo

    2018-01-01

    The charge particle emission form laser-generated plasma was studied experimentally and theoretically using the COMSOL simulation code. The particle acceleration was investigated using two lasers at two different regimes. A Nd:YAG laser, with 3 ns pulse duration and 1010 W/cm2 intensity, when focused on solid target produces a non-equilibrium plasma with average temperature of about 30-50 eV. An Iodine laser with 300 ps pulse duration and 1016 W/cm2 intensity produces plasmas with average temperatures of the order of tens keV. In both cases charge separation occurs and ions and electrons are accelerated at energies of the order of 200 eV and 1 MeV per charge state in the two cases, respectively. The simulation program permits to plot the charge particle trajectories from plasma source in vacuum indicating how they can be deflected by magnetic and electrical fields. The simulation code can be employed to realize suitable permanent magnets and solenoids to deflect ions toward a secondary target or detectors, to focalize ions and electrons, to realize electron traps able to provide significant ion acceleration and to realize efficient spectrometers. In particular it was applied to the study two Thomson parabola spectrometers able to detect ions at low and at high laser intensities. The comparisons between measurements and simulation is presented and discussed.

  7. Characterization of the protective capacity of flooring systems using force-deflection profiling.

    Science.gov (United States)

    Glinka, Michal N; Karakolis, Thomas; Callaghan, Jack P; Laing, Andrew C

    2013-01-01

    'Safety floors' aim to decrease the risk of fall-related injuries by absorbing impact energy during falls. Ironically, excessive floor deflection during walking or standing may increase fall risk. In this study we used a materials testing system to characterize the ability of a range of floors to absorb energy during simulated head and hip impacts while resisting deflection during simulated single-leg stance. We found that energy absorption for all safety floors (mean (SD)=14.8 (4.9)J) and bedside mats (25.1 (9.3)J) was 3.2- to 5.4-fold greater than the control condition (commercial carpet). While footfall deflections were not significantly different between safety floors (1.8 (0.7)mm) and the control carpet (3.7 (0.6)mm), they were significantly higher for two bedside mats. Finally, all of the safety floors, and two bedside mats, displayed 3-10 times the energy-absorption-to-deflection ratios observed for the baseline carpet. Overall, these results suggest that the safety floors we tested effectively addressed two competing demands required to reduce fall-related injury risk; namely the ability to absorb substantial impact energy without increasing footfall deflections. This study contributes to the literature suggesting that safety floors are a promising intervention for reducing fall-related injury risk in older adults. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Lorentz angle measurements in irradiated silicon detectors between 77 K and 300 K

    International Nuclear Information System (INIS)

    Bartsch, V.; Boer, W. de; Bol, J.

    2001-01-01

    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures below 180 K. However, at low temperatures the mobility increases, which leads to larger deflections of the charge carriers by the Lorentz force. We present measurements of the Lorentz angle between 77 K and 300 K before and after irradiation with a primary beam of 21 MeV protons to a flux of 10 13 /cm 2 . (author)

  9. Effective Moment Of Inertia And Deflections Of Reinforced Concrete Beams Under Long-Term Loading

    OpenAIRE

    Mahmood, Khalid M.; Ashour, Samir A.; Al-Noury, Soliman I.

    1995-01-01

    The paper presents a method for estimating long-term deflections of reinforced concrete beams by considering creep and shrinkage effects separately. Based on equilibrium and compatibility conditions a method is developed for investigating the properties of a cracked transformed section under sustained load. The concept of effective moment of inertia is extended to predict initial-plus-creep deflections. Long-term deflections computed by the proposed method are compared with the experimental r...

  10. Deflecting modes of the side-coupled cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM{sub 1} passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at {pi}/10 exceeds 50 M{Omega}/m if the quality value of the mode is around 12000.

  11. Deflecting modes of the side-coupled cavity structure

    International Nuclear Information System (INIS)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM 1 passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at π/10 exceeds 50 MΩ/m if the quality value of the mode is around 12000

  12. Optical sensor for heat conduction measurement in biological tissue

    International Nuclear Information System (INIS)

    Gutierrez-Arroyo, A; Sanchez-Perez, C; Aleman-Garcia, N

    2013-01-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  13. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  14. Dark matter prospects in deflected mirage mediation

    International Nuclear Information System (INIS)

    Holmes, Michael; Nelson, Brent D.

    2009-01-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms

  15. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges

    Directory of Open Access Journals (Sweden)

    Jaebeom Lee

    2018-05-01

    Full Text Available Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.

  16. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges.

    Science.gov (United States)

    Lee, Jaebeom; Lee, Kyoung-Chan; Lee, Young-Joo

    2018-05-09

    Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.

  17. Multi-angle VECSEL cavities for dispersion control and multi-color operation

    Science.gov (United States)

    Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.

    2017-02-01

    We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.

  18. Design considerations for a backlight with switchable viewing angles

    Science.gov (United States)

    Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny

    2006-08-01

    Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.

  19. Approximations for Large Deflection of a Cantilever Beam under a Terminal Follower Force and Nonlinear Pendulum

    Directory of Open Access Journals (Sweden)

    H. Vázquez-Leal

    2013-01-01

    Full Text Available In theoretical mechanics field, solution methods for nonlinear differential equations are very important because many problems are modelled using such equations. In particular, large deflection of a cantilever beam under a terminal follower force and nonlinear pendulum problem can be described by the same nonlinear differential equation. Therefore, in this work, we propose some approximate solutions for both problems using nonlinearities distribution homotopy perturbation method, homotopy perturbation method, and combinations with Laplace-Padé posttreatment. We will show the high accuracy of the proposed cantilever solutions, which are in good agreement with other reported solutions. Finally, for the pendulum case, the proposed approximation was useful to predict, accurately, the period for an angle up to 179.99999999∘ yielding a relative error of 0.01222747.

  20. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    Science.gov (United States)

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  1. The Effect of Material and Side Walls on Hull Deflection during a Blast Event

    Science.gov (United States)

    2017-12-13

    ARL-CR-0822 ● DEC 2017 US Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event...Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event prepared by Danielle Abell SURVICE...Walls on Hull Deflection during a Blast Event 5a. CONTRACT NUMBER W911QX-16-D-0014 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  2. Moduli stabilization and supersymmetry breaking in deflected mirage mediation

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kaehler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.

  3. Novel operation mode for eliminating influence of inclination angle and friction in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Fei; Wang, Yueyu; Zhou, Faquan; Zhao, Xuezeng

    2010-01-01

    The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip-sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.

  4. Laser scanning of experimental solar cells

    Science.gov (United States)

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  5. Strong deflection lensing by a Lee–Wick black hole

    Directory of Open Access Journals (Sweden)

    Shan-Shan Zhao

    2017-11-01

    Full Text Available We study strong deflection gravitational lensing by a Lee–Wick black hole, which is a non-singular black hole generated by a high derivative modification of Einstein–Hilbert action. The strong deflection lensing is expected to produce a set of relativistic images very closed to the event horizon of the black hole. We estimate its observables for the supermassive black hole in our Galactic center. It is found that the Lee–Wick black hole can be distinguished from the Schwarzschild black hole via such lensing effects when the UV scale is not very large, but the requiring resolution is much higher than current capability.

  6. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Kim, Ian-Woo

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  7. Theory of magnetic neutron small-angle scattering using the dynamical theory of diffraction instead of the Born approximation. I

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1978-01-01

    Two ways are given for solving the problem of the dependence of the refraction on the direction of magnetization on both sides of the refractive boundary, one applying the Halpern magnetic scattering vector, the other applying the dynamical theory of diffraction. They lead to different results. Experimental investigation of refraction by magnetic boundaries shows no dependence of the angle of deflection on the relative angles of magnetization in adjacent domains. This behaviour is only described correctly by the dynamical theory, which far from Laue reflections leads to a treatment by the Schoedinger equation with a spin-dependent potential dependent on the average continuous homogenous magnetic induction, both for the law of refraction and for the precession of the spin. The results of this treatment are discussed as a consequence of the behaviour of the spin of the neutrons. This gives some insight about how and why, with refraction, the intensities of the direct and deflected beams depend on the magnetization directions in adjacent domains. The dynamical theory also shows that the Halpern magnetic scattering vector applies only with Laue or Bragg reflections and not with transmission far from those reflections. (Auth.)

  8. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...... verifications of the proposed method are carried out with different full-blade measurements. From all the results, it is found that the proposed technique can efficiently suppress multipath for the in-blade tip antenna, and improve the pulse wave front fidelity, so that the UWB sensing system can also...

  9. Measurement and production of electron deflection using a sweeping magnetic device in radiotherapy

    International Nuclear Information System (INIS)

    Damrongkijudom, N.; Oborn, B.; Rosenfeld, A.; Butson, M.

    2006-01-01

    The deflection and removal of high energy electrons produced by a medical linear accelerator has been attained by a Neodymium Iron Boron (NdFeB) permanent magnetic deflector device. This work was performed in an attempt to confirm the theoretical amount of electron deflection which could be produced by a magnetic field for removal of electrons from a clinical x-ray beam. This was performed by monitoring the paths of mostly monoenergetic clinical electron beams (6MeV to 20MeV) swept by the magnetic fields using radiographic film and comparing to first order deflection models. Results show that the measured deflection distance for 6 MeV electrons was 18 ± 6 cm and the calculated deflection distance was 21.3 cm. For 20 MeV electrons, this value was 5 ± 2 cm for measurement and 5.1 cm for calculation. The magnetic fields produced can thus reduce surface dose in treatment regions of a patient under irradiation by photon beams and we can predict the removal of all electron contaminations up to 6 MeV from a 6 MV photon beam with the radiation field size up to 10 x 10 cm 2 . The model can also estimate electron contamination still present in the treatment beam at larger field sizes

  10. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  11. Deflection of electron beams by ground planes

    International Nuclear Information System (INIS)

    Fernsler, R.F.; Lampe, M.

    1991-01-01

    Analytic methods are used to determine the effect of a nearby ground plane on the trajectory of a relativistic electron beam passing through dense gas. The beam is shown to respond to the ground plane in one of two distinct modes, determined by beam current and energy. Low-power beams deflect from the ground plane and tear longitudinally. High-power beams do not deflect or tear but tilt, i.e., the beam axis is no longer parallel to the direction of propagation. This conclusion is reached by computing the net beam force as a superposition of the ''bare'' ground-plane forces, the shielding forces from the beam-generated plasma, the body coupling forces induced by beam tilt, and the force that arises as the beam separates from the plasma. Effects from electromagnetic retardation and ground resistivity are shown to be negligible in typical cases of interest, and the interaction between ground planes and other external forces is discussed as well

  12. Deflection

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-08-01

    Full Text Available In this paper, deflection prediction of a cantilever beam subjected to static co-planar loading is investigated using the Differential Transformation Method (DTM and the Homotopy Perturbation Method (HPM. An axial compressive force, FA, and a transverse force, QA, are applied to the beam. It is considered that these forces are follower forces, i.e., they will rotate with the end section of the beam during the deformation, and they will remain tangential and perpendicular at all times, respectively. Comparison between DTM and HPM through numerical results demonstrates that DTM can be an exact and highly efficient procedure for solving these kind of problems. Also the influence of the effect of some parameters appeared in mathematical formulations such as area moment of inertia (I, Young’s modulus (E, transverse force (QA and compressive force (FA on slope variation are investigated in the present study. The results show that slope parameter as well as compressive force increases. By increasing the QA, slope parameter is increased significantly. By increasing the E, due to stiffness of the material, slope variation is decreased. It is evident that when the size of the beam section increases, the area moment of inertia (I will be increased and so the slope variation will be decreased.

  13. Laser-plasma interactions in magnetized environment

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  14. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    Science.gov (United States)

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  15. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    Science.gov (United States)

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  16. Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet

    International Nuclear Information System (INIS)

    Pan, C.T.; Shen, S.C.

    2005-01-01

    Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (H ext ) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 deg. C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with H ext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one

  17. Angular deflection of rotary nickel titanium files: a comparative study

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2009-12-01

    Full Text Available A new manufacturing method of twisting nickel titanium wire to produce rotary nickel titanium (RNT files has recently been developed. The aim of the present study was to evaluate whether the new manufacturing process increased the angular deflection of RNT files, by comparing instruments produced using the new manufacturing method (Twisted Files versus instruments produced with the traditional grinding process. Testing was performed on a total of 40 instruments of the following commercially available RNT files: Twisted Files (TF, Profile, K3 and M2 (NRT. All instruments tested had the same dimensions (taper 0.06 and tip size 25. Test procedures strictly followed ISO 3630-1. Data were collected and statistically analyzed by means ANOVA test. The results showed that TF demonstrated significantly higher average angular deflection levels (P<0.05, than RNT manufactured by a grinding process. Since angular deflection represent the amount of rotation (and consequently deformation that a RNT file can withstand before torsional failure, such a significant improvement is a favorable property for the clinical use of the tested RNT files.

