WorldWideScience

Sample records for laser applications milan

  1. [Public food service in Milan city and Hinterland: GMP application (Part 1)].

    Science.gov (United States)

    Pontello, M; Dal Vecchio, A; Bertini, I; Valerio, E

    2005-01-01

    Food service establishments are recognized as a critical sector concerning foodborne diseases occurrence, that is associated to contributing factors such as the anticipated preparation of meals that are often highly handled, and long-time distributed. A survey has been planned to evaluate the application of HACCP plan, in order to select a statistically representative sample of food services (restaurant, pizza-shop, bar, ..) in two Milan area' Public Health Units (PHU). During the inspections a proper check-list has been filled up in order to give a conformity evaluation about the global situation and about three specific sections: hygiene of food-handlers, procedures control, temperatures management. The food services have been found satisfactory in 9/106 and 5/54 cases in Milan City and in hinterland, respectively; among the two areas, highly significant differences have been revealed about temperatures management (68% and 28% unsatisfactory, respectively). In Milan City restaurants provided with HACCP plan scores are significantly different from unprovided restaurants scores (global and the three sections' evaluation); in Milan hinterland differences between provided and unprovided HACCP plan restaurants regard temperature management scores only. Useful suggestions to improve the quality of surveillance activity come from complex and heterogeneous findings shown in this study.

  2. Integrating Laser Scanner and Bim for Conservation and Reuse: "the Lyric Theatre of Milan"

    Science.gov (United States)

    Utica, G.; Pinti, L.; Guzzoni, L.; Bonelli, S.; Brizzolari, A.

    2017-12-01

    The paper underlines the importance to apply a methodology that integrates the Building Information Modeling (BIM), Work Breakdown Structure (WBS) and the Laser Scanner tool in conservation and reuse projects. As it is known, the laser scanner technology provides a survey of the building object which is more accurate rather than that carried out using traditional methodologies. Today most existing buildings present their attributes in a dispersed way, stored and collected in paper documents, in sheets of equipment information, in file folders of maintenance records. In some cases, it is difficult to find updated technical documentation and the research of reliable data can be a cost and time-consuming process. Therefore, this new survey technology, embedded with BIM systems represents a valid tool to obtain a coherent picture of the building state. The following case consists in the conservation and reuse project of Milan Lyric Theatre, started in 2013 from the collaboration between the Milan Polytechnic and the Municipality. This project first attempts to integrate these new techniques which are already professional standards in many other countries such as the US, Norway, Finland, England and so on. Concerning the methodology, the choice has been to use BIM software for the structured analysis of the project, with the aim to define a single code of communication to develop a coherent documentation according to rules in a consistent manner and in tight schedules. This process provides the definition of an effective and efficient operating method that can be applied to other projects.

  3. Numerical models of pore pressure and stress changes along basement faults due to wastewater injection: Applications to the 2014 Milan, Kansas Earthquake

    Science.gov (United States)

    Hearn, Elizabeth H.; Koltermann, Christine; Rubinstein, Justin R.

    2018-01-01

    We have developed groundwater flow models to explore the possible relationship between wastewater injection and the 12 November 2014 Mw 4.8 Milan, Kansas earthquake. We calculate pore pressure increases in the uppermost crust using a suite of models in which hydraulic properties of the Arbuckle Formation and the Milan earthquake fault zone, the Milan earthquake hypocenter depth, and fault zone geometry are varied. Given pre‐earthquake injection volumes and reasonable hydrogeologic properties, significantly increasing pore pressure at the Milan hypocenter requires that most flow occur through a conductive channel (i.e., the lower Arbuckle and the fault zone) rather than a conductive 3‐D volume. For a range of reasonable lower Arbuckle and fault zone hydraulic parameters, the modeled pore pressure increase at the Milan hypocenter exceeds a minimum triggering threshold of 0.01 MPa at the time of the earthquake. Critical factors include injection into the base of the Arbuckle Formation and proximity of the injection point to a narrow fault damage zone or conductive fracture in the pre‐Cambrian basement with a hydraulic diffusivity of about 3–30 m2/s. The maximum pore pressure increase we obtain at the Milan hypocenter before the earthquake is 0.06 MPa. This suggests that the Milan earthquake occurred on a fault segment that was critically stressed prior to significant wastewater injection in the area. Given continued wastewater injection into the upper Arbuckle in the Milan region, assessment of the middle Arbuckle as a hydraulic barrier remains an important research priority.

  4. Milan Rezo, PhD in Technical Sciences

    Directory of Open Access Journals (Sweden)

    Tomislav Bašić

    2010-12-01

    Full Text Available On October, 7th 2010, Milan Rezo defended his dissertation The Meaning and the Application of Physical Parameters in Modern Approach in State Survey at the Faculty of Geodesy of the University of Zagreb, and in front of the Commission consisting of Assoc. Prof. Dr. Željko Bačić, Prof. Dr. Tomislav Bašić (mentor, both from the Faculty of Geodesy, University of Zagreb, and Assist. Prof. Božo Soldo from the Faculty of Geotechnical Engineering Varaždin of University of Zagreb.

  5. Mass gatherings in Italy: a study from the 2015 Milan Expo

    Directory of Open Access Journals (Sweden)

    Pietro Marino

    2016-07-01

    Full Text Available Introduction. A mass gathering (MG is when a large number of people come together in a particular location for a specific purpose. Expo 2015 was an universal exposition hosted by Milan, Italy. The Pre-Hospital Emergency Company (AREU of Lombardy Region (Milan-Italy was involved in planning and managing the emergency rescue response inside the Expo 2015 area in Milan. In this paper, we review the AREU medical and public health response for the 2015 Milan Expo. Methods. Existing risk-assessment processes for MGs were used (the Arbon Predictive Score and Maurer Score to define the expected resources and the impact on the health systems. The objective of the plan was to reduce the impact of the event by adopting the model of First Aid Points (advanced medical posts deployed in the event site acting as ‘first health filters’ for the hospital network in Milan. Results. Our data indicate that 13,579 visitors were rescued in the ‘Red Area’ from 1 May to 31 October (with an average of 73 cases per day; 9,501 of them needed initial treatment or observation time at the First Aid Points, 1,289 of them were hospitalised (1% Red code, 29% Yellow code, 70% Green code; 65% of patients (57% female, with a mean age of 37 years old had medical problems. Fatigue, light- headedness, dizziness, syncope, loss of consciousness and headache were the prevalent medical diagnoses. Conclusions. Our study confirms that environmental factors, such as the weather, can contribute to large numbers of ill people at MGs. Overall, the AREU of Lombardy Region demonstrated excellent preparation for the Expo 2015 MG. Flexibility, integration and strong cooperation between the pre-hospital settings and hospitals were incorporated into the application of the plan. The final data showed the effectiveness of the adopted model and the reduced impact on the hospital network.

  6. MOBILE APPLICATIONS AS TOOL FOR EXPLOITING CULTURAL HERITAGE IN THE REGION OF TURIN AND MILAN

    Directory of Open Access Journals (Sweden)

    A. Rolando

    2013-07-01

    , analysis and visualization of data flows. In the current research, the field of investigation refers both to the territorial scale of Turin – Milan axis, and to the local scale of small cities localized in the territories in between. The research has been applied to Turin – Milan infrastructural axis, with the aim to represent the relationships that can be established between mobility infrastructure and cultural heritage. Such relationships should be intended in terms of accessibility from mobility infrastructure (motorway exit, service areas, railways stations to cultural heritage localized in the surrounding landscape. The richness of cultural heritage and landscape along the chosen infrastructural bundle represent a great opportunity for territorial development in terms of attractiveness, both for local inhabitants and for tourists. Nowadays, the use of tracking technologies can be applied to investigate tourist flows, behaviors of local inhabitants in the historic city centre, number of visitors in the city and so on. In this sense it is possible to apply these technologies, which are particularly relevant in urban studies, extending them to the territorial scale of the Turin – Milan region. The large amount of available geo-referenced data can be used in different ways and it is very potential for different kind of analysis: it is possible to show tourist flows in the territory, receive information about more visited places, obtain interaction from users and cultural heritage in terms of visitors opinion about the places, give information to tourists about cultural places, monitor the accessibility to the places, understand the use of means of transport and keep under control the impacts of tourism (social, cultural, environmental on territory. Applications based on smartphones can be considered a powerful device for visitors but also for institutions that are involved in tourism and cultural heritage management. In fact, the use of mobile applications it can

  7. Mobile Applications as Tool for Exploiting Cultural Heritage in the Region of Turin and Milan

    Science.gov (United States)

    Rolando, A.; Scandiffio, A.

    2013-07-01

    visualization of data flows. In the current research, the field of investigation refers both to the territorial scale of Turin - Milan axis, and to the local scale of small cities localized in the territories in between. The research has been applied to Turin - Milan infrastructural axis, with the aim to represent the relationships that can be established between mobility infrastructure and cultural heritage. Such relationships should be intended in terms of accessibility from mobility infrastructure (motorway exit, service areas, railways stations) to cultural heritage localized in the surrounding landscape. The richness of cultural heritage and landscape along the chosen infrastructural bundle represent a great opportunity for territorial development in terms of attractiveness, both for local inhabitants and for tourists. Nowadays, the use of tracking technologies can be applied to investigate tourist flows, behaviors of local inhabitants in the historic city centre, number of visitors in the city and so on. In this sense it is possible to apply these technologies, which are particularly relevant in urban studies, extending them to the territorial scale of the Turin - Milan region. The large amount of available geo-referenced data can be used in different ways and it is very potential for different kind of analysis: it is possible to show tourist flows in the territory, receive information about more visited places, obtain interaction from users and cultural heritage in terms of visitors opinion about the places, give information to tourists about cultural places, monitor the accessibility to the places, understand the use of means of transport and keep under control the impacts of tourism (social, cultural, environmental) on territory. Applications based on smartphones can be considered a powerful device for visitors but also for institutions that are involved in tourism and cultural heritage management. In fact, the use of mobile applications it can produce a real time data

  8. Integrating decision support tools and environmental information systems: a case study on the Province of Milan

    International Nuclear Information System (INIS)

    Bagli, S.; Pistocchi, A.; Mazzoli, P.; Valentini, P.

    2006-01-01

    The paper demonstrates an application of advanced decision support tools within the framework of the environmental information system of the Province of Milan. These tools include environmental simulation models, multi criteria analysis, risk analysis and environmental accounting for marketable emission permits. After describing the general structure of the system, three demonstrational case studies are introduced concerning: groundwater pollution management; atmospheric pollution management; urban environmental quality perception and management. In the conclusion, potential use of tools like the ones implemented by the province of Milan within the framework of Local Agenda 21 processes is recalled [it

  9. Optimal football strategies: AC Milan versus FC Barcelona

    OpenAIRE

    Papahristodoulou, Christos

    2012-01-01

    In a recent UEFA Champions League game between AC Milan and FC Barcelona, played in Italy (final score 2-3), the collected match statistics, classified into four offensive and two defensive strategies, were in favour of FC Barcelona (by 13 versus 8 points). The aim of this paper is to examine to what extent the optimal game strategies derived from some deterministic, possibilistic, stochastic and fuzzy LP models would improve the payoff of AC Milan at the cost of FC Barcelona.

  10. Milan Kundera poeediparukaga faun / Kärt Hellerma

    Index Scriptorium Estoniae

    Hellerma, Kärt, 1956-

    1996-01-01

    Arvustus: Kundera, Milan. Surematus. Tln. : Monokkel, 1995. Ilmunud ka kogumikus: Hellerma, Kärt. Kohanenud kirjandus : valik kirjanduskriitikat 1987-2006. Eesti Keele Sihtasutus : Tallinn, 2006. Lk. 176-179

  11. Excimer laser applications

    International Nuclear Information System (INIS)

    Fantoni, R.

    1988-01-01

    This lecture deals with laser induced material photoprocessing, especially concerning those processes which are initiated by u.v. lasers (mostly excimer laser). Advantages of using the u.v. radiation emitted by excimer lasers, both in photophysical and photochemical processes of different materials, are discussed in detail. Applications concerning microelectronics are stressed with respect to other applications in different fields (organic chemistry, medicine). As further applications of excimer lasers, main spectroscopic techniques for ''on line'' diagnostics which employ excimer pumped dye lasers, emitting tunable radiation in the visible and near u.v. are reviewed

  12. Technological laser application

    International Nuclear Information System (INIS)

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  13. Zemřel JUDr. Milan Princ (1926-2016)

    Czech Academy of Sciences Publication Activity Database

    Nechvátal, Bořivoj; Šlesingerová, Lada

    2016-01-01

    Roč. 76, č. 5 (2016), s. 554-556 ISSN 1210-5538 Institutional support: RVO:67985912 Keywords : Milan Princ * archaeology * historic preservation * obituary * personal bibliography Subject RIV: AC - Archeology, Anthropology, Ethnology

  14. „Diderot miloval mystifikace“, a co Milan Kundera?

    Czech Academy of Sciences Publication Activity Database

    Jungmannová, Lenka

    2017-01-01

    Roč. 65, č. 2 (2017), s. 235-256 ISSN 0009-0468 Institutional support: RVO:68378068 Keywords : Czech drama * Kundera, Milan * Steigerwald, Karel Subject RIV: AJ - Letters, Mass-media, Audiovision OBOR OECD: Specific literatures

  15. The temporary structures for Expo Milan 2015: environmental assessment and solutions for the end of life management

    Directory of Open Access Journals (Sweden)

    Monica Lavagna

    2014-05-01

    Full Text Available Politecnico di Milano University worked for the Italian Ministry of Environment, land and sea on the sustainability assessment of Expo Milan 2015 self-built temporary pavilions. The work has been focused on the improvement of the buildings environmental performances. Given the buildings short durability in place (Expo lasts for 6 months, the strategies for their end of life are of great importance for the carbon footprint reduction. Starting from the specific work on Expo Milan 2015, the Politecnico di Milano working group proceeded with the methodology research about this issue, applicable also to future events. This paper presents the different relevant aspects of mega events temporary buildings end of life management; dealing with methodological, technical and managerial aspects.

  16. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  17. Evolution of Milan microclimate in XX century

    International Nuclear Information System (INIS)

    Schieroni, A.

    1993-01-01

    Within the framework of studies to correlate the use of fossil fuels with urban area thermal pollution, this article examines the local microclimate of Milan, describing the main features of the so-called 'heat island' phenomenon and analyzing the evolution of ambient temperatures. Two different kinds of data on urban temperatures were employed: the hourly measurements taken by the Multinational Presidium for Hygiene and Prevention, run by the Local Sanitary Unit No. 75 of Milan, in the period ranging from 1985 to 1990, and the maximum and minimum daily values referring to the period between 1909 and 1991 (data supplied by the Meteorologic Observatory of Brera-Duomo). The standard year, worked out in the framework of the C. N. R. (National Research Centre) Finalized Energy Project and referring to the meteorological station of Linate Airport, was employed in order to highlight the difference between the thermal behaviour of the urban and the extra-urban area

  18. Early Greek Typography in Milan: A Historical Note on a New Greek Typeface.

    Science.gov (United States)

    Wallraff, Martin

    1997-01-01

    Discusses the history of Greek typography, focusing on the first book to be entirely printed in Greek in 1476 and the series of new typefaces that resulted. Cites Milan as a center of Greek printing in the early history of Greek typography. Describes a revival of one of these typefaces created under the name of Milan Greek. (PA)

  19. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  20. Turistički značaj galerije 'Milan Konjović' u Somboru

    Directory of Open Access Journals (Sweden)

    Besermenji Snežana

    2008-01-01

    Full Text Available A gallery 'Milan Konjović' in Sombor is a culture establishment in which there are exhibited works of a famous impressionist Milan Konjovic. It was opened in 1966 and it is placed in a Galley house, on the Square of Holy Three. Works of Milan Konjović are presented by chronological productions and occasional thematic exhibitions, and a collection consists of 1060 works today. In order to notice the tourist importance of this establishment, in this work there will be done a SWOT analysis which will point to internal abilities and internal weakness on one hand and, on the other hand, there will be analyzed exterior possibilities and those are chances and threats from the surroundings. Considering the fact that conditions in our institutions of culture are on unsatisfactory level, in this paper two affirmed galleries in London will be presented: the Tate Gallery and the Tate Modern, which represent positive example of successful management in cultural institutions.

  1. Preliminary experience of shared clinical management between Milan and Pointe Noire using the INteractive TeleConsultation Network for Worldwide HealthcAre Services (INCAS): telemedicine between Milan and Africa.

    Science.gov (United States)

    Malacarne, Mara; Lesma, Alessandro; Madera, Angelo; Malfatti, Eugenio; Castelli, Alberto; Lucini, Daniela; Pizzinelli, Paolo; Pagani, Massimo

    2004-01-01

    This paper describes preliminary experience in shared clinical management of patients located in Pointe Noire, Africa, and a referral center, Sacco University Hospital, located in Milan, Italy. The employed infrastructure INteractive TeleConsultation Network for Worldwide HealthcAre Services (INCAS) jointly developed by CEFRIEL (Center of Excellence For Research, Innovation, Education & Industrial Labs partnership) and ENI (Ente Nazionale Idrocarburi) is based on commercial off-the-shelf technology. This minimizes maintenance problems, while permitting a simple and friendly sharing of data using the telephone and e-mail for store-and-forward applications. The critical aspect of the flow of events comprising the exchange of information is discussed. In 60% of cases, only one telemedicine consultation was required. In the remainder 40%, a number of telemedicine consultations were required for appropriate management of clinical cases. The project demonstrated flexibility as documented by the wide range of pathologies that can be dealt with it. Finally the possibility of using shared clinical management as a learning tool is highlighted by the steep and rising learning curve. We conclude, however, that the patient, although handled in a "virtual" manner, should be viewed as very "real," as some of them elected to close the gap physically between Pointe Noire and Milan, and chose to be treated at the referral site.

  2. Sound quality indicators for urban places in Paris cross-validated by Milan data.

    Science.gov (United States)

    Ricciardi, Paola; Delaitre, Pauline; Lavandier, Catherine; Torchia, Francesca; Aumond, Pierre

    2015-10-01

    A specific smartphone application was developed to collect perceptive and acoustic data in Paris. About 3400 questionnaires were analyzed, regarding the global sound environment characterization, the perceived loudness of some emergent sources and the presence time ratio of sources that do not emerge from the background. Sound pressure level was recorded each second from the mobile phone's microphone during a 10-min period. The aim of this study is to propose indicators of urban sound quality based on linear regressions with perceptive variables. A cross validation of the quality models extracted from Paris data was carried out by conducting the same survey in Milan. The proposed sound quality general model is correlated with the real perceived sound quality (72%). Another model without visual amenity and familiarity is 58% correlated with perceived sound quality. In order to improve the sound quality indicator, a site classification was performed by Kohonen's Artificial Neural Network algorithm, and seven specific class models were developed. These specific models attribute more importance on source events and are slightly closer to the individual data than the global model. In general, the Parisian models underestimate the sound quality of Milan environments assessed by Italian people.

  3. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  4. Evolution of traffic emissions in European urban areas: Milan case study

    International Nuclear Information System (INIS)

    Giugliano, M.; Cemin, A.; Cernuschi, S.

    1992-01-01

    The worldwide increasing role of mobile sources on the air quality of urban areas requires a careful evaluation of all the potential intervention policies for the reduction of traffic related emissions. The accurate description of the evolution of the source, following the renewal of the fleet with vehicles regulated by stricter emission standards, represents the basic premise for this evaluation. This paper outlines a proposed methodology for the evaluation of the trend of mobile source emissions, implemented on the calculation program EMISMOB, and reports the results obtained with its application to predict the evolution of traffic emissions in the urban area of Milan (Italy) until the year 2010

  5. Applications of lasers and electro-optics

    International Nuclear Information System (INIS)

    Tan, B.C.; Low, K.S.; Chen, Y.H.; Harith bin Ahmad; Tou, T.Y.

    1994-01-01

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: 1. Industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes. Prototype operational systems have been developed. 2. Medical applications of lasers for cancer treatment using the technique of photodynamic therapy. A new and more effective treatment protocol has been proposed. 3. Agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies. Fruit ripeness signature has been developed and palm oil oxidation level were investigated. 4. Development of atmospheric pollution monitoring systems using laser lidar techniques. Laboratory scale systems were developed. 5. Other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials. The activities of the group (from 1988-1990) have resulted in the submission of a patent for a laser device, publication of many research paper sin local and overseas journals and conference proceedings, completion of 1 Ph.D. dissertation and 6 M. Phil theses. Currently (1991), a total of 3 Ph.D., 6 M. Phil research programmes are involved in this research and development programme

  6. Laser diode technology and applications

    International Nuclear Information System (INIS)

    Figueroa, L.

    1989-01-01

    This book covers a wide range of semiconductor laser technology, from new laser structures and laser design to applications in communications, remote sensing, and optoelectronics. The authors report on new laser diode physics and applications and present a survey of the state of the art as well as progress in new developments

  7. Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography

    International Nuclear Information System (INIS)

    Makarov, G N

    2013-01-01

    The fact that nanoparticles and nanomaterials have fundamental properties different both from their constituent atoms or molecules and from their bulk counterparts has stimulated great interest, both theoretical and practical, in nanoparticles and nanoparticle-based assemblies (functional materials), with the result that these structures have become the subject of explosive research over the last twenty years or so. A great deal of progress in this field has relied on the use of lasers. In this paper, the directions followed and results obtained in laser nanotechnology research are reviewed. The parameters, properties, and applications of nanoparticles are discussed, along with the physical and chemical methods for their fabrication and investigation. Nanofabrication applications of and fundamental physical principles behind laser ablation and laser nanolithography are discussed in detail. The applications of laser radiation are shown to range from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution, through studying their dynamics and forming them into periodic arrays and various structures and assemblies. The historical development of research on nanoparticles and nanomaterials and the application of laser nanotechnology in various fields are briefly reviewed. (reviews of topical problems)

  8. Altered Rhythms. Urban façades in post-war Milan

    Directory of Open Access Journals (Sweden)

    Magda Mària Serrano

    2017-10-01

    Full Text Available Urban façades are the outward manifestation of the character of a city, and are composed of elements that respond to rhythmic sequences in consonance with the internal order of the rooms behind them. In post-war Milan, façades were used as a field of experimentation by a group of architects, some of whom were also artists and designers, who saw themselves and can be seen as ambassadors for the future modernity of a city devastated by war. This article explains how the urban façades of Milan, based as they were on the themes drawn from the Italian compositional tradition, offer a wide variety of elements, figures and rhythms, altering and transgressing the compositional canons through the use of mechanisms that in some cases are closer to painting or sculpture than to architecture.

  9. Progress report on the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Acerbi, E.; Alessandria, F.; Baccaglioni, G.; Bellomo, G.; Birattari, C.; Bosotti, A.; Broggi, F.; Cortesi, G.; DeMartinis, C.; Fabrici, E.; Ferrari, A.; Giove, D.; Giussani, A.; Giussani, W.; Michelato, P.; Pagani, C.; Rivoltella, G.; Rossi, L.; Serafini, L.; Sussetto, A.; Torri, V.; Varisco, G.; Cuttone, G.; Raia, G.; Kai, L.

    1988-01-01

    This paper reports on the construction of the K800 superconducting cyclotron at the University of Milan underway since February 1981. The delay in the construction of the new building and a defect of the weldings of the helium vessel have caused a shift in the project schedule of about two years. Currently, the cyclotron magnet and the cryogenic plant have been completed and installed. First operation of the magnet and magnetic field mapping are to begin shortly

  10. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  11. Radiation protection courses in the Milan Copic Nuclear Training Centre

    International Nuclear Information System (INIS)

    Kozelj, M.; Stritar, A.

    1998-01-01

    We have briefly described the legal framework for the radiation protection training in Slovenia. The history of that activity at the Milan Copic Nuclear Training Center in Ljubljana is than described with the detailed description and summary of all performed courses.(author)

  12. Downstaging therapy followed by liver transplantation for hepatocellular carcinoma beyond Milan criteria.

    Science.gov (United States)

    Kim, Young; Stahl, Christopher C; Makramalla, Abouelmagd; Olowokure, Olugbenga O; Ristagno, Ross L; Dhar, Vikrom K; Schoech, Michael R; Chadalavada, Seetharam; Latif, Tahir; Kharofa, Jordan; Bari, Khurram; Shah, Shimul A

    2017-12-01

    Orthotopic liver transplantation is a curative treatment for hepatocellular carcinoma within Milan criteria, but these criteria preclude many patients from transplant candidacy. Recent studies have demonstrated that downstaging therapy can reduce tumor burden to meet conventional criteria. The present study reports a single-center experience with tumor downstaging and its effects on post-orthotopic liver transplantation outcomes. All patients with hepatocellular carcinoma who were evaluated by our multidisciplinary liver services team from 2012 to 2016 were identified (N = 214). Orthotopic liver transplantation candidates presenting outside of Milan criteria at initial radiographic diagnosis and/or an initial alpha-fetoprotein >400 ng/mL were categorized as at high risk for tumor recurrence and post-transplant mortality. Of the 214 patients newly diagnosed with hepatocellular carcinoma, 73 (34.1%) eventually underwent orthotopic liver transplantation. The majority of patients who did not undergo orthotopic liver transplantation were deceased or lost to follow-up (47.5%), with 14 of 141 (9.9%) currently listed for transplantation. Among transplanted patients, 21 of 73 (28.8%) were considered high-risk candidates. All 21 patients were downstaged to within Milan criteria with an alpha-fetoprotein hepatocellular carcinoma was higher but acceptable between downstaged high-risk and traditional candidates (9.5% vs 1.9%; P > .05) at a median follow-up period of 17 months. Downstaged high-risk candidates had a similar overall survival compared with those transplanted within Milan criteria (log-rank P > .05). In highly selected cases, patients with hepatocellular carcinoma outside of traditional criteria for orthotopic liver transplantation may undergo downstaging therapy in a multidisciplinary fashion with excellent post-transplant outcomes. These data support an aggressive downstaging approach for selected patients who would otherwise be deemed ineligible for

  13. The Milan Project: a newborn hearing screening programme.

    Science.gov (United States)

    Pastorino, Giancarlo; Sergi, Paola; Mastrangelo, Massimo; Ravazzani, Paolo; Tognola, Gabriella; Parazzini, Marta; Mosca, Fabio; Pugni, Lorenza; Grandori, Ferdinando

    2005-04-01

    Since 1997 a newborn hearing screening programme has been implemented by the U.O. Neurologia-Neurofisiopatologia and Dipartimento di Neonatologia of the Istituti Clinici di Perfezionamento ICP in Milan for both babies with no risk and those at risk of hearing impairment. This programme was named the Milan Project. The protocol for no-risk babies consisted of three stages: in the first two stages, newborns were tested with transient click-evoked otoacoustic emissions (TEOAE), in the third one with conventional auditory brainstem responses (ABR). The first TEOAE test was performed by 36 h of age, before discharge, the second one after 15-30 d in case of referral, and the third one, by ABR, for those babies who failed the second TEOAE stage. Newborns at audiological risk were submitted to conventional ABR before the third month of corrected age. Some of this latter population was also submitted to the TEOAE test. The entire tested population (no-risk babies and newborns at audiological risk) consisted of 19 777 babies: 19 290 without risk ("no risk") and 487 at risk ("at risk"). During the course of the Milan Project, hearing impairment (ABR threshold equal to or greater than 40 dB nHL) was identified in 63 newborns (19 from the no-risk and 44 from the at-risk population), with a prevalence of 0.32%. Bilateral hearing impairment (BHI) was found in 33 newborns (10 from the no-risk and 23 from the at-risk population), corresponding to 0.17%. Among infants with bilateral hearing impairment, 30.3% had no risk factors. The prevalence of hearing impairment was determined on days 15-30 after birth. The results show that the implementation of a hospital-based, universal neonatal hearing screening programme for babies with and without audiological risk is feasible and effective. The effectiveness of the programme has increased as a function of the years since its inception, with a strong decrease in the referral rate. Further improvement is obtained if the TEOAE measurements

  14. Violencia y memoria en Milan Kundera

    OpenAIRE

    Tafalla, Marta

    2007-01-01

    Partiendo de la filosofía de la memoria de T. W. Adorno, este artículo defiende la tesis de que la literatura tiene una mayor capacidad que la historia o la filosofía para explicar en qué consisten los regímenes totalitarios y para salvaguardar la memoria de sus víctimas. Con este propósito, toma como ejemplo la literatura del escritor checo Milan Kundera y analiza algunas de sus obras, especialmente El libro de la risa y el olvido, La insoportable levedad del ser y su ensayo El arte de la no...

  15. Active and passive monitoring of benzene in Milan from 1992 up to today

    International Nuclear Information System (INIS)

    Lerda, D.; Robles, P.; Astori, M.; Barletta, M.; Canzi, R.; Barilli, L.

    1999-01-01

    The air quality degradation in large urban areas, mainly due to the traffic, is evaluated through the measurement of pollutants coming, directly or indirectly, from the traffic itself. Due to its cancerogenicity, a quality standard for benzene has been settled by D.M.25/11/1994, which obliges this measure in towns having more than 150.000 inhabitants.Starting from 1992, Milan P.M.I.P. has been controlling benzene and other homologues concentrations in air with routine and campaign measurements. Concentrations change depends both on variations of fuel formulation and on the renewal of the cars fleet. As a matter of fact, the lower benzene percentage in fuels and the use of tailpipes with catalytic converter greatly reduced the emission of these compounds in air, giving an estimate annual average lower than the impose limit. In an urban area, an estimate of an average concentration starting from the three sampling points according to the low can give a value far from the real average level; to solve this problem Milan P.M.I.P. programmed an annual campaign with daily sampling in 24 sites homogeneously located in Milan territory [it

  16. Application of Various Lasers to Laser Trimming Resistance System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  17. Lasers and optoelectronics fundamentals, devices and applications

    CERN Document Server

    Maini, Anil K

    2013-01-01

    With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diag

  18. Current new applications of laser plasmas

    International Nuclear Information System (INIS)

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs

  19. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  20. [The application of laser in endodontics].

    Science.gov (United States)

    He, W X; Liu, N N; Wang, X L; He, X Y

    2016-08-01

    Since laser was introduced in the field of medicine in 1970's, its application range has continuously expanded. The application of laser in endodontics also increased due to its safety and effectiveness in dental treatments. The majority of the laser application researches in dentistry focused on dentin hypersensitivity, removal of carious tissues, tooth preparations, pulp capping or pulpotomy, and root canal treatment. In this article, we reviewed literature on the effects of laser in the treatments of dental and pulp diseases.

  1. Applications of soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1993-01-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed

  2. Therapeutic application of lasers in ophthalmology

    International Nuclear Information System (INIS)

    Misiuk-Hojlo, M.; Krzyzanowska-Berkowska, P.; Hill-Bator, A.

