WorldWideScience

Sample records for larval foraging behavior

  1. Genetic Localization of Foraging (For): A Major Gene for Larval Behavior in Drosophila Melanogaster

    OpenAIRE

    de-Belle, J. S.; Hilliker, A. J.; Sokolowski, M. B.

    1989-01-01

    Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe ``lethal tagging,'' a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pa...

  2. Foraging behaviour and prey size spectra of larval herring Clupea harengus

    DEFF Research Database (Denmark)

    Munk, Peter

    1992-01-01

    size groups of larval herring Clupea harengus L. were studied when preying on 6 size groups of copepods. Larval swimming and attack behaviour changed with prey size and were related to the ratio between prey length and larval length. The effective search rate showed a maximum when prey length was about......, that the available biomass of food as a proportion of the predator biomass will not increase. In order to assess the uniformity of relative prey size spectra of herring larvae and their background in larval foraging behaviour, a set of experimental and field investigations has been carried out. In the experiments, 4...... in the biomass spectra of the environment is important to larval growth and survival....

  3. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster.

    Science.gov (United States)

    Lee, Yuh Chwen G; Yang, Qian; Chi, Wanhao; Turkson, Susie A; Du, Wei A; Kemkemer, Claus; Zeng, Zhao-Bang; Long, Manyuan; Zhuang, Xiaoxi

    2017-05-01

    Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Flexible responses to visual and olfactory stimuli by foraging Manduca sexta: larval nutrition affects adult behaviour.

    Science.gov (United States)

    Goyret, Joaquín; Kelber, Almut; Pfaff, Michael; Raguso, Robert A

    2009-08-07

    Here, we show that the consequences of deficient micronutrient (beta-carotene) intake during larval stages of Manduca sexta are carried across metamorphosis, affecting adult behaviour. Our manipulation of larval diet allowed us to examine how developmental plasticity impacts the interplay between visual and olfactory inputs on adult foraging behaviour. Larvae of M. sexta were reared on natural (Nicotiana tabacum) and artificial laboratory diets containing different concentrations of beta-carotene (standard diet, low beta-carotene, high beta-carotene and cornmeal). This vitamin-A precursor has been shown to be crucial for photoreception sensitivity in the retina of M. sexta. After completing development, post-metamorphosis, starved adults were presented with artificial feeders that could be either scented or unscented. Regardless of their larval diet, adult moths fed with relatively high probabilities on scented feeders. When feeders were unscented, moths reared on tobacco were more responsive than moths reared on beta-carotene-deficient artificial diets. Strikingly, moths reared on artificial diets supplemented with increasing amounts of beta-carotene (low beta and high beta) showed increasing probabilities of response to scentless feeders. We discuss these results in relationship to the use of complex, multi-modal sensory information by foraging animals.

  5. Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: a modelling synthesis of empirical survey data

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Quinlan, Henry R.; Berglund, Eric K.

    2014-01-01

    The relative importance of predation and food availability as contributors to larval cisco (Coregonus artedi) mortality in Lake Superior were investigated using a visual foraging model to evaluate potential predation pressure by rainbow smelt (Osmerus mordax) and a bioenergetic model to evaluate potential starvation risk. The models were informed by observations of rainbow smelt, larval cisco, and zooplankton abundance at three Lake Superior locations during the period of spring larval cisco emergence and surface-oriented foraging. Predation risk was highest at Black Bay, ON, where average rainbow smelt densities in the uppermost 10 m of the water column were >1000 ha−1. Turbid conditions at the Twin Ports, WI-MN, affected larval cisco predation risk because rainbow smelt remained suspended in the upper water column during daylight, placing them alongside larval cisco during both day and night hours. Predation risk was low at Cornucopia, WI, owing to low smelt densities (cisco survival at Black Bay and to a lesser extent at Twin Ports, and that starvation may be a major source of mortality at all three locations. The framework we describe has the potential to further our understanding of the relative importance of starvation and predation on larval fish survivorship, provided information on prey resources available to larvae are measured at sufficiently fine spatial scales and the models provide a realistic depiction of the dynamic processes that the larvae experience.