  18. Experimental modeling of eddy currents and deflections for tokamak limiters

    International Nuclear Information System (INIS)

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field

  19. Laser prostatectomy using a right angle delivery system

    Science.gov (United States)

    Trigo-Rocha, Flavio; Mitre, Anuar I.; Chavantes, Maria C.; Arap, Sami

    1995-05-01

    Benign prostate hyperplasia (BPH) represents a major health problem in old men. In the present transurethral resection of the prostate (TURP) is the gold standard treatment for BPH. Although TURP is related to low mortality rates its mobidity is quite high. To evaluate the efficacy and safety of a new surgical treatment for BPH we undertook 30 patients with symptomatic BPH. All of them were submitted to a laser prostatectomy using a lateral delivery system (non contact) connected to a Nd-YAG laser font. The preoperative evaluation showed a prostate weight ranging from 30,5 to 86 grams (mean equals 42,5). The preoperative prostatic specific antigen (PSA) ranged from 0,9 to 10,2 ng/dl (mean equals 4.3). The International prostate symptom score (I-PSS) ranged from 16 to 35 points (means equals 23,58). The flow rate ranged from 0 to m 12.8 ml/sec (mean equals 4,65) and the postvoid residual urine from 20 to 400 ml (mean equals 100). We obtained follow-up in 20 patients. After three months after the procedure the parameters were: I-PSS from 4 to 20 points (mean equals 7,0) p stenosis in one patient. We concluded that laser prostatectomy is a safe and effective treatment for BPH.

  20. Automatic tracking of the intersection of a laser and electron beam

    International Nuclear Information System (INIS)

    Turko, B.T.; Fuzesy, R.Z.; Pripstein, D.A.; Kowitt, M.; Chamberlain, O.; Shapiro, G.; Hughes, E.

    1990-05-01

    For the Compton Polarimeter experiment at the Stanford Linear Accelerator the crossing point of a laser beam and an electron beam must be kept accurate and stable. An electronic system is described for the automatic tracking and correcting of the beam crossing. A remote CCD camera, relatively insensitive to electromagnetic disturbance, records small displacements of the pulsed laser beam. Video signals are analyzed at a remote station, the amount of drift from a selected reference point determined and the appropriate correction commands sent to the motorized mirror deflecting the laser beam. A description of the system, its performance and the test results are presented. 2 refs., 4 figs

  1. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.

    Science.gov (United States)

    Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao

    2007-12-01

    This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.

  2. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand

    Directory of Open Access Journals (Sweden)

    Murilo Gaby Neves

    2016-02-01

    Full Text Available Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil, 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4. 28-mm length segments from the straight portion (ends of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm, during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  3. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand.

    Science.gov (United States)

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. A total of 40 nickel-titanium (NiTi) wire segments (Morelli Ortodontia™--Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  4. Determining large deflections in rectangular combined loaded ...

    Indian Academy of Sciences (India)

    (Bisshopp & Drucker 1945; Scott et al 1955; Lau 1982; Rao & Rao 1986; Baker 1993; Lee et al 1993; Frisch-Fay 1962; Fertis 1999). Prathap and Varadan (1976) had calculated large deflections in cantilever beams made of non-linear Ramberg–Osgood type material on which concentrated load effected on the free end.

  5. Evaluation of deflection forces of orthodontic wires with different ligation types

    Directory of Open Access Journals (Sweden)

    José Fernando Castanha HENRIQUES

    2017-07-01

    Full Text Available Abstract The aim of this study was to evaluate deflection forces of orthodontic wires of different alloys engaged into conventional brackets using several ligation types. Stainless steel, conventional superelastic nickel-titanium and thermally activated nickel-titanium archwires tied into conventional brackets by a ring-shaped elastomeric ligature (RSEL, a 8-shaped elastomeric ligature (8SEL and a metal ligature (ML were tested. A clinical simulation device was created especially for this study and forces were measured with an Instron Universal Testing Machine. For the testing procedure, the block representing the maxillary right central incisor was moved 0.5 and 1 mm bucco-lingually at a constant speed of 2 mm/min, and the forces released by the wires were recorded, in accordance with the ISO 15841 guidelines. In general, the RSEL showed lighter forces, while 8SEL and ML showed higher values. At the 0.5 mm deflection, the 8SEL presented the greatest force, but at the 1.0 mm deflection the ML had a statistically similar force. Based on our evaluations, to obtain lighter forces, the thermally activated nickel-titanium wire with the RSEL are recommended, while the steel wire with the 8SEL or the ML are recommended when larger forces are desired. The ML exhibited the highest force increase with increased deflections, compared with the elastomeric ligatures.

  6. Experimental investigation of piercing of high-strength steels within a critical range of slant angle

    Science.gov (United States)

    Senn, S.; Liewald, M.

    2017-09-01

    Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.

  7. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  8. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-01-01

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  9. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    Science.gov (United States)

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  10. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  11. Laser damage studies on MgF2 thin films

    International Nuclear Information System (INIS)

    Protopapa, Maria Lucia; De Tomasi, Ferdinando; Perrone, Maria Rita; Piegari, Angela; Masetti, Enrico; Ristau, Detlev; Quesnel, Etienne; Duparre, Angela

    2001-01-01

    The results of laser damage studies performed at 248 nm (KrF excimer laser) on MgF 2 thin films deposited by different techniques (electron-beam evaporation, thermal boat evaporation, and ion-beam sputtering) on fused silica and CaF 2 substrates are presented. We find that the films deposited on CaF 2 substrates by the electron-beam evaporation technique present the highest damage threshold fluence (9 J/cm2). The photoacoustic (PA) beam deflection technique was employed, in addition to microscopical inspection, to determine laser damage fluences. We confirm, by scanning electron microscopy analysis of the damaged spots, the capability of the PA technique to provide information on the mechanisms leading to damage. The dependence of both laser damage fluence and damage morphology on the film deposition technique, as well as on the film substrate, is discussed

  12. Deflection monitoring for a box girder based on a modified conjugate beam method

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  13. Optodynamic monitoring of laser tattoo removal

    Science.gov (United States)

    Cencič, Boris; Grad, Ladislav; Možina, Janez; Jezeršek, Matija

    2012-04-01

    The goal of this research is to use the information contained in the mechanisms occurring during the laser tattoo removal process. We simultaneously employed a laser-beam deflection probe (LBDP) to measure the shock wave and a camera to detect the plasma radiation, both originating from a high-intensity laser-pulse interaction with a tattoo. The experiments were performed in vitro (skin phantoms), ex vivo (marking tattoos on pig skin), and in vivo (professional and amateur decorative tattoos). The LBDP signal includes the information about the energy released during the interaction and indicates textural changes in the skin, which are specific for different skin and tattoo conditions. Using both sensors, we evaluated a measurement of threshold for skin damage and studied the effect of multiple pulses. In vivo results show that a prepulse reduces the interaction strength and that a single strong pulse produces better removal results.

  14. Scaling relations for a beam-deflecting TM110 mode in an asymmetric cavity

    International Nuclear Information System (INIS)

    Takeda, H.

    1989-01-01

    A deflecting mode in an rf cavity caused by an aperture of the coupling hole from a waveguide is studied. If the coupling hole was a finite size, the rf modes in the cavity can be distorted. We consider the distorted mode as a sum of the accelerating mode, and the deflecting mode. The finite-size coupling hole can be considered as radiating dipole sources in a closed cavity. Following the prescription given by H. Bethe, the relative strength of the deflecting mode TM 110 to the accelerating TM 010 mode is calculated by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius. 2 refs., 6 figs

  15. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  16. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    Science.gov (United States)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  17. Particle beam and crabbing and deflecting structure

    Science.gov (United States)

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  18. Normal Conducting Deflecting Cavity Development at the Cockcroft Institute

    CERN Document Server

    Burt, G; Dexter, A C; Woolley, B; Jones, R M; Grudiev, A; Dolgashev, V; Wheelhouse, A; Mackenzie, J; McIntosh, P A; Hill, C; Goudket, P; Buckley, S; Lingwood, C

    2013-01-01

    Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CERN linear collider CLIC and one for bunch slice diagnostics on low energy electron beams for Electron Beam Test Facility EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Prototypes for both cavities have been manufactured and results will be presented.

  19. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  20. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    International Nuclear Information System (INIS)

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Beecher, S. J.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-01-01

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs

  1. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  2. The Deflector Selector: A machine learning framework for prioritizing hazardous object deflection technology development

    Science.gov (United States)

    Nesvold, E. R.; Greenberg, A.; Erasmus, N.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2018-05-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  3. The Deflector Selector: A Machine Learning Framework for Prioritizing Hazardous Object Deflection Technology Development

    Science.gov (United States)

    Nesvold, Erika; Greenberg, Adam; Erasmus, Nicolas; Van Heerden, Elmarie; Galache, J. L.; Dahlstrom, Eric; Marchis, Franck

    2018-01-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We will present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We will describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  4. Deflection routing scheme for GMPLS-based OBS networks

    DEFF Research Database (Denmark)

    Eid, Arafat; Mahmood, Waqar; Alomar, Anwar

    2010-01-01

    Integrating the Generalized Multi-Protocol Label Switching (GMPLS) framework into an Optical Burst Switching (OBS) Control Plane is a promising solution to alleviating most of OBS performance and design issues. However, implementing the already proposed OBS deflection routing schemes is not appli...

  5. Experimental investigation of drug delivery using a super pulse CO2 laser

    International Nuclear Information System (INIS)

    Khosroshahi, M. E.; Jafari, A.; Mansoori, S.

    2006-01-01

    We have carried out an experiment using a super long CO 2 laser pulse (10 ms) on simulated gelatin-ink model. The mechanism of laser-gelatin-ink model interaction was studied by photothermal deflection and time-resolved dynamics techniques and fast photography. It seems that the main operating mechanisms with super long CO 2 laser where the absorption coefficient of gelatin-ink model is high, are photothermal vaporization and photomechanical photophorosis and cavitation collapse. The drug molecules can be transported into the tissue bulk described by the Fick's law for a given cavity geometry and mechanical waves, unlike only by pure photomechanical waves (id est photo acoustically) as with short pulses.

  6. Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    An Nd:glass laser (KAMETRON) delivering 50 J energy (λ = 0.53 μm) in ... voltage on the deflection plates decides the energy (E/Z) of the charged particles to be ... of two ion groups viz fast ions (+22 to +12) and thermal ions (+11 to +1) as shown in ... ions survive the recombination losses in the early phase of expansion.

  7. Research on calibration algorithm in laser scanning projection system

    Science.gov (United States)

    Li, Li Juan; Qu, Song; Hou, Mao Sheng

    2017-10-01

    Laser scanning projection technology can project the image defined by the existing CAD digital model to the working surface, in the form of a laser harness profile. This projection is in accordance with the ratio of 1: 1. Through the laser harness contours with high positioning quality, the technical staff can carry out the operation with high precision. In a typical process of the projection, in order to determine the relative positional relationship between the laser projection instrument and the target, it is necessary to place several fixed reference points on the projection target and perform the calibration of projection. This position relationship is the transformation from projection coordinate system to the global coordinate system. The entire projection work is divided into two steps: the first step, the calculation of the projector six position parameters is performed, that is, the projector calibration. In the second step, the deflection angle is calculated by the known projector position parameter and the known coordinate points, and then the actual model is projected. Typically, the calibration requires the establishment of six reference points to reduce the possibility of divergence of the nonlinear equations, but the whole solution is very complex and the solution may still diverge. In this paper, the distance is detected combined with the calculation so that the position parameters of the projector can be solved by using the coordinate values of three reference points and the distance of at least one reference point to the projector. The addition of the distance measurement increases the stability of the solution of the nonlinear system and avoids the problem of divergence of the solution caused by the reference point which is directly under the projector. Through the actual analysis and calculation, the Taylor expansion method combined with the least squares method is used to obtain the solution of the system. Finally, the simulation experiment is

  8. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes

    Science.gov (United States)

    Ono, Toshiaki; Ishihara, Asahi; Asada, Hideki

    2017-11-01

    By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime has been recently discussed, especially by taking account of the finite distance from a lens object to a light source and a receiver [Ishihara, Suzuki, Ono, Asada, Phys. Rev. D 95, 044017 (2017), 10.1103/PhysRevD.95.044017]. We discuss a possible extension of the method of calculating the bending angle of light to stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we consider the light rays on the equatorial plane in the axisymmetric spacetime. We introduce a spatial metric to define the bending angle of light in the finite-distance situation. We show that the proposed bending angle of light is coordinate-invariant by using the Gauss-Bonnet theorem. The nonvanishing geodesic curvature of the photon orbit with the spatial metric is caused in gravitomagnetism, even though the light ray in the four-dimensional spacetime follows the null geodesic. Finally, we consider Kerr spacetime as an example in order to examine how the bending angle of light is computed by the present method. The finite-distance correction to the gravitomagnetic deflection angle due to the Sun's spin is around a pico-arcsecond level. The finite-distance corrections for Sgr A* also are estimated to be very small. Therefore, the gravitomagnetic finite-distance corrections for these objects are unlikely to be observed with present technology.

  9. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  10. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  11. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  12. Literature file on 'fast kickers and septa', componenets for deflection and separation of particle beams

    International Nuclear Information System (INIS)

    Linden, A. van der.