    2007-01-01

    Lasers have found application in diverse branches of medicine. In ophthalmology, laser technology has various therapeutic and diagnostic applications. The purpose of this article is to review the major therapeutic applications of lasers in different eye disorders. The effects of lasers on biological tissues and different laser techniques as well as the indications for laser therapy in various parts of the eye are discussed. Lasers are used to treat glaucoma and many vascular disorders of the retina. Laser treatment may be useful in preventing the development of neovascularization in diabetic retinopathy, BRVO, or CRVO. Laser techniques are also available for the treatment of the exudative form of age-related macular degeneration (AMD) and some malignant and benign intraocular tumors and in retina abnormalities which predispose to rhegmatogenous retinal detachment. Corneal laser surgery is the most frequently applied laser procedure in ophthalmology. PRK, LASIK, and LASEK are used to correct errors in vision such as myopia, hyperopia, and astigmatism. Laser photocoagulation is also helpful in cataract surgery. Nowadays, lasers have become so universal that it is difficult to imagine ophthalmology without them. We are still witnessing rapid advances in the development of laser techniques, especially in plastic surgery, cataract extraction, and ocular imaging. (authors)

  3. An application of the theory of laser to nitrogen laser pumped dye laser

    International Nuclear Information System (INIS)

    Osman, Fatima Ahmed

    1998-03-01

    In this thesis we gave a general discussion on lasers, reviewing some of their properties, types and application. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw.It was noticed that the produced radiation possesses characteristics different from those of other types of laser. This characteristics determine the tunability i.e the possibility of choosing the appropriately required wave-length of radiation for various applications.(Author)

  4. Ultraviolet laser technology and applications

    CERN Document Server

    Elliott, David L

    1995-01-01

    Ultraviolet Laser Technology and Applications is a hands-on reference text that identifies the main areas of UV laser technology; describes how each is applied; offers clearly illustrated examples of UV opticalsystems applications; and includes technical data on optics, lasers, materials, and systems. This book is unique for its comprehensive, in-depth coverage. Each chapter deals with a different aspect of the subject, beginning with UV light itself; moving through the optics, sources, and systems; and concluding with detailed descriptions of applications in various fields.The text enables pr

  5. Optical coatings for laser fusion applications

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-01-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation

  6. Lasers: principles, applications and energetic measures

    International Nuclear Information System (INIS)

    Subran, C.; Sagaut, J.; Lapointe, S.

    2009-01-01

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  7. The laser principles and application techniques

    International Nuclear Information System (INIS)

    Maillet, H.

    1990-01-01

    In this book on laser applications chapter 4 is devoted to uranium isotopic separation and chapter 5 to laser inertial fusion, other topics include machining, medical applications, measurements, military applications, holography, reprography, telecommunications, compact discs, light shows and safety [fr

  8. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    CERN Document Server

    Apollonov, V V

    2016-01-01

    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  9. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  10. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1978-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  11. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  12. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-11-17

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  13. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  14. CO2 electric discharge lasers - Present status and future applications

    International Nuclear Information System (INIS)

    Reilly, J.P.

    1979-01-01

    CO 2 electric discharge lasers (EDLs) have proven themselves to be efficient sources of high-power high-quality laser energy. The paper outlines applications of high-power CO 2 EDLs, applications which are now becoming commercially viable, as well as those which are still being investigated in research laboratories. Applications of CO 2 lasers are discussed relative to industrial applications (laser welding, laser surface hardening, heat treatment, and surface chemistry modification by laser alloying and laser glazing), laser radar applications, laser-induced fusion, and laser propulsion. Attention is given to requirements of applications versus status of technology. Examples are given of the engineering solutions used to address the technology issues identified by particular laser applications

  15. What makes for a successful laser application

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1997-01-01

    Industrial application of lasers are within several different niches. A few of these niches are so large that standard equipment are on the market. However, most applications are more or less custom designed.The industrial laser market is new, the market size is small, and therefore the systems...... suppliers do normally not pocess internal ressources for efficient application development, except for their key market segments.The industrial laser market is further characterized by the large divertisement in products: Is the optimum laser for a certain job a CO2- or a ND-YAG-laser? Ore perhaps a Copper...

  16. Laser-plasma interactions and applications

    CERN Document Server

    Neely, David; Bingham, Robert; Jaroszynski, Dino

    2013-01-01

    Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowl...

  17. Industrial application of high power disk lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  18. Laser Applications in Orthodontics

    Science.gov (United States)

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  19. Materials for the history of the Ospedale Maggiore of Milan: the Chapter resolutions of the years 1456-1498

    Directory of Open Access Journals (Sweden)

    Giuliana Albini

    2011-04-01

    Full Text Available The history of charity and assistance in Milan at the end of the Middle Ages has as basic term of reference the documentary sources of the Ospedale Maggiore, the new great hospital result of a long process of reform that took place in the course of the 15th century. The Chapter of the Ospedale Maggiore became a management centre which planned and controlled the activities of other charitable-attendance structures, the most important of them represented in the corporative administrative body of the Ospedale Maggiore itself. The Ospedale Maggiore Chapter left evidence of its meetings and decisions in more than 3000 proceedings, registered in seven records. The board resolutions of the Ospedale Maggiore of Milan are a basic source for the history of hospitals of all Lombardy. Moreover, they shed light on economic, social and political dynamics of the Duchy of Milan at the end of Quattrocento: the organization of the Ospedale Maggiore board highlights on politics and strategies of the ruling groups of Milan and of the Sforza dynasty as well. Object of this work is the edition, in the form of regestum, of the Ospedale Maggiore Chapter resolutions; a map of the country estate, land, farms, mills, of the Ospedale Maggiore, is edited too.

  20. Cradles of industry and occupational medicine in the modern world: Milan 1906 -- Annus Mirabilis.

    Science.gov (United States)

    Baldasseroni, A; Carnevale, F; Tomassini, L

    2013-01-01

    The example examined is Milan, Italy's main industrial city, where the great International Exhibition was held in 1906. This was the culmination of a period of accelerated industrial growth that modern-day historiography considers to be when Italy's first real industrial revolution began. The twenty-five years between the National Industrial Exhibition of 1881, which was also held in Milan, and the 1906 Exhibition truly reflected a period which was crucial for this transformation to take of. Alongside industry, which was then going through a phase of reorganization and development, Milanese civil society was increasingly turning its interest and attention to what was called the "social question". In an atmosphere of debate and exchange of ideas and experience with Turin, another major industrial city of the north and the birthplace of the Italian engineering and automobile industries, social organizations, political parties and trade unions began to be established thus heralding the Italian approach towards twentieth-century welfare. This is the context in which the first International Congress on Occupational Diseases was held in Milan from 9 to 14 June 1906 within the framework of the International Exhibition. The success achieved with this initiative. organized by Luigi Devoto and Malachia De Cristoforis, which was to continue with the founding of the International Permanent Commission on Occupational Health, showed that the time was ripe for a new subject to appear on the scene--the occupational health physician--who from then on was to play an important role in the promotion of workers' health. The article outlines the main features of the Italian industrial transformation at the turn of the new century with special attention focused on Milan, the capital of industry in Italy. It also describes the impact on public opinion caused by the events surrounding the epic construction of the transalpine railway tunnels which began in 1856 with the Mont Cenis tunnel

  1. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  2. Laser technology and applications in gynaecology.

    Science.gov (United States)

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  3. The application of laser plasma in ophthalmology

    International Nuclear Information System (INIS)

    He Yujiang; Luo Le; Sun Yabing

    2000-01-01

    The production and development of laser plasma are introduced, and the contribution of laser biomedicine and laser plasma technology to ophthalmology is analyzed. The latest three progresses (laser photocoagulation, photo-refractive keratotomy and laser iridectomy) of laser plasma applications in ophthalmology are presented

  4. Laser applications in neurosurgery

    Science.gov (United States)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  5. Preliminary Statistics from the NASA Alphasat Beacon Receiver in Milan, Italy

    Science.gov (United States)

    Nessel, James; Zemba, Michael; Morse, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni TDP no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we provide an overview of the design and data calibration procedure, and present 6 months of preliminary statistics of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The Q-band receiver has demonstrated a dynamic range of 40 decibels at an 8-hertz sampling rate. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  6. Some applications on laser material processing

    International Nuclear Information System (INIS)

    Oros, C.

    2005-01-01

    An overview of the state-of-the-art in laser material processing for a large types of lasers from IR (CO 2 laser, NdYAG laser) to UV (excimer laser) and different kinds of materials (metals, dielectrics) is given. Laser radiation has found a wide range of applications as machining tool for various kinds of materials processing. The machining geometry, the work piece geometry, the material properties and economic productivity claim for customized systems with special design for beam guiding, shaping and delivery in order to fully utilize the laser radiation for surface processing with optimum efficiency, maximum processing speed and high processing quality. The laser-material interaction involves complex processes of heating, melting, vaporization, ejection of atoms, ions, and molecules, shock waves, plasma initiation and plasma expansion. The interaction is dependent on the laser beam parameters (pulse duration, energy and wavelength), the solid target properties and the surrounding environments condition. Experimental results for laser surface melting and laser ablation are given. Also, assuming the applicability of a one dimensional model for short pulses used, and restricting condition to single-pulse exposure, the temperature rise on the target was calculated taking account of the finite optical absorption depth and pulse duration of the laser

  7. High-power copper vapour lasers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

    1995-08-01

    Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

  8. 42. Science week: Laser Science and applications, Aleppo (SY), 2-4 Nov 2002, Book two: Laser science and medical laser applications

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes the papers presented at the 42nd science week of the Supreme Council of Sciences, held in Aleppo (Syria) from 2-4 November 2002. This proceedings is published in three books covering laser science and applications and in particular on material studies and medical uses. Part two covers medical applications, Part three on applications of laser in material sciences, while Part one is for contents and the proceedings program

  9. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  10. Final Remedial Investigation Sampling Plan Addendum. Milan Army Ammunition Plant Remedial Investigation Southern Study Area (Operable Unit No. 5)

    Science.gov (United States)

    1997-09-01

    91-D-0012 Task Order No. 0007 2.4.7 Milan Army Ammunition Plant, Phytoremediation Pilot Study, USAEC, 1996 .. .............................. 2-28 2.5...indicated that heavy metal contamination (lead, chromium, and mercury ) was present at relatively low levels, and explosive contamination was limited to...and MI172 where lead was found at 22.9 j.g/1 and 18.4 Ig/l, respectively. 2.4.7 Milan Army Ammunition Plant, Phytoremediation Pilot Study, USAEC, 1996

  11. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  12. Sorafenib for hepatocellular carcinoma patients beyond Milan criteria after orthotopic liver transplantation: a case control study

    Directory of Open Access Journals (Sweden)

    Teng Chieh-Lin

    2012-02-01

    Full Text Available Abstract Background Orthotopic liver transplantation (OLT is one of the most effective treatments for patients with hepatocellular carcinoma (HCC within the Milan criteria. However, for patients beyond these criteria, the recurrence rate is higher and the prognosis is worse. Sorafenib is the only drug showing survival benefits in advanced HCC patients; however, its role in patients beyond the Milan criteria after OLT remains unclear and requires further investigation. Methods As a case-control study, we retrospectively analyzed 17 Chinese patients beyond Milan criteria undergoing OLT for HCC. These patients were stratified into adjuvant (n = 5, palliative (n = 6, and control groups (n = 6. Results Nine of 11 patients who received sorafenib after OLT needed dose reduction due to more than grade 2 side effects. The disease-free survival rates for patients with or without adjuvant sorafenib were 100% versus 37.5% (p = 0.034 at 6 months, 66.7% versus 9.4% (p = 0.026 at 12 months, and 66.7% versus 0.0% (p = 0.011 at 18 months, respectively. The overall survival rates for patients in palliative and control groups were 66.7% versus 40.0% (p = 0.248 at 6 months, 66.7% versus 40.0% (p = 0.248 at 12 months, and 50.0% versus 20.0% (p = 0.17 at 18 months, respectively. Patients in the adjuvant group had better overall survival rates than those in the palliative and control groups (p = 0.031 at 24-month follow-up. Conclusions Adjuvant sorafenib could possibly extend both disease-free and overall survival for HCC patients beyond Milan criteria after OLT.

  13. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...

  14. Religious tolerance in the Edict of Milan and in the Constitution of Medina

    Directory of Open Access Journals (Sweden)

    Đurić Drago

    2013-01-01

    Full Text Available In this paper, we will try to offer a blueprint for a more general discussion of the relation of how the question of religious tolerance appears in two documents that the Christian and Islamic traditions recognize and celebrate: namely, the Edict of Milan and the Constitution of Medina. These documents were revolutionary for their time. However, these documents alone, as well as religious teachings, on which they are based, cannot be the measure of relations in our time. They are presented in the conceptual framework and value system that prevailed at the time when these teachings and documents were created. Many relations the documents refer to no longer exist. For example, while the Edict of Milan affirms the general right to religion, and the Constitution of Medina affirms the mutual tolerance for Abrahamic, monotheistic religions - people who now declare themselves as atheists or agnostics are not even mentioned.

  15. 42. Science week: Laser Science and applications, Aleppo (SY), 2-4 Nov 2002, Book three: Laser applications

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes the papers presented at the 42nd science week of the Supreme Council of Sciences, held in Aleppo (Syria) from 2-4 November 2002. This proceedings is published in three books covering laser science and applications and in particular on material studies and medical uses. Part two covers medical applications, Part three on applications of laser in material sciences, while Part one is for contents and the proceedings program

  16. ESO Council Visits First VLT Unit Telescope Structure in Milan

    Science.gov (United States)

    1995-12-01

    As the ESO Very Large Telescope (VLT) rapidly takes on shape, Europe has just come one step closer to the realisation of its 556 million DEM astronomical showcase project. Last week, the ESO Council held its semi-annual meeting in Milan (Italy) [1]. During a break in the long agenda list, Council members had the opportunity to visit the Ansaldo factory in the outskirts of this city and to see for the first time the assembled mechanical structure of one of the four 8.2-metre VLT Unit telescopes. This Press Release is accompanied by a photo that shows the ESO Council delegates in front of the giant telescope. After a long climb up the steep staircase to the large Nasmyth platform at the side of the telescope where the astronomical instruments will later be placed, Dr. Peter Creola (Switzerland) , President of the ESO Council and a mechanics expert, grabbed the handrail and surveyed the structure with a professional eye: `I knew it was going to be big, but not that enormous!', he said. Other delegates experienced similar feelings, especially when they watched the 430 tonnes of steel in the 24-metre tall and squat structure turn smoothly and silently around the vertical axis. The Chairman of the ESO Scientific Technical Committee (STC), Dr. Johannes Andersen (Denmark) , summarized his first, close encounter with the VLT by `This is great fun!' and several of his colleague astronomers were soon seen in various corners of the vast structure, engaged in elated discussions about the first scientific investigations to be done with the VLT in two years' time. The VLT Main Structures The visit by Council took place at the invitation of Ansaldo Energia S.p.A. (Genova), EIE-European Industrial Engineering S.r.I. (Venice) and SOIMI-Societa Impianti Industriale S.p.A. (Milan), the three Italian enterprises responsible for the construction of the main structures of the VLT 8.2-metre Unit telescopes. Short speeches were given on this occasion by Drs. Ferruccio Bressani (Ansaldo

  17. The laser principles and application techniques. 2. ed.

    International Nuclear Information System (INIS)

    Maillet, H.

    1986-01-01

    Specialists of each field gathered to give a complete overview of laser techniques possibilities. Operation principles, properties and the different kinds of lasers are detailed. Inertial fusion, isotope separation, medecine are part of the laser application fields presented, and application techniques in these fields are described [fr

  18. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  19. Ärimees ootab annetuse eest Keskerakonnalt vastuteenet / Dannar Leitmaa, Erik Rand, Milan Bališ

    Index Scriptorium Estoniae

    Leitmaa, Dannar, 1982-

    2009-01-01

    Slovakkia ärimehed annetasid Eesti Keskerakonnale 1,4 mln. krooni, avaliku teenistuse eetikakoodeksi autor Ivar Tallo peab välismaistelt annetajatelt raha saamist taunitavaks. Annetustest teistele erakondadele I kvartalis. Vt. samas lühiintervjuud Milan Bališiga

  20. Applications Of Laser Processing For Automotive Manufacturing In Japan

    Science.gov (United States)

    Ito, Masashi; Ueda, Katsuhiko; Takagi, Soya

    1986-11-01

    Recently in Japan, laser processing is increasingly being employed for production, so that laser cutting, laser welding and other laser material processing have begun to be used in various industries. As a result, the number of lasers sold has been increasing year by year in Japan. In the Japanese automotive industry, a number applications have been introduced in laboratories and production lines. In this paper, several current instances of such laser applications will be introduced. In the case of welding, studies have been conducted on applying laser welding to automatic transmission components, in place of electron beam welding. Another example of application, the combination of lasers and robots to form highly flexible manufacturing systems, has been adopted for trimming steel panel and plastic components.

  1. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  2. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  3. High temperature semiconductor diode laser pumps for high energy laser applications

    Science.gov (United States)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  4. Construction and assembling of the trim coils for the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Baccaglioni, G.; Cartegni, G.C.; Fusetti, M.; Gini, L.; Grilli, L.

    1986-01-01

    This paper presents the main characteristics of the trim coils realized for the heavy ions superconducting cyclotron under construction at the Milan University. The guidelines in the choice of the conductor size, of the insulation and cooling parameters are discussed in some details. The main operations in the coils construction, as winding, impregnation, electrical tests and assembling, are described

  5. Laser physics and a review of laser applications in dentistry for children.

    Science.gov (United States)

    Martens, L C

    2011-04-01

    The aim of this introduction to this special laser issue is to describe some basic laser physics and to delineate the potential of laser-assisted dentistry in children. A brief review of the available laser literature was performed within the scope of paediatric dentistry. Attention was paid to soft tissue surgery, caries prevention and diagnosis, cavity preparation, comfort of the patient, effect on bacteria, long term pulpal vitality, endodontics in primary teeth, dental traumatology and low level laser therapy. Although there is a lack of sufficient evidence taking into account the highest standards for evidence-based dentistry, it is clear that laser application in a number of different aetiologies for soft tissue surgery in children has proven to be successful. Lasers provide a refined diagnosis of caries combined with the appropriate preventive adhesive dentistry after cavity preparation. This will further lead to a new wave of micro-dentistry based on 'filling without drilling'. It has become clear from a review of the literature that specific laser applications in paediatric dentistry have gained increasing importance. It can be concluded that children should be considered as amongst the first patients for receiving laser-assisted dentistry.

  6. Predictive Factors of Downstaging of Hepatocellular Carcinoma Beyond the Milan Criteria Treated with Intra-arterial Therapies

    Energy Technology Data Exchange (ETDEWEB)

    Bova, Valentina; Miraglia, Roberto, E-mail: rmiraglia@ismett.edu; Maruzzelli, Luigi [Mediterranean Institute for Transplantation and Advanced Specialized Therapies, (ISMETT), Department of Diagnostic and Interventional Radiology (Italy); Vizzini, Giovanni Battista [Mediterranean Institute for Transplantation and Advanced Specialized Therapies, (ISMETT), Department of Hepatology (Italy); Luca, Angelo [Mediterranean Institute for Transplantation and Advanced Specialized Therapies, (ISMETT), Department of Diagnostic and Interventional Radiology (Italy)

    2013-04-15

    This study was designed to analyze the clinical results in patients suitable for liver transplantation with hepatocellular carcinoma (HCC) who exceeded Milan criteria, which underwent intra-arterial therapies (IAT), to determine predictive factors of successful downstaging. A total of 277 consecutive patients with cirrhosis and HCC were treated by IAT (transarterial oily chemoembolization, transarterial chemoembolization, transarterial embolization) in a single center. Eighty patients exceed the Milan criteria. Patients with infiltrative HCC, hypovascular HCC, and portal vein thrombosis were excluded, with a final study population of 48 patients. Tumor response to IAT was evaluated with CT and/or MRI according to modified RECIST criteria. Successful downstaging was defined as a reduction in the number and size of viable tumors to within the Milan criteria, and serum alpha-fetoprotein (AFP) <100 ng/mL, for at least 6 months. Nineteen patients (39 %) had their tumors successfully downstaged; 29 patients (61 %) did not. Multivariate analysis showed that AFP level <100 ng/mL and 3-year calculated survival probability using the Metroticket calculator were the only independent predictors of successful downstaging (p < 0.023 and p < 0.049 respectively). Biological characteristics of HCC as AFP levels <100 ng/mL and high 3-year calculated survival probability may predict a good response to downstage after IAT.

  7. Orthogonal polarization in lasers physical phenomena and engineering applications

    CERN Document Server

    Zhang, Shulian

    2013-01-01

    This practical book summarizes the latest research results of orthogonally polarized lasers, birefringence laser cavities, and their applications. Coverage ranges from basic principles and technologies to the characteristics of different cavities and lasers to various measurement techniques. A number of figures, experimental designs, and measurement curves are included, helping readers gain a thorough understanding of the many applications in modern engineering and start their own projects. Many types of relevant lasers (Helium/Neon lasers, Nd:YAG lasers, laser diodes, etc.) are also discussed

  8. Abstracts of 2. International conference on lasers and their applications

    International Nuclear Information System (INIS)

    1993-01-01

    The following topics are presented at 2. international conference on lasers and their applications in Iran: laser principle and technology, laser applications in spectroscopy; nonlinear optics; industry; medicine; and laser related techniques

  9. The KAERI laser facility with temporal laser beam shaping for application's user

    International Nuclear Information System (INIS)

    Hong, Sung Ki; Kim, Min Suk; Kim, Young Won; Ko, Kwanghoon; Lim, Changhwan; Seo, Young Seok

    2008-01-01

    The Korea Atomic Energy Research Institute(KAERI)has been developed a high energy Nd:Glass laser facility(KLF)for fast ignition research and high energy physics applications at early 2008. Now, we are researching the temporal laser beam shaping for application's user. The temporal laser beam shaping has been applied to a number of industrial applications. The KLF beam shaping system with fiber based consists of two electro optic modulator with DC bias using a Mach Zehnder interferometer, an arbitrary electronic waveform generator, a continuous wavelength fiber laser source, a fiber based pulse amplification system and DC bias source to generate temporally shaped pulses with a high extinction ratio and high resolution. RF signal waveform user defined by an arbitrary electronic waveform generator is only connected to one electro optic modulator. DC bias source with auto feed back or manual controller is connected both two electro optic modulators. Emitting laser light from a continuous wavelength fiber laser source is modulated to meet a user defined laser pulse with a high extinction ratio by two electro optic modulators. Experimental results are shown in Fig.1. Figure 1(a)shows two programmed waveforms with the signal width 10ns in an arbitrary electronic waveform generator. Figure 1(b)shows output laser pulses with sub mJ energy from amplification results of the KLF beam shaping system which can control the pulse width ranges from 400ps to sub us

  10. Argon laser application to endodontics

    Science.gov (United States)

    Blankenau, Richard J.; Ludlow, Marvin; Anderson, David

    1993-07-01

    The application of laser technology to endodontics has been studied for some time. At the present time several major problems are being investigated: (1) removal of infected tissues, (2) sterilization of canals, (3) obturation of canals, and (4) preservation of the vitality of supporting tissues. This list is not intended to imply other problems do not exist or have been solved, but it is a starting point. This paper reviews some of the literature that relates to laser applications to endodontics and concludes with some of the findings from our investigation.

  11. Development and application of a far infrared laser

    International Nuclear Information System (INIS)

    Nakayama, Kazuya; Okajima, Shigeki; Kawahata, Kazuo

    2011-01-01

    There has been a 40 years history on the application of an infrared laser to interference, polarization and scattering light sources in fusion plasma diagnostics. It is one of important light sources in ITER plasma diagnostics too. In the present review, authors recall the history of the infrared laser development especially of cw infrared lasers. In addition, the state-of-the-art technology for infrared lasers, infrared components and its applications to plasma diagnostics are discussed. (J.P.N.)

  12. Application of lasers in endodontics

    Science.gov (United States)

    Ertl, Thomas P.; Benthin, Hartmut; Majaron, Boris; Mueller, Gerhard J.

    1997-12-01

    Root canal treatment is still a problem in dentistry. Very often the conventional treatment fails and several treatment sessions are necessary to save the tooth from root resection or extraction. Application of lasers may help in this situation. Bacteria reduction has been demonstrated both in vitro and clinically and is either based on laser induced thermal effects or by using an ultraviolet light source. Root canal cleansing is possible by Er:YAG/YSGG-Lasers, using the hydrodynamic motion of a fluid filled in the canals. However root canal shaping using lasers is still a problem. Via falsas and fiber breakage are points of research.

  13. Application of laser in powder metallurgy

    International Nuclear Information System (INIS)

    Tolochko, N.K.

    1995-01-01

    Modern status of works in the field of laser application in powder metallurgy (powders preparation, sintering, coatings formation, powder materials processing) is considered. The attention is paid to the new promising direction in powder products shape-formation technology - laser layer-by-layer selective powders sintering and bulk sintering of packaged layered profiles produced by laser cutting of powder-based sheet blanks. 67 refs

  14. Scientific applications of frequency-stabilized laser technology in space

    Science.gov (United States)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  15. Solar Pumped Lasers and Their Applications

    Science.gov (United States)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  16. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  17. Review of soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the ''water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab

  18. Diode Laser Application in Soft Tissue Oral Surgery

    Science.gov (United States)

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  19. Follow-up of 53 Alzheimer patients with the MODA (Milan Overall Dementia Assessment).

    Science.gov (United States)

    Capitani, E; Manzoni, L; Spinnler, H

    1997-01-01

    Fifty-three patients affected by Alzheimer's disease entered a longitudinal survey aimed at studying which factors influence the rate of progression, assessed by means of the Milan Overall Dementia Assessment (MODA). The second examination was carried out, on average, after 16 months from the first assessment. Only age proved to influence the decline rate, which was faster in elders.

  20. The current status of laser applications in dentistry.

    Science.gov (United States)

    Walsh, L J

    2003-09-01

    A range of lasers is now available for use in dentistry. This paper summarizes key current and emerging applications for lasers in clinical practice. A major diagnostic application of low power lasers is the detection of caries, using fluorescence elicited from hydroxyapatite or from bacterial by-products. Laser fluorescence is an effective method for detecting and quantifying incipient occlusal and cervical carious lesions, and with further refinement could be used in the same manner for proximal lesions. Photoactivated dye techniques have been developed which use low power lasers to elicit a photochemical reaction. Photoactivated dye techniques can be used to disinfect root canals, periodontal pockets, cavity preparations and sites of peri-implantitis. Using similar principles, more powerful lasers can be used for photodynamic therapy in the treatment of malignancies of the oral mucosa. Laser-driven photochemical reactions can also be used for tooth whitening. In combination with fluoride, laser irradiation can improve the resistance of tooth structure to demineralization, and this application is of particular benefit for susceptible sites in high caries risk patients. Laser technology for caries removal, cavity preparation and soft tissue surgery is at a high state of refinement, having had several decades of development up to the present time. Used in conjunction with or as a replacement for traditional methods, it is expected that specific laser technologies will become an essential component of contemporary dental practice over the next decade.

  1. CTE:YAG laser applications in dentistry

    Science.gov (United States)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  2. Application of Laser Irradiation for Restorative Treatments.

    Science.gov (United States)

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes.

  3. Treatment Algorithm for the Hypertension Specialist after the Milan Meeting in 2007

    Czech Academy of Sciences Publication Activity Database

    Peleška, Jan; Anger, Z.; Buchtela, David; Tomečková, Marie; Veselý, Arnošt; Zvárová, Jana

    2007-01-01

    Roč. 30 (2007), s. 374-374 ISSN 1420-4096. [Central European Meeting on Hypertension and Cardiovascular Disease Prevention. 11.10.2007-13.10.2007, Kraków] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : hypertension specialist * treatment algorithm for the hypertension * treatment after the Milan Meeting in 2007 Subject RIV: FA - Cardiovascular Disease s incl. Cardiotharic Surgery

  4. The radioactive cloud on Milan and other neighbouring sites

    International Nuclear Information System (INIS)

    Capra, D.; Facchini, U.; Gianelle, V.; Marcazzan, G.M.; Ravasini, G.; Carreri, V.; Gualdi, R.; Sgorbati, G.; Tebaldi, G.

    1986-01-01

    The radioelements spread from the nuclear disaster in Ukraina reached the Milan atmosphere the evening of April, 30. A number of measurements started on air particulate; a number of radioelements was evidenced: Iodine, Tellerium, Cesium, Ruthenium and other. Then the presence of radioelements have been found in rain, in the first days of May, and consequently in the soil. Different samples show that the level of radioactivity in the Como lake area was greater than the average levels in Lombardy by a factor 2 or 3. Direct measurements of the gamma level on the ground give more evidence to this fact. The role of the rainfalls is discussed

  5. Femtosecond laser-matter interaction theory, experiments and applications

    CERN Document Server

    Gamaly, Eugene G

    2011-01-01

    Basics of Ultra-Short Laser-Solid InteractionsSubtle Atomic Motion Preceding a Phase Transition: Birth, Life and Death of PhononsUltra-Fast Disordering by fs-Lasers: Superheating Prior to Entropy CatastropheAblation of SolidsUltra-Short Laser-Matter Interaction Confined Inside a Bulk of Transparent SolidApplications of Ultra-Short Laser-Matter InteractionsConclusion Remarks.

  6. The Milan Project: A New Method for High-Assurance and High-Performance Computing on Large-Scale Distributed Platforms

    National Research Council Canada - National Science Library

    Kedem, Zvi

    2000-01-01

    The MILAN project, a joint effort involving Arizona State University and New York University, has produced and validated fundamental techniques for the realization of efficient, reliable, predictable...

  7. Laser applications in nuclear physics

    International Nuclear Information System (INIS)

    Murnick, D.E.

    1985-01-01

    A large fraction of the International Workshop on Hyperfine Interactions was devoted to various aspects of 'laser applications in nuclear physics'. This panel discussion took place before all of the relevant formal presentations on the subject were complete. Nevertheless, there had been sufficient discussions for the significance of this emerging area of hyperfine interaction research to be made clear. An attempt was made to identify critical and controversial aspects of the subject in order to critically evaluate past successes and indicate important future directions of research. Each of the panelists made a short statement on one phase of laser-nuclear physics research, which was followed by general discussions with the other panelists and the audience. In this report, a few areas which were not covered in the formal presentations are summarized: extensions of laser spectroscopy to shorter lifetimes; extension of laser techniques to nuclei far off stability; interpretation of laser spectroscopic data; sensitivity and spectral resolution; polarized beams and targets. (Auth.)

  8. The semi classical laser theory and some applications of laser

    International Nuclear Information System (INIS)

    Abdalla, Abbaker Ali

    1995-04-01

    The semi classical laser theory is concerned with the interaction between light and matter in such a way that the matter is treated quantum-mechanically whereas light is treated in terms of the classical electromagnetic equations. In this work the Maxwell-Bloch equations are employed to describe the interaction between light and matter. Applications of the theory as well as different types of lasers are reviewed. (Author)

  9. Laser application maintenance technologies for nuclear power plant

    International Nuclear Information System (INIS)

    Shima, Seishi; Sato, Kenji; Kobayashi, Masahiro; Sano, Yuji; Kimura, Seiichiro

    2000-01-01

    Several plants that were the first to be constructed in Japan have been operating for more than 20 years now, and preventive maintenance is therefore a matter of great importance. This paper summarizes the status of applied laser maintenance technologies both preventive and repair. Especially for the laser peening and laser de-sensitization treatment technology, field applications were also described in detail. In future, expansion of field application area on the preventive maintenance, repair and inspection technologies will be developed. (author)

  10. Ultraintense lasers and their applications

    International Nuclear Information System (INIS)

    Mourou, G.A.