  6. Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions

    Directory of Open Access Journals (Sweden)

    Simon G. Sprecher

    2017-04-01

    Full Text Available Animals use various environmental cues as key determinant for their behavioral decisions. Visual systems are hereby responsible to translate light-dependent stimuli into neuronal encoded information. Even though the larval eyes of the fruit fly Drosophila melanogaster are comparably simple, they comprise two types of photoreceptor neurons (PRs, defined by different Rhodopsin genes expressed. Recent findings support that for light avoidance Rhodopsin5 (Rh5 expressing photoreceptors are crucial, while Rhodopsin6 (Rh6 expressing photoreceptors are dispensable under laboratory conditions. However, it remains debated how animals change light preference during larval live. We show that larval negative phototaxis is age-independent as it persists in larvae from foraging to wandering developmental stages. Moreover, if spectrally different Rhodopsins are employed for the detection of different wavelength of light remains unexplored. We found that negative phototaxis can be elicit by light with wavelengths ranging from ultraviolet (UV to green. This behavior is uniquely mediated by Rh5 expressing photoreceptors, and therefore suggest that this photoreceptor-type is able to perceive UV up to green light. In contrast to laboratory our field experiments revealed that Drosophila larvae uses both types of photoreceptors under natural lighting conditions. All our results, demonstrate that Drosophila larval eyes mediate avoidance of light stimuli with a wide, ecological relevant range of quantity (intensities and quality (wavelengths. Thus, the two photoreceptor-types appear more likely to play a role in different aspects of phototaxis under natural lighting conditions, rather than color discrimination.

  7. Boa constrictor (Boa constrictor): foraging behavior

    Science.gov (United States)

    Sorrell, G.G.; Boback, M.S.; Reed, R.N.; Green, S.; Montgomery, Chad E.; DeSouza, L.S.; Chiaraviglio, M.

    2011-01-01

    Boa constrictor is often referred to as a sit-and-wait or ambush forager that chooses locations to maximize the likelihood of prey encounters (Greene 1983. In Janzen [ed.], Costa Rica Natural History, pp. 380-382. Univ. Chicago Press, Illinois). However, as more is learned about the natural history of snakes in general, the dichotomy between active versus ambush foraging is becoming blurred. Herein, we describe an instance of diurnal active foraging by a B. constrictor, illustrating that this species exhibits a range of foraging behaviors.

  8. Hyperoxia-triggered aversion behavior in Drosophila foraging larvae is mediated by sensory detection of hydrogen peroxide.

    Science.gov (United States)

    Kim, Myung Jun; Ainsley, Joshua A; Carder, Justin W; Johnson, Wayne A

    2013-12-01

    Reactive oxygen species (ROS) in excess have been implicated in numerous chronic illnesses, including asthma, diabetes, aging, cardiovascular disease, and neurodegenerative illness. However, at lower concentrations, ROS can also serve essential routine functions as part of cellular signal transduction pathways. As products of atmospheric oxygen, ROS-mediated signals can function to coordinate external environmental conditions with growth and development. A central challenge has been a mechanistic distinction between the toxic effects of oxidative stress and endogenous ROS functions occurring at much lower concentrations. Drosophila larval aerotactic behavioral assays revealed strong developmentally regulated aversion to mild hyperoxia mediated by H2O2-dependent activation of class IV multidendritic (mdIV) sensory neurons expressing the Degenerin/epithelial Na(+) channel subunit, Pickpocket1 (PPK1). Electrophysiological recordings in foraging-stage larvae (78-84 h after egg laying [AEL]) demonstrated PPK1-dependent activation of mdIV neurons by nanomolar levels of H2O2 well below levels normally associated with oxidative stress. Acute sensitivity was reduced > 100-fold during the larval developmental transition to wandering stage (> 96 h AEL), corresponding to a loss of hyperoxia aversion behavior during the same period. Degradation of endogenous H2O2 by transgenic overexpression of catalase in larval epidermis caused a suppression of hyperoxia aversion behavior. Conversely, disruption of endogenous catalase activity using a UAS-CatRNAi transposon resulted in an enhanced hyperoxia-aversive response. These results demonstrate an essential role for low-level endogenous H2O2 as an environment-derived signal coordinating developmental behavioral transitions.