    1988-11-01

    The File consists of classified and numbered articles from the literature on the following subjects: 1 - Kickers: fast switching (electro-)magnetic or electrostatic components for small deflection; 2 - Septum Magnets: both small and great deflecting components, with the purpose to create or bridge over space between the deflected beam and the other, unperturbed beam; 3 - Electrostatic Septa: low loss, beam splitting components which give small deflection for the extracted part of the beam and no perturbation for the rest of the beam. The articles have been classified per institute or laboratory, eventually with further classification per project. The classified articles are then numbered chronologically. Extension of the File is still possible. The contents of the articles are summarized by means of catchwords. Specifications of the described kickers, septum magnets and electrostatic septa are represented in a tabular form

  13. Design and development of a chopping and deflecting system for the high current injector at IUAC

    Science.gov (United States)

    Kedia, Sanjay Kumar; Mehta, R.

    2018-05-01

    The Low Energy Beam Transport (LEBT) section of the High Current Injector (HCI) incorporates a Chopping cum Deflecting System (CDS). The CDS comprises of a deflecting system and a pair of slits that will remove dark current and produce time bunched beam of 60 ns at different repetition rates of 4, 2, 1, 0.5, 0.25 and 0.125 MHz. The distinguishing feature of the design is the use of a multi-plate deflecting structure with low capacitance to optimize the electric field, which in turn results in higher efficiency in terms of achievable ion current. To maximize the effective electric field and its uniformity, the gap between the deflecting plates has been varied and a semi-circular contour has been incorporated on the deflecting plates. Due to this the electric field variation is less than ±0.5% within the plate length. The length of deflecting plates was chosen to maximize the transmission efficiency. Since the velocity of the charged particles in the LEBT section is constant, therefore the separation between two successive sets of deflecting plates has been kept constant to match the ions transient time within the gap which is nearly 32 ns. A square pulse has been chosen, instead of a sinusoidal one, to increase the transmission efficiency and to decrease the tailing effect. The loaded capacitance of the structure was kept 90% transmission efficiency with in the bunch length. Various simulation codes like Solid Works, TRACE 3D, CST MWS and homebrew Python codes were used to validate the design.

  14. Simulation, Experimental and Analitical Study of Deflection at End Curved Beam Affected by Single Concentrated Load

    Directory of Open Access Journals (Sweden)

    Dewa Ngakan Ketut Putra Negara

    2012-11-01

    Full Text Available Deflection has an important role in order to design structure or machine component, beside consideration of stresscalculation. This is due to although stress is still smaller then stress allowed by material strength, but probably happen thatdeflection exceeds limit allowed. That condition affects serious hazard on machine elements or structure due to it can affectof component deviate from its main function. One of element which is often experience of deflection is beam. Beams playsignificant roles in many engineering applications, including buildings, bridges, automobiles, and airplane structures. In thisresearch, material to be used was Steel ASTM 1060, with specimen in the form of curved beam. Physical condition of beamwas modeled use of BEAM3 2D. Variation of loads to be applied were W = 100, 150, 200, 250, 300, 350, 400, 450, 500, and550 gr in vertical direction. The result of simulation was verificated by analytical and experimental data. Evaluation wascarried out by statistical test (t-test. The result of simulation is categorized to be good if the result of simulation is samewith analytical and experimental data. The result of research shows that loading has a significant effect on the deflection.The higher load affect the higher of deflection Modeling use of BEAM3 2D gave good result of deflection. This is showedfrom t-test have done, where the result of simulation was same with analytical and experimental data. Other advantage ofsimulation was deflection result obtained was not limited only at the end of beam, but it can predict of deflection at eachnode or point desired

  15. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  16. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    Science.gov (United States)

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  17. Calculating the momentum enhancement factor for asteroid deflection studies

    International Nuclear Information System (INIS)

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; Weaver, Robert

    2017-01-01

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate an approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.

  18. Viscoelastic Modelling of Road Deflections for use with the Traffic Speed Deflectometer

    DEFF Research Database (Denmark)

    Pedersen, Louis

    This Ph.D. study is at its core about how asphalt and road structures responds to dynamic loads. Existing models for the deflections under a moving load using beam equations are revisited and it is concluded they leave room for improvement for the particular setup and problem at hand. Then a diff......This Ph.D. study is at its core about how asphalt and road structures responds to dynamic loads. Existing models for the deflections under a moving load using beam equations are revisited and it is concluded they leave room for improvement for the particular setup and problem at hand...... an approach for a computationally simpler synthetic model capturing essential behaviour of deflection bassins under a moving wheel. Additionally the setup allows for simulated comparisons of the cases of loadings emulating the use of a Falling Weight Deflectometer with loadings emulating a moving wheel...

  19. On lateral deflection of the SOL plasma in tokamaks during giant ELMs

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2000-06-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma leaving the scrape-off layer and striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation, because of enlarging the irradiated area. A simplified MHD model of the vapor shield plasma and of the hot plasma initially formed at time t → -∞ is analyzed. At t = -∞ both plasmas are assumed to stay on rest and to be separated by a boundary, which is parallel to the plate surface. The interaction between plasmas is assumed to develop gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∝ 10 2 μs the ELM duration time. Electrical insulation of the core tokamak plasma is assumed everywhere except for the contact with the divertor. Electric currents are flowing only in the toroidal direction. These currents developing in the interaction zone of the hot plasma and the rather cold target plasma are calculated for inclined impact of the magnetized hot plasma. At such conditions the J x B force in the lateral direction accelerates the interacting plasmas. The motion of the cold plasma and the gradual increase of the plasma interaction intensity are shown to be important for the appropriate deflection magnitude. Adiabatically responding against the increase of the interaction intensity the cold plasma motion compensates significantly the currents thus decreasing the deflection compared to motionless approach. The calculated magnitude of the hot plasma deflection is comparable to the observed one. The results of the modeling are discussed in relation to the experiments. It is shown that sudden switching on of the interaction produces Alfven oscillations of large amplitudes causing much larger amplitudes of the magnetic field induced by the currents than in the adiabatic case. (orig.)

  20. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  1. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  2. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  3. Measurement of wire deflection on loading may indicate union in Ilizarov constructs, an in vitro model.

    Science.gov (United States)

    Lineham, Beth; Stewart, Todd; Harwood, Paul

    2018-02-02

    No entirely reliable method exists for assessing union during Ilizarov treatment. Premature removal results in potential treatment failure; hence, alternative methods warrant investigation. Wire deflection might provide an indication of fracture site deformation on weight bearing, indicating progress towards union. This study aimed to test a method for assessing wire deflection within an Ilizarov frame. (1) To assess the repeatability of our novel measurement method in measuring wire deflection within an Ilizarov frame in vitro. (2) To compare the amount of wire deflection in an unstable model with that in an intact bone model. (3) To assess accuracy of this method by comparing wire deflection measured with overall machine extension. Tests were performed on clinical grade-tensioned fine wire 4-ring Ilizarov constructs stabilising a simulated fracture, with and without an unstable defect. Models were sequentially loaded to 700 N using an Instron testing machine. A digital depth gauge attached to the superior ring measured relative wire displacement at the ring closest to the fracture. Tests were repeated 3 times. (1) Both unstable and stable bone models produced highly repeatable load deformation curves (R 2  = 0.98 and 0.99). (2) In the unstable model, wires tensioned at 882 and 1274 N produced mean maximum deflections of 2.41 and 2.69 mm compared with 0.05 and 0.04 mm in the intact bone model (significant p measurable difference in wire deflection between stable and unstable situations exists using this method which appears accurate and repeatable, with clear correlation between displacement and load and displacement and machine extension. This approach might be clinically applicable, and further clinical testing is required.

  4. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  5. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2010-07-01

    Full Text Available A two-dimensional (2D scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20º × 20º, the measurement resolution is about 10.2 cm in range, 0.15º in the horizontal direction and 0.22º in the vertical direction for orientation.

  6. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  7. A laser-based beam profile monitor for the SLC/SLD interaction region

    International Nuclear Information System (INIS)

    Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.; Ross, M.C.

    1996-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford linear collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1 x 0.6 μm (x, y) at 4.0.10 10 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. The laser-based profile monitor uses a finely-focused 350-nm wavelength tripled YLF laser pulse that traverses the particle beam path about 29 cm away from the e + /e - IP. Compton scattered photons and degraded e + /e - are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. (orig.)

  8. Laser trabeculotomy versus trabeculoplasty

    International Nuclear Information System (INIS)

    Ticho, U.; Frucht, J.

    1984-01-01

    Although laser trabeculotomy has failed in glaucoma management, the laser trabeculoplasty (LTP) procedure has proved to be helpful. LTP was found to improve glaucoma control in 80-90% of open angle glaucoma patients, and less in secondary glaucoma and low tension glaucoma (50%). The procedure is more successful in dark iris eyes and complications are transient. (Auth.)

  9. Tracking the course of the manufacturing process in selective laser melting

    Science.gov (United States)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  10. Interferometric weak value deflections: Quantum and classical treatments

    International Nuclear Information System (INIS)

    Howell, John C.; Starling, David J.; Dixon, P. Ben; Vudyasetu, Praveen K.; Jordan, Andrew N.

    2010-01-01

    We derive the weak value deflection given in an article by Dixon et al.[P. B. Dixon et al. Phys. Rev. Lett. 102 173601 (2009)] both quantum mechanically and classically, including diffraction effects. This article is meant to cover some of the mathematical details omitted in that article owing to space constraints.

  11. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2018-01-01

    Full Text Available The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  12. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Science.gov (United States)

    Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea

    2018-01-01

    The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  13. Research on atmospheric transmission distortion of Gauss laser using multiple phase screen method

    Science.gov (United States)

    Zhang, Yizhuo; Wang, Qiushi; Gu, Haidong

    2018-02-01

    The laser beam is attenuated, broadened, defocused and may even be deflected from its initial propagation direction as it propagates through the atmosphere. It leads to the decrease of the laser intensity of the receiving surface. Gauss beam is the fundamental components of all possible laser waveforms. Therefore, research on the transmission of the Gauss laser has far-reaching consequences in optical communication, weaponry, target designation, ranging, remote sensing and other applications that require transmission of laser beams through the atmosphere. In this paper, we propose a laboratory simulation method using multi-phase screen to calculate the effects of atmospheric turbulence. Theoretical analysis of Gauss laser transmission in the atmosphere is given. By calculating the propagation of the Gauss beam TEM00, the far field intensity and phase distribution is shown. By the given method, the optical setup is presented and used for optimizing the adaptive optics algorithm.

  14. Strong deflection gravitational lensing by a modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2017-05-15

    A modified Hayward black hole is a nonsingular black hole. It is proposed that it would form when the pressure generated by quantum gravity can stop matter's collapse as the matter reaches the Planck density. Strong deflection gravitational lensing occurring nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and we estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands a very high resolution, beyond current stage. (orig.)

  15. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection

    Directory of Open Access Journals (Sweden)

    Zheng Zhou-Lian

    2009-01-01

    Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.

  16. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  17. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    Science.gov (United States)

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  18. Theoretical analysis of deformation behavior of aluminum matrix composites in laser forming

    International Nuclear Information System (INIS)

    Liu, F.R.; Chan, K.C.; Tang, C.Y.

    2005-01-01

    In this paper, the deformation behavior of the SiC reinforced aluminum matrix composite in laser forming was investigated. A 2KW Nd:YAG laser was used to deform the composite at different laser powers, scanning speeds, numbers of irradiation passes and beam diameters. It was found that the bending angle increases with an increase in laser power, and a decrease in scanning speed and beam diameter. A relatively linear relationship between bending angle and number of irradiation passes was observed, and the effect of microstructural changes on the deformation behavior was discussed. An analytical model based on the Vollertsen's two-layer model was developed to predict the bending angle of the composite. The trends of the predictions are in good agreement with the experimental results. The effect of reinforcements on deformation behavior of the composite was further theoretically investigated. By modeling the changes of physical, thermal and mechanical properties including yield stress, elastic modulus, surface absorption coefficient and thermal conductivity of the material incorporated with SiC particles, the effect of reinforcement on laser bending angle was analyzed, and it was found that it would result in a larger bending angle. The significance of the findings will be discussed in the paper

  19. Deflection system of a high-speed streak camera in the form of a delay line

    International Nuclear Information System (INIS)

    Korzhenevich, I.M.; Fel'dman, G.G.

    1993-01-01

    This paper presents an analysis of the operation of a meander deflection system, well-known in oscillography, when it is used to scan the image in a streak-camera tube. Effects that are specific to high-speed photography are considered. It is shown that such a deflection system imposes reduced requirements both on the steepness and on the duration of the linear leading edges of the pulses of the spark gaps that generate the sweep voltage. An example of the design of a meander deflection system whose sensitivity is a factor of two higher than for a conventional system is considered. 5 refs., 3 figs

  20. Characterisation of a Mechanical Deflection Sensor

    CSIR Research Space (South Africa)

    Miyambo, M

    2012-10-01

    Full Text Available Mechanical Defl ection Sensor M MIYAMBO AND T PANDELANI CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, South Africa, 0001 Email: mmiyambo@csir.co.za ? www.csir.co.za INTRODUCTION The CSIR Defence, Peace, Safety and Security (DPSS...-time duration, which is integrated over time to provide the total measured impulse of a shallow-buried explosive charge near-field blast (Snyman et al, 2006). The Mechanical Deflection Sensor (MDS) was developed by the CSIR LS, in conjunction with Conical...

  1. Application of the mechanical deflection sensor in blast research

    CSIR Research Space (South Africa)

    Pandelani, T

    2013-10-01

    Full Text Available the occupants. To enable the development of protection solutions for occupants inside military vehicles, the occupant loading must be thoroughly understood. The aim is to show the capability to measure the positive dynamic deflection of the hull plate using...