    2001-01-01

    Traditional optics concerns physical phenomena in the electron-volt regime. The new frontier will address giga-electron-volt energy scales. In the last decade, lasers have undergone orders-of-magnitude jumps in peak power, with the invention of the technique of chirped pulse amplification (CPA) and the refinement of femtosecond techniques. Modern CPA lasers can produce intensities greater than 10 21 W/cm 2 , one million times greater than previously possible. These ultraintense lasers give researchers a tool to produce unprecedented pressures (terabars), magnetic fields (gigagauss), temperatures (10 10 K), and accelerations (10 25 g) with applications in fusion energy, nuclear physics, high-energy physics, astrophysics, and cosmology. (author)

  11. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  12. Laser applications for energy. Fifty years since advent of laser and next thirty years

    International Nuclear Information System (INIS)

    Nakai, Sadao

    2011-01-01

    The utilization of light has been changed since the advent of lasers about fifty years ago. Now in the twenty first century, laser science is being applied in every industry as the fundamental technology. In the recent years, remarkable progresses have been made in the semiconductor lasers of high power and wide wavelength region. The amazing developments of ceramics laser materials like YAG and nonlinear optics materials of organic crystals have been achieved as well as the big progress in the fiber lasers. It is also to be pointed out that very high power ultra short laser pulses have become available. In the field of power photonics, which is based on the power semiconductor lasers, fiber lasers and new laser materials, various industrial applications are expected to be constructed further in civil engineering, manufacturing technology, agricultural and biological applications, medical utilization and space sciences. It is expected, by the development of ultra short pulse and ultra high mean power lasers, that particle accelerations, ultra high density sciences, nuclear fusion neutron sources and laser fusion power reactors are to be advanced drastically. Recent development and future prospects of high power lasers are illustrated. Lasers are now regarded as one of the key technologies in line with the national policy toward the creation of innovative industries. Realization of the laser fusion reactor is the most challenging target in the coming thirty years. (S. Funahashi)

  13. Applications of Gunn lasers

    Science.gov (United States)

    Balkan, N.; Chung, S. H.

    2008-04-01

    The principle of the operation of a Gunn laser is based on the band to band recombination of impact ionized non-equilibrium electron-hole pairs in propagating high field space-charge domains in a Gunn diode, which is biased above the negative differential resistance threshold and placed in a Fabry-Perot or a vertical micro cavity (VCSEL). In conventional VCSEL structures, unless specific measures such as the addition of oxide apertures and use of small windows are employed, the lack of uniformity in the density of current injected into the active region can reduce the efficiency and delay the lasing threshold. In a vertical-cavity structured Gunn device, however, the current is uniformly injected into the active region independently of the distributed Bragg reflector (DBR) layers. Therefore, lasing occurs from the entire surface of the device. The light emission from Gunn domains is an electric field induced effect. Therefore, the operation of Gunn-VCSEL or F-P laser is independent of the polarity of the applied voltage. Red-NIR VCSELs emitting in the range of 630-850 nm are also possible when Ga 1-xAl xAs (x communications. Furthermore the device may find applications as an optical clock and cross link between microwave and NIR communications. The operation of a both Gunn-Fabry-Perot laser and Gunn-VCSEL has been demonstrated by us recently. In the current work we present the potential results of experimental and theoretical studies concerning the applications together with the gain and emission characteristics of Gunn-Lasers.

  14. Laser dentistry: A new application of excimer laser in root canal therapy

    International Nuclear Information System (INIS)

    Pini, R.; Salimbeni, R.; Vannini, M.; Barone, R.; Clauser, C.

    1989-01-01

    We report the first study of the application of excimer lasers in dentistry for the treatment of dental root canals. High-energy ultraviolet (UV) radiation emitted by an XeCl excimer laser (308 nm) and delivered through suitable optical fibers can be used to remove residual organic tissue from the canals. To this aim, UV ablation thresholds of dental tissues have been measured, showing a preferential etching of infiltrated dentin in respect to healthy dentin, at laser fluences of 0.5-1.5 J/cm 2 . This technique has been tested on extracted tooth samples, simulating a clinical procedure. Fibers of decreasing core diameters have been used to treat different sections of the root canal down to its apical portion, resulting in an effective, easy, and fast cleaning action. Possible advantages of excimer laser clinical applications in respect to usual procedures are also discussed

  15. Laser applications in the electronics and optoelectronics industry in Japan

    Science.gov (United States)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  16. Quantum cascade lasers, systems, and applications in Europe

    Science.gov (United States)

    Lambrecht, Armin

    2005-03-01

    Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.

  17. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  18. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  19. High-power CO laser and its potential applications

    International Nuclear Information System (INIS)

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  20. Comparison of three different laser systems for application in dentistry

    Science.gov (United States)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  1. Laser spectroscopy and its applications

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Solarz, R.W.; Paisner, J.A.

    1987-01-01

    Laser spectroscopy has applications in diverse fields ranging from combustion studies and trace-sample detection to biological research. At the same time, it has also contributed greatly to the discovery of hundreds of new lasers. This symbiotic relationship has promoted an especially rapid expansion of the field. This book provides a review of the subject. It includes, for example, chapters on laser isotope separation techniques, enabling scientists to compare their relative advantages and drawbacks. This volume also gives numerous tables that summarize important features of lasers, experiments, and parameters for quick reference. In addition, it presents diagrams for visualizing rotational molecular energy levels of high J in order to enhance our understanding of molecular motions and their relationship to molecular energy levels. Offering insights into how experts think this technology will improve, it considers research and development in each topic discussed

  2. Violència i memòria en Milan Kundera

    OpenAIRE

    Tafalla, Marta

    2007-01-01

    Partint de la filosofia de la memòria de TW Adorno, aquest article defensa la tesi deque la literatura té una major capacitat que la història o la filosofia per explicar Enquin consisteixen els règims totalitaris i per salvaguardar la memòria de les seves víctimes. Amb aquest propòsit, pren com a exemple la literatura de l'escriptor txec Milan Kundera yanaliza algunes de les seves obres, especialment El llibre del riure i l'oblit, La insoportablelevedad l'ésser i el seu assaig L'art de...

  3. Overview on new diode lasers for defense applications

    Science.gov (United States)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range market.

  4. Abstracts of the 5. International Conference on Lasers and their Applications

    International Nuclear Information System (INIS)

    1985-01-01

    New results have been presented in the fields of laser physics and laser applications including the development of new laser light sources, new laser frequencies in the UV and VUV spectral regions using anti-Stokes Raman scattering, nonlinear optical effects for the formation of ultrashort optical pulses, laser spectroscopy, collisionless multiphoton excitation processes using molecular beams, selective generation of free radicals by laser, laser applications in medicine, plasma diagnostics analysing X-ray spectra for studying laser fusion problems, coherence properties in phase-sampling interferometric techniques, and fundamental problems in quantum physics and nonlinear processes

  5. Para-hydrogen raman laser and its application to laser induced chemistry

    International Nuclear Information System (INIS)

    Tashiro, Hideo

    1988-01-01

    The report outlines the mechanism of the para-hydrogen Raman laser as a infrared light source, and its application to laser induced chemistry. The Stoke's wave number after a Raman shift is equal to the difference between the wave number of the CO 2 laser used for excitation and the rotation Raman wave number of the hydrogen molecule. A Raman laser can serve as an infrared source. CO 2 laser oscillation beam in the range of 9∼11 micrometers is selected and the frequency of infrared beam is varied by changing the wave number of the CO 2 laser beam. A problem with the Raman laser is that the Raman scatterring gain is small due to a large wavelength. In developing equipment, a special mechanism is required to solve this problem. A Raman laser comprises a CO 2 laser for excitation and multi-pulse Raman cells. The combination of a TEA oscillator and amplifiers gives CO 2 pulses with a peak power of about several tens of MW. Many heavy metal compounds including fluorides, carbonyl compounds and other organic compounds, absorb light with wavelengths in the same range as those of the Raman laser. Such compounds can be dissociated directly by applying Raman laser beams. The laser will be helpful for separation of isotopes, etc. (Nogami, K.)

  6. Service Areas, Motorway Exits, Railway Stations: New Entrances to Access Expo 2015 Landscapes, between Milan & Turin

    Directory of Open Access Journals (Sweden)

    Andrea Rolando

    2014-12-01

    Full Text Available This paper aims at understanding how a better relationship between infrastructures and landscapes can be established, by encouraging new ways to experience and effectively use the places that are located near the infrastructural nodes. The work starts from the identification of a specific case study: the landscape in-between the cities of Milan and Turin, that are connected by the infrastructural bundle made of the three lines of the regional / historical railways, the motorway and the new tracks of the high speed train. The research highlights cultural heritage sites and places of interest, points out a series of areas and routes that connect them with the infrastructure. The Milan 2015 Expo could in this sense be a very powerful catalyst, by encouraging these intermodal uses of the infrastructural bundle to reach and truly experience the agricultural and cultural landscapes located around it.

  7. Development of pulsed UV lasers and their application in laser spectroscopy

    International Nuclear Information System (INIS)

    De la Rosa, M I; Perez, C; Gruetzmacher, K; GarcIa, D; Bustillo, A

    2011-01-01

    The application of two-photon laser spectroscopy to plasma diagnostics requires tuneable UV-laser spectrometers providing: some mJ pulse energy at ns time scale with spectral quality close to Fourier Transform Limit, good pulse to pulse reproducibility and tuning linearity. We report about two different systems, a first laser specially optimized for the radiation at 243 nm, which is required for the 1S-2S two photon transition of atomic hydrogen, and a second one generating 205 nm suited for the transition 1S - 3S/3D.

  8. Progress in the applicability of plasma X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, T., E-mail: T.Kuehl@gsi.de; Aurand, B.; Bagnoud, V.; Ecker, B.; Eisenbarth, U. [GSI (Germany); Guilbaud, O. [Universite Paris Sud (France); Fils, J.; Goette, S. [GSI (Germany); Habib, J. [Universite Paris Sud (France); Hochhaus, D.; Javorkova, D. [GSI (Germany); Neumayer, P. [Extreme Matter Institute, EMMI (Germany); Kazamias, S.; Pittman, M.; Ros, D. [Universite Paris Sud (France); Seres, J.; Spielmann, Ch. [Friedrich Schiller-University (Germany); Zielbauer, B.; Zimmer, D. [GSI (Germany)

    2010-02-15

    Proposed as satellite-based weapons during the 1980s, X-ray lasing was for a long time only achieved with enormous amounts of pump energy in either nuclear explosions or at kilojoule-class laser installations. During the last few years a tremendous development was achieved, most visible in the realisation of the FEL lasers at DESY and SLAC. As important for a wider applicability is the enormous reduction in pump energy for laser pumped plasma X-ray lasers, which now brings such devices into the range of applications for diagnostics and spectroscopy even in smaller laboratories. Main developments were the transient excitation scheme and the optimized pumping concepts. This paper concentrates on developments at the GSI Helmholtzcenter at Darmstadt aiming towards reliable X-ray laser sources in the range from 50 to several 100 eV. The main driving forces for the laser development at GSI are the possible application for the spectroscopy of Li-like ions in the storage ring ESR and the future storage ring NESR at FAIR, and the interest in novel plasma diagnostics.

  9. Progress in the applicability of plasma X-ray lasers

    International Nuclear Information System (INIS)

    Kuehl, T.; Aurand, B.; Bagnoud, V.; Ecker, B.; Eisenbarth, U.; Guilbaud, O.; Fils, J.; Goette, S.; Habib, J.; Hochhaus, D.; Javorkova, D.; Neumayer, P.; Kazamias, S.; Pittman, M.; Ros, D.; Seres, J.; Spielmann, Ch.; Zielbauer, B.; Zimmer, D.

    2010-01-01

    Proposed as satellite-based weapons during the 1980s, X-ray lasing was for a long time only achieved with enormous amounts of pump energy in either nuclear explosions or at kilojoule-class laser installations. During the last few years a tremendous development was achieved, most visible in the realisation of the FEL lasers at DESY and SLAC. As important for a wider applicability is the enormous reduction in pump energy for laser pumped plasma X-ray lasers, which now brings such devices into the range of applications for diagnostics and spectroscopy even in smaller laboratories. Main developments were the transient excitation scheme and the optimized pumping concepts. This paper concentrates on developments at the GSI Helmholtzcenter at Darmstadt aiming towards reliable X-ray laser sources in the range from 50 to several 100 eV. The main driving forces for the laser development at GSI are the possible application for the spectroscopy of Li-like ions in the storage ring ESR and the future storage ring NESR at FAIR, and the interest in novel plasma diagnostics.

  10. Bronchial hyperreactivity and arterial carboxyhemoglobin as detectors of air pollution in Milan: a study on normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Clini, V.; Pozzi, G.; Ferrara, A.

    1985-01-01

    Research has been carried out in the town area of Milan on 275 subjects. For each patient the following data have been measured: ventilatory profile, aspecific bronchial reactivity, arterial concentration in CO and acid-base balance. The results obtained have been divided into four groups, according to the level of SO/sub 2/ in the area of residence of the subjects, who have also been studied with reference to the habit of smoking. The data obtained have shown (1) an alteration of the ventilatory function, with decrease of oxygen tension in arterial blood in all subjects. (2) Increase of bronchial irritability and CO concentration in arterial blood have been found in these subjects. (3) The division of the results according to the level of SO/sub 2/ pollution in the areas of residence of the patients showed the presence, in the most polluted areas of Milan (NE and SW), of higher levels of bronchial irritability and higher CO rates in arterial blood. (4) Cigarette smoking does not seem to play a major role in causing bronchial irritability. It certainly increases CO concentration: smokers have HbCO concentration higher than nonsmokers in all four areas. (5) Air pollution is more important than cigarette smoking in determining CO saturation of blood. Nonsmokers living in the most polluted areas of Milan (NE) show a higher concentration of CO in arterial blood than smokers living in the less polluted areas (SW).

  11. Advances in solid state laser technology for space and medical applications

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  12. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  13. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  14. Femtosecond laser's application in the corneal surgery

    Directory of Open Access Journals (Sweden)

    Shu-Liang Wang

    2015-10-01

    Full Text Available With the rapid development over the past two decades,femtosecond(10-15slasers(FShas become a new application in ophthalmic surgery. As laser power is defined as energy delivered per unit time, decreasing the pulse duration to femtosecond level(100fsnot only increases the power delivered but also decreases the fluence threshold for laser induced optical breakdown. In ablating tissue, FS has an edge over nanosecond lasers as there is minimal collateral damage from shock waves and heat conduction during surgical ablation. Thus, application of FS has been widely spread, from flap creation for laser-assisted in situ keratomileusis(LASIKsurgery, cutting of donor and recipient corneas in keratoplasty, creation of pockets for intracorneal ring implantation. FS applied in keratoplasty is mainly used in making graft and recipient bed, and can exactly cut different tissue of keratopathy. FS can also cut partial tissue of cornea, even if it is under the moderate corneal macula and corneal edema condition.

  15. The development of lasers at the CEA Military Applications Direction

    International Nuclear Information System (INIS)

    Coutant, J.

    1997-01-01

    A historical review of the development of lasers and their application at the CEA to the study of plasma inertial confinement in the framework of military applications, is presented. The first solid laser was a ruby laser, and has been used for studying laser-matter interaction, which led to a better knowledge of fusion plasmas. Advancements were achieved with a new lasing medium (neodymium doped glass), the control of pulse duration and shape, parallel setting of several laser chains (OCTAL), the use of glass disks instead of bars (PHEBUS laser)... In the late 70's, power lasers reached the power needed to experiment D-T implosions and give the way to future simulations of the plasma conditions encountered in thermonuclear explosions

  16. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    Science.gov (United States)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  17. Therapeutic application of lasers in ophthalmology; Terapeutyczne zastosowanie laserow w okulistyce

    Energy Technology Data Exchange (ETDEWEB)

    Misiuk-Hojlo, M; Krzyzanowska-Berkowska, P; Hill-Bator, A [Department of Ophthalmology, Silesian Piasts University of Medicine in Wroclaw (Poland)

    2007-07-01

    Lasers have found application in diverse branches of medicine. In ophthalmology, laser technology has various therapeutic and diagnostic applications. The purpose of this article is to review the major therapeutic applications of lasers in different eye disorders. The effects of lasers on biological tissues and different laser techniques as well as the indications for laser therapy in various parts of the eye are discussed. Lasers are used to treat glaucoma and many vascular disorders of the retina. Laser treatment may be useful in preventing the development of neovascularization in diabetic retinopathy, BRVO, or CRVO. Laser techniques are also available for the treatment of the exudative form of age-related macular degeneration (AMD) and some malignant and benign intraocular tumors and in retina abnormalities which predispose to rhegmatogenous retinal detachment. Corneal laser surgery is the most frequently applied laser procedure in ophthalmology. PRK, LASIK, and LASEK are used to correct errors in vision such as myopia, hyperopia, and astigmatism. Laser photocoagulation is also helpful in cataract surgery. Nowadays, lasers have become so universal that it is difficult to imagine ophthalmology without them. We are still witnessing rapid advances in the development of laser techniques, especially in plastic surgery, cataract extraction, and ocular imaging. (authors)

  18. Premise to implement a grading system to evaluate the sanitary level in food service establishments in Milan, Italy

    Directory of Open Access Journals (Sweden)

    Katia Razzini

    2015-08-01

    Full Text Available The regulatory framework of the official controls on food safety, the criteria and methods from the planning of interventions in the field of official control to the management of information flows, and the standards described in the operation manual of the local competent authorities drafted by the Lombardy Region (2011 were evaluated. A questionnaire consisting of n. 10 questions with multiple answers draft in partnership with EPAM (the Association of Provincial Public Retail and catering businesses in Milan to n. 107 Food service establishments of Milan shows that 92% of managers approve the introduction of a grading system. The regulatory framework is planned to support the implementation of risk assignment, unfortunately the attribution of risk category of retail and catering businesses is still different among regions.

  19. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Ajlal, Syed

    2016-01-01

    Light amplification by stimulated emission of radiation (laser) has been used widely in a range of biomedical and dental applications in recent years. In the field of restorative dentistry, various kinds of lasers have been developed for diagnostic (e.g. caries detection) and operative applications (e.g. tooth ablation, cavity preparation, restorations, bleaching). The main benefits for laser applications are patient comfort, pain relief and better results for specific applications. Major concerns for using dental lasers frequently are high cost, need for specialized training and sensitivity of the technique, thereby compromising its usefulness particularly in developing countries. The main aim of this paper is to evaluate and summarize the applications of lasers in restorative dentistry, including a comparison of the applications of lasers for major restorative dental procedures and conventional clinical approaches. A remarkable increase in the use of lasers for dental application is expected in the near future. PMID:26642047

  20. Laser measurement technology fundamentals and applications

    CERN Document Server

    Donges, Axel

    2015-01-01

    Laser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating p...

  1. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    Science.gov (United States)

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications.

  2. Living like a king? The entourage of Odet de Foix, vicomte de Lautrec, governor of Milan.

    Directory of Open Access Journals (Sweden)

    Philippa Woodcock

    2015-11-01

    Full Text Available In the early sixteenth century, the de Foix family were both kin and intimate councillors to the Valois kings, Louis XII and François I. With a powerbase in Guyenne, the de Foix tried to use their connections at court to profit from the French conquest of Milan, 1499-1522. This paper will explore the career of one prominent family member, Odet de Foix, vicomte de Lautrec (1483-1528. Lautrec was a Marshal of France, who served in Italy as a soldier and governor. He was key to the royal entourage, amongst François I’s intimates at the Field of the Cloth of Gold. His sister, Françoise, was also the king’s mistress. The paper will examine Lautrec’s entourage from two aspects. Firstly, it asks how Lautrec established his entourage from his experience in Navarre and Italy and as a member of the royal retinue. It establishes the importance of familial and regional ties, but also demonstrates the important role played by men of talent. Secondly, it explores Lautrec's relationship to his entourage once governor of Milan. Were ties of blood, career or positions of Italian prestige the most important for a governor when he chose his intimates? Were compromises made with Italian traditions and elites to sustain his rule? Did he learn from the experience and failures of previous governors?  The article contributes to a gap in scholarship for the later period of French Milan from 1515-1522. It also adds to our knowledge of the behaviour and ambitions of early modern governors.

  3. Electron emission from laser irradiating target normal sheath acceleration (TNSA)

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, Mariapompea

    2016-01-01

    Roč. 171, 9-10 (2016), s. 754-765 ISSN 1042-0150. [12th Workshop on European Collaboration for Higher Education and Research in Nuclear Engineering and Radiological Protection. Bologna, Catania, Milan, 30.05.2016-01.06.2016] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : electron emission from plasma * TNSA * TOF * SiC * plastic scintillator * Thomson parabola spectrometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.443, year: 2016

  4. Optical polymers for laser medical applications

    Science.gov (United States)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  5. Laser-induced nuclear physics and applications

    International Nuclear Information System (INIS)

    Ledingham, K.W.D.; Singhal, R.P.; McKenna, P.; Spencer, I.

    2002-01-01

    With a 1 ps pulse laser at 1 μm wavelength, He gas is ionised at about 3.10 14 W.cm -2 . As the intensity increases, the inert gases become multiple ionised and between 10 18 and 10 19 W.cm -2 photon induced nuclear reactions are energetically possible. Close to 10 21 W.cm -2 pion production can take place. At the very high intensities of 10 28 W.cm -2 , it can be shown that electron-positron pairs can be created from the vacuum. The authors review the applications of high intensity focused laser beams in particle acceleration, laser-induced fission and laser production of protons and neutrons. Exciting new phenomena are expected at intensities higher than 10 22 W.cm -2 , -) the oscillating electric field can affect directly the protons in exactly the same way as the electrons in the plasma, -) fusion reactions by direct laser acceleration of ions. (A.C.)

  6. Prospective application of laser plasma propulsion in rocket technology

    International Nuclear Information System (INIS)

    Lu Xin; Zhang Jie; Li Yingjun

    2002-01-01

    Interest in laser plasma propulsion is growing intensively. The interaction of high intensity short laser pulses with materials can produce plasma expansion with a velocity of hundreds of km/s. The specific impulse of ablative laser propulsion can be many tens of times greater than that of chemical rockets. The development and potential application of laser plasma propulsion are discussed

  7. Laser beam diagnostics for metalworking applications

    International Nuclear Information System (INIS)

    Ramos, T.J.; Lingenfelter, A.C.

    1984-01-01

    The Materials Fabrication Division of Lawrence Livermore National Laboratory (LLNL) has three pulsed Nd-YAG lasers dedicated to metalworking. The units are used in a job shop primarily for welding. They also have a number of applications requiring cutting and drilling capability. Each of these metalworking operations requires somewhat different laser beam characteristics. As most investigators have found, the mode of the laser beam and the mode stability are the key variables which must be controlled if optimum results are to be achieved. The authors use several techniques to observe and measure these variables, i.e. Charge Couple Device (CCD) Camera, Thermal Image Plate and thermal-sensitive paper

  8. Predicting functional impairment in brain tumor surgery: the Big Five and the Milan Complexity Scale.

    Science.gov (United States)

    Ferroli, Paolo; Broggi, Morgan; Schiavolin, Silvia; Acerbi, Francesco; Bettamio, Valentina; Caldiroli, Dario; Cusin, Alberto; La Corte, Emanuele; Leonardi, Matilde; Raggi, Alberto; Schiariti, Marco; Visintini, Sergio; Franzini, Angelo; Broggi, Giovanni

    2015-12-01

    OBJECT The Milan Complexity Scale-a new practical grading scale designed to estimate the risk of neurological clinical worsening after performing surgery for tumor removal-is presented. METHODS A retrospective study was conducted on all elective consecutive surgical procedures for tumor resection between January 2012 and December 2014 at the Second Division of Neurosurgery at Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan. A prospective database dedicated to reporting complications and all clinical and radiological data was retrospectively reviewed. The Karnofsky Performance Scale (KPS) was used to classify each patient's health status. Complications were divided into major and minor and recorded based on etiology and required treatment. A logistic regression model was used to identify possible predictors of clinical worsening after surgery in terms of changes between the preoperative and discharge KPS scores. Statistically significant predictors were rated based on their odds ratios in order to build an ad hoc complexity scale. For each patient, a corresponding total score was calculated, and ANOVA was performed to compare the mean total scores between the improved/unchanged and worsened patients. Relative risk (RR) and chi-square statistics were employed to provide the risk of worsening after surgery for each total score. RESULTS The case series was composed of 746 patients (53.2% female; mean age 51.3 ± 17.1). The most common tumors were meningiomas (28.6%) and glioblastomas (24.1%). The mortality rate was 0.94%, the major complication rate was 9.1%, and the minor complication rate was 32.6%. Of 746 patients, 523 (70.1%) patients improved or remained unchanged, and 223 (29.9%) patients worsened. The following factors were found to be statistically significant predictors of the change in KPS scores: tumor size larger than 4 cm, cranial nerve manipulation, major brain vessel manipulation, posterior fossa location, and eloquent area involvement

  9. Applications of picosecond lasers and pulse-bursts in precision manufacturing

    Science.gov (United States)

    Knappe, Ralf

    2012-03-01

    Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.

  10. A Multi-Wavelength IR Laser for Space Applications

    Science.gov (United States)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  11. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  12. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  13. Pulse power technology application to lasers

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1975-01-01

    Recent developments of intense relativistic electron beam accelerators and the associated pulse power technology are reviewed. The design of specific accelerators for gas laser excitation sources is discussed. A 3 MV, 800 kA, 24 ns electron beam accelerator under development for the electron beam fusion program is described along with the low jitter multichannel oil-dielectric rail switches developed for this application. This technology leads to the design of a 20 kJ, short pulse accelerator optimized gas laser excitation with radially converging electron beams. Other gas laser research requirements have led to the development of an accelerator that will produce a 0.5 MV, 20 kJ, 1 μs electron beam pulse. (auth)

  14. High power CO2 lasers and their applications in nuclear industry

    International Nuclear Information System (INIS)

    Nath, A.K.

    2002-01-01

    Carbon dioxide laser is one of the most popular lasers in industry for material processing applications. It has very high power capability and high efficiency, can be operated in continuous wave (CW), modulated and pulsed modes, and has relatively low cost. Due to these characteristics high power CO 2 lasers are being used worldwide in different industries for a wide variety of materials processing operations. In nuclear industry, CO 2 laser has made its way in many applications. Some of the tasks performed by multikilowatt CO 2 laser are cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies, sealing/fixing/removing radioactive contaminations onto/from concrete surfaces and surface modification of engineering components for improved surface mechanical and metallurgical characteristics. We have developed various models of CW CO 2 lasers of power up to 12 kW and a high repetitive rate TEA (Transversely Excited Atmospheric pressure) CO 2 laser of 500 W average power operating at 500 Hz repetition rates. We have carried many materials processing applications of direct relevance to DAE. Recent work includes laser welding of end plug PFBR fuel tubes, martensitic stainless steel and titanium alloy, surface cladding of turbine blades made of Ni-super alloy with stellite 694, fabrication on graded material of stainless steel and stellite, and laser scabbling, drilling and cutting of concrete which have potential application in decontamination and decommissioning of nuclear facilities. A brief overview of these indigenous developments will be presented. (author)

  15. Workshop on scientific and industrial applications of free electron lasers

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics

  16. Italy on the spotlight: Expo Milan 2015 and Italian Journal of Food Science

    Directory of Open Access Journals (Sweden)

    P. Fantozzi

    2015-12-01

    Full Text Available The year 2015 will certainly be remembered as the Year of the Universal Exposition (EXPO hosted in Milan, Italy, focusing on a hot theme in the current scenario: “Feeding the Planet, Energyfor Life”.This event has drawn a wide international attention towards Italy as a country with peculiar and valuable food traditions, thus strengthening its reputation as “gastronomic capital of theworld” rich in protected designation of origin products (PDOs and characterised by a longstanding food culture.

  17. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  18. SUSTAINABILITY OF SHORT FOOD SUPPLY CHAINS: ANALYSIS OF RAW MATERIAL SUPPLY IN MILAN PUBLIC SCHOOL CATERING

    Directory of Open Access Journals (Sweden)

    G. D’Anna

    2009-09-01

    Full Text Available The demand of short food supply chains is becoming more pressing by consumers, especially in the largest school catering. The implementation of the short chain in a large catering company of Milan, is described in this practical contribution. Several aspects of short food chains sustainability: legal, commercial and economic sustainability, hygienic and gastronomic sustainability, are discussed.

  19. Pollution by lead near the Turin--Milan highway

    Energy Technology Data Exchange (ETDEWEB)

    Sapetti, C; Arduino, E

    1973-10-01

    Soil samples taken at 5 to 50 m from the Turin-Milan highway at depths ranging from 0 to 30 cm on two different sites were analyzed for lead residues by atomic absorption spectrophotometry following extraction by means of ammoniacal EDTA at pH 9. Soil samples from the surface layer taken in one well-ventilated site contained 11.5 to 12.4 ppM lead, while subsoil samples had 5.7 to 9.8 ppM. Soil samples taken in the other site with poor ventilation contained 23.5 to 43.3 ppM lead in the surface layer, and 9.2 to 15.4 ppM in the subsoil. Decrease of the lead concentrations in the soil with increasing depth and distance from the highway was noted. Plant samples taken from the same sites contained 6.4 to 32.2 ppM lead. Lead was fixed predominantly to the exchange complex; partly to the clay fraction, and partly to the humic fraction.

  20. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    International Nuclear Information System (INIS)

    Bertolini, Luca; Carsana, Maddalena; Gastaldi, Matteo; Lollini, Federica; Redaelli, Elena

    2013-01-01

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniques throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico

  1. Hepatocellular Carcinoma within Milan Criteria: No-Touch Multibipolar Radiofrequency Ablation for Treatment-Long-term Results.

    Science.gov (United States)

    Seror, Olivier; N'Kontchou, Gisèle; Nault, Jean-Charles; Rabahi, Yacine; Nahon, Pierre; Ganne-Carrié, Nathalie; Grando, Véronique; Zentar, Nora; Beaugrand, Michel; Trinchet, Jean-Claude; Diallo, Abou; Sellier, Nicolas

    2016-08-01

    Purpose To assess the long-term outcome in 108 consecutive patients treated with no-touch multibipolar radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) that met the Milan criteria. Materials and Methods This retrospective study was approved by the ethical review board, and the need to obtain informed consent was waived. Between November 1, 2006, and December 31, 2011, 132 HCC tumors (diameter, 10-45 mm; 39 tumors ≥ 30 mm) in 108 consecutive patients (106 with cirrhosis) that met Milan criteria were treated with no-touch multibipolar RFA, which consisted of activating, in bipolar mode, three or four electrodes inserted just beyond the tumor margins. Follow-up was performed every 3 months for 2 years and every 6 months thereafter with computed tomographic or magnetic resonance imaging. Survival probabilities were computed by using the Kaplan-Meier method. Predictive factors of tumor progression and overall survival were assessed by using the Cox proportional hazard model. Results No technical failure occurred, and complete ablation was achieved for all the nodules. After a median of 40.5 months (range, 2-84 months) of follow-up, 3- and 5-year local and overall tumor progression-free survival were 96%, 94%, 52%, and 32%, respectively. Neither tumor diameter greater than 30 mm nor location abutting a large vessel were associated with local tumor progression. Tumor diameter greater than 30 mm was the only parameter predictive of overall tumor progression (P = .0036). Independent factors associated with shorter overall survival were Child-Pugh class B disease, age greater than 65 years, and platelet count of less than 150 g/L (P touch multibipolar RFA for HCC tumors that meet Milan criteria provides a high local tumor progression-free survival rate. An ongoing randomized trial might help to clarify the role of this new approach for the treatment of early HCC. (©) RSNA, 2016 Online supplemental material is available for this article. An earlier

  2. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    International Nuclear Information System (INIS)

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  3. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  4. CERN's web application updates for electron and laser beam technologies

    CERN Document Server

    Sigas, Christos

    2017-01-01

    This report describes the modifications at CERN's web application for electron and laser beam technologies. There are updates at both the front and the back end of the application. New electron and laser machines were added and also old machines were updated. There is also a new feature for printing needed information.