  9. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    Science.gov (United States)

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  10. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    Directory of Open Access Journals (Sweden)

    Hailey N Scofield

    Full Text Available The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera. Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults. Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus

  11. Adaptive locomotor behavior in larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  12. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    Science.gov (United States)

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post

  13. Optimal search behavior and classic foraging theory

    International Nuclear Information System (INIS)

    Bartumeus, F; Catalan, J

    2009-01-01

    Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.

  14. The neural basis of visual behaviors in the larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level.

    Science.gov (United States)

    Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J

    2016-09-01

    Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.

  16. Foraging behavior of stingless bee Heterotrigona itama (Cockerell, 1918) (Hymenoptera : Apidae : Meliponini)

    Science.gov (United States)

    Jaapar, Mohd Fahimee; Jajuli, Rosliza; Mispan, Muhamad Radzali; Ghani, Idris Abd

    2018-04-01

    A study to investigate the foraging behavior of Heterotrigona itama (Cockerell, 1918) was conducted on three colonies between January 2016 and June 2016. A digital single-lens reflex (DSLR) with macro lens attached, and action camera (SJCAM) was used to record foraging behavior of H. itama in its colonies for 5 min per hour between 0800 to 1700 h for a day per 6 months. In addition, three data loggers (Watchdog B100 2K) has been installed adjacent to the observation nest for collect temperature and humidity in the study areas. Result showed that the numbers of return foragers was significantly different from January to June also with outgoing forager. The returning forager between hours showed significant different from 8 am to 5 pm also for outgoing forager. The ideal temperature related to foraging behavior for H. itama was 29°C to 32 °C Our finding also, helps to guide researcher to expand the knowledge in foraging behavior by stingless bee as well as encouraging more small farmers to start rearing at least for their own consumption. In addition, these findings also guide the farmers to manage their chemical toxic inside the meliponiculture.

  17. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  18. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    Science.gov (United States)

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  19. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  20. Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus (CSL whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki (GSL whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in

  1. Foraging Behavior of Odontomachus bauri on Barro Colorado Island, Panama

    Directory of Open Access Journals (Sweden)

    Birgit Ehmer

    1995-01-01

    Full Text Available Foraging behavior and partitioning of foraging areas of Odonomachus bauri were investigated on Barro Colorado Island in Panama. The activity of the ants did not show any daily pattern; foragers were active day and night. The type of prey captured by O. bauri supports the idea that in higher Odontomachus and Anochetus species, the high speed of mandible closure serves more for generating power than capturing elusive prey. Polydomous nests may enable O. bauri colonies to enlarge their foraging areas.

  2. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  3. Temporal and Spatial Foraging Behavior of the Larvae of the Fall Webworm Hyphantria cunea

    Directory of Open Access Journals (Sweden)

    Terrence D. Fitzgerald

    2015-01-01

    Full Text Available During their first three larval stadia, caterpillars of Hyphantria cunea (Lepidoptera: Arctiidae are patch-restricted foragers, confining their activity to a web-nest they construct in the branches of the host tree. Activity recordings of eight field colonies made over 46 colony-days showed that the later instars become central place foragers, leaving their nests at dusk to feed at distant sites and then returning to their nests in the morning. Colonies maintained in the laboratory showed that same pattern of foraging. In Y-choice laboratory experiments, caterpillars were slow to abandon old, exhausted feeding sites in favor of new food finds. An average of approximately 40% of the caterpillars in five colonies still selected pathways leading to exhausted sites at the onset of foraging bouts over those leading to new sites after feeding exclusively at the new sites on each of the previous four days. On returning to their nests in the morning, approximately 23% of the caterpillars erred by selecting pathways that led them away from the nest rather than toward it and showed no improvement over the course of the study. The results of these Y-choice studies indicate that, compared to other previously studied species of social caterpillars, the webworm employs a relatively simple system of collective foraging.