  2. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth

    Science.gov (United States)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui

    2017-08-01

    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.

  3. Tyre-road friction coefficient estimation based on tyre sensors and lateral tyre deflection: modelling, simulations and experiments

    Science.gov (United States)

    Hong, Sanghyun; Erdogan, Gurkan; Hedrick, Karl; Borrelli, Francesco

    2013-05-01

    The estimation of the tyre-road friction coefficient is fundamental for vehicle control systems. Tyre sensors enable the friction coefficient estimation based on signals extracted directly from tyres. This paper presents a tyre-road friction coefficient estimation algorithm based on tyre lateral deflection obtained from lateral acceleration. The lateral acceleration is measured by wireless three-dimensional accelerometers embedded inside the tyres. The proposed algorithm first determines the contact patch using a radial acceleration profile. Then, the portion of the lateral acceleration profile, only inside the tyre-road contact patch, is used to estimate the friction coefficient through a tyre brush model and a simple tyre model. The proposed strategy accounts for orientation-variation of accelerometer body frame during tyre rotation. The effectiveness and performance of the algorithm are demonstrated through finite element model simulations and experimental tests with small tyre slip angles on different road surface conditions.

  4. CDW-EIS theoretical calculations of projectile deflection for single ionization in highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    2003-01-01

    We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections

  5. A new approach to control a deflection of an electroplated microstructure: dual current electroplating methods

    International Nuclear Information System (INIS)

    Yang, Hyun-Ho; Seo, Min-Ho; Han, Chang-Hoon; Yoon, Jun-Bo

    2013-01-01

    We propose and demonstrate a simple and novel method to control the deflection in a suspended microstructure by using a dual current electroplating (DuCE) method. The key concept of this method is to divide the structure into two layers—a bottom layer and a top layer—and then apply respective current densities in electroplating to those two layers while all other conditions are kept the same. In addition to a flat structure, the direction of structure bending is freely controlled by virtue of the DuCE method. Cantilever Ni beams with a length of 400 µm, which were electroplated by the conventional single current electroplating method, bent downward with a deflection of 3.4 µm. On the contrary, by the DuCE method, cantilever beams with a length of 400 µm showed an almost flat structure as desired. (The current densities of the bottom layer, the top layer, and the ratio of the two current densities, are 0.15, 1.24 A dm −2 , and 8.3, respectively.) Consequently, a nickel electroplated spiral structure with a length of 8600 µm was suspended flat with an end deflection of less than 0.7 µm (the ratio between the deflection and length is 0.007%). This work therefore represents the unprecedented ultra-long suspended microstructure with submicrometer deflection. (paper)

  6. A study of the deflections of metal road guardrail elements

    Directory of Open Access Journals (Sweden)

    O. Prentkovskis

    2009-09-01

    Full Text Available Statistical data on traffic accidents in 2008 in Lithuania is presented. Referring to statistical data, ‘grounding on an obstacle’ makes one-tenth of all registered traffic accidents – 9.4% (an obstacle may be a road guardrail, a lamp post, a tree, a bar, a gate, etc.. Road guardrails of various types are installed on the shoulders and dividing strips of urban and suburban roads. They are as follows: reinforced concrete guardrails, cable guardrails and metal guardrails. Metal guardrails, consisting of Σ-shape metal posts and a protective W-shape horizontal beam, are most popular. The authors of the present paper examine the deformation processes of the elements of the above mentioned guardrail. A mathematical model of metal road guardrail was developed. Metal road guardrail was modelled using one-dimensional first-order finite elements, taking into account only elastic deformations, as well as the effect of soil on the buried post section of the guardrail. Based on the developed mathematical model of metal road guardrail, the deflections of its elements caused by the impact of a vehicle moving at varying speed were determined. The obtained values of deflections of guardrail elements (a protective W-shape horizontal beam and a Σ-shape post presented in paper do not exceed the admissible values (of beam deflections.

  7. Analytical and Numerical Deflection Study on the Structure of 10 kW Low Speed Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful Alam

    2012-12-01

    Full Text Available Analytical and numerical studies of the deflection in the structure of 10 kW low speed permanent magnet generator (PMG have been discussed in this paper. This study is intended to prevent failure of the structure when the prototype is made. Numerical analysis was performed with the finite-element method (FEM. Flux density, weight and temperature of the components are the required input parameters. Deflection observed were the movements of the two main rotor components, namely the rim and shaft, where the maximum deflection allowed at the air gap between rotor and stator should be between 10% to 20% of the air gap clearance or 0.1000 mm to 0.2000 mm. Base on the analysis, total deflection of the analytic calculation was 0.0553 mm, and numerical simulation was 0.0314 mm. Both values were in the acceptable level because it was still below the maximum allowed deflection. These results indicate that the structure of a permanent magnet generator (rim and shaft can be used safely.

  8. The control and data acquisition system of a laser in-vessel viewing system

    International Nuclear Information System (INIS)

    Pereira, Rita C.; Cruz, Nuno; Neri, C.; Riva, M.; Correia, C.; Varandas, C.A.F.

    2000-01-01

    This paper presents the dedicated control and data acquisition system (CADAS) of a new laser in-vessel viewing system that has been developed for inspection purposes in fusion experiments. CADAS is based on a MC68060 microprocessor and on-site developed VME instrumentation. Its main aims are to simultaneously control the laser alignment system as well as the laser beam deflection for in-vessel scanning, acquire a high-resolution image and support real-time data flow rates up to 2 Mbyte/s from the acquisition modules to the hard disk and network. The hardware (modules for control and alignment acquisition, scanning acquisition and monitoring) as well as the three levels of software are described

  9. Towards jitter free synchronization of synchroscan streak cameras by noisy periodic laser pulses

    International Nuclear Information System (INIS)

    Cunin, B.; Heisel, F.; Miehe, J.A.

    1991-01-01

    In connection with the parameters characterizing the phase noise in cw mode-locked lasers and under the employ of streak cameras operated by sinewave deflection, the timing capabilities of the measuring system for two commonly used synchronization techniques are discussed by stochastic description. Especially, the power spectrum of the sweep signal versus the laser phase noise is examined in detail. The theoretical results are used to interpret experimental observations recorded by means of actively and passively mode-locked lasers. One of the interesting applications of synchroscan operations to metrology is the determination of short-term instabilities of the oscillator on a time scale near to the period. (author) 12 refs.; 3 figs

  10. Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt

    KAUST Repository

    Hu, Youfan

    2009-07-08

    We demonstrate the first electric field induced transverse deflection of a single-crystal, free-standing ZnO microbelt as a result of converse piezoelectric effect. For a microbelt growing along the c-axis, a shear stress in the a-c plane can be induced when an electric field E is applied along the a-axis of the wurtzite structure. As amplified by the large aspect ratio of the microbelt that grows along the c-axis, the strain localized near the root can be detected via the transverse deflection perpendicular to the ZnO microbelt. After an experimental approach was carefully designed and possible artifacts were ruled out, the experimentally observed degree of deflection of the microbelt agrees well with the theoretically expected result. The device demonstrated has potential applications as transverse actuators/sensors/switches and electric field induced mechanical deflectors. © 2009 American Chemical Society.

  11. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    Science.gov (United States)

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  12. Mapping return currents in laser-generated Z-pinch plasmas using proton deflectometry

    International Nuclear Information System (INIS)

    Manuel, M. J.-E.; Sinenian, N.; Seguin, F. H.; Li, C. K.; Frenje, J. A.; Rinderknecht, H. G.; Casey, D. T.; Zylstra, A. B.; Petrasso, R. D.; Beg, F. N.

    2012-01-01

    Dynamic return currents and electromagnetic field structure in laser-generated Z-pinch plasmas have been measured using proton deflectometry. Experiments were modeled to accurately interpret deflections observed in proton radiographs. Current flow is shown to begin on axis and migrate outwards with the expanding coronal plasma. Magnetic field strengths of ∼1 T are generated by currents that increase from ∼2 kA to ∼7 kA over the course of the laser pulse. Proton deflectometry has been demonstrated to be a practical alternative to other magnetic field diagnostics for these types of plasmas.

  13. To test photon statistics by atomic beam deflection

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Yudan; Huang Weigang; Liu Liang

    1985-02-01

    There exists a simple relation between the photon statistics in resonance fluorescence and the statistics of the momentum transferred to an atom by a plane travelling wave [Cook, R.J., Opt. Commun., 35, 347(1980)]. Using an atomic beam deflection by light pressure, we have observed sub-Poissonian statistics in resonance fluorescence of two-level atoms. (author)

  14. Coupling between angular deflection and eddy currents in the FELIX plate experiment

    International Nuclear Information System (INIS)

    Turner, L.R.; Cuthbertson, J.W.

    1983-08-01

    For a conducting body experiencing superimposed changing and steady magnetic field, for example a limiter in a tokamak during plasma quench, the induced eddy currents and the deflections resulting from those eddy currents are coupled. Experimental study of these coupled deflections and currents can be performed with the FELIX (Fusion Electromagnetic Induction Experiment) facility nearing completion at ANL. Predictions of the coupling are described, as computed with the code EDDYNET, which has been modified for this purpose. Effects of the coupling will be readily observable experimentally. In the FELIX plate experiment, the coupling between deflection and eddy currents was readily calculated because the rigid-body rotation of the plate is equivalent to a contrarotation of the applied magnetic fields. For a geometry such as a plasma limiter, in which the eddy currents would cause a deformation of the conducting body, an analysis of the coupling between eddy currents and deformation would require a structural-analysis code and an eddy current code to be simultaneously computing from the same mesh

  15. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    Science.gov (United States)

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  16. Measurements of laser-imprinted perturbations and Rayleigh--Taylor growth with the Nike KrF laser

    International Nuclear Information System (INIS)

    Pawley, C.J.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Obenschain, S.P.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Bodner, S.E.; Colombant, D.; Dahlburg, J.P.; Schmitt, A.J.; Gardner, J.H.; Brown, C.; Seely, J.F.; Lehecka, T.; Aglitskiy, Y.; Deniz, A.V.; Chan, Y.; Metzler, N.; Klapisch, M.

    1997-01-01

    Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity left-angle ΔI/I right-angle of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by √(37), to (ΔI/I)congruent 0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh--Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Angstrom rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion

  17. Ex vivo evaluation of ferromagnetism for metallic ocular and middle-ear prostheses exposed to a 1.5-T MR imager

    International Nuclear Information System (INIS)

    Shellock, F.G.; Schatz, C.; Shelton, C.; Brown, B.

    1990-01-01

    This paper determines ferromagnetism by measuring deflection angles for nine different metallic ocular and middle-ear biomedical implants exposed to a 1.5-T MR imager. Deflection angles were determined at the bore of a 1.5-t MR imager for two ocular (Fatio eyelid wire 0.008, Fatio eyelid wire 0.01) and seven middle-ear (House tantalum single loop, House tantalum double loop, IRP, Schuknecht tef-wire piston, Austin tytan piston, McGee piston, Robinson stapes prosthesis) biomedical implants. A previously described, standardized methodology was used to measure deflection angles. Deflection angles for the biomedical implants were 90 degrees for the first ocular implant, over 90 degrees for the second, and 0 degrees (no deflection measured) for the seven middle-ear implants

  18. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  19. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available from any defects like micro-porosities or cracks. Furthermore, the average surface roughness was increased from 7.5 ?m to 15 ?m when the scan speed of laser was decreased from 0.04 to 0.012 m/s. The increased surface roughness at a lower scan speed... width from one corner to other evidences that there is no deflection of laser beam. Presence of micro-pores was also observed on the surface with the presence of few unmelted particles on the surface causing formation of rough surface. The defect...

  20. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    Science.gov (United States)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  1. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    Science.gov (United States)

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  2. Ageing effects on the wettability behavior of laser textured silicon

    International Nuclear Information System (INIS)

    Nunes, B.; Serro, A.P.; Oliveira, V.; Montemor, M.F.; Alves, E.; Saramago, B.; Colaco, R.

    2011-01-01

    In the present work we investigate the ageing of acid cleaned femtosecond laser textured silicon surfaces. Changes in the surface structure and chemistry were analysed by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), in order to explain the variation with time of the water contact angles of the laser textured surfaces. It is shown that highly hydrophobic silicon surfaces are obtained immediately after laser texturing and cleaning with acid solutions (water contact angle > 120 o ). However these surfaces are not stable and ageing leads to a decrease of the water contact angle which reaches a value of 80 o . XPS analysis of the surfaces shows that the growth of the native oxide layer is most probably responsible for this behavior.