  5. Laser colouring on titanium alloys: characterisation and potential applications

    OpenAIRE

    Franceschini, Federica; Demir, Ali Gökhan; Dowding, Colin; Previtali, Barbara; Griffiths, Jonathan David

    2014-01-01

    Oxides of titanium exhibit vivid colours that can be generated naturally or manipulated through controlled oxidation processes. The application of a laser beam for colouring titanium permits flexible manipulation of the oxidized geometry with high spatial resolution. The laser-based procedure can be applied in an ambient atmosphere to generate long-lasting coloured marks. Today, these properties are largely exploited in artistic applications such as jewellery, eyewear frames, watch components...

  6. Long-lived 222Rn progeny concentrations in ground level air of Milan

    International Nuclear Information System (INIS)

    Marcazzan, G.M.; Valli, G.; Vecchi, R.; Bocelli, R.

    2002-01-01

    Short-lived (2 18P o, 2 14P b, 2 14B i, 2 14P o) as well as long-lived (2 10P b, 2 10B i, 2 10P o) Radon's decay products in atmosphere are due to the 2 22R n exhalation from the continental Earth's crust, where it is generated in the 2 38U decay series. The measurement of the radionuclides concentration in the atmosphere - in addition to yielding valuable data for radioprotection purposes and for assessing the environmental impact of natural radioactivity - can provide information on atmospheric thermodynamic conditions as well as on atmospheric processes that involve aerosols such as transport, dispersion, removal rates and residence time. In particular, the concentration ratio of 2 10P b with other Radon's daughters can be used to obtain information on mean residence time of aerosols (Poet et al., 1972; Rangarajan, 1992; Gaggeler et al., 1995). Continuous measurements of hourly concentration of Radon and its short-lived progeny are routinely carried out in Milan by our group, and the temporal behaviour comes out a suitable tracer of atmospheric stability conditions and a local index of the evolution of the mixing layer height (Marcazzan et al., 1993; Marcazzan et al., 1997). The aim of this work was to measure the concentration and temporal behaviour of 2 10P b on a weekly and a monthly scale at ground level in the urban area of Milan and to get reliable measurements on the annual average concentration for the implementation of the existing data base (Preiss et al., 1996)

  7. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  8. [The effects of the traffic restriction fee (Ecopass) in the center of Milan on urban pollution with particulate matter: the results of a pilot study].

    Science.gov (United States)

    Ruprecht, Ario A; Invernizzi, Giovanni

    2009-01-01

    the city of Milan introduced a traffic charging zone in city center in January 2008, named Ecopass. to compare PM1, PM2,5 and PM10 levels in and outside the restricted area before and after the enforcement of the charging scheme. PM1, PM2,5 and PM10 exposures were measured by means of pre-calibrated portable laser-operated particle analyzers. PM10 data from the ARPA official monitoring stations were also evaluated. during a walking trip from Piazza Loreto (outside) to Piazza Duomo (inside Ecopass zone) and back, mean (SD) PM1, PM2,5 and PM10 were 31 (6), 68 (24) and 93 (37) microg/m3 inside the Ecopass zone, and 32 (6), 70 (37), 98 (48) microg/m3 in the outer area, respectively (not significant, ns). In another trip walking from Piazza Buonarroti to Piazza Duomo and back, PM1, PM2,5 and PM10 levels were 56 (2), 183 (14) and 245 (28) microg/m3 inside the Ecopass zone, and 58 (3), 197 (13) and 247 (24) microg/m3 in the outer area, respectively (ns). In the measurements taken from a car moving in three ring belts--one inside the restricted zone, and two outer radial orbitals--PM1, PM2,5 and PM10 levels were found 41 (1), 110 (8) and 148 (16) microg/m3 inside the Ecopass area, 42 (3), 116 (14) and 152 (28) microg/m3 along the middle belt, and 39 (4), 102 (15) and 127 (23) microg/m3 along the greater Milan orbital ("Tangenziale"), respectively (ns). Mean (SD) PM10 levels from ARPA in the two months before the enforcement were 71.2 (32.6) and 74.8 (38.4) microg/m3, in the Ecopass zone and outside, respectively while after the enforcement were 67.3 (36.4) and 70.9 (38.3) microg/m3 of PM10, respectively (ns). no signficant improvement in air quality was observed after the enforcement of the Ecopass charging zone in Milan. In spite of their limitations, the present data confirm that small scale reductions in particle emissions are not sufficient to reach the goal of an improvement in air quality. Large scale, coordinated interventions on an inter-regional basis are

  9. Laser-induced breakdown spectroscopy theory and applications

    CERN Document Server

    Perini, Umberto

    2014-01-01

    This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS), a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

  10. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  11. Proceedings of the 4. International Conference on Lasers and their Applications

    International Nuclear Information System (INIS)

    400 scientists from 19 countries participated in the 4. international conference on lasers and their applications, held at Leipzig, GDR, in October 1981. The conference focused on problems of gas lasers, high-power lasers for materials working, and laser spectroscopy, on optoelectronics considering communications systems, and on laser-controlled thermonuclear fusion with special regard to the laser plant 'Delphin 1'. 186 summaries are included

  12. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan

    OpenAIRE

    Santus Pierachille; Russo Antonio; Madonini Enzo; Allegra Luigi; Blasi Francesco; Centanni Stefano; Miadonna Antonio; Schiraldi Gianfranco; Amaducci Sandro

    2012-01-01

    Abstract Background Environmental pollution is a known risk factor for multiple diseases and furthermore increases rate of hospitalisations. We investigated the correlation between emergency room admissions (ERAs) of the general population for respiratory diseases and the environmental pollutant levels in Milan, a metropolis in northern Italy. Methods We collected data from 45770 ERAs for respiratory diseases. A time-stratified case-crossover design was used to investigate the association bet...

  13. A NASA high-power space-based laser research and applications program

    Science.gov (United States)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  14. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  15. DFB laser diodes for sensing applications using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Koeth, J; Fischer, M; Legge, M; Seufert, J; Roessner, K; Groninga, H

    2010-01-01

    We present typical device characteristics of novel DFB laser diodes which are employed in various sensing applications including high resolution photoacoustic spectroscopy. The laser diodes discussed are based on a genuine fabrication technology which allows for the production of ultra stable devices within a broad spectral range from 760 nm up to 3000 nm wavelength. The devices exhibit narrow linewidths down to <1 MHz which makes them ideally suited for all photoacoustic sensing applications where a high spectral purity is required. As an example we will focus on a typical medical application where these diodes are used for breath analysis using photoacoustic spectroscopy.

  16. Laser-induced plasmas and applications

    International Nuclear Information System (INIS)

    Radziemski, L.J.

    1989-01-01

    This book discusses optical science, engineering, and technology. Topics covered include the laser and its many commercial and industrial applications, the new optical materials, gradient index optics, electro- and acousto-optics, fiber optics and communications, optical computing and pattern recognition, optical data reading, recording and storage, biomedical instrumentation, industrial robotics, integrated optics, infrared and ultraviolet systems

  17. Ongoing large measles outbreak with nosocomial transmission in Milan, northern Italy, March-August 2017.

    Science.gov (United States)

    Amendola, Antonella; Bianchi, Silvia; Frati, Elena R; Ciceri, Giulia; Faccini, Marino; Senatore, Sabrina; Colzani, Daniela; Lamberti, Anna; Baggieri, Melissa; Cereda, Danilo; Gramegna, Maria; Nicoletti, Loredana; Magurano, Fabio; Tanzi, Elisabetta

    2017-08-17

    A large measles outbreak has been ongoing in Milan and surrounding areas. From 1 March to 30 June 2017, 203 measles cases were laboratory-confirmed (108 sporadic cases and 95 related to 47 clusters). Phylogenetic analysis revealed the co-circulation of two different genotypes, D8 and B3. Both genotypes caused nosocomial clusters in two hospitals. The rapid analysis of epidemiological and phylogenetic data allowed effective surveillance and tracking of transmission pathways. This article is copyright of The Authors, 2017.

  18. New strategies to ensure good patient–physician communication when treating adolescents and young adults with cancer: the proposed model of the Milan Youth Project

    Directory of Open Access Journals (Sweden)

    Magni MC

    2015-08-01

    Full Text Available Maria Chiara Magni,1 Laura Veneroni,1 Carlo Alfredo Clerici,2 Tullio Proserpio,3 Giovanna Sironi,1 Michela Casanova,1 Stefano Chiaravalli,1 Maura Massimino,1 Andrea Ferrari1 1Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; 2Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 3Pastoral Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy Abstract: Adolescence is a particularly complex time of life, entailing physiological, psychological, and social changes that further the individual's cognitive, emotional, and social growth. Being diagnosed with cancer at this time can have important consequences on an individual's emotional and physical development, and adolescent and young adult cancer patients have particular medical and psychosocial needs. Patient–physician communications are important in any clinical relationship, but fundamental in the oncological sphere because their quality can affect the patient–physician relationship, the therapeutic alliance, and patient compliance. A major challenge when dealing with adolescent and young adult patients lies in striking the right balance between their need and right to understand their disease, treatment, and prognosis, and the need for them to remain hopeful and to protect their emotional sensitivity. We herein describe the activities of the Youth Project of the Istituto Nazionale Tumori in Milan, Italy in order to share a possible model of interaction with these special patients and the tactics our group has identified to help them communicate and share their thoughts. This model implies not only the involvement of a multidisciplinary team, including psychologists and spirituality experts, but also the constitution of dedicated creative activities to give patients the opportunity to express feelings they would otherwise never feel at ease putting into words. These efforts seek the goal to minimize the potentially

  19. Diode lasers and their applications in spectrometry

    International Nuclear Information System (INIS)

    Pavone, F.S.

    1997-01-01

    The impact of semiconductor diode laser in different fields ranging from communications to spectroscopy is becoming huge and pushes the research into developing sources satisfying the different requirements. For applications related to trace gas detection, the low amplitude noise in the light source of semiconductor diode laser is sufficient to obtain interesting results. Trace gas of molecular species as methane is interesting for different reason: it plays an important role in both radiative transport an photochemistry in the atmosphere

  20. Oceanographic applications of laser technology

    Science.gov (United States)

    Hoge, F. E.

    1988-01-01

    Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.

  1. Ultrafast pulse lasers jump to macro applications

    Science.gov (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  2. On a laser beam fiducial line application for metrological purposes

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, J.; Lyablin, M.; Rusakovich, N.; Sisakyan, A.; Topilin, N.; Khubua, J.; Lasseur, C.

    2008-01-01

    The possibility of a collimated one-mode laser beam used as a fiducial line is considered. The technology of an 'extended' laser beam formation and application for a much extended fiducial line is proposed

  3. Generation of laser-induced fast neutron and its application

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kwon, D. H.; Nam, S. M.

    2010-04-01

    The supply of high-efficiency neutron source is still problematic even though a fast neutron source is being accepted increasingly for industrial applications. Radioisotopes and a neutron tube are typically being used, but their neutron flux, lifetime, and price are the limiting factors for more diverse applications. As ultra high power, short pulse laser technologies have been developed, a neutron source generated via laser induced nuclear reaction comes to the fore. The laser induced neutron source has a high peak flux in comparison to the traditional neutron source and is like a point source with its diameter less than 1 mm. These properties can be utilized effectively for the analysis of pulsed fast neutron activation or the studies of a fast neutron material damage and/or recover. The purpose of R and D here is to develop a robust neutron source with a yield of 10 7 neutrons/s, and to carry out a preliminary research for application study in the next research stage

  4. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  5. [Influence of implants prepared by selective laser melting on early bone healing].

    Science.gov (United States)

    Liu, J Y; Chen, F; Ge, Y J; Wei, L; Pan, S X; Feng, H L

    2018-02-18

    To evaluate the influence of the rough surface of dental implants prepared by selective laser melting (SLM) on early bone healing around titanium implants. A total of sixteen titanium implants were involved in our research, of which eight implants were prepared by SLM (TIXOS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex) and the other eight were sandblasted, large-grit and acid-etched (SLA) implants (IMPLUS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex). All of the dental implants were inserted into the healed extraction sockets of the mandible of two adult male Beagle dogs. Half of the dental implants were designed to be healed beneath the mucosa and the other half were intended to be healed transgingivally and were immediately loaded by acrylic resin bridge restoration. Three types of tetracycline fluorescent labels, namely calcein blue, alizarin complexone and calcein, were administered into the veins of the Beagle dogs 2, 4, and 8 weeks after implant placement respectively for fluorescent evaluation of newly formed bone peri-implant. Both Beagle dogs were euthanized 12 weeks after implant insertion and the mandible block specimens containing the titanium implants and surrounding bone and soft tissue of each dog were carefully sectioned and dissected. A total of 16 hard tissue slices were obtained and stained with toluidine blue for microscopic examination and histomorphometric measurements. Histological observation was made for each slice under light microscope and laser scanning confocal microscope (LSCM). Comparison on new bone formation around titanium implants of each group was made and mineral apposition rate (MAR) was calculated for each group. Dental implants prepared by selective laser melting had achieved satisfying osseointegration to surrounding bone tissue after the healing period of 12 weeks. Newly formed bone tissue was observed creeping on the highly porous surface of the SLM implant and growing

  6. Defence and security applications of quantum cascade lasers

    Science.gov (United States)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  7. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  8. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  9. Physical aspects of laser applications to modern nuclear technologies

    International Nuclear Information System (INIS)

    Semerok, A.

    2001-11-01

    This report has been presented by the author to obtain his HDR (accreditation to supervise research). After a brief presentation of his domain of skills, of his education, of his professional experience, and his awards, the author gives an overview of his work performed in the field of laser applications to modern nuclear technologies. Notably, he reports experimental studies dealing with the following topics: radiation source for uranium isotope separation by MLIS method, laser isotope separation in atom vapour, laser plasma diagnostics in strong magnetic field, laser ablation-time of flight mass spectrometry for low uranium isotope ratio measurements, laser ablation-optical emission spectroscopy for surface analysis. The report is completed by many published scientific articles

  10. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  11. Novel solid state lasers for Lidar applications at 2 μm

    Science.gov (United States)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  12. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  14. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Novotný, J.; Brada, M.; Petrilak, M.; Prochazka, D.; Novotný, K.; Hrdička, A.; Kaiser, J.

    2014-01-01

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described. - Highlights: • Development of the interaction chamber for LIBS applications • Example of automated chemical mapping of lead in a chalcopyrite sample • Example of LIBS measurement of fluorine in underpressure • Overview of chamber benefits

  15. ELIMED, future hadrontherapy applications of laser-accelerated beams

    International Nuclear Information System (INIS)

    Cirrone, Giuseppe A.P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-01-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum

  16. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, Giuseppe A.P. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Carpinelli, Massimo [INFN Sezione di Caglari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, Giacomo; Gammino, Santo [INFN-LNS, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Korn, Georg [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Maggiore, Mario [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); INFN-LNL, Legnaro (Italy); Manti, Lorenzo [University Federico II of Naples, Dip.to di Scienze Fisiche, Naples (Italy); Margarone, Daniele; Prokupek, Jan [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Renis, Marcella [University of Catania, Catania (Italy); Romano, Francesco [INFN-LNS, Catania (Italy); Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Schillaci, Francesco, E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Tomasello, Barbara [University of Catania, Catania (Italy); Torrisi, Lorenzo [INFN-LNS, Catania (Italy); Dip. to di Fisica, University of Messina, Messina (Italy); Tramontana, Antonella [INFN-LNS, Catania (Italy); Velyhan, Andriy [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum.

  17. [Understanding the advantages and disadvantages of femtosecond laser comprehensive applications in ophthalmology].

    Science.gov (United States)

    Xie, Li-xin; Gao, Hua

    2013-04-01

    The femtosecond (FS) laser is a novel laser technology, and is approved clinical application by FDA in 2000. FS laser initially mainly used in corneal refractive surgery to replace the mechanical microkeratome. Since the accuracy and controllability of the FS laser is very high, it shows superiority in the field of corneal refractive surgery. And with the development of the relative hard and software, FS laser is began to used in other fields of ophthalmology, such as corneal transplants, cataract surgery, as well as assisted diagnosis et al., although still have some limitations, the preliminary clinical results have been shown a very good prospects in the ophthalmology fields. Therefore, we reviewed the alternative applications, challenges and limitations, research direction in the future of FS laser, so that provide a reference and revelations for the peers.

  18. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    Science.gov (United States)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  19. Discrete mode lasers for communications applications

    Science.gov (United States)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  20. Optically pumped FIR lasers and their application in plasma diagnostics

    International Nuclear Information System (INIS)

    Bakos, J.S.

    1986-06-01

    The pysics and the construction of the far infrared lasers (FIRL) and of the infrared lasers pumping them are reviewed. The details of the construction, resonating and pumping systems, spectral and power characteristics of the FIRLs are discussed. Recently more than 1000 laser lines are known and used in the 27-80 mm wavelength range, but in many cases the laser kinetics are not fully understood, and some instability phenomena cannot be prevented. New nonlinear processes were found: two-photon pumping, hyper Raman laser tuning and relaxation phenomena. A broad application field, the plasma diagnostics by far infrared lasers is described. Scattering of infrared laser radiation can give new interesting information on the not understood effect of the anomalous transport in the high temperature plasma. (D.Gy.)

  1. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  2. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  3. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  4. Development of Laser Application Technology for Stable Isotope Production

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee

    2007-04-01

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed

  5. APPLICATION OF PULSE-PERIODICAL MODE FOR IMPROVEMENT OF LASER TREATMENT EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available The purpose of the paper is to estimate an application of pulse-periodical mode for improvement of laser treatment efficiency. Laser technologies have been widely used in the processes of material treatment with the purpose to provide them the required surface properties and also for high accuracy cutting of sheet materials. Application of complex treatment is of great interest and especially when it is used for worn-out surfaces with formation of a coating by gas-flame laying of powder mixture of specific composition and subsequent laser fusion.Increase of laser unit capacity is very important task for higher efficiency of laser technology application in mechanical engineering. Nowadays technological processes using lasers with high average power (more than 100 W have been applying only sources that are working in two modes, namely: continuous and pulse- periodical (P-P with pulse repetition rate from some units to several hundred hertz and pulse duration within dozens to hundreds of microseconds and even within milliseconds. On the other hand, in some cases shielding effect of plasma cloud formed during laser alloying, cladding or welding reduces the efficiency of laser treatment up to 50 % depending on plasma composition and laser beam length. High frequency P-P laser systems with high average power working in mode of Q-factor modulation allow to realize principally other mechanism of irradiation interaction with materials that is an ablation. In this case it is possible to provide local energy release both in space and time.The performed analysis has revealed that P-P mode of laser operation for a majority of treatment processes is much better and more efficient from energetic point of view in comparison with the continuous mode. On the basis of the developments it is possible to make a conclusion that there is a possibility to create laser systems working in high frequency P-P mode with high average power above hundreds watt.

  6. Tailoring Laser Propulsion for Future Applications in Space

    International Nuclear Information System (INIS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-01-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  7. Mid infrared lasers for remote sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Brian M., E-mail: brian.m.walsh@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Lee, Hyung R. [National Institute of Aerospace, Hampton, VA 23666 (United States); Barnes, Norman P. [Science Systems and Applications, Inc., Hampton, VA 23666 (United States)

    2016-01-15

    To accurately measure the concentrations of atmospheric gasses, especially the gasses with low concentrations, strong absorption features must be accessed. Each molecular species or constituent has characteristic mid-infrared absorption features by which either column content or range resolved concentrations can be measured. Because of these characteristic absorption features the mid infrared spectral region is known as the fingerprint region. However, as noted by the Decadal Survey, mid-infrared solid-state lasers needed for DIAL systems are not available. The primary reason is associated with short upper laser level lifetimes of mid infrared transitions. Energy gaps between the energy levels that produce mid-infrared laser transitions are small, promoting rapid nonradiative quenching. Nonradiative quenching is a multiphonon process, the more phonons needed, the smaller the effect. More low energy phonons are required to span an energy gap than high energy phonons. Thus, low energy phonon materials have less nonradiative quenching compared to high energy phonon materials. Common laser materials, such as oxides like YAG, are high phonon energy materials, while fluorides, chlorides and bromides are low phonon materials. Work at NASA Langley is focused on a systematic search for novel lanthanide-doped mid-infrared solid-state lasers using both quantum mechanical models (theoretical) and spectroscopy (experimental) techniques. Only the best candidates are chosen for laser studies. The capabilities of modeling materials, experimental challenges, material properties, spectroscopy, and prospects for lanthanide-doped mid-infrared solid-state laser devices will be presented. - Highlights: • We discuss mid infrared lasers and laser materials. • We discuss applications to remote sensing. • We survey the lanthanide ions in low phonon materials for potential. • We present examples of praseodymium mid infrared spectroscopy and laser design.

  8. Development and application of the variable focus laser leveling gage

    International Nuclear Information System (INIS)

    Gong Kun; Ma Jinglong

    2005-01-01

    The variable focus laser leveling gage was developed. The performance and structure were introduced. The several alignments and tests in KrF laser angle multi-path optical system were accomplished with them. Its application in other optical equipment was discussed too. (author)

  9. Masarykʼs Correspondence with the South Slavs: A Collection of Letters from Milan Pribićević to T. G. Masaryk

    Czech Academy of Sciences Publication Activity Database

    Hladký, Ladislav; Škerlová, Jana; Cibulka, Pavel

    2016-01-01

    Roč. 102, č. 3 (2016), s. 393-422 ISSN 0037-6922 Institutional support: RVO:67985963 Keywords : T. G. Masaryk * South Slavs * correspondence * Milan Pribićević * Czech-South Slavs relations Subject RIV: AB - History

  10. Synthetic Consolidants Attacked by Melanin-Producing Fungi: Case Study of the Biodeterioration of Milan (Italy) Cathedral Marble Treated with Acrylics▿

    Science.gov (United States)

    Cappitelli, Francesca; Nosanchuk, Joshua D.; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks. PMID:17071788

  11. Synthetic consolidants attacked by melanin-producing fungi: case study of the biodeterioration of Milan (Italy) cathedral marble treated with acrylics.

    Science.gov (United States)

    Cappitelli, Francesca; Nosanchuk, Joshua D; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks.

  12. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    Bergh, Arpad A.

    2004-01-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Blue laser diode (LD) and light emitting diode (LED) applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, Arpad A [Optoelectronics Industry Development Association (OIDA), 1133 Connecticut Avenue, NW, Suite 600, Washington, DC 20036-4329 (United States)

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  15. High-quality laser-accelerated ion beams for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); American University of Sharjah (United Arab Emirates)

    2009-07-01

    Cancer radiation therapy requires accelerated ion beams of high energy sharpness and a narrow spatial profile. As shown recently, linearly and radially polarized, tightly focused and thus extremely strong laser beams should permit the direct acceleration of light atomic nuclei up to energies that may offer the potentiality for medical applications. Radially polarized beams have better emittance than their linearly polarized counterparts. We put forward the direct laser acceleration of ions, once the refocusing of ion beams by external fields is solved or radially polarized laser pulses of sufficient power can be generated.

  16. Progress in compact soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers

  17. Evaluation of 2.1μm DFB lasers for space applications

    Science.gov (United States)

    Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.

    2017-11-01

    This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.

  18. Stones used in Milan architecture

    Directory of Open Access Journals (Sweden)

    Folli, Luisa

    2008-06-01

    Full Text Available The city of Milan lies in a plain with clayey soil well suited to brick-making, but no stone deposits. An ample supply of stone is available, however, in the surrounding hills and mountains, which are connected to the city via both natural and artificial waterways. The types of stone used since Roman times include: granite, marble and gneiss from Ossola Valley; dolomite from Lake Maggiore; detrital limestone from Ceresio Valley; sandstone from the Brianza Hills; black limestone and marble from Lake Como; and conglomerate and sandstone from the Adda River basin. Traditionally, the chief uses have been dimension stone (all stones, column shafts (granite, slabs (marble, moulding (dolomite, limestone and ornamental (marble, dolomite, limestone.La ciudad de Milán se encuentra en una llanura de suelo arcilloso adecuado para la fabricación de ladrillos pero en la cual no hay yacimientos de rocas. No obstante, en las colinas y montañas circundantes, que están comunicadas con la ciudad mediante vías navegables naturales y artificiales, sí existe una abundante cantidad de piedra. Entre los tipos de piedra utilizados desde la época de los romanos se encuentran granitos, mármoles y gneises del valle de Ossola, dolomías del lago Mayor, calizas detríticas del valle de Ceresio (Lugano, areniscas de las colinas de la Brianza, calizas negras y mármoles del lago Como y conglomerados y areniscas de la cuenca del río Adda. Tradicionalmente, los principales usos han sido la piedra de fábrica (todas ellas, fustes de columnas (granito, losas (mármol, molduras (dolomía, caliza y ornamental (mármol, dolomía, caliza.

  19. Overview of applications of Laser-Induced Breakdown Spectroscopy (LIBS)

    International Nuclear Information System (INIS)

    Cremers, D.A.

    1987-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a method of performing elemental analyses of solids, liquids, and gases using the microplasma produced by a focused laser pulse. Because the microplasma is formed by optical radiation, LIBS has some important advantages compared to conventional laboratory based analytical methods. Three applications are discussed which use the LIBS method. 6 refs., 8 figs., 2 tabs

  20. Possible applications of powerful pulsed CO2-Lasers in tokamak

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.; Morozov, I.N.; Hassanein, A.

    1998-01-01

    Applications of powerful pulsed CO 2 -lasers for injection of fuel tablets or creation of a protective screen from the vapor of light elements to protect against the destruction of plasma-facing components are discussed, and the corresponding laser parameters are determined. The possibility of using CO 2 -lasers in modelling the phenomena of powerful and energetic plasma fluxes interaction with a wall, as in the case of a plasma disruption, is considered. (author)

  1. Sur les traces de Franz Kafka dans l’œuvre de Milan Kundera // In the footsteps of Franz Kafka in the work of Milan Kundera

    Directory of Open Access Journals (Sweden)

    Lenka Žehrová

    2015-12-01

    Full Text Available Franz Kafka is undoubtebly an important part of the literary canon of the Central Europe and especially of the canon formed by Milan Kundera in his works. Kundera considers Kafka to be one of his principal masters. He sees Kafka as an antecendent of surrealism and existencialism. According to his collection of essays The Art of the Novel, Kafka is the prototype of the ideal author who invites us to cross the border of the probable showing us the world from the other side. Thus, we can observe the human existence in different and better way. By showing this, he fills up the main task of every novelist. The contribution will analyze the alludes of Kafka in the work of Kundera and will try to describe their character and explain how Kundera works with examples of Kafka and his work in his own books.

  2. Trends in high power laser applications in civil engineering

    Science.gov (United States)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  3. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins

    International Nuclear Information System (INIS)

    Cappitelli, Francesca; Principi, Pamela; Pedrazzani, Roberta; Toniolo, Lucia; Sorlini, Claudia

    2007-01-01

    Surfaces are continuously exposed to physical, chemical and biological degradation. Among the biological agents that cause deterioration, microorganisms are of critical importance. This work is part of a research programme for the characterisation of the alterations of the Milan Cathedral (Italy). Four stone samples of the Milan Cathedral were chemically analysed and the microbiological growth assessed. X-ray diffraction (XRD) showed that calcite was always present in each sample and one sample was also characterised by the chemical form of alteration gypsum. Using Fourier Transform Infrared Spectroscopy (FTIR) together with Scanning Electron Microscopy (SEM), it was possible to prove that the samples were consolidated with the synthetic acrylics and epoxy resins. The green-black biological patinas of the specimens were studied using cultivation, microscope observations and a method for single-cell detection. Sampling for fluorescent in-situ hybridisation (FISH), with ribosomal RNA targeted oligonucleotide probes, was also performed using adhesive tapes. The bulk of the prokaryotes were Bacteria but some Archaea were also found. The bacterial cells were further characterised using specific probes for Cyanobacteria, and α-, β-and γ-Proteobacteria. In addition, black fungi isolated from the stone and the fungi of the standard ASTM G21-96(2002) method were employed to test if the detected synthetic resins could be used as the sole source of carbon and energy. One isolated Cladosporium sp. attacked the freshly dried acrylic resin. Results show that the detected bacteria and fungi can cause severe damage both to the stone monument and its synthetic consolidants

  4. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins.

    Science.gov (United States)

    Cappitelli, Francesca; Principi, Pamela; Pedrazzani, Roberta; Toniolo, Lucia; Sorlini, Claudia

    2007-10-15

    Surfaces are continuously exposed to physical, chemical and biological degradation. Among the biological agents that cause deterioration, microorganisms are of critical importance. This work is part of a research programme for the characterisation of the alterations of the Milan Cathedral (Italy). Four stone samples of the Milan Cathedral were chemically analysed and the microbiological growth assessed. X-ray diffraction (XRD) showed that calcite was always present in each sample and one sample was also characterised by the chemical form of alteration gypsum. Using Fourier Transform Infrared Spectroscopy (FTIR) together with Scanning Electron Microscopy (SEM), it was possible to prove that the samples were consolidated with the synthetic acrylics and epoxy resins. The green-black biological patinas of the specimens were studied using cultivation, microscope observations and a method for single-cell detection. Sampling for fluorescent in-situ hybridisation (FISH), with ribosomal RNA targeted oligonucleotide probes, was also performed using adhesive tapes. The bulk of the prokaryotes were Bacteria but some Archaea were also found. The bacterial cells were further characterised using specific probes for Cyanobacteria, and alpha-, beta-and gamma-Proteobacteria. In addition, black fungi isolated from the stone and the fungi of the standard ASTM G21-96(2002) method were employed to test if the detected synthetic resins could be used as the sole source of carbon and energy. One isolated Cladosporium sp. attacked the freshly dried acrylic resin. Results show that the detected bacteria and fungi can cause severe damage both to the stone monument and its synthetic consolidants.

  5. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins

    Energy Technology Data Exchange (ETDEWEB)

    Cappitelli, Francesca [Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, University of Milan, Via Celoria 2, 20133 Milan (Italy)], E-mail: francesca.cappitelli@unimi.it; Principi, Pamela [Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, University of Milan, Via Celoria 2, 20133 Milan (Italy); Pedrazzani, Roberta [Dipartimento di Ingegneria Meccanica, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Toniolo, Lucia [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' Giulio Natta' , Politecnico di Milano, Via Mancinelli 7, 20133 Milan (Italy); Sorlini, Claudia [Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, University of Milan, Via Celoria 2, 20133 Milan (Italy)

    2007-10-15

    Surfaces are continuously exposed to physical, chemical and biological degradation. Among the biological agents that cause deterioration, microorganisms are of critical importance. This work is part of a research programme for the characterisation of the alterations of the Milan Cathedral (Italy). Four stone samples of the Milan Cathedral were chemically analysed and the microbiological growth assessed. X-ray diffraction (XRD) showed that calcite was always present in each sample and one sample was also characterised by the chemical form of alteration gypsum. Using Fourier Transform Infrared Spectroscopy (FTIR) together with Scanning Electron Microscopy (SEM), it was possible to prove that the samples were consolidated with the synthetic acrylics and epoxy resins. The green-black biological patinas of the specimens were studied using cultivation, microscope observations and a method for single-cell detection. Sampling for fluorescent in-situ hybridisation (FISH), with ribosomal RNA targeted oligonucleotide probes, was also performed using adhesive tapes. The bulk of the prokaryotes were Bacteria but some Archaea were also found. The bacterial cells were further characterised using specific probes for Cyanobacteria, and {alpha}-, {beta}-and {gamma}-Proteobacteria. In addition, black fungi isolated from the stone and the fungi of the standard ASTM G21-96(2002) method were employed to test if the detected synthetic resins could be used as the sole source of carbon and energy. One isolated Cladosporium sp. attacked the freshly dried acrylic resin. Results show that the detected bacteria and fungi can cause severe damage both to the stone monument and its synthetic consolidants.