  4. Corticosterone predicts foraging behavior and parental care in macaroni penguins.

    Science.gov (United States)

    Crossin, Glenn T; Trathan, Phil N; Phillips, Richard A; Gorman, Kristen B; Dawson, Alistair; Sakamoto, Kentaro Q; Williams, Tony D

    2012-07-01

    Corticosterone has received considerable attention as the principal hormonal mediator of allostasis or physiological stress in wild animals. More recently, it has also been implicated in the regulation of parental care in breeding birds, particularly with respect to individual variation in foraging behavior and provisioning effort. There is also evidence that prolactin can work either inversely or additively with corticosterone to achieve this. Here we test the hypothesis that endogenous corticosterone plays a key physiological role in the control of foraging behavior and parental care, using a combination of exogenous corticosterone treatment, time-depth telemetry, and physiological sampling of female macaroni penguins (Eudyptes chrysolophus) during the brood-guard period of chick rearing, while simultaneously monitoring patterns of prolactin secretion. Plasma corticosterone levels were significantly higher in females given exogenous implants relative to those receiving sham implants. Increased corticosterone levels were associated with significantly higher levels of foraging and diving activity and greater mass gain in implanted females. Elevated plasma corticosterone was also associated with an apparent fitness benefit in the form of increased chick mass. Plasma prolactin levels did not correlate with corticosterone levels at any time, nor was prolactin correlated with any measure of foraging behavior or parental care. Our results provide support for the corticosterone-adaptation hypothesis, which predicts that higher corticosterone levels support increased foraging activity and parental effort.

  5. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  6. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  7. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  8. Complex scaling behavior in animal foraging patterns

    Science.gov (United States)

    Premachandra, Prabhavi Kaushalya

    This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.

  9. Memory Effects on Movement Behavior in Animal Foraging.

    Science.gov (United States)

    Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R Andrew

    2015-01-01

    An individual's choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.

  10. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    Science.gov (United States)

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  11. Foraging behavioral of Phylloscartes ventralis (Aves, Tyrannidae in native and planted forests of southern Brazil

    Directory of Open Access Journals (Sweden)

    André de Mendonça-Lima

    2014-12-01

    Full Text Available Few studies have related the effects of silviculture practices to the behavior of bird species in the Neotropics. The present study examined the foraging behavior of Phylloscartes ventralis (Temminck, 1824 in a native forest and in silviculture areas of Pinus elliotti and Araucaria angustifolia with different structures and ages. We tested two general hypotheses: (1 areas of commercial forest plantation change the foraging behavior of P. ventralis in relation to native forest, and (2 the foraging behavior of P. ventralis in silviculture areas with understories (complex structures is different from its behavior in areas without understory. The results showed that P. ventralis changed its foraging behavior depending on the type of forest, and on the presence of an understory in silviculture areas. Main changes involved the height and angle of substrate where the prey was captured. Phylloscartes ventralis showed the same set of attack maneuvers, with more maneuvers type in young Pinus planted without understory. The frequency of use of attack maneuvers was more similar in areas of silviculture with understory and in the native forest. The results highlight the importance of an understory structure and the utilization of native plant species in silviculture practices, to the foraging behavior of native bird species.

  12. Influence of swimming behavior of copepod nauplii on feeding of larval turbot (Scophthalmus maximus)

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Højgaard, Jacob Kring; Hansen, Benni Winding

    2018-01-01

    Feeding in larval fish is influenced by a range of factors and among these are the morphological and behavioral characteristics of their prey. We investigated the influence of the swimming behavior of two species of calanoid copepods, Acartia tonsa and Temora longicornis, on larval turbot feeding....... The nauplii of these species represent two contrasting swimming behaviors: A. tonsa is a jump-sink type swimmer, while T. longicornis is a cruise swimming type. Three replicates of ten larvae aged 7 and 9 days post hatch (DPH) were observed feeding on one of the two copepod species using a 2-dimensional video...