  3. Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,

    Science.gov (United States)

    1981-06-01

    by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1

  4. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  5. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  6. Enabling laser applications in microelectronics manufacturing

    Science.gov (United States)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  7. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  8. Progress on the gyrocon deflection-modulated amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1982-01-01

    The gyrocon is a high-power deflection-modulated amplifier that can have excellent spatial bunching and, hence, high dc-to-rf conversion efficiency. A program to design and build a prototype amplifier at 450 MHz is discussed. Peak powers of 150 kW and conversion efficiencies of 23% have been measured; the testing program is being pursued to improve this performance. Some possible mechanisms for the difference between the experimental and calculated performance are discussed

  9. Laboratory for Laser Energetics annual report, 1 October 1991--30 September 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described

  10. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  11. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    Science.gov (United States)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  12. Micro-Bulges Investigation on Laser Modified Tool Steel Surface

    Directory of Open Access Journals (Sweden)

    Fauzun Fazliana

    2017-01-01

    Full Text Available This paper presents micro-bulges investigation on laser modified tool steel. The aim of this study is to understand the effect of laser irradiance and interaction time on surface morphology configuration. An Nd:YAG laser system with TEM00 pulse processing mode was used to modify the samples. Metallographic study shows samples were analyzed for focal position effect on melted pool size, angle of peaks geometry and laser modified layer depth. Surface morphology were analyzed for surface roughness. Laser modified layer shows depth ranged between 42.22 and 420.12 μm. Angle of peak bulge was found to be increase with increasing peak power. The maximum roughness, Ra, achieved in modified H13 was 21.10 μm. These findings are significant to enhance surface properties of laser modified steel and cast iron for dies and high wear resistance applications.

  13. Effects of large bending deflections on blade flutter limits

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten

    2008-04-15

    The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)

  14. Measurement of vertical track deflection from a moving rail car.

    Science.gov (United States)

    2013-02-01

    The University of Nebraska has been conducting research sponsored by the Federal Railroad Administrations Office of Research and Development to develop a system that measures vertical track deflection/modulus from a moving rail car. Previous work ...

  15. Wetting and other physical characteristics of polycarbonate surface textured using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Abu-Dheir, N.; Al-Aqeeli, N.; Said, S.A.M. [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ahmed, A.O.M. [CHEM Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Varanasi, K.K.; Toumi, Y.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston (United States)

    2014-11-30

    Highlights: • Laser causes micro/nano size pores and shallow fine-size cavities. • Crystallinity at surface is 18% after laser treatment increasing hydrophobicity. • Surface hydrophobicity improves after laser treatment. • Microhardness increases twofold after laser treatment process. • Residual stress is compressive and scratch hardness is 110 ± 11 MPa. • Optical transmittance reduces by 15% after laser treatment. - Abstract: Surface texturing of polycarbonate glass is carried out for improved hydrophobicity via controlled laser ablation at the surface. Optical and physical characteristics of the laser treated layer are examined using analytical tools including optical, atomic force, and scanning electron microscopes, Fourier transform infrared spectroscopy, and X-ray diffraction. Contact angle measurements are carried out to assess the hydrophobicity of the laser treated surface. Residual stress in the laser ablated layer is determined using the curvature method, and microhardnes and scratch resistance are analyzed using a micro-tribometer. Findings reveal that textured surfaces compose of micro/nano pores with fine cavities and increase the contact angle to hydrophobicity such a way that contact angles in the range of 120° are resulted. Crystallization of the laser treated surface reduces the optical transmittance by 15%, contributes to residual stress formation, and enhances the microhardness by twice the value of untreated polycarbonate surface. In addition, laser treatment improves surface scratch resistance by 40%.

  16. Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations.

    Science.gov (United States)

    Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo

    2014-05-01

    To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (Pwire's load during alignment.

  17. Dynamics and control of a solar collector system for near Earth object deflection

    International Nuclear Information System (INIS)

    Gong Shenping; Li Junfeng; Gao Yunfeng

    2011-01-01

    A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects. We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC). The MC is used to collect the sunlight to its focal point, where the SC is placed and directs the collected light to an asteroid. Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path. First, the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled. Secondly, the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors. Finally, the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor. The results show that the solar collector is much more efficient with respect to deflection capability.

  18. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    Science.gov (United States)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ∼152° with contact angle hysteresis of around 3-4° have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128°, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12°), when percent composition of methanol reaches to 28%.

  19. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  20. Deflection modeling of permanent magnet spherical chains in the presence of external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    O' Donoghue, Kilian, E-mail: kilianod@rennes.ucc.ie; Cantillon-Murphy, Pádraig, E-mail: padraig@alum.mit.edu

    2013-10-15

    This work examines the interaction of permanently magnetised spheres in the presence of external magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in 4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields, neglecting gravitational effects, with good agreement between the theoretical model and experimental results. This spherical chain structure could be used as an end effector for catheters as a deflection mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation around tight corners in endoluminal minimally invasive clinical applications. - Highlights: • We model the interaction of magnetic spheres with uniform external fields. • Analytical models are presented for two spheres interacting with an external field. • Numerical methods are used to model the interaction of N spheres in chain formations. • These models are tested experimentally. • We report good agreement between experiment and theory.

  1. Deflection modeling of permanent magnet spherical chains in the presence of external magnetic fields

    International Nuclear Information System (INIS)

    O'Donoghue, Kilian; Cantillon-Murphy, Pádraig

    2013-01-01

    This work examines the interaction of permanently magnetised spheres in the presence of external magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in 4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields, neglecting gravitational effects, with good agreement between the theoretical model and experimental results. This spherical chain structure could be used as an end effector for catheters as a deflection mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation around tight corners in endoluminal minimally invasive clinical applications. - Highlights: • We model the interaction of magnetic spheres with uniform external fields. • Analytical models are presented for two spheres interacting with an external field. • Numerical methods are used to model the interaction of N spheres in chain formations. • These models are tested experimentally. • We report good agreement between experiment and theory

  2. Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method

    International Nuclear Information System (INIS)

    Liu, P.F.; Zheng, J.Y.; Zhang, B.J.; Shi, P.

    2010-01-01

    A 3D parametric finite element model of the pipeline and soil is established using finite element method to perform the failure analysis of natural gas buried X65 steel pipeline under deflection load. The pipeline is assumed to be loaded in a parabolic deflection displacement along the axial direction. Based on the true stress-strain constitutive relationship of X65 steel, the elastic-plastic finite element analysis employs the arc-length algorithm and non-linear stabilization algorithm respectively to simulate the strain softening properties of pipeline after plastic collapse. Besides, effects of the soil types and model sizes on the maximum deflection displacement of pipeline are investigated. The proposed finite element method serves as a base available for the safety design and evaluation as well as engineering acceptance criterion for the failure of pipeline due to deflection.

  3. Non-pupillary block angle-closure mechanisms: a comprehensive analysis of their prevalence and treatment outcomes

    Directory of Open Access Journals (Sweden)

    Daniela L. M. Junqueira

    2014-12-01

    Full Text Available Purpose: To assess the prevalence and treatment outcomes of angle-closure mechanisms other than pupillary block in a population of Brazilian patients. Methods: A retrospective chart review was conducted to evaluate patients who had undergone laser peripheral iridotomy (LPI due to occludable angles at a single institution between July 2009 and April 2012. An occludable angle was defined as an eye in which the posterior trabecular meshwork was not visible for ≥180° on dark-room gonioscopy. Key exclusion criteria were any form of secondary glaucoma and the presence of >90° of peripheral anterior synechiae. Collected data were age, race, gender, angle-closure mechanism (based on indentation goniocopy and ultrasound biomicroscopy, intraocular pressure (IOP, number of antiglaucoma medications and subsequent management during follow-up. If both eyes were eligible, the right eye was arbitrarily selected for analysis. Results: A total of 196 eyes of 196 consecutive patients (mean age 58.3 ± 11.6 years who underwent LPI were included. In most of the patients [86% (169 patients; 133 women and 36 men], LPI sucessfully opened the angle. Mean IOP was reduced from 18.3 ± 6.4 mmHg to 15.4 ± 4.5 mmHg after LPI (p<0.01. Among the 27 patients with persistent occludable angles, the most common underlying mechanisms were plateau iris (56% and lens-induced component (34%. Most of these patients (85% were treated with argon laser peripheral iridoplasty (ALPI; approximately 90% showed non-occludable angles following the laser procedure (mean IOP reduction of 18.9%, with no significant differences between patients with plateau iris and lens-induced components (p=0.34; mean follow-up of 11.4 ± 3.6 months. Conclusion: Our findings suggest that, in this population of Brazilian patients, several eyes with angle closure were not completely treated with LPI. In the present large case series involving middle-age patients, plateau iris was the leading cause of

  4. Modelling and optimisation of fs laser-produced Kα sources

    International Nuclear Information System (INIS)

    Gibbon, P.; Masek, M.; Teubner, U.; Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; Linde, D. von der

    2009-01-01

    Recent theoretical and numerical studies of laser-driven femtosecond K α sources are presented, aimed at understanding a recent experimental campaign to optimize emission from thin coating targets. Particular attention is given to control over the laser-plasma interaction conditions defined by the interplay between a controlled prepulse and the angle of incidence. It is found that the x-ray efficiency for poor-contrast laser systems in which a large preplasma is suspected can be enhanced by using a near-normal incidence geometry even at high laser intensities. With high laser contrast, similar efficiencies can be achieved by going to larger incidence angles, but only at the expense of larger X-ray spot size. New developments in three-dimensional modelling are also reported with the goal of handling interactions with geometrically complex targets and finite resistivity. (orig.)

  5. Safety and performance of a novel embolic deflection device in patients undergoing transcatheter aortic valve replacement: results from the DEFLECT I study.

    Science.gov (United States)

    Baumbach, Andreas; Mullen, Michael; Brickman, Adam M; Aggarwal, Suneil K; Pietras, Cody G; Forrest, John K; Hildick-Smith, David; Meller, Stephanie M; Gambone, Louise; den Heijer, Peter; Margolis, Pauliina; Voros, Szilard; Lansky, Alexandra J

    2015-05-01

    This study aimed to evaluate the safety and performance of the TriGuard™ Embolic Deflection Device (EDD), a nitinol mesh filter positioned in the aortic arch across all three major cerebral artery take-offs to deflect emboli away from the cerebral circulation, in patients undergoing transcatheter aortic valve replacement (TAVR). The prospective, multicentre DEFLECT I study (NCT01448421) enrolled 37 consecutive subjects undergoing TAVR with the TriGuard EDD. Subjects underwent clinical and cognitive follow-up to 30 days; cerebral diffusion-weighted magnetic resonance imaging (DW-MRI) was performed pre-procedure and at 4±2 days post procedure. The device performed as intended with successful cerebral coverage in 80% (28/35) of cases. The primary safety endpoint (in-hospital EDD device- or EDD procedure-related cardiovascular mortality, major stroke disability, life-threatening bleeding, distal embolisation, major vascular complications, or need for acute cardiac surgery) occurred in 8.1% of subjects (VARC-defined two life-threatening bleeds and one vascular complication). The presence of new cerebral ischaemic lesions on post-procedure DW-MRI (n=28) was similar to historical controls (82% vs. 76%, p=NS). However, an exploratory analysis found that per-patient total lesion volume was 34% lower than reported historical data (0.2 vs. 0.3 cm3), and 89% lower in patients with complete (n=17) versus incomplete (n=10) cerebral vessel coverage (0.05 vs. 0.45 cm3, p=0.016). Use of the first-generation TriGuard EDD during TAVR is safe, and device performance was successful in 80% of cases during the highest embolic-risk portions of the TAVR procedure. The potential of the TriGuard EDD to reduce total cerebral ischaemic burden merits further randomised investigation.

  6. Absorption homogenization at wavy melt films by CO{sub 2}-lasers in contrast to 1 μm-wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexander F.H., E-mail: alexander.kaplan@ltu.se

    2015-02-15

    Highlights: • The absorption distribution of 1 μm wavelength lasers compared to 10 μm CO{sub 2}-lasers across a wavy molten steel surface is calculated, at grazing angle of incidence. • For a wide range of surface waviness parameters the CO{sub 2}-laser shows a much more homogenizing absorption behaviour than 1 μm-lasers. • Although the interaction is very complex and non-linear, it is fundamental and very distinct between CO{sub 2}-lasers and 1 μm-lasers, due to their very different Fresnel-absorption characteristics. • The strong local absorption peaks for 1 μm-lasers can cause very strong local boiling and amplification of surface waves, in good correlation to empirical experimental trends. • Such differences can in turn have strong consequences during laser materials processing like laser keyhole welding, laser drilling or laser remote fusion cutting. - Abstract: For wavy metal melts, across a wide range of their topology parameters, lasers with about 1 μm wavelength experience the highest Fresnel absorption around the shoulders of the waves. Calculations show that this induces a strong peak of the absorbed power density of the laser beam. The high temperature gradients have the potential to cause very local boiling and growth of the valleys. In contrast, for a certain parameter category the small Brewster angle for the CO{sub 2}-laser partially homogenizes the temperatures by elevated absorption at domains of grazing incidence. This has the potential to cause opposite consequences on the process, like wave smoothing.

  7. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission.

  8. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    International Nuclear Information System (INIS)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission

  9. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  10. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets.

    Science.gov (United States)

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; Freitas, Karina Maria Salvatore de

    2016-01-01

    The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (pbrackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires.

  11. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets

    Directory of Open Access Journals (Sweden)

    Manoela Fávaro Francisconi

    Full Text Available ABSTRACT Objective: The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Material and Methods: Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342, using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05. Results: Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Conclusions: Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires.