  6. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  7. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  8. Building block diode laser concept for high brightness laser output in the kW range and its applications

    Science.gov (United States)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific applications, materials processing such as cutting and welding of copper aluminum or steel and also medical application. Typical operating at wavelengths in the 9XX nm range, these systems are designed for and mainly used in cutting and welding applications, but adapted wavelength ranges such as 793 nm and 1530 nm are also offered. Around 15XX nm the diodes are already successfully used for resonant pumping of Erbium lasers [1]. Furthermore, the fully integrated electronic

  9. Circular lasers for telecommunications and rf/photonics applications

    Science.gov (United States)

    Griffel, Giora

    2000-04-01

    Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.

  10. Generation of laser-induced fast neutron and its application

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Lee, S.; Kwon, D.; Nam, S.; Park, S.; Rhee, Y.; Jung, Y.; Lee, K.; Cha, Y.; Kwon, S.; Lim, C.; Han, J.; Park, S.; Chung, C.

    2012-04-01

    The supply of high-efficiency neutron source is still problematic even though a fast neutron source is being accepted increasingly for industrial applications. Radioisotopes and a neutron tube are typically being used, but their neutron flux, lifetime, and price are the limiting factors for more diverse applications. As ultra high power, short pulse laser technologies have been developed, a neutron source generated via laser induced nuclear reaction comes to the fore. The laser induced neutron source has a high peak flux in comparison to the traditional neutron source and is like a point source with its diameter less than 1 mm. These properties can be utilized effectively for the analysis of pulsed fast neutron activation or the studies of a fast neutron material damage and/or recover. The purpose of R and D here is to develop a robust neutron source with a yield of 107 neutrons/s during 1st R and D stage ('07 ∼ '09) and to construct a stable laser neutron source in longer operation and to demonstrate its usefulness for a neutron activation analysis of explosive materials and a neutron impact analysis of crystalline in the second R and D stage ('10 ∼ '11)

  11. The laser: a concentrate of light. From the creation of a beam to its applications

    International Nuclear Information System (INIS)

    2005-04-01

    The first lasers were developed in the 1960's. The name LASER is an acronym for 'Light Amplification by the Stimulated Emission of Radiation'. The almost magical properties of laser light soon led to their use in a variety of applications. We use lasers every day in our CD players and in the bar-code readers used in supermarkets. Laser light shows create beautiful patterns of light in the air. Lasers are also precision workers in industry. They are used to cut, weld and drill materials. They are used in medicine to repair or burn away diseased tissue without harming healthy tissue nearby. Straight and narrow laser beams are also used to align roads and tunnels. But why is it that lasers can do all these things while ordinary light from the Sun or from a light bulb cannot? 'Lasers are everywhere - in medicine, in industry, and at the heart of our daily lives'. CEA has worked on all types of lasers for many years. CEA researchers use them in their work in all the traditional ways (alignment, drilling, welding, cutting, etc.), but they also develop new types of lasers for specific applications. They use very high power lasers to study the interaction between high energies and matter. Lasers are essential tools in many applications, but we must never forget the risks that are associated with them. The CEA is studying the effects of lasers on the body. There is still much research to be done in the field of laser technology. We expect more and more applications in the next few years. (authors)

  12. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy.......Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...

  13. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  14. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  15. Environmental Behavior and Fate of Explosives in Groundwater from the Milan Army Ammunition Plant in Aquatic and Wetland Plants. Fate of TNT and RDX

    National Research Council Canada - National Science Library

    Best, Elly

    1998-01-01

    The present study was performed to elucidate the environmental behavior and fate of TNT and RDX in aquatic and wetland plants collected from a field-scale wetland demonstration deployed at Milan Army...

  16. Application of ring lasers to determine the directions to the poles of Earth's rotation

    International Nuclear Information System (INIS)

    Golyaev, Yu D; Kolbas, Yu Yu

    2012-01-01

    Application of a ring laser to determine the directions to the poles of Earth's rotation is considered. The maximum accuracy of determining the directions is calculated, physical and technical mechanisms that limit the accuracy are analysed, and the instrumental errors are estimated by the example of ring He — Ne lasers with Zeeman biasing. (laser applications and other topics in quantum electronics)

  17. Laser ignition - Spark plug development and application in reciprocating engines

    Science.gov (United States)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged

  18. Applications of OALCLV in the high power laser systems

    Science.gov (United States)

    Huang, Dajie; Fan, Wei; Cheng, He; Wei, Hui; Wang, Jiangfeng; An, Honghai; Wang, Chao; Cheng, Yu; Xia, Gang; Li, Xuechun; Lin, Zunqi

    2017-10-01

    This paper introduces the recent development of our integrated optical addressed spatial light modulator and its applications in the high power laser systems. It can be used to convert the incident beam into uniform beam for high energy effiency, or it can realize special distribution to meet the requirements of physical experiment. The optical addressing method can avoid the problem of the black matrix effect of the electric addressing device. Its transmittance for 1053nm light is about 85% and the aperture of our device has reached 22mm× 22mm. As a transmissive device, it can be inserted into the system without affecting the original optical path. The applications of the device in the three laser systems are introduced in detail in this paper. In the SGII-Up laser facility, this device demonstrates its ability to shape the output laser beam of the fundamental frequency when the output energy reaches about 2000J. Meanwhile, there's no change in the time waveform and far field distribution. This means that it can effectively improve the capacity of the maximum output energy. In the 1J1Hz Nd-glass laser system, this device has been used to improve the uniformity of the output beam. As a result, the PV value reduces from 1.4 to 1.2, which means the beam quality has been improved effectively. In the 9th beam of SGII laser facility, the device has been used to meet the requirements of sampling the probe light. As the transmittance distribution of the laser beam can be adjusted, the sampling spot can be realized in real time. As a result, it's easy to make the sampled spot meet the requirements of physics experiment.

  19. Development of laser application technologies for nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y.; Cha, B. H.

    2004-03-01

    The stable laser isotope facility will supply raw stable isotope material to produce radioisotope elements for medical and industrial applications. The medical stable isotope, Tl-203 was separated by the isotope selective optical pumping (ISOP) method native to the laboratory for quantum optics, KAERI. The extraction rate of 10 mg/hr was achieved from the separation chamber of 80cm x 80cm x 100cm dimension. The Yb-168 separation facility was improved in stability, durability, and efficiency. The old copper vapor pumping laser system was replaced with two 40W green DPSSL's. The tunable dye laser system was also improved in stability. The extraction rate was measured as 1.5 mg/hr in the improved system. The 200W infrared DPSSL system was also developed and used for photoionization of thallium isotopes. The adaptive optics and beam path control system was applied to the isotope separation facilities. Also the beam quality of the lasers was monitored and improved. To maintain constant isotope composition during reaction process, the wavelengths of tunable lasers are locked by being the mass composition information fed back into the oscillator control unit of the lasers. To optimize isotope separation process timely, the extractor surface is directly analyzed by laser irradiation and TOF mass spectrometer. And the final products in high purity is recovered in maximum by solution chemistry

  20. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  1. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  2. Lasers in medical applications: R and D mapping

    International Nuclear Information System (INIS)

    Deokattey, Sangeeta; Kalyane, V.L.; Kumar, Vijai; Phool Chand

    2001-10-01

    A study of the MEDLINE CDROM database, for the period 1969-2000 was undertaken. The purpose was, to identify core areas of research and development, in the field of applications of lasers to humans, along with other bibliometric indicators of research. A total of 34,833 records were retrieved, downloaded and analysed. The results indicate a steady increase in the number of publications every year, from 1970 onwards, with 1997 (2767 articles) and 1998 (2914 articles) being the most productive years. The most prolific contributors were J. Haut, with 95 publications to his credit, followed by M. Landthaler (82), G. Coscas (79), S.G. Bown (73) and P. Bjerring (70). Collaboration among the authors was high, with a maximum of 15 contributors observed in a few articles. The top ranking journal in the field was Ophthalmology, which published 769 articles starting from 1978. USA was way ahead as the country with the highest journal productivity (around 40% of the total number of records), followed by UK and Germany. A total of 103 articles were published from India. English was the preferred language of publication, with 75% of the records being published in English language. In the use of lasers for humans, maximum number of records were found for adult and middle aged populations. Research focussed on the eye and its various diseases. Lasers were found to be used for therapeutic purposes, in surgery and in the diagnosis of diseases. Carbon dioxide laser was most frequently used for medical applications. Though there were quite a few references on the adverse effects of lasers, the therapeutic effects far outweighed them. (author)

  3. 6th International Workshop on Application of Lasers in Atomic Nuclei Research

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2004

    2006-01-01

    6th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, 24-27 May, 2004 Researchers and graduate students interested in the Mössbauer Effect and its applications will find this volume indispensable. The volume presents the most recent developments in the methodology of Mössbauer spectroscopy. Reprinted from Hyperfine Interactions (HYPE) Volume 162, 1-4

  4. Brief communication "Application of mobile laser scanning in snow cover profiling"

    Directory of Open Access Journals (Sweden)

    S. Kaasalainen

    2011-03-01

    Full Text Available We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application. We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.

  5. Design and optimisation of a pulsed CO2 laser for laser ultrasonic applications

    CSIR Research Space (South Africa)

    Forbes, A

    2006-07-01

    Full Text Available at the material surface is detected and converted into a defect map across the aircraft. The design and optimization of a laser system for this application, together with the basic science involved, is reviewed in this paper. This includes the optimization...

  6. Risks and injuries in laser and high-frequency applications

    Science.gov (United States)

    Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter

    1995-01-01

    An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.

  7. Applications of laser printing for organic electronics

    Science.gov (United States)

    Delaporte, Ph.; Ainsebaa, A.; Alloncle, A.-P.; Benetti, M.; Boutopoulos, C.; Cannata, D.; Di Pietrantonio, F.; Dinca, V.; Dinescu, M.; Dutroncy, J.; Eason, R.; Feinaugle, M.; Fernández-Pradas, J.-M.; Grisel, A.; Kaur, K.; Lehmann, U.; Lippert, T.; Loussert, C.; Makrygianni, M.; Manfredonia, I.; Mattle, T.; Morenza, J.-L.; Nagel, M.; Nüesch, F.; Palla-Papavlu, A.; Rapp, L.; Rizvi, N.; Rodio, G.; Sanaur, S.; Serra, P.; Shaw-Stewart, J.; Sones, C. L.; Verona, E.; Zergioti, I.

    2013-03-01

    The development of organic electronic requires a non contact digital printing process. The European funded e-LIFT project investigated the possibility of using the Laser Induced Forward Transfer (LIFT) technique to address this field of applications. This process has been optimized for the deposition of functional organic and inorganic materials in liquid and solid phase, and a set of polymer dynamic release layer (DRL) has been developed to allow a safe transfer of a large range of thin films. Then, some specific applications related to the development of heterogeneous integration in organic electronics have been addressed. We demonstrated the ability of LIFT process to print thin film of organic semiconductor and to realize Organic Thin Film Transistors (OTFT) with mobilities as high as 4 10-2 cm2.V-1.s-1 and Ion/Ioff ratio of 2.8 105. Polymer Light Emitting Diodes (PLED) have been laser printed by transferring in a single step process a stack of thin films, leading to the fabrication of red, blue green PLEDs with luminance ranging from 145 cd.m-2 to 540 cd.m-2. Then, chemical sensors and biosensors have been fabricated by printing polymers and proteins on Surface Acoustic Wave (SAW) devices. The ability of LIFT to transfer several sensing elements on a same device with high resolution allows improving the selectivity of these sensors and biosensors. Gas sensors based on the deposition of semiconducting oxide (SnO2) and biosensors for the detection of herbicides relying on the printing of proteins have also been realized and their performances overcome those of commercial devices. At last, we successfully laser-printed thermoelectric materials and realized microgenerators for energy harvesting applications.

  8. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    Science.gov (United States)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  9. Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    The N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications...... in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested...

  10. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    Science.gov (United States)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  11. Possible applications of powerful pulsed CO2-lasers in tokamak reactors

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.; Morozov, I.N.; Hassanein, A.

    1998-01-01

    Applications of powerful pulsed CO 2 -lasers for injection of fuel tablets or creation of a protective screen from the vapor of light elements to protect against the destruction of plasma-facing components are discussed, and the corresponding laser parameters are determined. The possibility of using CO 2 -lasers in modeling the phenomena of powerful and energetic plasma fluxes interaction with a wall, as in the case of a plasma disruption, is considered

  12. Laser materials processing applications at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Dragon, E.P.; Hackel, R.P.; Kautz, D.D.; Warner, B.E.

    1993-01-01

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper and dye laser systems are currently being developed at LLNL for uranium enrichment production facilities. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60: 1) and features with micron scale (5-50 μm) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail

  13. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  14. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  15. Feasible Application Area Study for Linear Laser Cutting in Paper Making Processes

    Science.gov (United States)

    Happonen, A.; Stepanov, A.; Piili, H.

    Traditional industry sectors, like paper making industry, tend to stay within well-known technology rather than going forward towards promising, but still quite new technical solutions and applications. This study analyses the feasibility of the laser cutting in large-scale industrial paper making processes. Aim was to reveal development and process related challenges and improvement potential in paper making processes by utilizing laser technology. This study has been carried out, because there still seems to be only few large-scale industrial laser processing applications in paper converting processes worldwide, even in the beginning of 2010's. Because of this, the small-scale use of lasers in paper material manufacturing industry is related to a shortage of well-known and widely available published research articles and published measurement data (e.g. actual achieved cut speeds with high quality cut edges, set-up times and so on). It was concluded that laser cutting has strong potential in industrial applications for paper making industries. This potential includes quality improvements and a competitive advantage for paper machine manufacturers and industry. The innovations have also added potential, when developing new paper products. An example of these kinds of products are ones with printed intelligence, which could be a new business opportunity for the paper industries all around the world.

  16. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  17. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  18. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  19. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  20. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  1. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  2. [Medical surveillance in university: organizational difficulties, legal problems, scientific e technical specificities. Experience of University of Milan Bicocca].

    Science.gov (United States)

    D'Orso, M I; Giuliani, C; Assini, R; Riva, M A; Cesana, G

    2012-01-01

    Our research describes activities of Occupational Health carried out during last year in University of Milan Bicocca by Occupational Doctors. We describe results of medical surveillance in 1153 employees or students exposed to occupational risks for health and safety. We report results obtained, technical difficulties, organizational problems, and preventive actions decided to improve functionality of our activity. Students seem to be less protected and consequently seem to have higher professional safety and health risks.

  3. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  4. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: tethered balloon measurements in Milan, Italy.

    Science.gov (United States)

    Sangiorgi, G; Ferrero, L; Perrone, M G; Bolzacchini, E; Duane, M; Larsen, B R

    2011-12-01

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Compact RGBY light sources with high luminance for laser display applications

    Science.gov (United States)

    Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther

    2018-02-01

    Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.

  6. Optical feedback effects on terahertz quantum cascade lasers: modelling and applications

    Science.gov (United States)

    Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter

    2016-11-01

    Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.

  7. Hot working alkali halides for laser window applications

    International Nuclear Information System (INIS)

    Koepke, B.G.; Anderson, R.H.; Stokes, R.J.

    1975-01-01

    The techniques used to hot work alkali halide crystals into laser window blanks are reviewed. From the point of view of high power laser window applications one of the materials with a high figure of merit is KCl. Thus the materials examined are KCl and alloys of KCl-KBr containing 5 mole percent KBr. The fabrication techniques include conventional and constrained press forging, isostatic press forging and hot rolling. Optical properties are paramount to the ultimate usefulness of these materials. Results on the optical properties of the hot worked material are included together with mechanical properties and microstructural data

  8. Development of x-ray laser and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Tetsuya; Kado, Masataka; Hasegawa, Noboru [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment] [and others

    2001-10-01

    Nickel-like silver and tin X-ray lasers (XRL) at wavelengths of 13.9 nm and 11.9 nm, respectively, in the transient collisional-excitation scheme. The gain-length product is 10 for the former case and 8.4 for the latter. The size of the gain region and the beam divergence of the silver laser are measured to be 75 {mu}m x 25 {mu}m and about 6 mrad, respectively. Our plans in the near future, which are applications of XRL, generation of XRL with high spatial coherence and short-wavelength XRL, are also shown. (author)

  9. Near-Term Application of Water-Powered Laser-Propulsion

    International Nuclear Information System (INIS)

    Baasandash, Choijil; Yabe, Takashi; Oku, Takehiro; Ohkubo, Tomomasa; Yamaguchi, Masashi; Ohzono, Hirokazu; Taniguchi, Kazumoto; Miyazaki, Sho; Akoh, Ryosuke; Ogata, Yoichi; Fushinobu, Kazuyoshi

    2004-01-01

    We found that water overlay on a metal layer is more effective than solid overlay. By using this target we demonstrated the successful flight of paper-airplane of 5 cm-size over a distance of 1-2m. In this paper, repetitive water supply system and levitation system are proposed for practical application, and examined by experiments. We succeeded in driving an object continuously using repetitive water supply and air slider. We also succeeded in driving 300g object by 0.5J laser using these equipments. In this paper, we try to find out a new possibility of water-powered laser propulsion

  10. Development of x-ray laser and its application

    International Nuclear Information System (INIS)

    Kawachi, Tetsuya; Kado, Masataka; Hasegawa, Noboru

    2001-01-01

    Nickel-like silver and tin X-ray lasers (XRL) at wavelengths of 13.9 nm and 11.9 nm, respectively, in the transient collisional-excitation scheme. The gain-length product is 10 for the former case and 8.4 for the latter. The size of the gain region and the beam divergence of the silver laser are measured to be 75 μm x 25 μm and about 6 mrad, respectively. Our plans in the near future, which are applications of XRL, generation of XRL with high spatial coherence and short-wavelength XRL, are also shown. (author)

  11. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  12. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    Administrator

    Indian Academy of Sciences. 639. †. Dedicated to the ... Department of Physical Chemistry and Electrochemistry, University of Milan,. Via Venezian 21, 20133 Milan, ..... Soc. 129 1689. 21. Parsons R 1961 In Advances in electrochemistry and.

  13. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  14. The development of novel Ytterbium fiber lasers and their applications

    Science.gov (United States)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  15. Reviews on laser cutting technology for industrial applications

    Science.gov (United States)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  16. 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics

    CERN Document Server

    Adrian, R J; Heitor, M V; Maeda, M; Tropea, C; Whitelaw, J H

    2002-01-01

    This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held at the Calouste Gulbenkian Foundation in Lisbon, during the period of July 10 to 13, 2000. The papers describe instrumentation developments for Velocity, Scalar and Multi-Phase Flows and results of measurements of Turbulent Flows, and Combustion and Engines. The papers demonstrate the continuing and healthy interest in the development of understanding of new methodologies and implementation in terms of new instrumentation. The prime objective of the Tenth Symposium was to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilita...

  17. [Voluntary mediation in healthcare disputes: the experience of the "Fondazione IRCCS Istituto Nazionale dei Tumori" in Milan (Italy)].

    Science.gov (United States)

    Tereanu, Carmen; Bettega, Silvia; Regalia, Enrico; Mazza, Roberto; Greco, Margherita; Lozza, Laura; Saita, Luigi; Borreani, Claudia; Quattrocolo, Alberto

    2014-01-01

    The "Fondazione IRCCS Istituto Nazionale dei Tumori" ( National Tumour Institute) in Milan (Italy) offers mediation services aimed at restoring communication between patients and healthcare professionals, when their relationship has been altered by a conflict during the diagnosis or treatment process. A method derived from transformative mediation is used. The purpose of mediation is not to examine clinical aspects, nor to identify who is right and who is wrong. Individual sessions are often sufficient to reduce litigation.

  18. Medical Application of Free Electron Laser Trasmittance using Hollow Optical Fiber

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri

    2004-01-01

    Mid-infrared Free Electron Laser (FEL) is expected as new application for biomedical surgery. However, delivery of MIR-FEL into the body is difficult because the common glass optical fibers have strong absorption at MIR region. A good operational and flexible line for FEL is required at medical field. A Hollow optical fiber is developed for IR laser and high-power laser delivery. We evaluated the fiber for FEL transmission line. This fiber is coated with cyclic olefin polymer (COP) and silver thin film on the inside of glass capillary tube. It is 700 μm-bore and 1m in lengths. The fiber transmission loss of the measured wavelength region of 5.5 μm to 12 μm is less than 1dB/m when the fiber is straight and 1.2 dB/m when bent to radius of 20 cm. Additionally, the output beam profile and the pulse structure is not so different form incidence beam. In conclusion, the fiber is suitable for delivery of the FEL energy for applications in medical and laser surgery.

  19. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  20. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  1. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  2. The third international workshop on the physics and modern applications of lasers 8-20 August, 1994

    International Nuclear Information System (INIS)

    1994-08-01

    The document contains 31 abstracts and 7 papers on lasers and optical fibers presented at the 3. international workshop on the physics and modern applications of lasers. The main topics covered include: basics in lasers, geometrical, physical and quantum optics; optical techniques for research, education and development in Africa; application of lasers in optical fibre communication, environmental studies, bio medicine, chemistry, agriculture, engineering and industry. A list of lecturers, participants and programme of activities are also given. (EAA)

  3. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    Science.gov (United States)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  4. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    Knowles, M.; Foster-Turner, R.; Kearsley, A.; Evans, J.

    1995-01-01

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL 2 O 3 . Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al 2 O 3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  5. Evaluation of thermal cooling mechanisms for laser application to teeth.

    Science.gov (United States)

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  6. Comparison of three methods reducing the beam parameter product of a laser diode stack for long range laser illumination applications

    Science.gov (United States)

    Lutz, Yves; Poyet, Jean-Michel; Metzger, Nicolas

    2013-10-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is well suited for long-range image recording. Even when laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) microlenses, their beam parameter product (BPP) are not compatible with a direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long range applications. To overcome these difficulties, we conducted investigations in three different ways. A first near infrared illuminator based on the use of conductively cooled mini-bars was designed, realized and successfully tested during outdoor experimentations. This custom specified stack was then replaced in a second step by an off-the-shelf FAC + SAC micro lensed stack where the brightness was increased by polarization overlapping. The third method still based on a commercial laser diode stack uses a non imaging optical shaping principle resulting in a virtually restacked laser source with enhanced beam parameters. This low cost, efficient and low alignment sensitivity beam shaping method allows obtaining a compact and high performance laser diode illuminator for long range active imaging applications. The three methods are presented and compared in this paper.

  7. Centimeter-scale MEMS scanning mirrors for high power laser application

    Science.gov (United States)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  8. New pulsed YAG laser performances in cutting thick metallic materials for nuclear applications

    International Nuclear Information System (INIS)

    Alfille, J.P.; Prunele, D. de; Pilot, G.

    1996-01-01

    The purpose of this study was to evaluate the capacities of the pulsed YAG laser thick cutting on metallic material and to compare with the CO 2 laser capacities. Stainless steel (304L) cutting tests were made in air and underwater using CO 2 and YAG lasers. A performance assessment was made for each laser and the wastes produced in the cutting operation were measured and the gases and the aerosols analyzed. The results show that the pulsed YAG laser is high performance tool for thick cutting and particularly attractive for nuclear applications

  9. Study of optical confinement of quantum cascade lasers and applications to detection

    International Nuclear Information System (INIS)

    Moreau, Virginie

    2008-01-01

    Quantum cascade lasers have been invented in 1994 and they have already established themselves as the semiconductor laser source of choice in the mid- and far-infrared ranges of the electromagnetic spectrum. As most molecules of chemical interest exhibit roto-vibrational transitions in these spectral ranges, quantum cascade lasers are especially suited for applications such as spectroscopy, trace gas detection or medical imaging. One of the current leading research axis targets the device optimization and miniaturization, with possible applications in detection microsystems. This PhD thesis work focused on the study and optimization of the vertical optical confinement in quantum cascade lasers featuring optical waveguides without top cladding layers. These structures are interesting because they are compatible with two different guiding mechanisms at the same time, i.e. surface-plasmons and air confinement. The study of the characteristics of the optical mode and of the electrical current dispersion allowed us to conceive original structures which open new perspectives, for instance in the domain of analytic detection in a fluidic environment. Furthermore, we have shown that the observation by near field microscopy is a powerful tool to characterize and understand quantum cascade lasers. Finally, we have laid the foundations for the optimization of miniaturized arrays of single-mode lasers based on photonic crystal technology. (author) [fr

  10. The area of "Porta Vittoria” in Milan L'area “Porta Vittoria” a Milano

    Directory of Open Access Journals (Sweden)

    Fulvia Pinto

    2011-02-01

    Full Text Available The transformation of Milan, to be realized completely, needs of transport infrastructure as well as major European cities. The Rail “Passante” is a trasport infrastructure almost entirely underground and it crosses the city of Milan from north-west to south-east. The "Passante" represents the structure on which to build the urban development of the "Greater Milan" and plays a strategic role in the choice of location, facilitating the creation of an urban system integrated and competitive. The "Passante" connects the central parts of the city with suburbs that are already taking advantage of the presence of the infrastructure to renew their image. The study area was originally occupied by a station of the State Railways, now is a new station of the railway "Passante". The context of urban transformation "Porta Vittoria" is located in a central area of Milan, just beyond the first “circumvallazione”, on the connecting axis the airport of Linate. The strategic location of the area, very accessible, has determined the choice of the functions that must be kept. The regeneration is characterized by two important projects, one public and one private. The public intervention concerns the BEIC - European Library of Information and Culture, the private action relates to the new district "Porta Vittoria", with mixed-use residences, offices, malls, hotels and cinemas. The project for the European Library of Information and Culture, developed many years ago, intended to give Milan an "infrastructure" for culture considered the largest of Europe. The lack of funding has led to long interruptions and long delays in implementation. The project pays particular attention to the sustainability of the building, using energy energy-efficient systems with heat pumps (with exploiting groundwater, rather superficial in that area, solar collectors and photovoltaic panels. The hypothesis expresses the desire to create a relationship between the winning project

  11. Processing and Application of ICESat Large Footprint Full Waveform Laser Range Data

    NARCIS (Netherlands)

    Duong, V.H.

    2010-01-01

    In the last two decades, laser scanning systems made the transition from scientific research to the commercial market. Laser scanning has a large variety of applications such as digital elevation models, forest inventory and man-made object reconstruction, and became the most required input data for

  12. KrF laser cost/performance model for ICF commercial applications

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    Simple expressions suitable for use in commercial-applications plant parameter studies for the direct capital cost plus indirect field costs and for the efficiency as a function of repetition rate were developed for pure-optical-compression KrF laser fusion drivers. These simple expressions summarize estimates obtained from detailed cost-performance studies incorporating recent results of ongoing physics, design, and cost studies. Contributions of KrF laser capital charges and D and M costs to total levelized constant-dollar (1984) unit ICF power generation cost are estimated as a function of plant size and driver pulse energy using a published gain for short-wavelength lasers and representative values of plant parameters

  13. Observations on self-incineration characteristics in 24 years (1993-2016) of autopsies in the city of Milan.

    Science.gov (United States)

    Amadasi, Alberto; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Maghin, Francesca; Zoja, Riccardo

    2018-01-01

    Self-incineration is one of the most dramatic and lethal suicide methods. It is rarely reported in Western countries and is more frequent in developing regions. We illustrate the forensic cases of self-immolation occurring over 24 years in the city of Milan, Italy, highlighting the main issues of such a complex and rare suicide. We selected 33 cases of self-incineration among 23,417 autopsies (4022 suicides) performed at the Department of Legal Medicine of the University of Milan over a period of 24 years (1993-2016). Several parameters were included and analysed: gender and age of the victims, pathological history, previous suicide intentions/attempts, duration of burning, place of death or discovery of the corpse, circumstantial data of fatal events and autopsy findings, with particular attention to thermal injuries. Self-incineration was found in 0.8% of total suicides and 0.14% of total autopsies. One of these cases involved a complex modality (association with plastic-bag suffocation). The typical characteristics of the victim were an Italian man with psychiatric illness, frequently moved by passion, existential discomfort and economic problems. During the 24-year period, the number of cases of self-incineration progressively reduced. This study provides a general overview in one of the biggest metropolitan Italian areas and is one of the few works performed on this topic. It may be helpful in understanding and studying such an unusual manner of suicide.

  14. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  15. Laser surface texturing of polymers for biomedical applications

    Science.gov (United States)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  16. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  17. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  18. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-01-01

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  19. Values of HbCO in 1000 inhabitants of Milan non exposed to occupational absorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Grisler, R.; Gobbi, A.; Giavardi, C.; Caimmi, G.; Soverini, R.; Botta, A.

    1975-01-01

    Carboxyhemoglobin levels for 1000 non-occupationally exposed inhabitants of Milan were determined. The study group consisted of smokers and non-smokers; among the former, only individuals refraining from smoking for at least 10 hr were tested. The upper limit of the normal range for HbCO values among non-smokers was 2.85%, while among heavy smokers it was 4.59%. Heavy smokers also showed higher HbCO levels than did moderate smokers. Elevated HbCO values were also observed among residents living in carbon monoxide-polluted urban areas as compared with those living in unpolluted rural areas.

  20. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  1. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  2. Optimization of the shape of the HV electrode of the electrostatic deflectors for the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    De Martinis, C.; Ferrari, A.

    1987-01-01

    The electrostatic deflectors for the extraction of the beam from the Milan Superconducting Cyclotron are presently under development. The early tests showed that major troubles arise from the modifications induced in the discharge mechanism by the presence of the magnetic field, resulting in a drastic reduction of the deflector performances. Therefore a detailed analysis of the electric field configuration of the deflector has been carried out in order to improve its performances. In this paper the results so far obtained in the optimization of the shape of the electrode and insulator fixing are reported

  3. Applications of lasers in nuclear power plants

    International Nuclear Information System (INIS)

    Raj, Rupam; Sanyal, D.N.; Sil, Jaydeb

    2013-01-01

    Applications of lasers in nuclear power plants: Bellow lip cutting and high pressure feeder coupling stud (HPFC) cutting during en-masse coolant channel replacement (EMCCR) campaign at Narora Atomic Power Station Reactor 1 in May 2006; cutting of pressure tubes from Madras Atomic Power Station 1 (MAPS-1) for easy storage in April 2005; In-situ cutting of selected coolant channel S-7 at Kakrapar Atomic Power Station (KAPS-2) (cutting of 12 mm thick end fitting and 4 mm thick liner tube of stainless steel from inside) in January 2005; Development of a miniature cutting mechanism for steam generator tubes (14 mm i.d.) from inside, In-situ bellow repair for secondary shutdown system; LASER welding may be deployed for End shield of MAPS-1 leak repair

  4. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  5. Application of laser cladding to the aeroengine component. Koku engine buhin eno laser nikumori yosetsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-08-01

    Keeping the pace with recent development and application of laser cladding, hard-facing is used more frequently on turbine blades made of superalloys used in aeroengines. This paper explains the basic principles and features of laser hard-facing technique, welding parameters, and examples of practical use. Examples of practical use include application to turbine blades used in ALF502R-5 turbo fan engines for commuter aircraft and high-pressure turbine blades used in RB211 turbo fan engines for large passenger aircraft. In the former engine, improvement of abrasion resistance was intended at the shroud section where blades are in contact with each other, for which inconel was used as the base material and CO-group alloy as the welding material. The welding used a powder supply system with a laser generator oscillating CO{sub 2} at 5 kW and employing a beam collecting mirror plus scanner to attain a beam covering wider width. Faces with higher performance were obtained than by the conventional TIG welding, and the finishing time was decreased largely. 2 refs., 9 figs., 3 tabs.