  13. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Science.gov (United States)

    Sprayberry, Jordanna D H; Ritter, Kaitlin A; Riffell, Jeffrey A

    2013-01-01

    Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  14. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Directory of Open Access Journals (Sweden)

    Jordanna D H Sprayberry

    Full Text Available Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  15. Experimental Evidence that Social Relationships Determine Individual Foraging Behavior.

    Science.gov (United States)

    Firth, Josh A; Voelkl, Bernhard; Farine, Damien R; Sheldon, Ben C

    2015-12-07

    Social relationships are fundamental to animals living in complex societies. The extent to which individuals base their decisions around their key social relationships, and the consequences this has on their behavior and broader population level processes, remains unknown. Using a novel experiment that controlled where individual wild birds (great tits, Parus major) could access food, we restricted mated pairs from being allowed to forage at the same locations. This introduced a conflict for pair members between maintaining social relationships and accessing resources. We show that individuals reduce their own access to food in order to sustain their relationships and that individual foraging activity was strongly influenced by their key social counterparts. By affecting where individuals go, social relationships determined which conspecifics they encountered and consequently shaped their other social associations. Hence, while resource distribution can determine individuals' spatial and social environment, we illustrate how key social relationships themselves can govern broader social structure. Finally, social relationships also influenced the development of social foraging strategies. In response to forgoing access to resources, maintaining pair bonds led individuals to develop a flexible "scrounging" strategy, particularly by scrounging from their pair mate. This suggests that behavioral plasticity can develop to ameliorate conflicts between social relationships and other demands. Together, these results illustrate the importance of considering social relationships for explaining behavioral variation due to their significant impact on individual behavior and demonstrate the consequences of key relationships for wider processes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Memory Effects on Movement Behavior in Animal Foraging

    Science.gov (United States)

    Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R. Andrew

    2015-01-01

    An individual’s choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems. PMID:26288228

  17. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  18. Body shape, burst speed and escape behavior of larval anurans

    Science.gov (United States)

    Gage H. Dayton; Daniel Saenz; Kristen A. Baum; R. Brian Langerhans; Thomas J. DeWitt

    2005-01-01

    Variation in behavior, morphology and life history traits of larval anurans across predator gradients, and consequences of that variation, have been abundantly studied. Yet the functional link between morphology and burst-swimming speed is largely unknown. We conducted experiments with two divergent species of anurans, Scaphiopus holbrookii and

  19. Correlating Whole Brain Neural Activity with Behavior in Head-Fixed Larval Zebrafish.

    Science.gov (United States)

    Orger, Michael B; Portugues, Ruben

    2016-01-01

    We present a protocol to combine behavioral recording and imaging using 2-photon laser-scanning microscopy in head-fixed larval zebrafish that express a genetically encoded calcium indicator. The steps involve restraining the larva in agarose, setting up optics that allow projection of a visual stimulus and infrared illumination to monitor behavior, and analysis of the neuronal and behavioral data.

  20. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    Science.gov (United States)

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  1. Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae.