  12. Ann modeling of kerf transfer in Co2 laser cutting and optimization of cutting parameters using monte carlo method

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-01-01

    Full Text Available In this paper, an attempt has been made to develop a mathematical model in order to study the relationship between laser cutting parameters such as laser power, cutting speed, assist gas pressure and focus position, and kerf taper angle obtained in CO2 laser cutting of AISI 304 stainless steel. To this aim, a single hidden layer artificial neural network (ANN trained with gradient descent with momentum algorithm was used. To obtain an experimental database for the ANN training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameters. Statistically assessed as adequate, ANN model was then used to investigate the effect of the laser cutting parameters on the kerf taper angle by generating 2D and 3D plots. It was observed that the kerf taper angle was highly sensitive to the selected laser cutting parameters, as well as their interactions. In addition to modeling, by applying the Monte Carlo method on the developed kerf taper angle ANN model, the near optimal laser cutting parameter settings, which minimize kerf taper angle, were determined.

  13. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  14. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    Directory of Open Access Journals (Sweden)

    Xinran Tan

    2017-11-01

    Full Text Available This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec and positioning repeatability of 120 nrad (0.024 arcsec over a large angular range of ±4363 μrad (±900 arcsec for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  15. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    OpenAIRE

    Ju, Minkwan; Oh, Hongseob; Lim, Junhyun; Sim, Jongsung

    2016-01-01

    The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached,...

  16. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  17. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  18. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    Science.gov (United States)

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  19. Pattern of intraocular pressure reduction following laser trabeculoplasty in open-angle glaucoma patients: comparison between selective and nonselective treatment

    Directory of Open Access Journals (Sweden)

    Almeida Jr ED

    2011-07-01

    Full Text Available Eglailson Dantas Almeida Júnior1, Luciano Moreira Pinto1,2, Rodrigo Antonio Brant Fernandes1,2, Tiago Santos Prata1,31Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil; 2Cerpo Oftalmologia, São Paulo, Brazil; 3Hospital Medicina dos Olhos, São Paulo, BrazilObjective: To compare the pattern of intraocular pressure (IOP reduction following selective laser trabeculoplasty (SLT versus argon laser trabeculoplasty (ALT in open-angle glaucoma (OAG patients, and to investigate the ability of initial IOP reduction to predict mid-term success.Methods: A prospective, nonrandomized, interventional case series was carried out. Consecutive uncontrolled OAG glaucoma patients underwent SLT or ALT; the same preoperative medical regimen was maintained during follow-up. Data collected included age, type of OAG, pre- and postoperative IOP, number of glaucoma medications, and surgical complications. Post-treatment assessments were scheduled at day 1 and 7 and months 1, 3, and 6.Results: A total of 45 patients (45 eyes were enrolled [SLT group (n = 25; ALT group (n = 20]. Groups were similar for age, baseline IOP, and number of glaucoma medications (P ≥ 0.12. We found no significant differences in mean IOP reduction between SLT (5.1 ± 2.5 mmHg; 26.6% and ALT (4.4 ± 2.8 mmHg; 22.8% groups at month 6 (P = 0.38. Success rates (IOP ≤ 16 mmHg and IOP reduction ≥25% at last follow-up visit were similar for SLT (72% and ALT (65% groups (P = 0.36. Comparing the pattern of IOP reduction (% of IOP reduction at each visit between groups, we found a greater effect following SLT compared with ALT at day 7 (23.7% ± 13.7% vs 8.1% ± 9.5%; P < 0.001. No significant differences were observed at other time points (P ≥ 0.32. Additionally, the percentage of IOP reduction at day 7 and at month 6 were significantly correlated in the SLT group (R2 = 0.36; P < 0.01, but not in the ALT group (P = 0.89. Early postoperative success predicted late

  20. Diode laser trans - scleral cyclo - ablation as a primary surgical treatment for primary open - angle glaucoma after maximum tolerated medical therapy

    International Nuclear Information System (INIS)

    Mahmood, K.; Khan, M.T.; Butt, J.B.Y.

    2011-01-01

    The incidence rate and prevalence of glaucoma in Pakistan is similar to that of other dark - colored population countries. Primary trabeculectomy is still a preferred surgical approach. Diode laser is widely accepted as the therapy of choice in severe glaucoma cases. The purpose of this study was to deter-mine the role of Diode Laser Transscleral Cyclo-ablation as a primary surgical treatment option in Primary Open Angle Glaucoma after maximum tolerated medical therapy. This quasi - experimental study was con-ducted at Layton Rahmatullah Benevolent Trust Free Eye Care and Cancer Hospital, Lahore. Sixty patients fulfilling the inclusion criteria were selected from the Glaucoma unit for this study. 25 - 30 burns of Diode Laser were applied to 270 degrees avoiding 3 and 9 O clock positions, 1.5 mm posterior to the limbus. Laser was set at duration of 1 second and power between 1000 and 1500 mw. Patients were followed up for a period of one year. Results: Out of a total of 60 eyes with mean age 52.73 +- 7.40 years, 36 (60%) were male and 24 (40%) were female. The mean pre-operative Intra Ocular Pressure IOP was 41.0 +- 7.0 mmHg (The pre-operative IOP ranged from 28 mmHg to 60 mmHg). The mean post-operative IOP was 18.97 mmHg on day one, 16.75 mmHg at 1 week, 15.68 mmHg at 1 month, 15.00 mmHg at 6 months and by the end of a year it was about 14.15 mmHg (The post-operative IOP ranged from 6 mmHg to 52 mmHg). There was a significant drop of more than 50% of post-operative IOP as compared to pre-operative IOP. Conclusion: Diode Laser Transscleral Cycloablation is a practical, rapid, well - tolerated procedure that provides a significant lowering of intraocular pressure with few complications and can considered as alternative treatment in POAG if medical therapy fails. (author)

  1. Influence of standing-wave electric field pattern on the laser damage resistance of HfO sub 2 thin films

    CERN Document Server

    Protopapa, M L; De Tomasi, F; Di Giulio, M; Perrone, M R; Scaglione, S

    2002-01-01

    The standing-wave electric field pattern that forms inside an optical coating as a consequence of laser irradiation is one of the factors influencing the coating laser-induced damage threshold. The influence of the standing-wave electric field profile on the damage resistance to ultraviolet radiation of hafnium dioxide (HfO sub 2) thin films was investigated in this work. To this end, HfO sub 2 thin films of different thicknesses deposited by the electron beam evaporation technique at the same deposition conditions were analyzed. Laser damage thresholds of the samples were measured at 308 nm (XeCl laser) by the photoacoustic beam deflection technique and microscopic inspections. The dependence of the laser damage threshold on the standing-wave electric field pattern was analyzed.

  2. On Possibility of Direct Asteroid Deflection by Electric Solar Wind Sail

    Science.gov (United States)

    Merikallio, Sini; Janhunen, Pekka

    2010-05-01

    The Electric Solar Wind Sail (E-sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets and ion engines) in terms of produced lifetime-integrated impulse per propulsion system mass. Here we analyze the problem of using the E-sail for directly deflecting an Earth-threatening asteroid. The problem then culminates into how to attach the E-sail device to the asteroid. We assess a number of alternative attachment strategies and arrive at a recommendation of using the gravity tractor method because of its workability for a wide variety of asteroid types. We also consider possible techniques to scale up the E-sail force beyond the baseline one Newton level to deal with more imminent or larger asteroid or cometary threats. As a baseline case we consider a 3 million ton asteroid which can be deflected with a baseline 1 N E-sail in 5-10 years. Once developed, the E-sail would appear to provide a safe and reasonably low-cost way of deflecting dangerous asteroids and other heavenly bodies in cases where the collision threat becomes known several years in advance.

  3. Beam-energy and laser beam-profile monitor at the BNL LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  4. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  5. Vibrating mirror system suitable for q-switching large-aperture lasers

    Energy Technology Data Exchange (ETDEWEB)

    Beckwith, P.J.

    1977-11-01

    Resonant vibrating mirrors provide a convenient means of Q-switching a laser, but large-aperture versions require careful design if the drive power is not to become excessive. This report outlines the design principles involved in the optimisation of moving-iron galvanometer drivers, and describes a prototype device with an aperture of 40 mm x 80 mm which is capable of beam deflections of + or - 40 mrad at 800 Hz. Some suggestions are made concerning more refined designs.

  6. Deflecting cavity for beam diagnostics at Cornell ERL injector

    International Nuclear Information System (INIS)

    Belomestnykh, Sergey; Bazarov, Ivan; Shemelin, Valery; Sikora, John; Smolenski, Karl; Veshcherevich, Vadim

    2010-01-01

    A single-cell, 1300-MHz, TM110-like mode vertically deflecting cavity is designed and built for beam slice emittance measurements, and to study the temporal response of negative electron affinity photocathodes in the ERL injector at Cornell University. We describe the cavity shape optimization procedure, RF and mechanical design, its performance with beam.

  7. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  8. Transverse deflections of an elastic spherical shell as a function of transverse and tangential loads

    DEFF Research Database (Denmark)

    Niordson, Christian F.; Nielsen, S.B.

    2006-01-01

    of the transverse deflection is modified by in-plane tectonic forces originating e.g. at plate boundaries. However, geoscience applications of the coupling between transverse deflections and boundary conditions have been restricted to the one-dimensional thin-plate model. In this paper we extend the model...

  9. TV Trouble-Shooting Manual. Volumes 7-8. Part 3: Synchronisation and Deflection Circuits. Student and Instructor's Manuals.

    Science.gov (United States)

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the third set of training topics in this course for television repair technicians. Both contain identical information on synchronization and deflection circuits, including sections on the principle of synchronized deflection, synchronization…

  10. Wavelength and ambient luminance dependence of laser eye dazzle.

    Science.gov (United States)

    Williamson, Craig A; McLin, Leon N; Rickman, J Michael; Manka, Michael A; Garcia, Paul V; Kinerk, Wesley T; Smith, Peter A

    2017-10-10

    A series of experiments has been conducted to quantify the effects of laser wavelength and ambient luminance on the severity of laser eye dazzle experienced by human subjects. Eight laser wavelengths in the visible spectrum were used (458-647 nm) across a wide range of ambient luminance conditions (0.1-10,000  cd·m -2 ). Subjects were exposed to laser irradiance levels up to 600  μW·cm -2 and were asked to recognize the orientation of optotypes at varying eccentricities up to 31.6 deg of visual angle from the laser axis. More than 40,000 data points were collected from 14 subjects (ages 23-64), and these were consolidated into a series of obscuration angles for comparison to a theoretical model of laser eye dazzle. Scaling functions were derived to allow the model to predict the effects of laser dazzle on vision more accurately by including the effects of ambient luminance and laser wavelength. The updated model provides an improved match to observed laser eye dazzle effects across the full range of conditions assessed. The resulting model will find use in a variety of laser safety applications, including the estimation of maximum dazzle exposure and nominal ocular dazzle distance values.

  11. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui

    2012-02-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.

  12. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui

    2012-01-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%. (general)

  13. Steering neutral atoms in strong laser fields

    International Nuclear Information System (INIS)

    Eilzer, S; Eichmann, U

    2014-01-01

    The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)

  14. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  15. Beam dynamics analysis of dielectric laser acceleration using a fast 6D tracking scheme

    Directory of Open Access Journals (Sweden)

    Uwe Niedermayer

    2017-11-01

    Full Text Available A six-dimensional symplectic tracking approach exploiting the periodicity properties of dielectric laser acceleration (DLA gratings is presented. The longitudinal kick is obtained from the spatial Fourier harmonics of the laser field within the structure, and the transverse kicks are obtained using the Panofsky-Wenzel theorem. Additionally to the usual, strictly longitudinally periodic gratings, our approach is also applicable to periodicity chirped (subrelativistic and tilted (deflection gratings. In the limit of small kicks and short periods we obtain the 6D Hamiltonian, which allows, for example, to obtain matched beam distributions in DLAs. The scheme is applied to beam and grating parameters similar to recently performed experiments. The paper concludes with an outlook to laser based focusing schemes, which are promising to overcome fundamental interaction length limitations, in order to build an entire microchip-sized laser driven accelerator.

  16. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials.

    Science.gov (United States)

    Moorthy, A; Hogg, C H; Dowling, A H; Grufferty, B F; Benetti, A R; Fleming, G J P

    2012-06-01

    To assess the cuspal deflection and cervical microleakage of standardised Class II cavities incrementally filled with a dimethacrylate RBC or bulk-fill flowable RBC bases. Twenty-four sound upper premolar teeth with Class II cavities were allocated to three groups (n=8). Restoration of the teeth involved the placement of an RBC (GrandioSO) in eight oblique increments (Group A) or Groups B and C were restored to within 2 mm of the palatal cusp in a single increment with bulk-fill flowable RBC bases (SDR and x-tra base) before the two occlusal cavity increments were placed with GrandioSO. Buccal and palatal cusp deflections were recorded postirradiation using a twin channel deflection measuring gauge. Following restoration, the teeth were thermocycled, immersed in 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage. The mean total cuspal deflection for the oblique incremental restoration technique was 11.26 (2.56) μm (Group A) and 4.63 (1.19) μm (Group B) and 4.73 (0.99) μm (Group C) for the bulk-fill flowable RBC bases. A significant increase in the mean total cuspal deflection for the incrementally filled GrandioSO compared with the SDR (P=0.007) and x-tra base (P=0.005) restored teeth was evident. No significant difference in the cervical microleakage scores was recorded between groups AC (P>0.05). The bulk-fill flowable RBC bases significantly reduced cuspal deflection compared with a conventional RBC restored in an oblique incremental filling technique with no associated change in cervical microleakage recorded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teaghee; Choi, Jong Woon [Department of Information and Communication, Honam University, Seobong-dong 59-1, Gwansan-gu, Gwangju 506-714 (Korea, Republic of); Kim, Yong Pyung [College of Electronics and Information, Kyunghee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  18. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e+e- and e-e- collisions at the ILC with 500 GeV and varying transverse beam sizes

    International Nuclear Information System (INIS)

    Alabau Pons, M.; Bambade, P.; Faus-Golfe, A.