  6. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  7. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  8. Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    Synthesized N,N′-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were...

  9. Study of pseudo noise CW diode laser for ranging applications

    Science.gov (United States)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  10. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    Science.gov (United States)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  11. Blood pressure and 10-year mortality risk in the Milan Geriatrics 75+ Cohort Study

    DEFF Research Database (Denmark)

    Ogliari, Giulia; Westendorp, Rudi G J; Muller, Majon

    2015-01-01

    BACKGROUND: optimal blood pressure targets in older adults are controversial. OBJECTIVE: to investigate whether the relation of blood pressure with mortality in older adults varies by age, functional and cognitive status. DESIGN: longitudinal geriatric outpatient cohort. SETTING: Milan Geriatrics...... 75+ Cohort Study. SUBJECTS: one thousand five hundred and eighty-seven outpatients aged 75 years and over. METHODS: the relations of systolic (SBP) and diastolic blood pressure (DBP) with mortality risk were analysed using Cox proportional hazards models. Blood pressure, Mini-Mental State Examination......: the correlations of SBP and DBP with mortality were U-shaped. Higher SBP is related to lower mortality in subjects with impaired ADL and MMSE. ADL and MMSE may identify older subjects who benefit from higher blood pressure....

  12. Efficient second harmonics generation of a laser-diode-pumped Nd:YAG laser and its applications. Laser diode reiki Nd:YAG laser no kokoritsu daini kochoha hassei to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Oka, M. (Sony Corp., Tokyo (Japan))

    1991-08-10

    Stabilization of the second harmonics in a laser-diode-pumped Nd:YAG laser and its application are described. The laser is a quantum noise limiting laser, in which a mode competing noise is generated from an interaction between the laser medium Nd:YAG and the type II nonlinear optical crystal KTiOPO{sub 4} when generating a second harmonics in the resonator. However, the quantum noise limiting second harmonics was obtained by means of inserting (1/4) wave length plate in the resonator to release the bond between two intersecting inherent polarization modes. This stabilized green laser is of a single lateral mode is nearly free of aberration. Therefore, an optical disc prototype having three times as much of the currently used density was made using an objective lens having high number of openings to collect lights, which was verified capable of regeneration at a high signal to noise ratio. In addition, higher output is possible by means of parallelizing the excitation, and high output is realized from edge excitation at a fiber bundle. 18 refs., 3 figs.

  13. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  14. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  15. A review of the development of portable laser induced breakdown spectroscopy and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Rakovský, J., E-mail: jozef.rakovsky@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic); Čermák, P. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Musset, O. [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Veis, P. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed. - Highlights: • Overview of portable LIBS devices transportable by a person • Discussion and new trends about portable LIBS instrumentation: laser, spectrograph and detector • Overview of applications of DPSS, microchip and fiber lasers in LIBS.

  16. Clinical Application of Diode Laser (980 nm) in Maxillofacial Surgical Procedures.

    Science.gov (United States)

    Aldelaimi, Tahrir N; Khalil, Afrah A

    2015-06-01

    For many procedures, lasers are now becoming the treatment of choice by both clinicians and patients, and in some cases, the standard of care. This clinical study was carried out at Department of Maxillofacial Surgery, Ramadi Teaching Hospital, Rashid Private Hospital and Razi Private Hospital, Anbar Health Directorate, Anbar Province, Iraq. A total of 32 patients including 22 (≈ 70%) male and 10 (≈ 30%) female with age range from 5 months to 34 years old. Chirolas 20 W diode laser emitting at 980 nm was used. Our preliminary clinical findings include sufficient hemostasis, coagulation properties, precise incision margin, lack of swelling, bleeding, pain, scar tissue formation and overall satisfaction were observed in the clinical application. The clinical application of the diode (980 nm) laser in maxillofacial surgery proved to be of beneficial effect for daily practice and considered practical, effective, easy to used, offers a safe, acceptable, and impressive alternative for conventional surgical techniques.

  17. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  18. Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation.

    Science.gov (United States)

    Hong, Geun; Suh, Kyung-Suk; Suh, Suk-Won; Yoo, Tae; Kim, Hyeyoung; Park, Min-Su; Choi, YoungRok; Paeng, Jin Chul; Yi, Nam-Joon; Lee, Kwang-Woong

    2016-04-01

    Given the organ shortage for liver transplantation (LT) and the limitations of the current morphology-based selection criteria, improved criteria are needed to achieve the maximum benefit of LT for hepatocellular carcinoma (HCC). We hypothesized that a combination of biological markers may better predict the prognosis than the Milan criteria. HCC patients (n=123) with preoperative data on serum alpha-fetoprotein (AFP) levels and (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) positivity underwent live-donor LT between January 2003 and December 2009. The cut-off values for serum AFP levels (200 ng/ml) and (18)F-FDG PET positivity (1.10) for tumor recurrence were determined by c-statistics using receiver operating characteristic curves. Univariate and multivariate analyses with preoperative variables were performed to find pre-transplant prognostic factors. Disease-free survival rates and overall survival rates were analysed with regard to serum AFP levels and (18)F-FDG PET positivity. The 5-year disease-free survival rates and overall survival rates were 80.3% and 81.6% respectively. (18)F-FDG PET positivity (hazard ratio (HR) 9.766, 95% CI 3.557-26.816; p<0.001) and serum AFP level (HR 6.234, 95% CI 2.643-14.707; p<0.001) were the only significant pre-transplant prognostic factors in the multivariate analysis; tumor number and size were not significant. A combination of criteria showed that the biologically high-risk group (AFP level ⩾200 ng/ml and PET-positive) had an HR of 29.069 (95% CI 8.797-96.053; p<0.001) compared with the double-negative group. Use of the Milan criteria yielded an HR of 1.351 (95% CI 0.500-3.652; p=0.553). The combination of the serum AFP level and (18)F-FDG PET data predicted better outcomes than those using the Milan criteria, improving objectivity when adult-to-adult living donor LT is contemplated. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  20. High-contrast, high-intensity petawatt-class laser and applications

    Czech Academy of Sciences Publication Activity Database

    Kiriyama, H.; Mori, M.; Pirozhkov, A.S.; Ogura, K.; Sagisaka, A.; Kon, A.; Esirkepov, T.Z.; Hayashi, Y.; Kotaki, H.; Kanasaki, M.; Sakaki, H.; Fukuda, Y.; Koga, J.; Nishiuchi, M.; Kando, M.; Bulanov, S.; Kondo, K.; Bolton, P.R.; Slezák, Ondřej; Vojna, David; Sawicka-Chyla, Magdalena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomáš

    2015-01-01

    Roč. 21, č. 1 (2015), s. 1601118 ISSN 0018-9197 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : petawatt laser * applications * Ti:saphire * ASE Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.843, year: 2015

  1. LIGHT - from laser ion acceleration to future applications

    Science.gov (United States)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  2. Something going on in Milan: a review of the 4th International PhD Student Cancer Conference.

    Science.gov (United States)

    Segré, C

    2010-01-01

    The 4th International PhD Student Cancer Conference was held at the IFOM-IEO-Campus in Milan from 19-21 May 2010 http://www.semm.it/events_researchPast.phpThe Conference covered many topics related to cancer, from basic biology to clinical aspects of the disease. All attendees presented their research, by either giving a talk or presenting a poster. This conference is an opportunity to introduce PhD students to top cancer research institutes across Europe.THE CORE PARTICIPANTING INSTITUTES INCLUDED: European School of Molecular Medicine (SEMM)-IFOM-IEO Campus, MilanBeatson Institute for Cancer Research (BICR), GlasgowCambridge Research Institute (CRI), Cambridge, UKMRC Gray Institute of Radiation Biology (GIROB), OxfordLondon Research Institute (LRI), LondonPaterson Institute for Cancer Research (PICR), ManchesterThe Netherlands Cancer Institute (NKI), Amsterdam'You organizers have crushed all my prejudices towards Italians. Congratulations, I enjoyed the conference immensely!' Even if it might have sounded like rudeness for sure this was supposed to be a genuine compliment (at least, that's how we took it), also considering that it was told by a guy who himself was the fusion of two usually antithetical concepts: fashion style and English nationality.The year 2010 has marked an important event for Italian research in the international scientific panorama: the European School of Molecular Medicine (SEMM) had the honour to host the 4th International PhD Student Cancer Conference, which was held from 19-21 May 2010 at the IFOM-IEO-Campus (http://www.semm.it/events_researchPast.php) in Milan.The conference was attended by more than one hundred students, coming from a selection of cutting edge European institutes devoted to cancer research. The rationale behind it is the promotion of cooperation among young scientists across Europe to debate about science and to exchange ideas and experiences. But that is not all, it is also designed for PhD students to get in touch

  3. Laser beam cutting method. Laser ko ni yoru kaitai koho

    Energy Technology Data Exchange (ETDEWEB)

    Kutsumizu, A. (Obayashi Corp., Osaka (Japan))

    1991-07-01

    In this special issue paper concerning the demolition of concrete structures, was introduced a demolition of concrete structures using laser, of which practical application is expected due to the remarkable progress of generating power and efficiency of laser radiator. The characteristics of laser beam which can give a temperature of one million centigrade at the irradiated spot, the laser radiator consisting of laser medium, laser resonator and pumping apparatus, and the laser kinds for working, such as CO{sub 2} laser, YAG laser and CO laser, were described. The basic constitution of laser cutting equipment consisting of large generating power radiator, beam transmitter, beam condenser, and nozzle for working was also illustrated. Furthermore, strong and weak points in the laser cutting for concrete and reinforcement were enumerated. Applications of laser to cutting of reinforced and unreinforced concrete constructions were shown, and the concept and safety measure for application of laser to practical demolition was discussed. 5 refs., 8 figs.

  4. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  5. LASER POINTER DETECTION BASED ON INTENSITY PROFILE ANALYSIS FOR APPLICATION IN TELECONSULTATION

    Directory of Open Access Journals (Sweden)

    NAIREEN IMTIAZ

    2017-08-01

    Full Text Available Telemedicine is application of electronic communication to deliver medical care remotely. An important aspect of telemedicine is teleconsultation which involves obtaining the professional opinion of a healthcare provider. One of the ways to improve eleconsultation is to equip the remote specialist via control of a laser pointer, located in the consultation area to provide a means of gesture. As such, accurate detection of laser spot is crucial in such systems as they rely on visual feedback, which enables the specialist in a remote site to control and point the laser in the active location using a standard mouse. The main issue in laser spot detection in a natural environment is the distinguishability of a laser point image from other bright regions and glare due to camera saturation. This problem remains unsolved without extensive computing and use of hardware filters. In this paper a hybrid algorithm is described which is aimed to work with natural indoor environment while limiting computation. This algorithm combines thresholding and blob evaluation methods with a novel image intensity profile comparison method based on linear regression. A comparison of the algorithm has been done with existing approaches. The developed algorithm shows a higher accuracy and faster execution time making it an ideal candidate for real time detection applications.

  6. Spectroscopy Methods and Applications of the Tor Vergata Laser-Plasma Facility Driven by GW-Level Laser System

    Directory of Open Access Journals (Sweden)

    M. Francucci

    2011-01-01

    GW, tabletop, multistage Nd:YAG/Glass laser system, delivering infrared (IR pulses with nanosecond width and 1064 nm wavelength (TEM00 mode. Its applications are discussed providing: wide analysis of IR → soft X-ray conversion efficiency (1.3–1.55 keV; measures and modeling of line emission in soft X-ray spectra, such as those from zinc plasma near Ne-like Zn XXI and from barium plasma near Ni-like Ba XXIX. Particular attention is devoted to high-n dielectronic Rydberg satellites for finding a useful diagnostic tool for plasma conditions. Dependence of plasma spectra on laser parameters is shown. Finally, microradiography applications are presented for thin biological samples. Images permit to visualize specific structures and detect bioaccumulation sites due to contamination from pollutants.

  7. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  8. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  9. A 25kW fiber-coupled diode laser for pumping applications

    Science.gov (United States)

    Malchus, Joerg; Krause, Volker; Koesters, Arnd; Matthews, David G.

    2014-03-01

    In this paper we report the development of a new fiber-coupled diode laser for pumping applications capable of generating 25 kW with four wavelengths. The delivery fiber has 2.0 mm core diameter and 0.22 NA resulting in a Beam Parameter Product (BPP) of 220 mm mrad. To achieve the specifications mentioned above a novel beam transformation technique has been developed combining two high power laser stacks in one common module. After fast axis collimation and beam reformatting a beam with a BPP of 200 mm mrad x 40 mm mrad in the slow and fast-axis is generated. Based on this architecture a customer-specific pump laser with 25 kW optical output power has been developed, in which two modules are polarization multiplexed for each wavelength (980nm, 1020nm, 1040m and 1060nm). After slow-axis collimation these wavelengths are combined using dense wavelength coupling before focusing onto the fiber endface. This new laser is based on a turn-key platform, allowing straight-forward integration into any pump application. The complete system has a footprint of less than 1.4m² and a height of less than 1.8m. The laser diodes are water cooled, achieve a wall-plug efficiency of up to 60%, and have a proven lifetime of <30,000 hours. The new beam transformation techniques open up prospects for the development of pump sources with more than 100kW of optical output power.

  10. Laser-assisted modification of polystyrene surfaces for cell culture applications

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Bruns, Michael; Welle, Alexander; Wilson, Sandra

    2007-01-01

    Laser-assisted patterning and modification of polystyrene (PS) was investigated with respect to applications in micro-fluidics and cell culture. For this purpose the wettability, the adsorption of proteins and the adhesion of animal cells were investigated as function of laser- and processing parameters. The change of surface chemistry was characterized by X-ray photoelectron spectroscopy. The local formation of chemical structures suitable for improved cell adhesion was realized on PS surfaces by UV laser irradiation. Above and below the laser ablation threshold two different mechanisms affecting cell adhesion were detected. In the first case the debris deposited on and along laser irradiated areas was responsible for improved cell adhesion, while in the second case a photolytic activation of the polymer surface including a subsequent oxidization in oxygen or ambient air is leading to a highly localized alteration of protein adsorption from cell culture media and finally to increased cell adhesion. Laser modifications of PS using suitable exposure doses and an appropriate choice of the processing gas (helium or oxygen) enabled a highly localized control of wetting. The dynamic advancing contact angle could be adjusted between 2 o and 150 o . The hydrophilic and hydrophobic behaviour are caused by chemical and topographical surface changes

  11. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  12. Laser innovated manufacturing technology; Laser ga seisan gijutsu wo kakushinshita

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, I. [Honda Motor Co. Ltd., Tokyo (Japan)

    1996-11-01

    This paper looks back the history of applications of laser processing in the automobile industry, and introduces contents of some particularly unique applications from among them. The CO2 laser and YAG laser that are used mainly have increased their outputs with the times, and 50-kW CO2 laser and 4-kW YAG laser have now become available commercially. The laser processing has become used widely for cutting purpose in Japan, which is in contrast with their high application to welding in Europe and America. Cutting thick plates has been developed recently, which is applicable to plates as thick as about 25 mm. A flexible system in which YAG laser is combined with an optical fiber/articulated robot is operating for three-dimensional shape processing. Automobile makers are adopting laser processing for welding in place of the electron beam welding that has been used conventionally. The process is used also for a number of other applications including surface reformation, such as surface quenching for cylinder liner, and valve seat padding. 8 refs., 8 figs.

  13. Design of a compact application-oriented free-electron laser

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T.S.; Warren, R.W.; Wilson, W.; Young, L.M.

    1992-01-01

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 π mm mrad in transverse emittance and 0.3% in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm

  14. Design of a compact application-oriented free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T. S.; Warren, R. W.; Wilson, W.; Young, L. M.

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 (pi) mm mrad in transverse emittance and 0.3 percent in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 to 0.4 microns.

  15. Study into the applicabilities of lasers for the dismantling of decommissioned nuclear power plant

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Vinke, T.; Kinzel, A.; Mack, N.; Kuboschek, M.; Grobe, K.

    1989-01-01

    The project was intended to screen current laser technology for potential applications of laser beams in the dismantling of decommissioned nuclear power plant. As with CO 2 , Nd-YAG, or excimer lasers, developments clearly proceed towards higher output power. The market survey shows the CO 2 -laser to be the most efficient at present, with a great number of laser units available on the market in the range up to 5 kW, and some in the range up to 15 kW. The CO 2 -laser has exclusively been used so far for cutting work in steel plates thicker than 10 mm. Characteristic conditions of application include the high output power of more than 2 kW, long beam lengths, oxygen supply at strongly increased working pressure, sometimes from external sources. The maximum cutting work achieved in the laboratory was 110 mm in structural steel, 90 mm in austenitic steel, and 160 mm in concrete, all under conditions of easy access to the material. It remains to be examined whether steel cutting work at constrained positions will allow separation of wall thicknesses of more than 10 mm. Laser beam cutting under water is feasible in principle but has not been much studied yet. There also are only few sampling results of measurements of dust and aerosol quantities resulting from laser beam cutting work. (orig.) [de

  16. Highly modular high-brightness diode laser system design for a wide application range

    Science.gov (United States)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang

    2015-03-01

    For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.

  17. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  18. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  19. Application of a 980-nanometer diode laser in neuroendoscopy: a case series.

    Science.gov (United States)

    Reis, Rodolfo Casimiro; Teixeira, Manoel Jacobsen; Mancini, Marilia Wellichan; Almeida-Lopes, Luciana; de Oliveira, Matheus Fernandes; Pinto, Fernando Campos Gomes

    2016-02-01

    Ventricular neuroendoscopy represents an important advance in the treatment of hydrocephalus. High-power (surgical) Nd:YAG laser and low-level laser therapy (using 685-nm-wavelength diode laser) have been used in conjunction with neuroendoscopy with favorable results. This study evaluated the use of surgical 980-nm-wavelength diode laser for the neuroendoscopic treatment of ventricular diseases. Nine patients underwent a neuroendoscopic procedure with 980-nm diode laser. Complications and follow-up were recorded. Three in-hospital postoperative complications were recorded (1 intraventricular hemorrhage and 2 meningitis cases). The remaining 6 patients had symptom improvement after endoscopic surgery and were discharged from the hospital within 24-48 hours after surgery. Patients were followed for an average of 14 months: 1 patient developed meningitis and another died suddenly at home. The other patients did well and were asymptomatic until the last follow-up consultation. The 980-nm diode laser is considered an important therapeutic tool for endoscopic neurological surgeries. This study showed its application in different ventricular diseases.

  20. High-power free-electron lasers-technology and future applications

    Science.gov (United States)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  1. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    Science.gov (United States)

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  2. Development, production, and application of sealed-off copper and gold vapour lasers

    International Nuclear Information System (INIS)

    Lyabin, Nikolai A; Chursin, A D; Ugol'nikov, S A; Koroleva, M E; Kazaryan, M A

    2001-01-01

    An analysis is made of the current state of the art of scientific and engineering advances in the field of repetitively pulsed self-heating metal vapour (copper and gold) lasers based on industrial, sealed-off, high-temperature, metalceramic and metal-glass active elements. The major applications of these lasers are discussed. The energy, spatial, and time characteristics of the lasers and their dependence on the parameters and construction of the laser active elements (tubes) and optical resonators are considered. The ways for the development of new high-power industrial laser active elements with a high efficiency (1 - 2%) and a service life of 500 - 1000 h are analysed. An average output power of 80 W was realised with a laser tube 150 cm in length and 32 mm in diameter. When the pumping efficiency is improved by raising the voltage to 30 - 35 kV, this system in a copper vapour laser will allow an output power of 100 W to be obtained with one active element. The characteristics of industrial versions of metal vapour lasers manufactured in different countries are compared and discussed. (invited paper)

  3. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1992-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components.

  4. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  5. Applications of Nd:YAG laser micromanufacturing in high temperature gas reactor research

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Smal, C.A.; Steyn, J.

    2012-01-01

    Highlights: ► Two innovative applications of Nd:YAG laser micromachining techniques demonstrated. ► Firstly an alumina jig to contain multiple 500 μm diameter ZrO 2 spheres. ► Secondly the manufacture of a sealing system using laser micromachining. ► ZrO 2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal. ► Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. - Abstract: Two innovative applications of Nd:YAG laser micromachining techniques are demonstrated in this publication. Research projects to determine the fission product transport mechanisms in TRISO coated particles necessitate heat treatment studies as well as the manufacturing of a unique sealed system for experimentation at very high temperatures. This article describes firstly the design and creation of an alumina jig designed to contain 500 μm diameter ZrO 2 spheres intended for annealing experiments at temperatures up to 1600 °C. Functional requirements of this jig are the precision positioning of spheres for laser ablation, welding and post weld heat treatment in order to ensure process repeatability and accurate indexing of individual spheres. The design challenges and the performance of the holding device are reported. Secondly the manufacture of a sealing system using laser micromachining is reported. ZrO 2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal fit for application in a high temperature environment. The technique is described along with a discussion of the problems experienced during the sealing process. Typical problems experienced were seating dimensions and the relative small size (∼200 μm) of these plugs that posed handling challenges. Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. In conclusion, this article demonstrates the application of Nd-YAG micromachining in an innovative way to solve practical research

  6. Medical application of laser hair removal

    International Nuclear Information System (INIS)

    Fadlalla, Alwalled Hussein Ataalmannan

    2015-12-01

    The use of laser in medical treatment has become of paramount importance proportional to what has high therapeutic privileges such as speed and accuracy in penetrating tissues and high quality especially when used in hair removal which is the subject of our study, this laser operates cards may cause some change in the color of the skin when used in a manner that is correct ratio of the thermal impact force in the laser hair removal process, or if it is exposed directly to his eye. This study is a comparison between the physical properties of laser of lasers used in hair removal, according to previous studies to be the basis for the benefit of doctors who use lasers for hair removal. The aim of this study was to study the effect of laser hair removal using the Nd: YAG laser with a wavelength 1064 nm as well as the risks airing from the assessment. The aim of this study was to identify the appropriate laser energy that absorbed in the hair follicle with a dark color and the appropriate thermal effect occurs to vaporize the follicle cell, a 40 J/cm"2 is to be significant without side effects for healthy tissue. In this study doses for a few laser beam is considered when compared to previous studies. Laser danger to the patient during the operation increases with increasing laser energy emitted during treatment. Laser hair removal by the user and energy emitted by wavelength of the laser device also depends on the hair color and roughness as well as skin color. (Author)

  7. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  8. Overview of the program on soft x-ray lasers and their applications at Princeton

    International Nuclear Information System (INIS)

    Suckewer, S.; Ilcisin, K.; Princeton Univ., NJ

    1991-05-01

    In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very ''young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab

  9. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    Science.gov (United States)

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  10. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  11. Conceptual design of a hybrid KrF laser system for ICF commercial applications

    International Nuclear Information System (INIS)

    Harris, D.B.; Lowenthal, D.D.

    1986-01-01

    KrF lasers appear to be the most efficient lasers operating near the optimal wavelength for laser fusion. Most high-efficiency, low-cost KrF laser designs use large electron-beam driven amplifiers and use pure angular multiplexing for the required pulse compression. A recent study carried out by Los Alamos and Spectra Technology has defined a high-efficiency hybrid KrF laser system architecture that uses both angular multiplexing and Raman beam combination. The high overall system efficiency of this hybrid design, approximately 12%, is achieved primarily through the use of e-beam sustained discharge lasers (EBSDL), and by using the efficient forward rotational Raman process in hydrogen. The new system appears attractive as a commercial-applications driver because the calculated efficiency is higher than the usual large e-beam pumped (EBP) KrF laser/pure angular multiplexing approach. In this paper, the hybrid system architecture is described, and the tradeoffs with respect to the large EBP amplifier/angular multiplexed system are discussed

  12. Influence of gel/LED-laser application on cervical microleakage of two barrier materials used for endodontically treated teeth whitening

    Science.gov (United States)

    Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.

    2007-02-01

    This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.

  13. Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application

    Science.gov (United States)

    Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico

    2006-09-01

    Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.

  14. To compare the gingival melanin repigmentation after diode laser application and surgical removal.

    Science.gov (United States)

    Mahajan, Gaurav; Kaur, Harjit; Jain, Sanjeev; Kaur, Navnit; Sehgal, Navneet Kaur; Gautam, Aditi

    2017-01-01

    The aim of the present study is to compare the gingival melanin repigmentation after diode laser application and surgical removal done by scraping with Kirkland knife. This study was a randomized split-mouth study where 10 patients presenting with unattractive, diffuse, dark brown to black gingival discoloration on the facial aspect of the maxillary gingiva were treated by diode laser application and surgical removal and followed up for 3-, 6-, and 9-month intervals. The results showed a statistically significant difference in repigmentation between the groups at the interval of 3 months ( P = 0.040), but the difference was statistically not significant at 6 months ( P = 0.118) and 9 months ( P = 0.146). On surgically treated sites, all cases showed repigmentation of the gingiva, but in laser treated, there were two individuals which did not show repigmentation of the gingiva even at the end of 9-month observation time. The incidence of repigmentation was slightly less in laser-treated sites as compared to surgical depigmentation although the difference was statistically significant only up to 3 months.

  15. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  16. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  17. Simple laser vision sensor calibration for surface profiling applications

    Science.gov (United States)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  18. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1991-02-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  19. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Migliorati, B.; Difino, M.; Manassero, G.

    1990-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (Fiat-CIEI and Fiat-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: (i) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; (ii) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; (iii) study of long-distance transmission of the laser beam power performed with a 5KW laser source with an evaluation of the power loss and beam characteristic modifications; (iv) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long-distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme

  20. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G; De Zaiacomo, T; Melandri, C; Formignani, M; Barilli, L [ENEA - Area Energia, Ambiente e Salute - Centro Ricerche Energia ' Ezio Clementel' - Bologna (Italy); Di Fino, M [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Frascati, Rome (Italy); Picini, P; Galuppi, G; Rocca, C [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Casaccia, Rome (Italy); Manassero, G [Centro Ricerche FIAT, Orbassano, Torino (Italy); Migliorati, B [FIAT-CIEI, Torino (Italy)

    1991-02-15

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  1. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  2. Spectral BRDF measurements of metallic samples for laser processing applications

    International Nuclear Information System (INIS)

    Vitali, L; Fustinoni, D; Gramazio, P; Niro, A

    2015-01-01

    The spectral bidirectional reflectance distribution function (BRDF) of metals plays an important role in industrial processing involving laser-surface interaction. In particular, in laser metal machining, absorbance is strongly dependent on the radiation incidence angle as well as on finishing and contamination grade of the surface, and in turn it can considerably affect processing results. Very recently, laser radiation is also used to structure metallic surfaces, in order to produce many particular optical effects, ranging from a high level polishing to angular color shifting. Of course, full knowledge of the spectral BRDF of these structured layers makes it possible to infer reflectance or color for any irradiation and viewing angles. In this paper, we present Vis-NIR spectral BRDF measurements of laser-polished metallic, opaque, flat samples commonly employed in such applications. The resulting optical properties seem to be dependent on the atmospheric composition during the polishing process in addition to the roughness. The measurements are carried out with a Perkin Elmer Lambda 950 double-beam spectrophotometer, equipped with the Absolute Reflectance/Transmittance Analyzer (ARTA) motorized goniometer. (paper)

  3. Commercial application of laser fusion

    International Nuclear Information System (INIS)

    Booth, L.A.

    1976-01-01

    The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described

  4. Advanced lasers for fusion applications

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1978-11-01

    Projections indicate that MJ/MW laser systems, operating with efficiencies in escess of 1 percent, are required to drive laser fusion power reactors. Moreover, a premium in pellet performance is anticipated as the wavelength of the driver laser system is decreased. Short wavelength laser systems based on atomic selenium (lambda = 0.49μ), terbium molcular vapors (0.55μ), thulium doped dielectric solids (0.46μ), and on pulse compressions of KrF excimer laser radiaton (0.27μ) have been proposed and studied for this purpose. The technological scalability and efficiency of each of these systems is examined in this paper. All of these systems are projected to meet minimum systems requirements. Amont them, the pulse-compressed KrF system is projected to have the highest potential efficiency (6%) and the widest range of systems design options

  5. Application of high-power lasers to equation-of-state research at ultrahigh pressures

    International Nuclear Information System (INIS)

    Trainor, R.J.; Graboske, H.C.; Long, K.S.; Shaner, J.W.

    1978-01-01

    The application of high-power pulsed lasers to ultrahigh pressure equation-of-state (EOS) experiments is discussed. It is shown that pressures along the principal Hugoniot between 1 and 10 TPa can be produced with existing lasers used for inertial-confinement fusion research. The relevance of measurements in this pressure regime to improving our understanding of condensed matter physics is also discussed. New experimental techniques as well as potential experimental problems are described, and EOS experiments on the Janus and Argus laser systems are proposed

  6. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    Science.gov (United States)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  7. Development and applications of laser spectroscopic techniques related to combustion diagnostics

    International Nuclear Information System (INIS)

    Alden, Marcus

    2006-01-01

    Thanks to features as non-intrusiveness combined with high spatial and temporal resolution, various laser diagnostic techniques have during the last decades become of utmost importance for characterization of combustion related phenomena. In the following presentation some further development of the techniques will be highlighted aiming at a) surface temperatures using Thermographic Phosphors, TP, b) species specific, spatially and temporally resolved detection of species absorbing in the IR spectral region using polarization spectroscopy and Laser-induced fluorescence, and finally c) high speed visualization using a special designed laser system in combination with a framing camera. In terms of surface thermometry, Thermographic Phosphors have been used for many years for temperature measurements on solid surfaces. We have during the last years further developed and applied this technique for temperature measurements on burning surfaces and on materials going through phase shifts, e.g. pyrolysis and droplets. The basic principle behind this technique is to apply micron size particles to the surface of interest. By exciting the TP with a short pulse UV laser (ns), the phosphorescence will exhibit a behaviour where the spectral emission as well as the temporal decay are dependent on the temperature. It is thus possible to measure the temperature both in one and two dimensions. The presentation will include basic description of the technique as well as various applications, e.g in fire science, IC engines and gasturbines. Several of the species of interest for combustion/flow diagnostics exhibit a molecular structure which inhibits the use of conventional laser-induced fluorescence for spatially and spectrally resolved measurements. We have during the last years investigated the use of excitation and detection in the infrared region of the spectrum. Here, it is possible to detect both carbonmono/dioxide, water as well as species specific hydrocarbons. The techniques

  8. Trends in laser micromachining

    Science.gov (United States)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  9. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  10. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  11. Treatment of verruca of hands and feet with 32P application therapy and laser

    International Nuclear Information System (INIS)

    Ma Yubo; Huang Gang; Kang Xiangdong; Liu Yiwen; Lu Ping; Chen Meijuan

    2004-01-01

    To study and compare the clinical curative effect of extremity verruca with 32 P and laser as well as their application values, 229 patients with extremity verruca were chosen by random from outpatient. Out of them, 83 patients were male and 146 were female, with the average age of 34.6 ± 19.5 (x-bar ± s) years. They were randomly divided into two groups: for the laser treatment group consisting of 127 individuals, the wart bodies were eliminated by CO 2 laser under local anaesthetization, if there were a lot of locus, the wart bodies were treated in turn. 102 individuals were treated with 32 P application therapy. The liquid containing radionuclide 32 P was dropped on filter papers, dried and then fixed on the corresponding focus surface for application therapy, applying 4-8 hours continuously (the absorbed dose at the lesion surface reaching 984-1968 cGy) each time and once a week until the lesion recovered. The clinical reaction and curative effect were observed. The clinical effective rate, cure rate, recurrence rate, side effective rate occurrence rate and complication occurrence rate for the laser treatment group are 100%, 55.9%, 44.1%, 17.3% and 25.2%, respectively while they are 100%, 91.2%, 5.9%, 19.6% and 7.8% respectively for the group of 32 P application therapy. It is concluded that the treatment of extremity verruca with 32 P application therapy is a simple and effective method with features such as safety, little pain, notable curative effect, lower recurrence rate, less side effect and complication. (authors)

  12. A review of the applications to solids of the laser ion source in mass spectrometry

    International Nuclear Information System (INIS)

    Conzemius, R.J.; Capellen, J.M.