    Science.gov (United States)

    Angelier, Frédéric; Bost, Charles-André; Giraudeau, Mathieu; Bouteloup, Guillaume; Dano, Stéphanie; Chastel, Olivier

    2008-03-01

    Because hormones mediate physiological or behavioral responses to intrinsic or extrinsic stimuli, they can help us understand how animals adapt their foraging decisions to energetic demands of reproduction. Thus, the hormone corticosterone deserves specific attention because of its influence on metabolism, food intake and locomotor activities. We examined the relationships between baseline corticosterone levels and foraging behavior or mass gain at sea in a diving seabird, the Adélie penguin, Pygoscelis adeliae. Data were obtained from free-ranging penguins during the brooding period (Adélie Land, Antarctica) by using satellite transmitters and time-depth-recorders. The birds were weighed and blood sampled before and after a foraging trip (pre-trip and post-trip corticosterone levels, respectively). Penguins with elevated pre-trip corticosterone levels spent less time at sea and stayed closer to the colony than penguins with low pre-trip corticosterone levels. These short trips were associated with a higher foraging effort in terms of diving activity and a lower mass gain at sea than long trips. According to previous studies conducted on seabird species, these results suggest that penguins with elevated pre-trip corticosterone levels might maximize the rate of energy delivery to the chicks at the expense of their body reserves. Moreover, in all birds, corticosterone levels were lower post-foraging than pre-foraging. This decrease could result from either the restoration of body reserves during the foraging trip or from a break in activity at the end of the foraging trip. This study demonstrates for the first time in a diving predator the close relationships linking foraging behavior and baseline corticosterone levels. We suggest that slight elevations in pre-trip corticosterone levels could play a major role in breeding effort by facilitating foraging activity in breeding seabirds.

  2. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Alison A Bockoven

    Full Text Available Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  3. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  4. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    Science.gov (United States)

    Newell, P.; King, Sammy L.; Kaller, Michael D.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees >= 50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  5. Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat

    DEFF Research Database (Denmark)

    Teloni, Valeria; Johnson, M.P.; Miller, P.J.O.

    2008-01-01

    Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about...... their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives...... epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat....

  6. Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre)

    OpenAIRE

    Grajales-Conesa,Julieta; Meléndez Ramírez,Virginia; Cruz-López,Leopoldo; Sánchez Guillén,Daniel

    2012-01-01

    Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre). Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange) flowers and their effects on the foraging behavi...

  7. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Science.gov (United States)

    Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari

    2014-01-01

    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work. PMID:24949491

  8. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters.

    Science.gov (United States)

    Omidi-Mirzaei, H; Azarfar, A; Mirzaei, M; Kiani, A; Ghaffari, M H

    2018-05-01

    We investigated the interactive effects of forage source and forage particle size (PS) as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. Forty-eight Holstein calves (42 ± 3 kg of body weight) were randomly assigned (n = 12 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors of forage source [alfalfa hay (AH) and wheat straw (WS)] and forage PS [(AH: medium = 1.96 mm or long = 3.93 mm) and (WS: medium = 2.03 mm or long = 4.10 mm), as geometric mean diameters]. The treatments were (1) AH with medium PS (AH-MPS), (2) AH with long PS (AH-LPS), (3) WS with medium PS (WS-MPS), and (4) WS with long PS (WS-LPS). Regardless of forage PS, the preweaning starter intake, dry matter intake, metabolizable energy intake, weaning body weight, and forage intake were greater for AH calves than WS calves. Average daily gain, average daily gain/metabolizable energy intake, feed efficiency, and final body weight of the calves did not differ among groups. An interaction of forage source and forage PS influenced acetate, propionate, and acetate-to-propionate ratio in the rumen on d 35, with the greatest acetate proportion and acetate-to-propionate ratio, but the least propionate proportion for AH-MPS calves than the other calves. The total volatile fatty acid concentration and the rumen proportions of propionate (d 70), butyrate (d 35), and valerate (d 35) were greater in AH-MPS calves than in AH-LPS calves. Calves fed AH had greater total volatile fatty acid concentration (d 35 and 70) and propionate proportion (d 70), but lesser ruminal proportions of butyrate (d 35 and 70), valerate (d 35 and 70), and acetate-to-propionate ratio (d 70) compared with calves fed WS. The ruminal valerate proportion (d 70) was greatest in WS-MPS calves than the other calves. An interaction of forage source and forage PS influenced preweaning standing time and starter eating time, with the least

  9. A stochastic differential equation model for the foraging behavior of fish schools.

    Science.gov (United States)

    Tạ, Tôn Việt; Nguyen, Linh Thi Hoai

    2018-03-15

    Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.