    2006-01-01

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e + e - collisions. The opposite is true for e - e - collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e - e - collisions

  19. Prediction of Optimal Design and Deflection of Space Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Kamyab Moghadas

    2012-01-01

    Full Text Available The main aim of the present work is to determine the optimal design and maximum deflection of double layer grids spending low computational cost using neural networks. The design variables of the optimization problem are cross-sectional area of the elements as well as the length of the span and height of the structures. In this paper, a number of double layer grids with various random values of length and height are selected and optimized by simultaneous perturbation stochastic approximation algorithm. Then, radial basis function (RBF and generalized regression (GR neural networks are trained to predict the optimal design and maximum deflection of the structures. The numerical results demonstrate the efficiency of the proposed methodology.

  20. Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Gao Hua; Fan Zhenjun; Xing Jie

    2014-01-01

    The angular distribution and pressure force of droplets ejected from liquid water and glycerol ablated by nanosecond laser pulses are investigated under different viscosities in laser plasma propulsion. It is shown that with increasing viscosity, the distribution angles present a decrease tendency for two liquids, and the angular distribution of glycerol is smaller than that of water. A smaller distribution leads to a higher pressure force generation. The results indicate that ablation can be controlled by varying the viscosity of liquid propellant in laser plasma propulsion

  1. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  2. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials

    DEFF Research Database (Denmark)

    Moorthy, A; Hogg, C H; Dowling, A H

    2012-01-01

    To assess the cuspal deflection and cervical microleakage of standardised Class II cavities incrementally filled with a dimethacrylate RBC or bulk-fill flowable RBC bases.......To assess the cuspal deflection and cervical microleakage of standardised Class II cavities incrementally filled with a dimethacrylate RBC or bulk-fill flowable RBC bases....

  3. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  4. Coupling between eddy current and deflection in cantilevered beams in magnetic fields

    International Nuclear Information System (INIS)

    Hua, T.Q.

    1986-01-01

    Experiments were performed to investigate the coupling between eddy currents and deflection in cantilevered beams in longitudinal and transverse magnetic fields. This coupling effect reduces the current, deflection, and material stress to levels far less severe than would be predicted if coupling is disregarded. The experiments were conducted using the FELIX (Fusion ELectromagnetic Induction experiment) facility at the Argonne National Laboratory. The beams, which provide a simple model for the limiter blades in a tokamak fusion reactor, are subjected to crossed time-varying and constant magnetic fields. The time-varying field simulates the decaying field during a plasma disruption and the constant field models the toroidal field. Several test pieces are employed to allow variations in thicknesses and mechanical and electrical properties. Various magnetic field levels and decay time constants of time-varying are used to study the extent of the coupling from weak to strong coupling. The ratios of constant field to time-varying field are kept in the range from 10:1 to 20:1 as would be appropriate to tokamak limiters. Major parameters measured as functions of time are beam deflection, measured with an electro-optical device; total circulating current, measured with a Rogowski coil; strain recorded by strain gauges; and magnetic fields measured with Hall probes

  5. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  6. Calculation of the residual bearing capacity of reinforced concrete beams by the rigidity (deflection) criterion

    OpenAIRE

    V.S. Utkin; S.A. Solovyov

    2015-01-01

    The article proposes the method of calculating the bearing capacity of reinforced concrete beams at the operational stage by the rigidity (deflection) criterion. The methods, which were used in the article, are integral test and probabilistic methods for describing random variables. The author offers a new technique of calculating a deflection limit by a criterion of residual deformations. The article exemplifies the usage of the evidence theory for statistical information processing in the f...

  7. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  8. Dye laser with distributed feedback and with pumping by copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    An experimental study was made for determining the characteristics of dye lasers with distributed feedback, not requiring intricate resonator structures, and the feasibility of their pumping with radiation from a metal-vapor laser. The experiments were performed with five different dyes lasing in the yellow-red (510.6 - 578.2 nm) range of the spectrum: rhodamine 110, 6G, S and ocazine 17,1 in ethyl alcohol solution. The optical equipment included a copper-vapor pumping laser with the gas-discharge tube inside a telescopic resonator of the unstable type. Pumping pulses of 20 ns duration were generated at 510.6 and 578.2 nm wavelengths and a 4 kHz repetition rate. The pumping power was varied by means of an interference filter smoothly adjustable through rotation. The pumping laser beam was focused by a cylindrical lens on the dye cell. At optimum dye concentrations, corresponding to a maximum attainable emission power, dye concentrate was added into the circulation system for determining the dependence of the pumping threshold power on the dye concentration. Also measured were the dependence of the emission efficiency on the pumping power and the tuning range of each dye laser. The efficiency was found to remain constant over the pumping power range from threshold level to eight times higher level. The results reveal different angles of laser beam divergence in the vertical plane and in the horizontal plane, the divergence angle being four times larger in the vertical plane. The conversion efficiency increased, without significant changes in spectral characteristics, with a single annular reflector instead of two reflectors. 9 references, 4 figures, 1 table.

  9. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  10. Deflection-based method for seismic response analysis of concrete walls: Benchmarking of CAMUS experiment

    International Nuclear Information System (INIS)

    Basu, Prabir C.; Roshan, A.D.

    2007-01-01

    A number of shake table tests had been conducted on the scaled down model of a concrete wall as part of CAMUS experiment. The experiments were conducted between 1996 and 1998 in the CEA facilities in Saclay, France. Benchmarking of CAMUS experiments was undertaken as a part of the coordinated research program on 'Safety Significance of Near-Field Earthquakes' organised by International Atomic Energy Agency (IAEA). Technique of deflection-based method was adopted for benchmarking exercise. Non-linear static procedure of deflection-based method has two basic steps: pushover analysis, and determination of target displacement or performance point. Pushover analysis is an analytical procedure to assess the capacity to withstand seismic loading effect that a structural system can offer considering the redundancies and inelastic deformation. Outcome of a pushover analysis is the plot of force-displacement (base shear-top/roof displacement) curve of the structure. This is obtained by step-by-step non-linear static analysis of the structure with increasing value of load. The second step is to determine target displacement, which is also known as performance point. The target displacement is the likely maximum displacement of the structure due to a specified seismic input motion. Established procedures, FEMA-273 and ATC-40, are available to determine this maximum deflection. The responses of CAMUS test specimen are determined by deflection-based method and analytically calculated values compare well with the test results

  11. Iridotomy with red krypton laser.

    Science.gov (United States)

    Yassur, Y; David, R; Rosenblatt, I; Marmour, U

    1986-01-01

    Iridotomy with red krypton laser instead of blue-green argon laser was performed on 68 eyes with various types of angle-closure glaucoma. Patent iridotomy was obtained in all the eyes, mostly in one working session. In eight eyes secondary closure by pigment needed reopening with a few applications at the iridotomy site. There were no immediate or late complications of importance, the main advantage of the technique being the avoidance of the corneal epithelial and endothelial burns which commonly occur during argon laser iridotomy, particularly when the anterior chamber is shallow. PMID:3964628

  12. Large-angle adjustable coherent atomic beam splitter by Bragg scattering

    NARCIS (Netherlands)

    Koolen, A.E.A.; Jansen, G.T.; Domen, K.F.E.M.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2002-01-01

    Using a "monochromatic" (single-axial-velocity) and slow (250 m/s) beam of metastable helium atoms, we realize up to eighth-order Bragg scattering and obtain a splitting angle of 6 mrad at low laser power (3 mW). This corresponds to a truly macroscopic separation of 12 mm on the detector. For

  13. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Directory of Open Access Journals (Sweden)

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  14. Relationship between strain and central deflection in small punch creep specimens

    International Nuclear Information System (INIS)

    Yang Zhen; Wang Zhiwen

    2003-01-01

    Acquiring information about creep strain directly from small punch creep tests is difficult because the deformation behaviour of the small punch specimen is complicated. A routine is suggested in the present paper to treat this problem indirectly. Based on a finite element analysis, it is proposed that the relationship of central deflection δ to central creep strain ε c of a specimen subjected to creep can be represented approximately by the relationship of central deflection δ to central (elastic-plastic) strain ε of a specimen not subjected to creep. With this hypothesis, the δ∼ε c relation of the small punch creep specimen is obtained by resorting to a rigid-plastic membrane stretch forming model. Finally, small punch creep test results are used to evaluate creep strain and creep strain rate by taking advantage of this δ∼ε c relation

  15. A Kinematic Model for Vertical Axis Rotation within the Mina Deflection of the Walker Lane

    Science.gov (United States)

    Gledhill, T.; Pluhar, C. J.; Johnson, S. A.; Lindeman, J. R.; Petronis, M. S.

    2016-12-01

    The Mina Deflection, at the boundary between the Central and Southern Walker Lane, spans the California-Nevada border and includes a heavily-faulted Pliocene volcanic field overlying Miocene ignimbrites. The dextral Walker Lane accommodates 25% of relative Pacific-North America plate motion and steps right across the sinistral Mina deflection. Ours and previous work shows that the Mina Deflection partially accommodates deformation by vertical-axis rotation of up to 99.9o ± 6.1o rotation since 11 Ma. This rotation is evident in latite ignimbrite of Gilbert et al. (1971), which we have formalized as three members of Tuff of Huntoon Creek (THC). The welded, basal, normal-polarity Huntoon Valley Member of THC is overlain by the unwelded to partially-welded, reversed-polarity Adobe Hills Mbr. This member includes internal breaks suggesting multiple eruptive phases, but the paleomagnetic results from each are statistically indistinguishable, meaning that they were likely erupted in rapid succession (within a few centuries of one another). THC ends with a welded member exhibiting very shallow inclination and south declination that we call Excursional Mbr. One of the upper members has been dated at 11.17 ± 0.04 Ma. These Miocene units are overlain by Pliocene basalts, Quaternary alluvium, and lacustrine deposits. Our paleomagnetic results show a gradient between the zero rotation domain and high rotation across a 20km baseline. A micropolar model, based on 25 years of earthquake data from the Northern and Southern California Seismic Network, suggest the Mina Deflection is currently experiencing transpressional seismogenic deformation (Unruh et al., 2003). Accepting Unruh's model and assuming continuous rotation since 11 Ma, we propose a kinematic model for the western Mina Deflection that accommodates 90o of vertical axis rotation from N-S to ENE-WSW oriented blocks.

  16. Caustics and Caustic-Interference in Measurements of Contact Angle and Flow Visualization Through Laser Shadowgraphy

    Science.gov (United States)

    Chao, David F.; Zhang, Neng-Li

    2002-01-01

    As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.

  17. Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)

    2016-04-29

    A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.

  18. Optimized Kα x-ray flashes from femtosecond-laser-irradiated foils

    International Nuclear Information System (INIS)

    Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; Linde, D. von der; Masek, M.; Gibbon, P.; Teubner, U.

    2009-01-01

    We investigate the generation of ultrashort Kα pulses from plasmas produced by intense femtosecond p-polarized laser pulses on Copper and Titanium targets. Particular attention is given to the interplay between the angle of incidence of the laser beam on the target and a controlled prepulse. It is observed experimentally that the Kα yield can be optimized for correspondingly different prepulse and plasma scale-length conditions. For steep electron-density gradients, maximum yields can be achieved at larger angles. For somewhat expanded plasmas expected in the case of laser pulses with a relatively poor contrast, the Kα yield can be enhanced by using a near-normal-incidence geometry. For a certain scale-length range (between 0.1 and 1 times a laser wavelength) the optimized yield is scale-length independent. Physically this situation arises because of the strong dependence of collisionless absorption mechanisms - in particular resonance absorption - on the angle of incidence and the plasma scale length, giving scope to optimize absorption and hence the Kα yield. This qualitative description is supported by calculations based on the classical resonance absorption mechanism and by particle-in-cell simulations. Finally, the latter simulations also show that even for initially steep gradients, a rapid profile expansion occurs at oblique angles in which ions are pulled back toward the laser by hot electrons circulating at the front of the target. The corresponding enhancement in Kα yield under these conditions seen in the present experiment represents strong evidence for this suprathermal shelf formation effect.

  19. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    Science.gov (United States)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  20. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    Science.gov (United States)

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  1. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  2. Theory of the photoelectric effect assisted by an elliptically polarized laser field

    International Nuclear Information System (INIS)

    Li Shumin; Jentschura, Ulrich D

    2009-01-01

    The laser-assisted photoelectric effect in atomic hydrogen is investigated for linear, circular and general elliptic polarizations. The perturbative dressed state of the atom in an elliptically polarized nonresonant laser field is derived in the velocity gauge. The continuum state of the ejected electron is described by a Coulomb-Volkov wavefunction. Numerical results show that the ionization cross section by a vacuum ultraviolet photon is enhanced at high laser field intensities and low frequencies. At small and extremely large scattering angles (measured with respect to the wave vector of the incoming vacuum ultraviolet photon), the process for emitting a laser photon is predominant, while at medium angles, the result favours the process without a laser photon exchange. The dependence of the results on the laser polarization and on various geometries is studied, and an interesting pattern is found for the dependence on the frequency of the dressing laser; an intuitive explanation is offered.