    1980-01-01

    The review is intended to provide a panoramic view of the broadening applications of the laser ion source in mass spectrometry. In these applications a laser beam has been used to excite a solid specimen to the ionized state or to the vaporized state in the ion source of a mass spectrometer. The review is divided into two main sections: Analytical features and applications. The analytical features section has been subdivided into five areas: Detection sensitivity, ionisation efficiency, collection efficiency, quantification, and crater-depth analysis. Applications have been separated into ten different areas: Biological, carbon, fossil fuels, gaseous impurities, geological, inorganics, isotopic analysis, metals, organics and polymers. (EBE)

  13. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  14. 3D laser microfabrication principles and applications

    CERN Document Server

    Misawa, Hiroaki

    2006-01-01

    A thorough introduction to 3D laser microfabrication technology, leading readers from the fundamentals and theory to its various potent applications, such as the generation of tiny objects or three-dimensional structures within the bulk of transparent materials. The book also presents new theoretical material on dielectric breakdown, allowing a better understanding of the differences between optical damage on surfaces and inside the bulk, as well as a look into the future.Chemists, physicists, materials scientists and engineers will find this a valuable source of interdisciplinary know

  15. Design and performance of a sealed CO2 laser for industrial applications

    International Nuclear Information System (INIS)

    Botero, G; Gomez, D; Nisperuza, D; Bastidas, A

    2011-01-01

    A large amount of materials processing is done using an industrial CO 2 laser operating in the mid-infrared (IR) spectrum. Their high efficiency and tremendous power output have made them one of the most commonly known transition wavelength at 10,6 microns facilitates laser cutting, drilling and marking of a wide variety of materials in the electronics and medical industries. Because lasers are feedback systems, many of their design parameters strongly interact with one another, and arriving at an optimum design requires a really thorough understanding of just how they interact. We report the construction of a sealed CO2 gas discharge laser with a glass laser tube design as well as clear acrylic housing makes this an excellent demonstrational tool. Sealed operation was characterized in mode, power, warm-up and stability over a long time. The results indicate a good operation, optimum wavelength, powers and beam quality will remove material more efficiently in effective industrial applications.

  16. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  17. Efficiency limits of laser power converters for optical power transfer applications

    International Nuclear Information System (INIS)

    Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M

    2013-01-01

    We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)

  18. Efficiency limits of laser power converters for optical power transfer applications

    Science.gov (United States)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  19. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Leily S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-02

    The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphide (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).

  20. Applications of laser diagnostics to thermal power plants and engines

    International Nuclear Information System (INIS)

    Deguchi, Y.; Kamimoto, T.; Wang, Z.Z.; Yan, J.J.; Liu, J.P.; Watanabe, H.; Kurose, R.

    2014-01-01

    The demands for lowering the burdens on the environment will continue to grow steadily. It is important to monitor controlling factors in order to improve the operation of industrial thermal systems. In engines, exhaust gas temperature and concentration distributions are important factors in nitrogen oxides (NO x ), total hydrocarbon (THC) and particulate matter (PM) emissions. Coal and fly ash contents are parameters which can be used for the control of coal-fired thermal power plants. Monitoring of heavy metals such as Hg is also important for pollution control. In this study, the improved laser measurement techniques using computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS), low pressure laser-induced breakdown spectroscopy (LIBS), and laser breakdown time-of-flight mass spectrometry (LB-TOFMS) have been developed and applied to measure 2D temperature and species concentrations in engine exhausts, coal and fly ash contents, and trace species measurement. The 2D temperature and NH 3 concentration distributions in engine exhausts were successfully measured using CT-TDLAS. The elemental contents of size-segregated particles were measured and the signal stability increased using LIBS with the temperature correction method. The detection limit of trace species measurement was enhanced using low pressure LIBS and LB-TOFMS. The detection limit of Hg can be enhanced to 3.5 ppb when employing N 2 as the buffer gas using low pressure LIBS. Hg detection limit was about 0.82 ppb using 35 ps LB-TOFMS. Compared to conventional measurement methods laser diagnostics has high sensitivity, high response and non-contact features for actual industrial systems. With these engineering developments, transient phenomena such as start-ups in thermal systems can be evaluated to improve the efficiency of these thermal processes. - Highlights: • Applicability of newly developed laser diagnostics was demonstrated for the improvement of thermal power plants and

  1. Laser application for hypertrophic rhinitis

    Science.gov (United States)

    Inouye, Tetsuzo; Tanabe, Tetsuya; Nakanoboh, Manabu; Ogura, Masami

    1995-05-01

    The CO2 and KTP/532 lasers have been used in the treatment of an allergic and hypertrophic rhinitis for the past several years. As we know, the laser enables a surgeon to perform the operation with minimum hemorrhage and minimized pain, during and after the procedure. Additionally many of these operations can be performed under local anesthesia instead of general anesthesia, on an outpatient basis. The laser is used to irradiate the mucous membranes of the inferior turbinates. Vaporization and cutting is easily done. Post operative management of the local operated area is easy. The advantages of laser surgery over regular surgical techniques are supreme for intranasal operations when performed under local anesthesia.

  2. Applications of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-01-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ∼ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi 0.85 Co 0.15 O 2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  3. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  4. Conceptual design of a hybrid KrF laser system for ICF commercial applications

    International Nuclear Information System (INIS)

    Harris, D.B.; Lowenthal, D.D.

    1986-01-01

    KrF lasers appear to be the most efficient lasers operating near the optimal wavelength for laser fusion. Most high-efficiency, low-cost KrF laser designs use large electron-beam-driven amplifiers and use pure angular multiplexing for the required pulse compression. A recent study carried out by Los Alamos National Lab. and Spectra Technology has defied a high-efficiency hybrid KrF laser system architecture that uses both angular multiplexing and Raman beam combination. The high overall system efficiency of this hybrid design, ∼ 12%, is achieved primarily through the use of electron-beam sustained discharge lasers (EBSDL), and by using the efficient forward rotational Raman process in hydrogen. The new system appears attractive as a commercial-applications driver because the calculated efficiency is higher than the usual large electron-beam-pumped (EBP) KrF laser/pure angular multiplexing approach. In this paper, the hybrid system architecture will be described, and the trade-offs with respect to the large EBP amplifier/angular multiplexed system will be discussed

  5. Epi-Side-Down Mounting of Interband Cascade Lasers for Army Applications

    National Research Council Canada - National Science Library

    Tobin, M. S; Monroy, C. J; Oliver, K. A; Tober, R. L; Bradshaw, J. L; Bruno, J. D; Towner, F. J

    2006-01-01

    The interband cascade laser, based on the type II energy band alignment in the InAs/GaSb material system, has great potential to meet the power and the wall plug efficiency requirements of many Army applications...

  6. Laser application for nuclear reaction product detecting system alignment

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Dryapachenko, I.P.; Kornilov, V.A.; Nemets, O.F.; Rudenko, B.A.; Sokolov, M.V.; Struzhko, B.G.; Gnatovskij, A.V.; Bojchuk, V.N.

    1982-01-01

    A method for optical alignment of nuclear particle detector system using a laser beam and hologram is described. The method permits to arrange detectors very precisely in accordance with any chosen space coordinate values. The results of modelling the geometry of an experiment based on using the suggested method on cyclotron beams are described. A gas helium-neon laser with wavelength of 0.63 μm radiation power of an order of 2 MW and angular beam divergence less than 10 angular minutes is used for modelling. It is concluded that the laser and hologram application provides large possibilities for the modelling the geometry of experiments on nuclear reaction investigation. When necessary it is possible to obtain small nonius scale of reference beams by means of multiplicating properties of the wave front modulator-hologram system. It is also possible to record holograms shaping the reference beams in two or several planes crossing along the central beam direction. Such holograms can be used for modelling the noncoplanar geometry of correlation experiments [ru

  7. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    Science.gov (United States)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  8. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  9. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  10. Bulk damage and absorption in fused silica due to high-power laser applications

    Science.gov (United States)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  11. Application of laser cladding method to small-diameter stainless steel pipes in actual nuclear plant

    International Nuclear Information System (INIS)

    Atago, Y.; Yamadera, M.; Tsuji, H.; Shiraiwa, T.; Kanno, M.

    1995-01-01

    Recently, to prevent stress corrosion cracking (SCC) the material of stainless steel (Type 304), a laser cladding method which produces a highly corrosion-resisting coating (cladding) to be formed on the surface of the material was developed. This is applicable to a long distance and narrow space, because of the good accessibility of the YAG (Yttrium-Aluminum Garnet) laser beam that can be transmitted through an optical fiber. In this method, a paste mixed metallic powder and heating resistive organic solvent is firstly placed on the inner surface of a small pipe and then a YAG laser beam transmitted through an optical fiber is irradiated to the paste, which will be melted and formed a clad subsequently, which is excellent in corrosion resistance. Finally, it can be achieved further resistance against the SCC due to the clad layer formed thus on the surface of the material. Recently, this Laser Cladding method was practically and successfully applied to the actual BWR Nuclear Power Plant in Japan. This report introduces the laser cladding technique, the equipments developed for practical application in the field

  12. Damage Mechanisms In Polymers Upon NIR Femtosecond Pulse Laser Irradiation: Sub-Threshold Processes And Their Implications For Laser Safety Applications

    International Nuclear Information System (INIS)

    Bonse, Joern; Krueger, Joerg; Solis, Javier; Spielmann, Christian; Lippert, Thomas

    2010-01-01

    This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds (μs). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage.

  13. To compare the gingival melanin repigmentation after diode laser application and surgical removal

    Directory of Open Access Journals (Sweden)

    Gaurav Mahajan

    2017-01-01

    Full Text Available Aim: The aim of the present study is to compare the gingival melanin repigmentation after diode laser application and surgical removal done by scraping with Kirkland knife. Materials and Methods: This study was a randomized split-mouth study where 10 patients presenting with unattractive, diffuse, dark brown to black gingival discoloration on the facial aspect of the maxillary gingiva were treated by diode laser application and surgical removal and followed up for 3-, 6-, and 9-month intervals. Results: The results showed a statistically significant difference in repigmentation between the groups at the interval of 3 months (P = 0.040, but the difference was statistically not significant at 6 months (P = 0.118 and 9 months (P = 0.146. On surgically treated sites, all cases showed repigmentation of the gingiva, but in laser treated, there were two individuals which did not show repigmentation of the gingiva even at the end of 9-month observation time. Conclusion: The incidence of repigmentation was slightly less in laser-treated sites as compared to surgical depigmentation although the difference was statistically significant only up to 3 months.

  14. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    Science.gov (United States)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  15. Recommendations concerning the prevention of radiation-induced health hazards through the application of soft and MID lasers

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The Federal Health Office (BGA) recommends observation of the following practical hints: The application of soft lasers or MID lasers for cosmetic treatment or acupuncture represents a danger to the eye. Instructions for use of laser equipment have to indicate this danger. Appropriate use of the equipment will prevent damage. Any person applying soft lasers or MID lasers for treatment of customers or patients near the eye are required to give proof of a special training assuring appropriate handling, and of instructions in laser radiation protection.

  16. Application of YAG laser cladding to the flange seating surface

    International Nuclear Information System (INIS)

    Nakanishi, Koki; Ninomiya, Kazuyuki; Nezaki, Koji

    1999-01-01

    Stainless cladding on carbon steel is usually conducted by shielded metal arc welding (SMAW) or gas tungsten arc welding (GTAW). YAG ( Yttrium-Aluminum-Garnet) laser welding is superior to these methods of welding in the following respects : (1) The heat affected zone (HAZ) is narrower and there is less distortion. (2) YAG laser cladding has the required chemical compositions, even with possibly fewer welding layers under controlled dilution. (3) Greater welding speed. YAG laser cladding application to vessel flange seating surfaces was examined in this study and the results are discussed. The following objectives were carried out : (1) Determination of welding conditions for satisfactory cladding layers and (2) whether cladding would be adequately possible at a cornered section of a stair-like plate, assuming actual flange shape. (3) Measurement of welding distortion and heat affected zone in carbon steel. The welding conditions for producing no-crack deposit with low dilution in carbon steel were clarified and welding by which cladding at cornered section would be possible was achieved. welding distortion by YAG laser was found less than with GTAW and HAZ made by first layer welding could be tempered appropriately by second layer welding. (author)

  17. The golden altar of S. Ambrogio in Milan: non destructive x-ray fluorescence analysis with a portable apparatus

    International Nuclear Information System (INIS)

    Cesareo, R.; Marabelli, M.; Bandera, S.; Fiorini, C.; Gatti, E.; Leutenegger, P.; Longoni, A.; Gigante, G.E.

    1999-01-01

    The golden altar of S. Ambrogio in Milan is considered one of the most important goldsmith's work never realized. It was constructed in the period between 824 and 859 A.C. approximately. From the metallurgical point of view, ancient gold is composed, besides gold, of silver, copper, iron (< 1%), lead (< 1%) and in some cases of platinum, at trace level. Ancient silver is usually composed by copper, lead, gold (<1%) and iron (< 1%) and in some cases tin, nickel and zinc (at level of traces). The golden altar of S. Ambrogio in Milan was analyzed by means of a portable apparatus using an EDXRF-spectrometer composed by: a) the measuring head composed of a small low-power X-ray tube with a W-anode and working at 30 kV and 0.1 mA, and a thermometrically cooled small size Si-PIN X-ray detector; b) two small boxes for the bias of X-ray tube and detector respectively; c) a multi channel analyzer. For an EDXRF-analysis the measuring head simply touches the surface to be analyzed (approximately 1 cm2 ). The altar of Volvinius was analyzed in about 200 areas; some of them were analyzed twice and at different times, in order to verify the reliability of the apparatus. The four panels of the altar were then analyzed in more than 150 points, in two different sets of measurements. Standard samples were first analyzed, in order to verify the correlation between counts and concentration. Values obtained from the measurements are well comparable with standard values, within the experimental errors. This work was partially supported by the Progetto finalizzato Beni Culturali of the Consiglio Nazionale delle Ricerche

  18. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  19. Geometric validation of a mobile laser scanning system for urban applications

    Science.gov (United States)

    Guan, Haiyan; Li, Jonathan; Yu, Yongtao; Liu, Yan

    2016-03-01

    Mobile laser scanning (MLS) technologies have been actively studied and implemented over the past decade, as their application fields are rapidly expanding and extending beyond conventional topographic mapping. Trimble's MX-8, as one of the MLS systems in the current market, generates rich survey-grade laser and image data for urban surveying. The objective of this study is to evaluate whether Trimble MX-8 MLS data satisfies the accuracy requirements of urban surveying. According to the formula of geo-referencing, accuracies of navigation solution and laser scanner determines the accuracy of the collected LiDAR point clouds. Two test sites were selected to test the performance of Trimble MX-8. Those extensive tests confirm that Trimble MX-8 offers a very promising tool to survey complex urban areas.

  20. Final Report on an Analysis of the Education and Training Systems at Milan, Michigan and Terre Haute, Indiana to Federal Prison Industries Incorporated, U.S. Department of Justice.

    Science.gov (United States)

    Hitt, William D.; And Others

    Existing education and training (E&T) programs at the Terre Haute Penitentiary, Indiana, and the Milan Federal Correctional Institution, Michigan, were described and evaluated. Needs, objectives, inmate classification and placement, staff, and other aspects were covered. Reports, staff and inmate interviews, study of instructional materials, and…

  1. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    Science.gov (United States)

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  2. New power lasers

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  3. Surface engineering with lasers : an application to Co-base materials

    NARCIS (Netherlands)

    de Hosson, J.T.M.; de Mol van Otterloo, J.L.; Boerstoel, B.M.; Huis in 't Veld, A.J.; Sarton, LAJ; Zeedijk, HB

    1997-01-01

    The present paper concentrates on the applications of CO2 laser treatments to enhance fretting wear properties of stainless steel. Stainless steel 316 is used as substrate material. Powder particles of the various stellites with sizes ranging between 45 and 125 mu m are fed onto the surface. It was

  4. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applicationsLaser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  5. Recommendations concerning the prevention of radiation-induced health hazards through the application of soft and MID lasers

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The Federal Health Office (BGA) recommends observation of the following practical hints: The application of soft lasers or MID lasers for cosmetic treatment or acupuncture represents a danger to the eye. Instructions for use of laser equipment have to indicate this danger. Appropriate use of the equipment will prevent damage. Any person applying soft lasers or MID lasers for treatment of customers or patients near the eye are required to give proof of a special training assuring appropriate handling, and of instructions in laser radiation protection. (orig./PW) [de

  6. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  7. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  8. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... Keywords. Nd:YAG laser; fibre-optic beam delivery; laser cutting; laser welding; nuclear reactor. ... Author Affiliations. D N Sanyal1. Remote Tooling Section, Technology Development Group, Nuclear Power Corporation of India Ltd., Mumbai 400 094, India ...

  9. LaserFest Celebration

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  10. Direct diode lasers and their advantages for materials processing and other applications

    Science.gov (United States)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but

  11. Assiut Experience in the Application of Holmium Laser in Treatment ...

    African Journals Online (AJOL)

    Assiut Experience in the Application of Holmium Laser in Treatment of Ureteral Calculi in Adults. A.M. Abdel Lateef, A.E. Abdel Moniem, M.I. Taha, M.A. Shalaby. Abstract. Internal Optical Urethrotomy at the National Medical Center of Sanou Souro in Bobo-Dioulasso: Feasibility, Safety and Short-Term Results Objective To ...

  12. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  13. Managing the maintainance and conservation of the built heritage: a web-gis approach for the Richini courtyard in Milan

    Science.gov (United States)

    Toniolo, L.; Gulotta, D.; Bertoldi, M.; Bortolotto, S.

    2012-04-01

    The Richini courtyard is a masterpiece of northern Italy baroque and it is part of the complex that currently hosts the "Università degli Studi" of Milan. Its four internal façades are based on a double arcade structure with granitic columns along a rectangular plan. The architectural elements are enriched by an outstanding sculpted decoration made of Angera stone (a typical Lombard dolostone) with bas-relief panels, high-relief figures, mouldings and voussoirs. The courtyard suffers the consequences of a troubled conservation history: the Second World War bombardment caused devastating damages to both the structure and the sculpted surfaces, so that an extensive restoration was carried out during the early fifties. Moreover, a further and massive conservative intervention was required during the nineties due to the increasing degradation rate of the Angera stone subjected to severely polluted environmental conditions. The overall durability of this last intervention, as well as the long-term compatibility of the restoration materials, has been evaluated almost twenty years later, in 2011. A thorough study of representative areas of the courtyard has been conducted by a multi-disciplinary research group. The aim of the study was the evaluation of the state of conservation of the ancient and restoration materials, as well as the identification of the decay phenomena. A high-accurate 3D laser scanner survey of the courtyard has been performed as well. The results of the diagnostic activity has been summarised in the present work. The wide range of different type of data (analytical and geometrical data, historical records, photographic documentation) have been managed by the latest release of a web-GIS software specifically designed for the application in the built heritage conservation. A new data structure has been purposely designed in order to maximize the efficiency for what concerning data entry, data query and data updating. The enhanced web-GIS software has

  14. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    Science.gov (United States)

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  15. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application

    Directory of Open Access Journals (Sweden)

    Meng Zou

    2016-12-01

    Full Text Available A composite microstructure in fiber Bragg grating (FBG with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd–Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  16. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    Science.gov (United States)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  17. Modified diamond dies for laser applications

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, R.A.

    1978-06-21

    A modified wire drawing die for spatial filtering techniques is described. It was designed for use in high power laser systems. The diamond aperture is capable of enduring high intensity laser frequency without damaging the laser beam profile. The diamond is mounted at the beam focus in a vacuum of 1 x 10/sup -5/ Torr. The vacuum prevents plasma forming at the diamond aperture, thus enabling the beam to pass through without damaging the holder or aperture. The spatial filters are fitted with a manipulator that has three electronic stepping motors, can position the aperture in three orthogonal directions, and is capable of 3.2 ..mu..m resolution. Shiva laser system is using 105 diamond apertures for shaping the High Energy Laser Beam.

  18. Lasers in space

    Science.gov (United States)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  19. Aerosol removal due to precipitation and wind forcings in Milan urban area

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne

    2018-01-01

    Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.

  20. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  1. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  2. Enabling laser applications in microelectronics manufacturing

    Science.gov (United States)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  3. Spectroscopic and Dynamic Applications of Laser - Interactions.

    Science.gov (United States)

    Quesada, Mark Alejandro

    1987-05-01

    Five different studies of laser-molecule interactions are conducted in this thesis. In part one, the first observation of Autler-Townes splitting of molecules is discussed and used to measure vibronic transition moments between excited electronic states. The effect was observed in the two-color, four -photon ionization of hydrogen via the resonant levels E,F(v = 6, J = 1) and D(v = 2, J = 2). Calculations gave good fits to the observed spectra yielding a vibronic transition moment of 2.0 +/- 0.5 a.u. between the above excited states. In part two, a method for extracting the alignment parameters of a molecular angular momentum distribution using laser-induced fluorescence is presented. The treatment is applicable to the common case of cylindrically symmetric orientation distributions in the high J-limit. Four different combinations of rotational branches in the LIF absorption emission process are examined. Computer algebra programs are used to generate simple analytical expressions which account for the influence of saturation on determining alignment parameters. In part three, the application of MPI-optogalvanic spectroscopy to the molecule 1,4-diazabicyclo (2.2.2) octane (DABCO) at various levels in a methane/air flame environment is described. The method employs a burner design that permits access to preheated and primary reaction zones of the flame for laser probing. Hot bands arising from two-photon resonant (X_1 ' to A_1') transitions are measured and the intramolecular vibrational potentials for the ground and first excited state are determined. In part four, DABCO's nu_ {13} torsional mode relaxation in a helium -DABCO and argon-DABCO supersonic jet, under low expansion conditions, is discussed. Modeling of the relaxation using the linear Landau-Teller relaxation equation is undertaken with various attempts to incorporate the effects of velocity slip. The relaxation rate is found to be independent of slip and the cross section dependent on the inverse of

  4. Integrated Applications with Laser Technology

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2013-01-01

    Full Text Available The introduction of new materials as Power Point presentations are the most convenient way of teaching a course or to display a scientific paper. In order to support this function, most schools, universities, institutions, are equipped with projectors and computers. For controlling the presentation of the materials, the persons that are in charge with the presentation use, in most cases, both the keyboard of the computer as well as the mouse for the slides, thing that burdens, in a way, the direct communication (face to face with the audience. Of course, the invention of the wireless mouse allowed a sort of freedom in controlling from the distance the digital materials. Although there seems to appear a certain impediment: in order to be used, the mouse requires to be placed on a flat surface. This article aims at creating a new application prototype that will manipulate, only through the means of a light-beam instrument (laser fascicle, both the actions of the mouse as well as some of the elements offered by the keyboard on a certain application or presentation. The light fascicle will be „connected” to a calculus system only through the images that were captured by a simple webcam.

  5. Short Pulse Laser Applications Design

    International Nuclear Information System (INIS)

    Town, R.J.; Clark, D.S.; Kemp, A.J.; Lasinski, B.F.; Tabak, M.

    2008-01-01

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense (∼300 g/cm 3 ) fuel mass with an areal density of ∼3.0 g/cm 2 . To ignite such a fuel assembly requires depositing ∼20kJ into a ∼35 (micro)m spot delivered in a short time compared to the fuel disassembly time (∼20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI facility, called HiPER, designed to

  6. 激光在牙周治疗中的应用%Application of laser in periodontal therapy

    Institute of Scientific and Technical Information of China (English)

    潘亚萍

    2015-01-01

    该文就目前牙周治疗中常见的几种激光作一介绍。文献回顾显示激光可以清除97%以上的牙周致病菌,能够有效去除病变牙骨质,并且对牙周组织和根面损伤较小,同时,激光可以减少治疗中的疼痛。在今后的牙周治疗具有广泛的应用前景。%To summarize the application of laser in the treatment of periodontal disease.Researches have proved that laser can clean more than 97%periodontal pathogens,and laser also can remove infected cementum effectively with little damage on periodontal tissue and tooth root.Laser also can alleviate pain in treatment.So laser may have potential application in periodontal therapy in future.

  7. Alpha-fetoprotein level > 1000 ng/mL as an exclusion criterion for liver transplantation in patients with hepatocellular carcinoma meeting the Milan criteria.

    Science.gov (United States)

    Hameed, Bilal; Mehta, Neil; Sapisochin, Gonzalo; Roberts, John P; Yao, Francis Y

    2014-08-01

    Serum alpha-fetoprotein (AFP) has been increasingly recognized as a marker for a poor prognosis after liver transplantation (LT) for hepatocellular carcinoma (HCC). Many published reports, however, have included a large proportion of patients with HCC beyond the Milan criteria, and the effects of incorporating AFP as an exclusion criterion for LT remain unclear. We studied 211 consecutive patients undergoing LT for HCC within the Milan criteria according to imaging under the Model for End-Stage Liver Disease organ allocation system between June 2002 and January 2009. The majority (93.4%) had locoregional therapy before LT. The median follow-up was 4.5 years (minimum = 2 years). The Kaplan-Meier 1- and 5-year patient survival rates were 94.3% and 83.4%, respectively. In a univariate analysis, significant predictors of HCC recurrence included vascular invasion [hazard ratio (HR) = 10, 95% confidence interval (CI) = 3.9-26, P 1000 ng/mL (HR = 4.5, 95% CI = 1.3-15.3, P = 0.02), and an AFP level > 500 ng/mL (HR = 3.1, 95% CI = 1.04-9.4, P = 0.04). In a multivariate analysis, vascular invasion was the only significant predictor of tumor recurrence (HR = 5.6, 95% CI = 1.9-19, P = 0.02). An AFP level > 1000 ng/mL was the strongest pretransplant variable predicting vascular invasion (odds ratio = 6.8, 95% CI = 1.6-19.1, P = 0.006). The 1- and 5-year rates of survival without recurrence were 90% and 52.7%, respectively, for patients with an AFP level > 1000 ng/mL and 95% and 80.3%, respectively, for patients with an AFP level ≤ 1000 ng/mL (P = 0.026). Applying an AFP level > 1000 ng/mL as a cutoff would have resulted in the exclusion of 4.7% of the patients fr m LT and a 20% reduction in HCC recurrence. In conclusion, an AFP level > 1000 ng/mL may be a surrogate for vascular invasion and may be used to predict posttransplant HCC recurrence. Incorporating an AFP level > 1000 ng/mL as an exclusion criterion for LT within the Milan criteria may further improve posttransplant

  8. A multi-source dataset of urban life in the city of Milan and the Province of Trentino.

    Science.gov (United States)

    Barlacchi, Gianni; De Nadai, Marco; Larcher, Roberto; Casella, Antonio; Chitic, Cristiana; Torrisi, Giovanni; Antonelli, Fabrizio; Vespignani, Alessandro; Pentland, Alex; Lepri, Bruno

    2015-01-01

    The study of socio-technical systems has been revolutionized by the unprecedented amount of digital records that are constantly being produced by human activities such as accessing Internet services, using mobile devices, and consuming energy and knowledge. In this paper, we describe the richest open multi-source dataset ever released on two geographical areas. The dataset is composed of telecommunications, weather, news, social networks and electricity data from the city of Milan and the Province of Trentino. The unique multi-source composition of the dataset makes it an ideal testbed for methodologies and approaches aimed at tackling a wide range of problems including energy consumption, mobility planning, tourist and migrant flows, urban structures and interactions, event detection, urban well-being and many others.

  9. The use of vitamins as tracer dyes for laser-induced fluorescence in liquid flow applications

    Science.gov (United States)

    Zähringer, Katharina

    2014-04-01

    Tracers commonly used in experimental flow studies are mostly nocuous to the environment and human health. Particularly, in large flow installations, this can become a problem. In this study, a solution of this problem is presented, based on using water-soluble vitamins. Five of them are examined here for their applicability in flow studies. Vitamins B2 and B6 turned out to be the most promising candidates, and the dependency of their fluorescence intensity on parameters like concentration, laser energy, temperature, and pH are determined for two commonly used laser excitation wavelengths (532, 355 nm). Two examples of application in a static mixer and a spray flow are shown and demonstrate the applicability of the vitamin tracers.

  10. Single application on iris localization technology in excimer laser for astigmatism

    Directory of Open Access Journals (Sweden)

    Jun-Hua Hao

    2014-06-01

    Full Text Available AIM:To discuss the single application on iris localization technology in excimer laser for the treatment of astigmatism. METHODS:Totally 203 cases(406 eyesof laser in situ keratomileusis(LASIKin the treatment of compound myopic astigmatism patients were operated from November 2011 to November 2012 in our hospital. They were divided into two groups. One was observation group using iris localization and the other was control group using routine operation. Patients in the observation group of 100 cases(200 eyes, aged 18-43 years old, spherical diopter was -1.25 to -8.75D, astigmatism was -1.0 to -3.25D. In control group, 103 patients(206 eyes, aged 19-44 years old, spherical diopter was -1.75-9.50D, astigmatism was -1.0 to -3.25D. The patients in the observation group before the application of WaveScan aberrometer check for iris image, spherical lens, cylindrical lens and astigmatism axis data operation, only single application of iris location, without using wavefront aberration guided technology, laser cutting patterns for conventional LASIK model, spherical, cylindrical mirror and astigmatism axis data source to preoperative wavefront aberration results. The control group received routine LASIK. It was applicated comprehensive optometry optometry respectively to examine astigmatism and axial, based on the computer analysis during the preoperative, 1wk after the operation, and 6mo. Analysis of using SPSS 17 statistical software, it was independent-sample t test between the two groups of residual astigmatism and astigmatism axis. RESULTS:Postoperative residual astigmatism, the observation group was significantly better than the control group. Astigmatism axial measurement after operation, the observation group was significantly less than that of the control group. Postoperative visual acuity at 6mo, the observation group was better than that of the control group. The difference was statistically significant. CONCLUSION: For patients who cannot

  11. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  12. Laser coating of hafnium on Ti6Al4 for biomedical applications

    CSIR Research Space (South Africa)

    Phume, L

    2012-12-01

    Full Text Available Al4V FOR BIOMEDICAL APPLICATIONS Lerato Phume 1, 2, S.L. Pityana 1, 2, C. Meacock 1, A.P.I Popoola 2 1. National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001, South Africa 2. Department of Chemical... and Metallurgical Engineering, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001, South Africa (b) (c) (e) To investigate laser surface coating of Ti6Al4V with preplaced Hafnium powder, to determine the influence of the energy density...