  3. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  4. Dual deflectable beam strip engine development.

    Science.gov (United States)

    Dulgeroff, C. R.; Zuccaro, D. E.; Kami, S.; Schnelker, D. E.; Ward, J. W.

    1972-01-01

    This paper describes a dual beam thruster that has been designed, constructed, and tested. The system is suitable for two-axes attitude control and is comprised of two orthogonal strips, each capable of producing 0.30 mlb thrust and beam deflections of more than plus or minus 20 deg. The nominal specific impulse for the thruster is 5000 sec, and the thrust level from each strip can be varied from 0 to 100%. Neutralizer filaments that were developed and life tested over 2000 hours producing more than 40 mA of electron emission per watt of input power are also discussed. The system power required for clean ionizers is approximately 200 W.

  5. Laser stabilisation for velocity-selective atomic absorption

    NARCIS (Netherlands)

    Meijer, H.A.J.; Meulen, H.P. van der; Ditewig, F.; Wisman, C.J.; Morgenstern, R.

    1987-01-01

    A relatively simple method is described for stabilising a dye laser at a frequency ν = ν0 + νc in the vicinity of an atomic resonance frequency ν0. The Doppler effect is exploited by looking for atomic fluorescence when a laser beam is crossed with an atomic beam at certain angles αi. Absolute

  6. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    C. J. Zhang

    2016-06-01

    Full Text Available A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  7. Dynamic exposure model analysis of continuous laser direct writing in Polar-coordinate

    Science.gov (United States)

    Zhang, Shan; Lv, Yingjun; Mao, Wenjie

    2018-01-01

    In order to exactly predict the continuous laser direct writing quality in Polar-coordinate, we take into consideration the effect of the photoresist absorbing beam energy, the Gaussian attribute of the writing beam and the dynamic exposure process, and establish a dynamic exposure model to describe the influence of the tangential velocity of the normal incident facular center and laser power on the line width and sidewall angle. Numerical simulation results indicate that while writing velocity remains unchanged, the line width and sidewall angle are all increased as the laser power increases; while laser power remains unchanged, the line width and sidewall angle are all decreased as the writing velocity increases; at the same time the line profile in the exposure section is asymmetry and the center of the line has tiny excursion toward the Polar-coordinate origin compared with the facular center. Then it is necessary to choose the right writing velocity and laser power to obtain the ideal line profile. The model makes up the shortcomings of traditional models that can only predict line width or estimate the profile of the writing line in the absence of photoresist absorption, and can be considered as an effect analysis method for optimizing the parameters of fabrication technique of laser direct writing.

  8. Study of geometry angles forming a coaxial nozzle to performance of laser fusion powder composition

    Directory of Open Access Journals (Sweden)

    Павло Васильович Кондрашев

    2017-06-01

    Full Text Available The main purpose of scientific and experimental research, as reflected in this work is the search for solutions and approaches aimed at improving process performance laser alloying powder composition focused laser radiation. Priori information analysis showed the complexity of the process of laser powder fusion tracks from the physical point of view with a lot of technological impacts. Therefore, in this paper we used the method of experimental design, which will allow a more accurate experimental results compared with other methods of research. Based on the experimental screening were identified most significant technological factors influence. These are: powder mass flow, the geometric configuration of the delivery means of powder composition in the area of laser processing, the speed of movement of the substrate. To study the process performance laser alloying powder compositions were applied methods of mathematical statistics, namely, was elected symmetric quasi-D-optimal plan Pisochynskoho for 3 technological factors influence that has good statistical properties and sold regression equation of second order. As a result of the measures was received mathematical model of laser powder fusion focused laser radiation in a second order polynomial. The technique demonstrated the productivity of the process of laser powder fusion focused laser radiation, obtained by using a mathematical model of the process.

  9. Large-size high-performance transparent amorphous silicon sensors for laser beam position detection

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Koehler, C. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Lutz, B. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Schubert, M.B. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Werner, J.H. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany)

    2006-09-15

    We present the measured performance of a new generation of semitransparent amorphous silicon position detectors. They have a large sensitive area (30x30mm{sup 2}) and show good properties such as a high response (about 20mA/W), an intrinsic position resolution better than 3{mu}m, a spatial-point reconstruction precision better than 10{mu}m, deflection angles smaller than 10{mu}rad and a transmission power in the visible and NIR higher than 70%.

  10. Large-size high-performance transparent amorphous silicon sensors for laser beam position detection

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Koehler, C.; Lutz, B.; Schubert, M.B.; Werner, J.H.

    2006-01-01

    We present the measured performance of a new generation of semitransparent amorphous silicon position detectors. They have a large sensitive area (30x30mm 2 ) and show good properties such as a high response (about 20mA/W), an intrinsic position resolution better than 3μm, a spatial-point reconstruction precision better than 10μm, deflection angles smaller than 10μrad and a transmission power in the visible and NIR higher than 70%

  11. A Limited Evaluation of Full Scale Control Surface Deflection Drag (Have FUN)

    National Research Council Canada - National Science Library

    Reinhardt, R. B; Celi, Sean A; Geraghty, Jeffrey T; Stahl, James W; Glover, Victor J; Bowman, Geoffrey G

    2007-01-01

    The Have FUN (FUll Scale Numbers) Test Management Project was conducted at the request of the USAF TPS as an investigation into the drag caused by control surface deflection during dynamic soaring techniques...

  12. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  13. Deflection of jets discharged into a reservoir with a free surface

    International Nuclear Information System (INIS)

    Wada, Akihiro; Ishikawa, Keizo; Mizushima, Jiro; Akinaga, Takeshi

    2011-01-01

    Deflections of jets discharged into a reservoir with a free surface are investigated numerically. The jets are known to deflect towards either side of the free surface or the bottom, whose direction is not determined uniquely in some experimental conditions, i.e. there are multiple stable states realizable in the same condition. The origin of the multiple stable states is explored by utilizing homotopy transformations in which the top boundary of the reservoir is transformed from a rigid to a free boundary and also the location of the outlet throat is continuously moved from mid-height to the top. We depicted bifurcation diagrams of the flow compiling the data of numerical simulations, from which we identified the origin as an imperfect pitchfork bifurcation, and obtained an insight into the mechanism for the direction to be determined. The parameter region where such multiple stable states are possible is also delimited.

  14. Wettability modification of electrospun poly(ε-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres

    International Nuclear Information System (INIS)

    He Lingna; Chen Jian; Farson, Dave F.; Lannutti, John J.; Rokhlin, Stan I.

    2011-01-01

    The effect of femtosecond laser irradiation in air and in O 2 and CF 4 gas flows on the wettability of electrospun poly(ε-caprolactone) fiber tissue scaffolds was studied. Laser power, focus spot size, raster scan spacing and gas atmosphere were varied in experiments. SEM imaging showed the average fiber diameter and surface porosity sizes were both altered by ablation. The micro-scale surface roughness measured by scanning laser profilometry was found to have a non-monotonic relationship to the surface wettability measured by the contact angle of sessile water droplets. In contrast, surface water contact angle continuously decreased with increased oxygen atomic percentage and oxygen-containing group fraction as measured by XPS. Further, the oxygen content was larger for more extensively ablated fiber surfaces, regardless of whether the increased ablation was caused by high laser power, smaller scanning space or smaller defocusing distance. Of the three gas atmospheres, O 2 gas flow was the most favorable environment for increasing surface oxidization, resulting in the largest water contact angle decrease for given laser power. For CF 4 gas flow, the least oxidization occurred, and the magnitude of water contact angle decrease was smallest for treatment at a given laser power.

  15. Theoretical aspects of fibre laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Beyer, E, E-mail: achim.mahrle@iws.fraunhofer.d [University of Technology Dresden, Institute for Surface and Manufacturing Technology, PO Box, 01062 Dresden (Germany)

    2009-09-07

    Fibre lasers offer distinct advantages over established laser systems with respect to power efficiency, beam guidance and beam quality. Consequently, the potential of these new laser beam sources will be increasingly exploited for laser cutting applications that are conventionally carried out with CO{sub 2} lasers. However, theoretical estimates of the effective absorptivity at the cut front suggest that the shorter wavelength of the fibre laser in combination with its high focusability seems to be primarily advantageous for thin sheet metal cutting whereas the CO{sub 2} laser is probably still capable of cutting thicker materials more efficiently. This surprising result is a consequence of the absorptivity behaviour of metals that shows essential quantitative differences for the corresponding wavelengths of both laser sources as a function of the angle of incidence between the laser beam and the material to be cut. In evaluation of the revealed dependences, solution strategies for an improvement of the efficiency of fibre laser cutting of thicker metal sheets are suggested.

  16. Aductive laser iridoplasty and laser goniopuncture after non-perforating trabeculectomy.

    Science.gov (United States)

    D, Lawrence F Jindra M

    2013-03-01

    Successful non-perforating trabeculectomy (NPT) results in filtration of aqueous humor out of the anterior chamber and into a filtration bleb, without surgical excision of tissue from the anterior chamber angle, and without penetration into the anterior chamber. The complications of perforating trabeculectomy, due to early postoperative hypotony (shallow anterior chamber, hyphema, macular folds, suprachoroidal effusion, and ciliochoroidal hemorrhage) (3, 4, 5, 6, 7, 8, 9) are regarded by many surgeons as significant risks. Nonperforating surgery has been reported to reduce the incidence of early hypotony-related complications (10), because it has the advantage of creating gradual filtration of aqueous humor, through a thin trabeculodescemetic membrane (TDM), which markedly reduces postoperative complications seen after a conventional trabeculectomy (11), and also has been reported to provide better long-term intraocular pressure (IOP) control (12, 13). NPT is reported to be a procedure with a significant learning curve, sometimes necessitating conversion to perforating trabeculectomy, and requiring careful postoperative monitoring (14, 15, 16, 17). Zimmerman et al. reported filtration of aqueous humor under a filtering bleb, by resecting the roof of Schlemms canal and removing corneal stroma overlying the trabecular meshwork (18) Mermoud et al. reported filtration of aqueous humor under a filtering, bleb by unroofing Schlemms canal and removing corneal stroma overlying the trabecular meshwork as well Descemets membrane (19); he found that resistance across the TDM sometimes increased with time. When this resistance to aqueous humor outflow occurred, Mermoud found TDM resistance could be eliminated by performance of goniopuncture (ab interno Nd:YAG laser membranotomy via gonioprism), to enhance aqueous humor outflow into the filtration bleb. Failure to filter adequately through the TDM is a potential complication following NPT which can result in a rise in

  17. Effects of laser in situ keratomileusis (LASIK) on corneal biomechanical measurements with the Corvis ST tonometer.

    Science.gov (United States)

    Frings, Andreas; Linke, Stephan J; Bauer, Eva L; Druchkiv, Vasyl; Katz, Toam; Steinberg, Johannes

    2015-01-01

    This study was initiated to evaluate biomechanical changes using the Corvis ST tonometer (CST) on the cornea after laser in situ keratomileusis (LASIK). University Medical Center Hamburg-Eppendorf, Germany, and Care Vision Refractive Centers, Germany. Retrospective cohort study. This retrospective study included 37 eyes of 37 refractive patients. All CST measurements were performed 1 day before surgery and at the 1-month follow-up examination. The LASIK procedure included mechanical flap preparation using a Moria SBK microkeratome and an Allegretto excimer laser platform. Statistically significant differences were observed for mean first applanation length, mean first and second deflection lengths, mean first and second deflection amplitudes, radius of curvature, and peak distance. Significant positive correlations were found between the change (Δ) of radius of curvature and manifest refraction spherical equivalent (MRSE), ablation depth, and Δintraocular pressure as well as between AD and ΔHC-time. Each diopter of myopic correction in MRSE resulted in an increase in Δradius of curvature of 0.2 mm. Several CST parameters were statistically significantly altered by LASIK, thereby indicating that flap creation, ablation, or both, significantly change the ability of the cornea to absorb or dissipate energy.

  18. Features of the galactic magnetic field regarding deflections of ultra-high-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Marcus; Erdmann, Martin; Mueller, Gero; Urban, Martin [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    Most recent models of the galactic magnetic field have been derived from Faraday rotation measurements and imply strong deflections even for ultra-high energy cosmic rays. We investigate the characteristics of the different field parametrizations and point out similarities and interesting features. Among them are extragalactic regions which are invisible for an Earth bound observation and the transition from diffuse to ballistic behaviour in the 1 EeV energy regime. Applying this knowledge to a directional analysis, there are indications for deflection patterns by the galactic magnetic field in cosmic ray arrival directions measured by the Pierre Auger Observatory.

  19. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  20. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H. [Universidad de la Frontera, Centro de Fisica e Ingenieria en Medicina, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Velasquez, J. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Zelada, G. [Clinica Alemana de Santiago, Av. Vitacura 5951, 13132 Vitacura, Santiago (Chile); Astudillo, R., E-mail: rodolfo.figueroa@ufrontera.cl [Hospital Base de Valdivia, C. Simpson 850, XIV Region de los Rios, Valdivia (Chile)

    2017-10-15

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)