  13. Continuous production of inorganic magnetic nanocomposites for biomedical applications by laser pyrolysis

    International Nuclear Information System (INIS)

    Veintemillas-Verdaguer, Sabino; Leconte, Yann; Costo, Rocio; Bomati-Miguel, Oscar; Bouchet-Fabre, Brigitte; Morales, M. Puerto; Bonville, Pierre; Perez-Rial, Sandra; Rodriguez, Ignacio; Herlin-Boime, Nathalie

    2007-01-01

    Magnetic composites of Fe-based nanoparticles encapsulated in carbon/silica (C/SiO 2 at Fe) or carbon (C at Fe) matrices were prepared by laser-induced pyrolysis of aerosols. The powders were dispersed in aqueous solutions at pH 7 resulting in biocompatible colloidal dispersions with a high resistance to biodegradation. Structural and magnetic properties and the suitability of aqueous dispersions as contrast agent for MRI were analyzed. The results of these characterizations and the NMR relaxivity data are very encouraging for application of laser pyrolysis products in the field of living tissues

  14. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  15. Femtosecond lasers for countermeasure applications

    NARCIS (Netherlands)

    Franssen, G.C.; Schleijpen, H.M.A.; Heuvel, J.C. van den; Buersing, H.; Eberle, B.; Walter, D.

    2009-01-01

    In recent years, much advance in the field of high-power femtosecond laser technology has been made. The high pulse power of femtosecond laser systems leads to various interesting phenomena, such as a very high power density and the formation of a plasma in the propagation medium, which is usually

  16. Model of care for adolescents and young adults with cancer: the Youth Project in Milan

    Directory of Open Access Journals (Sweden)

    Chiara Magni

    2016-08-01

    Full Text Available Adolescents and young adults (AYA with cancer form a particular group of patients with unique characteristics, who inhabit a so-called no man’s land between pediatric and adult services. In the last ten years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed towards patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients’ needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to adolescents and young adults with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes.

  17. Laser shock peening on a 6056-T4 aluminium alloy for airframe applications

    CSIR Research Space (South Africa)

    Glaser, D

    2014-03-01

    Full Text Available stream_source_info Pityana1_2014_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 1356 Content-Encoding ISO-8859-1 stream_name Pityana1_2014_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=ISO-8859-1... Laser Shock Peening on a 6056-T4 Aluminium Alloy for Airframe Applications Daniel Glaser, Claudia Polese, Rachana D. Bedekar, Jasper Plaisier,Sisa Pityana, Bathusile Masina, Tebogo Mathebula, and Enrico Troiani Keywords: Laser Shock Peening...

  18. Fabrication of Shatter-Proof Metal Hollow-Core Optical Fibers for Endoscopic Mid-Infrared Laser Applications

    Directory of Open Access Journals (Sweden)

    Katsumasa Iwai

    2018-04-01

    Full Text Available A method for fabricating robust and thin hollow-core optical fibers that carry mid-infrared light is proposed for use in endoscopic laser applications. The fiber is made of stainless steel tubing, eliminating the risk of scattering small glass fragments inside the body if the fiber breaks. To reduce the inner surface roughness of the tubing, a polymer base layer is formed prior to depositing silver and optical-polymer layers that confine light inside the hollow core. The surface roughness is greatly decreased by re-coating thin polymer base layers. Because of this smooth base layer surface, a uniform optical-polymer film can be formed around the core. As a result, clear interference peaks are observed in both the visible and mid-infrared regions. Transmission losses were also low for the carbon dioxide laser used for medical treatments as well as the visible laser diode used for an aiming beam. Measurements of bending losses for these lasers demonstrate the feasibility of the designed fiber for endoscopic applications.

  19. Application of laser radiation and magnetostimulation in therapy of patients with multiple sclerosis.

    Science.gov (United States)

    Kubsik, Anna; Klimkiewicz, Robert; Janczewska, Katarzyna; Klimkiewicz, Paulina; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2016-01-01

    Multiple sclerosis is one of the most common neurological disorders. It is a chronic inflammatory demyelinating disease of the CNS, whose etiology is not fully understood. Application of new rehabilitation methods are essential to improve functional status. The material studied consisted of 120 patients of both sexes (82 women and 38 men) aged 21-81 years. The study involved patients with a diagnosis of multiple sclerosis. The aim of the study was to evaluate the effect of laser radiation and other therapies on the functional status of patients with multiple sclerosis. Patients were randomly divided into four treatment groups. The evaluation was performed three times - before the start of rehabilitation, immediately after rehabilitation (21 days of treatment) and subsequent control - 30 days after the patients leave the clinic. The following tests were performed for all patients to assess functional status: Expanded Disability Status Scale (EDSS) of Kurtzke and Barthel Index. Results of all testing procedures show that the treatment methods are improving the functional status of patients with multiple sclerosis, with the significant advantage of the synergistic action of laser and magneto stimulation. The combination of laser and magneto stimulation significantly confirmed beneficial effect on quality of life. The results of these studies present new scientific value and are improved compared to program of rehabilitation of patients with multiple sclerosis by laser radiation which was previously used. This study showed that synergic action of laser radiation and magneto stimulation has a beneficial effect on improving functional status, and thus improves the quality of life of patients with multiple sclerosis. The effects of all methods of rehabilitation are persisted after cessation of treatment applications, with a particular advantage of the synergistic action of laser radiation and magneto stimulation, which indicates the possibility to elicitation in these

  20. Preliminary design and estimate of capital and operating costs for a production scale application of laser decontamination technology

    International Nuclear Information System (INIS)

    Pang, Ho-ming; Edelson, M.C.

    1994-01-01

    The application of laser ablation technology to the decontamination of radioactive metals, particularly the surfaces of equipment, is discussed. Included is information related to the design, capital and operating costs, and effectiveness of laser ablation technology, based on commercial excimer and Nd:YAG lasers, for the decontamination of production scale equipment

  1. THE APPLICATION OF LASERS IN MEASUREMENT OF FLUID FLOW THROUGH DRILLING BIT NOZZLES

    Directory of Open Access Journals (Sweden)

    Radenko Drakulić

    1993-12-01

    Full Text Available Two optical methods based on laser and video technology and digital signal and image processing techniques - Laser Doppler velocimetry (LDV and Particle image velocimetry (PIV were applied in highly accurate fluid flow measurement. Their application in jet velocity measurement of flows through drilling bit nozzles is presented. The role of nozzles in drilling technology together with procedures and tests performed on their optimization are reviewed. In addition, some experimental results for circular nozzle obtained both with LDV and PIV are elaborated. The experimental set-up and the testing procedure arc briefly discussed, as well as potential improvements in the design. Possible other applications of LDV and PIV in the domain of petroleum engineering are suggested (the paper is published in Croatian.

  2. Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Moriconi, Giacomo; Pauri, Marco Giuseppe

    2007-01-01

    Solid free-form fabrication (SFF) techniques use layer-based manufacturing to create physical objects directly from computer-generated models. Using an additive approach to manufacture shapes, SFF systems join liquid, powder or sheet materials. Selective laser sintering (SLS) is a SFF technique by which parts are built layer-by-layer offering the key advantage of the direct manufacturing of functional parts. In SLS, a laser beam is traced over the surface of a tightly compacted powder made of thermoplastic material. In this paper is characterized a new aluminum-filled polyamide powder developed for applications in SLS. This material is promising for many applications that require a metallic look of the part, good finishing properties, high stiffness and higher part quality

  3. Laser ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  4. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgi, G., E-mail: giorgia.sangiorgi1@unimib.it [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Ferrero, L.; Perrone, M.G.; Bolzacchini, E. [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Duane, M. [Institute for Environment and Sustainability, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy); Larsen, B.R. [Institute for Health and Consumer Protection, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy)

    2011-12-15

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 {+-} 20 min. - Graphical abstract: Display Omitted Highlights: > Experimental vertical profiles of HCs and particle concentration by tethered balloon. > Effect of mixing height on the vertical distribution of HCs and particles. > Effect of tropospheric reactivity on vertical profiles of HCs. > Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  5. Laser development for laser fusion applications. Research progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Research conducted during this period is reported on the following: (1) rare-gas-halogen lasers, (2) XeCl laser at excitation rates of 1.7 to 4.7 MW/cm 3 , (3) rare gas halogen laser modeling, (4) three-body ion recombination coefficients, (5) electron beam accelerators, (6) power conditioning studies for accelerators, (7) chemically pumped iodine lasers, (8) hydrogen fluoride lasers, and (9) supporting research

  6. Lasers in periodontics.

    Science.gov (United States)

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  7. Production and applications of quasi-monoenergetic electron bunches in laser-plasma based accelerators

    International Nuclear Information System (INIS)

    Glinec, Y.; Faure, J.; Ewald, F.; Lifschitz, A.; Malka, V.

    2006-01-01

    Plasmas are attractive media for the next generation of compact particle accelerators because they can sustain electric fields larger than those in conventional accelerators by three orders of magnitude. However, until now, plasma-based accelerators have produced relatively poor quality electron beams even though for most practical applications, high quality beams are required. In particular, beams from laser plasma-based accelerators tend to have a large divergence and very large energy spreads, meaning that different particles travel at different speeds. The combination of these two problems makes it difficult to utilize these beams. Here, we demonstrate the production of high quality and high energy electron beams from laser-plasma interaction: in a distance of 3 mm, a very collimated and quasi-monoenergetic electron beam is emitted with a 0.5 nanocoulomb charge at 170 ± 20 MeV. In this regime, we have observed very nonlinear phenomena, such as self-focusing and temporal self-shortenning down to 10 fs durations. Both phenomena increase the excitation of the wakefield. The laser pulse drives a highly nonlinear wakefield, able to trap and accelerate plasma background electrons to a single energy. We will review the different regimes of electron acceleration and we will show how enhanced performances can be reached with state-of-the-art ultrashort laser systems. Applications such as gamma radiography of such electron beams will also be discussed

  8. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  9. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    International Nuclear Information System (INIS)

    Dreizler, Andreas; Fried, Alan; Gord, James R.

    2007-01-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica

  10. Laser applications to chemical, security, and environmental analysis: introduction to the feature issue.

    Science.gov (United States)

    Seeger, Thomas; Dreier, Thomas; Chen, Weidong; Kearny, Sean; Kulatilaka, Waruna

    2017-04-10

    This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2016 Fifteenth Topical Meeting sponsored by the Optical Society of America.

  11. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  12. The application of diode laser in the treatment of oral soft tissues lesions. A literature review.

    Science.gov (United States)

    Ortega-Concepción, Daniel; Cano-Durán, Jorge A; Peña-Cardelles, Juan-Francisco; Paredes-Rodríguez, Víctor-Manuel; González-Serrano, José; López-Quiles, Juan

    2017-07-01

    Since its appearance in the dental area, the laser has become a treatment of choice in the removal of lesions in the oral soft tissues, due to the numerous advantages they offer, being one of the most used currently the diode laser. The aim of this review was to determine the efficacy and predictability of diode laser as a treatment of soft tissue injuries compared to other surgical methods. A literature review of articles published in PubMed/MEDLINE, Scopus and the Cochrane Library databases between 2007 and 2017 was performed. "Diode laser", "soft tissue", "oral cavity" and "oral surgery" were employed for the search strategy. Only articles published English or Spanish were selected. The diode laser is a minimally invasive technology that offers great advantages, superior to those of the conventional scalpel, such as reduction of bleeding, inflammation and the lower probability of scars. Its effectiveness is comparable to that of other types of lasers, in addition to being an option of lower cost and greater ease of use. Its application in the soft tissues has been evaluated, being a safe and effective method for the excision of lesions like fibromas, epulis fissuratum and the accomplishment of frenectomies. The diode laser can be used with very good results for the removal of lesions in soft tissues, being used in small exophytic lesions due to their easy application, adequate coagulation, no need to suture and the slightest inflammation and pain. Key words: Diode laser, soft tissues, oral cavity, oral surgery.

  13. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    Science.gov (United States)

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usuallyOFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  14. Strong field laser physics

    CERN Document Server

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  15. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  16. Quantum Cascade Lasers Modulation and Applications

    Science.gov (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  17. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  18. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Science.gov (United States)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  19. Latest development of laser cutting

    OpenAIRE

    Wetzig, Andreas; Herwig, Patrick; Hauptmann, Jan; Goppold, Cindy; Baumann, Robert; Fürst, Andreas; Rose, Michael; Pinder, Thomas; Mahrle, Achim; Beyer, Eckhard

    2016-01-01

    Laser cutting was one of the first applications of laser material processing. Today, laser cutting is the most widespread application among laser material processing besides laser marking. Meanwhile, nearly each material can be cut by means of a laser, in particular since ultra short pulse lasers are available in the power range of up to 100 W. The to be cut material can come with thicknesses from a few microns till tens of millimeters as flat stock or as free form shapes. The paper will conc...

  20. Groundwater restoration long beyond closure at the Homestake-Milan and United Nuclear-Church Rock uranium mill tailings piles, New Mexico, USA: full-scale programs requiring more than 20 years of active treatment

    International Nuclear Information System (INIS)

    Robinson, W.P.

    1998-01-01

    Since as early as 1975, groundwater contamination from New Mexico uranium mill tailings has been investigated with two sites -Homestake-Milan and United Nuclear-Church Rock -showing severe enough groundwater damage to merit listing on the US Environmental Protection Agency's (EPA) Superfund National Priority List -a nationwide list based on severity of pollution and water resource usefulness. These two sites provide valuable case studies for the first - 1950s -and second - 1970s -generations of uranium mill tailings facilities demonstrating the severity of contamination which ineffective control can allow and the challenge of full scale groundwater restoration. While the groundwater restoration at these sites began in the 1970s and 1980s, active treatment is anticipated into the 21st century. This paper summarizes the groundwater restoration programs at two of these sites - Homestake Mining Company's (HMC) Milan Mill (now called the ''Grants Project'') and United Nuclear Corporation's (UNC) Church Rock Mill. The two sites are summarized with respect to operations, groundwater impact, tailings disposal systems, hydrogeological characteristics of the site and affected areas, applicable standards, and remedial technology applied. This review provides a basis for initial comparisons with uranium mill tailings groundwater restoration challenges outside the USA. These sites provide an important benchmark the complexity of restoration at for large-scale uranium mill tailings sites. The longevity of the restoration efforts demonstrate the results of low-intensity responses to contamination upon detection and delayed enforcement actions. These ''witnesses'' to the value of effective pollution prevention in tailings design and full review and monitoring of tailings operations, have potential to be models of effective groundwater restoration. (orig.)

  1. Application of laser-induced autofluorescence spectra detection in human colorectal cancer screening

    Science.gov (United States)

    Fu, Sheng; Chia, Teck-Chee; Kwek, Leong Chuan; Diong, Cheong Hoong; Tang, Choong Leong; Choen, Francis S.; Krishnan, S. M.

    2003-10-01

    We investigated 48 normal patients and 25 diseased patients using our laser-induced autofluorescence spectra detection system during their regular colonoscopy. The colon and rectum mucosa autofluorescence were excited by 405 nm continue wavelength laser. We observed that cancer or diseased colorectal mucosa, their autofluorescence spectra are significantly different from normal area. The autofluorescence spectra intensity at about 500 nm was been used for our intensity ratio characteristics intensity for our diagnostic algorithm. The intensity ratios of RI-680/I-500 and RI-630/I-500 were performed to identify the detection area. From experimental result we concluded that both intensity ratios of RI-680/I-500 and RI-630/I-500 as guidelines can detect cancerous and polyps disease completely. Our investigation provided some useful insight for laser induced autofluorescence spectra as a diagnosis technique for clinical application.

  2. Lasers in endodontics: an overview

    Science.gov (United States)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  3. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  4. High power lasers

    CERN Document Server

    Niku-Lari, A

    1989-01-01

    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  5. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Spizzichino, Valeria, E-mail: valeria.spizzichino@enea.it; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems. - Highlights: • Applications of LIBS to archeometry are reviewed. • Complementary among LIBS, LIF, Raman and multivariate analysis is highlighted. • Three major areas of successful LIBS application in archeometry are identified. • Significant results have been presented for several different materials.

  6. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  7. Disk laser: a new generation of industrial lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2009-02-01

    The disk laser concept aggregates high efficiency, excellent beam quality, high average and peak power with moderate cost and high reliability. Therefore it became one major technology in industrial laser material processing. In several large scale installations in the automotive industry, high power cw- systems make already use of the high brightness and high efficiency of disk lasers, e.g. in remote welding [1,2]. Other applications including cutting, drilling, deep welding and hybrid welding are arising. This report highlights the latest results in cw disk laser development. A 1.5 kW source with a beam parameter product (BPP) of 2 mm mrad is described as well as the demonstration of a 14 kW system out of three disks with a BPP of 8 mm mrad. The future prospects regarding increased power and even further improved productivity and economics are presented. A new industrial disk laser series with output powers up to 16 kW and a beam parameter product of 8 mm*mrad will enable both, new applications in the thick sheet area and very cost efficient high productive applications like welding and cutting of thin sheets.

  8. A Review of Research Progress on Dissimilar Laser Weld-Brazing of Automotive Applications

    Science.gov (United States)

    Krishnaja, Devireddy; Cheepu, Muralimohan; Venkateswarlu, D.

    2018-03-01

    In recent years, a rapidly growing demand for laser brazing in the transportation industry for automotive parts joining to improve the productivity, quality of the joints and cost efficiency reasons. Due to this, laser brazing technology is extensively used in the major manufacturing companies such as Volkswagen group, General Motors Europe, BMW and Ford manufacturing groups as their openingbulk production solicitation on various parts of vehicles. Laser brazing is different from the welding processes and it will block upanopeningamongst two substrates by mixture of a filler wire on condition that by a concentrated laser beam or any other heat source. Among the all joining processes, laser brazing technique is an alternative and in effect method for welding of dissimilar metals which have large difference in their melting points. It is important to understand therelationsof these phenomena of the fillers of brazing with the substrate surfaces to obtain a high quality joints. The aim of this study is to address the contemporaryenquiriesand its progress on laser-brazing, its importance to the industrial applications and to bring more awareness to the manufacturers about the research results of this technique from various research groups to enhance the research progress and developing new things from this review report.

  9. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  10. Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1992-01-01

    Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail

  11. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Labbe, Nicole; Andre, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a 'universal calibration curve'. In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants

  12. Thermal analysis of different application techniques on Nd:YAG laser after root canal preparation of single-rooted teeth

    International Nuclear Information System (INIS)

    Archilla, Jose Ricardo de F.

    2001-01-01

    The experiment objective is to analyze temperature variation, by means of three different application techniques of Nd:YAG laser in the root canals of singlerooted anterior teeth. Three root canals were instrumented, irrigated, X-rayed to measure the remaining dentin in the apical area and submitted to laser irradiation techniques used by Gutknecht, Matsumoto and a new technique with oscillatory movement. The used laser parameters were: pulse energy 250 mJ, frequency 5 Hz, pulse fluency 354 J/cm 2 , average potency 1,25 W, pulse width 300 μs, fiber core diameter 300 μs and interval of thermal relaxation of 20 s. After temperature evaluation and interpretation of the obtained data, it was concluded: 1) the oscillatory technique provided a better heat distribution during the laser application, when analyzing the graphs separately; 2) all the used techniques are within a pattern of safety, analyzing the average and highest temperatures of the apical area and the middle third, even so, disrespecting the last application day and the middle third of root 'C'.(author)

  13. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    Science.gov (United States)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ∼152° with contact angle hysteresis of around 3-4° have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128°, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12°), when percent composition of methanol reaches to 28%.

  14. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  15. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  16. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  17. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    Science.gov (United States)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  18. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    Science.gov (United States)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  19. Laser development for laser fusion applications research. Progress report, October 1977--March 1978

    International Nuclear Information System (INIS)

    1978-06-01

    Research progress is reported on three laser programs being developed for the commercialization of laser-fusion energy. The lasers include iodine, hydrogen fluoride and Group VI atoms (e.g., O, S, Se, Te)

  20. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    Science.gov (United States)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes

  1. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  2. Laser processing of metals and alloys

    International Nuclear Information System (INIS)

    Goswami, G.L.; Kumar, Dilip; Roy, P.R.

    1988-01-01

    Laser, due to its high degree of coherence can produce powder density in the range of 10 3 -10 11 W/mm 2 . This high power density of the laser beam enables it to be utilized for many industrial applications, e.g. welding, cutting, drilling, surface treatment, etc. Laser processing of materials has many advantages, e.g. good quality product at high processing speed, least heat affected zone, minimum distortion, etc. In addition, the same laser system can be utilized for different applications, a very cost effective factor for any industry. Therefore laser has been adopted for processing of different materials for a wide range of applications and is now replacing conventional materials processing techniques on commercial merits with several economic and metallurgical advantages. Applications of laser to process materials of different thicknesses varying from 0.1 mm to 100 mm have demonstrat ed its capability as an important manufacturing tool for engineering industries. While lasers have most widely been utilized in welding, cutting and drilling they have also found applications in surface treatment of metals and alloys, e.g. transfor mation hardening and annealing. More recently, there has been significant amount of research being undertaken in laser glazing, laser surface alloying and laser cladding for obtaining improved surface properties. This report reviews the stat us of laser processing of metals and alloys emphasising its metallurgical aspects a nd deals with the different laser processes like welding, cutting, drilling and surface treatment highlighting the types and choice of laser and its interaction with metals and alloys and the applications of these processes. (author). 93 refs., 32 figs., 7 tables

  3. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  4. At the cutting edge: applications and perspectives of laser nanosurgery in cell biology.

    Science.gov (United States)

    Ronchi, Paolo; Terjung, Stefan; Pepperkok, Rainer

    2012-04-01

    Laser-mediated nanosurgery has become popular in the last decade because of the previously unexplored possibility of ablating biological material inside living cells with sub-micrometer precision. A number of publications have shown the potential applications of this technique, ranging from the dissection of sub-cellular structures to surgical ablations of whole cells or tissues in model systems such as Drosophila melanogaster or Danio rerio . In parallel, the recent development of micropatterning techniques has given cell biologists the possibility to shape cells and reproducibly organize the intracellular space. The integration of these two techniques has only recently started yet their combination has proven to be very interesting. The aim of this review is to present recent applications of laser nanosurgery in cell biology and to discuss the possible developments of this approach, particularly in combination with micropattern-mediated endomembrane organization.

  5. Optical engineering for high power laser applications

    International Nuclear Information System (INIS)

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  6. X-UV lasers and their promising applications

    International Nuclear Information System (INIS)

    Ros, D.

    2004-01-01

    The author reviews 30 years of research and achievements concerning X-UV lasers. Typical features of X-UV lasers are: a large number of photons emitted per impulse (between 10 12 and 10 14 ) and very short impulses (between 1 and 100 ps). When a crystal is irradiated by a X-UV laser, these features favor new physical processes that did not appear when the irradiation was performed with other X-UV sources like synchrotron radiation for instance. Their high brilliance and coherence properties make them efficient means as irradiating sources or imaging tools. X-UV laser interferometry allows the mapping of a surface at the nano-metric scale without any interaction between the laser beam and the surface. (A.C.)

  7. Laser Physics and Physics with Lasers - Recent Advances

    International Nuclear Information System (INIS)

    Marowsky, G.

    2008-01-01

    This contribution reviews the development as well as recent technological advances in the field of optics with lasers and laser-related applications. Topics ranging from 'attoscience' to 'zero-modes' shall be dealt with in this presentation. Further reading in the following references is suggested: Springer Handbook of Lasers and Optics (F. Trager, ed.), 2007, ISBN-13: 978-0-387-95579-7; Chapter 11.7, Part C: Ultraviolet Lasers: Excimers, Fluorine (F2), Nitrogen (N2), pp. 764-776; Excimer Laser Technology (D. Basting, G. Marowsky, eds.) 2005, Springer, ISBN-13 978-3-540-20056-7

  8. Laser safety considerations for a mobile laser program

    Science.gov (United States)

    Flor, Mary

    1997-05-01

    An increased demand for advanced laser technology, especially in the area of cutaneous and cosmetic procedures has prompted physicians to use mobile laser services. Utilization of a mobile laser service allows physicians to provide the latest treatments for their patients while minimizing overhead costs. The high capital expense of laser systems is often beyond the financial means of individual clinicians, group practices, free-standing clinics and smaller community hospitals. Historically rapid technology turnover with laser technology places additional risk which is unacceptable to many institutions. In addition, health care reform is mandating consolidation of equipment within health care groups to keep costs at a minimum. In 1994, Abbott Northwestern Hospital organized an in-house mobile laser technology service which employs a group of experienced laser specialists to deliver and support laser treatments for hospital outreach and other regional physicians and health care facilities. Many of the hospital's internal safety standards and policies are applicable to the mobile environment. A significant challenge is client compliance because of the delicate balance of managing risk while avoiding being viewed as a regulator. The clinics and hospitals are assessed prior to service to assure minimum laser safety standards for both the patient and the staff. A major component in assessing new sites is to inform them of applicable regulatory standards and their obligations to assure optimum laser safety. In service training is provided and hospital and procedures are freely shared to assist the client in establishing a safe laser environment. Physician and nursing preceptor programs are also made available.

  9. Applying Bim to Built Heritage with Complex Shapes: the Ice House of Filarete's Ospedale Maggiore in Milan, Italy

    Science.gov (United States)

    Oreni, D.; Karimi, G.; Barazzetti, L.

    2017-08-01

    This paper presents the development of a BIM model for a stratified historic structure characterized by a complex geometry: Filarete's Ospedale Maggiore ice house, one of the few remaining historic ice houses in Milan (Fig. 1). Filarete, a well-known Renaissance architect and theorist, planned the hospital in the 15th century, but the ice house was built two centuries later with a double-storey irregular octagonal brick structure, half under and half above ground, that enclosed another circular structure called the ice room. The purpose of the double-walled structure was to store ice in the middle and store and preserve perishable food and medicine at the outer side of the ice room. During World War II, major portions of the hospital and the above-ground section of the ice house was bombed and heavily damaged. Later, in 1962, the hospital was restored and rehabilitated into a university, with the plan to conceal the ice house's remaining structure in the courtyard, which ultimately was excavated and incorporated into a new library for the university. A team of engineers, architects, and students from Politecnico di Milano and Carleton University conducted two heritage recording surveys in 2015 and 2016 to fully document the existing condition of the ice house, resulting in an inclusive laser scanner and photogrammetric point cloud dataset. The point cloud data was consolidated and imported into two leading parametric modelling software, Autodesk Revitand Graphisoft ArchiCAD©, with the goal to develop two BIMs in parallel in order to study and compare the software BIM workflow, parametric capabilities, attributes to capture the complex geometry with high accuracy, and the duration for parametric modelling. The comparison study of the two software revealed their workflow limitations, leading to integration of the BIM generative process with other pure modelling software such as Rhinoceros©. The integrative BIM process led to the production of a comprehensive BIM

  10. Medical Applications of Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Pathak, A K; Rai, N K; Singh, Ankita; Rai, A K; Rai, Pradeep K; Rai, Pramod K

    2014-01-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail

  11. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  12. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    within 1 °С. Optical schematic diagram of the laser resonator keeps the laser beam divergence not exceeding a diffraction limit more than twice under a light pump power of 100 W. We have also shown that to increase the lasing efficiency, slab multilayer dielectric coatings made of SiO2 и ZrO2 should be used. Practical Relevance. We have proposed original design of the diode pumped solid-state laser module optimizing the generation and pump modes of solid-state lasers by the temperature stabilization technique for laser diode array and by compensation of the slab aberrations. The techniques are also applicable under space conditions; that is an important factor at developing the space-based lasers.

  13. Theoretical studies of solar pumped lasers

    Science.gov (United States)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  14. Proceedings of national laser symposium (NLS-2000)

    International Nuclear Information System (INIS)

    Mallik, Amitav; Srivastava, K.N.; Pal, Suranjan

    2000-01-01

    This proceedings comprise of a series of invited talks on selected topics in lasers and wide range of contributed papers. The main topics are laser physics and research, laser devices and technology, laser materials and spectroscopy, quantum optics, non-linear optics ultra-fast phenomenon, laser produced plasma, high power lasers, laser instrumentation, medical applications and industrial applications of lasers and fiber optics. The papers relevant to INIS Database are indexed separately

  15. Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging

    Science.gov (United States)

    Yanagihara, Ryuga; Asahi, Tsuyoshi; Ishibashi, Yukihide; Odawara, Osamu; Wada, Hiroyuki

    2018-03-01

    Naphthalocyanine nanoparticles were prepared by laser ablation in liquid using second-harmonics of nanosecond Nd:YAG laser as an excitation light sauce at various laser fluence, and the properties of naphthalocyanine nanoparticles, such as shape, size, zeta potential, chemical structure and optical absorption were examined. The scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements showed that the particle size of the nanoparticles could be controlled by the laser fluence. The IR spectra of the nanoparticles indicated the formation of carboxylate anion species at laser fluences above 100 mJ/cm2, which will result the zeta potential of the nanoparticles depending on the laser fluence. We also examined the potential application to contrast agents for photoacoustic, and confirmed that the naphthalocyanine nanoparticles generated a strong photoacoustic signal.

  16. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  17. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  18. Laser induced pyrolysis techniques

    International Nuclear Information System (INIS)

    Vanderborgh, N.E.

    1976-01-01

    The application of laser pyrolysis techniques to the problems of chemical analysis is discussed. The processes occurring during laser pyrolysis are first briefly reviewed. The problems encountered in laser pyrolysis gas chromatography are discussed using the analysis of phenanthrene and binary hydrocarbons. The application of this technique to the characterization of naturally occurring carbonaceous material such as oil shales and coal is illustrated

  19. Application of conical 90-degree reflectors for solving the problem of mirror alignment in terahertz-range lasers

    Energy Technology Data Exchange (ETDEWEB)

    Radionov, V P; Kiselev, V K [A.Ya. Usikov Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)

    2014-10-29

    We report a study of the conical mirrors with an apex angle of 90° in the resonator of the gas-discharge HCN laser with the radiation wavelength of 337 μm (0.89 THz). Experimental results have shown that such mirrors do not require precise alignment. This makes it possible to improve the radiation stability, significantly simplify the construction of laser and reduce the complexity of its maintenance. (laser applications and other topics in quantum electronics)

  20. Laser plant "Iguana" for transmyocardial revascularization based on kW-level waveguide CO2 laser

    Science.gov (United States)

    Panchenko, Vladislav Y.; Bockeria, L. A.; Berishvili, I. I.; Vasiltsov, Victor V.; Golubev, Vladimir S.; Ul'yanov, Valery A.

    2001-05-01

    For many years the Institute on Laser and Information Technologies RAN has been developing a concept of high-power industrial CO2 lasers with diffusion cooling of the working medium. The paper gives a description of the laser medical system Iguana for transmyocardial laser revascularization (TMLR) as an example of various applications of high-power waveguide CO2 lasers. The clinical results of the TMLR method application in surgical treatment are presented. The methods of determination of the time, when the laser beam passes through the demarcation line between myocardium tissue and blood, are discussed.