  10. A stochastic differential equation model for the foraging behavior of fish schools

    Science.gov (United States)

    Tạ, Tôn ệt, Vi; Hoai Nguyen, Linh Thi

    2018-05-01

    Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.

  11. Behavioral and hormonal responses to the availability of forage material in Western lowland gorillas (Gorilla gorilla gorilla).

    Science.gov (United States)

    Fuller, Grace; Murray, Anna; Thueme, Melissa; McGuire, Molly; Vonk, Jennifer; Allard, Stephanie

    2018-01-01

    We investigated how forage material affects indicators of welfare in three male Western lowland gorillas (Gorilla gorilla gorilla) at the Detroit Zoo. In addition to their maintenance diet and enrichment foods, the gorillas generally received forage material four times a week. From this baseline, we systematically manipulated how much forage material the group received on a weekly basis, with either daily or bi (twice)-weekly presentation of browse (mulberry, Morus sp.) or alfalfa hay. We collected behavioral data (60 hr per gorilla) and measured fecal glucocorticoid metabolites (FGM). Mixed models indicated that the presence of forage material significantly increased time feeding (F 2,351  = 9.58, p gorillas, compared to a disproportionately greater amount of time spent feeding by the dominant individual when forage material was absent. Providing forage material in addition to the regular diet likely created more opportunities for equitable feeding for the subordinate gorillas. FGM concentrations did not vary based on the presence or type of forage material available and, instead, likely reflected group social dynamics. In general, alfalfa and mulberry had similar impacts on behavior, indicating that alfalfa can be an adequate behavioral substitute during times when browse is less readily available for gorillas housed in seasonally variable climates. © 2017 Wiley Periodicals, Inc.

  12. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    Science.gov (United States)

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for 0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for BAC } rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. Copyright © 2017 by the Genetics Society of America.

  13. Foraging behaviour of the exotic wasp Vespula germanica (Hymenoptera: Vespidae) on a native caterpillar defoliator.

    Science.gov (United States)

    Pietrantuono, A L; Moreyra, S; Lozada, M

    2017-09-19

    Vespula germanica is a social wasp and an opportunistic predator. While foraging, these wasps learn and integrate different kinds of cues. They have successfully invaded many parts of the world, including native Nothofagus and Lophozonia forests located in the Andean-Patagonian region, where they forage on native arthropods. Perzelia arda, a lepidopteron defoliator of Lophozonia obliqua, uses the foliage to hide in and feed on. The purpose of this work is to study whether V. germanica use olfactory cues when foraging on P. arda. To do this, we used a Y-tube olfactometer and established three treatments to compare pairs of all combinations of stimuli (larvae, leaves with larval traces, and leaves without larval traces) and controls. Data were analysed via two developed models that showed decisions made by V. germanica and allowed to establish a scale of preferences between the stimuli. The analysis demonstrates that V. germanica wasps choose P. arda as larval prey and are capable of discriminating between the offered stimuli (deviance information criterion (DIC) null model = 873.97; DIC simple model = 84.5, n = 152). According to the preference scale, V. germanica preferred leaves with traces of larvae, suggesting its ability to associate these traces with the presence of the prey. This may be because, under natural conditions, larvae are never exposed outside their shelters of leaves and therefore V. germanica uses indirect signals. The presence of V. germanica foraging on P. arda highlights the flexible foraging behaviour of this wasp which may also act as a positive biological control, reducing lepidopteran populations.

  14. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    Directory of Open Access Journals (Sweden)

    Annette eDenzinger

    2013-07-01

    Full Text Available Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats’ echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies pattern of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning.

  15. California Least Tern Foraging Ecology in Southern California: A Review of Foraging Behavior Relative to Proposed Dredging Locations

    Science.gov (United States)

    2016-05-01

    additional data are necessary to understand the relationship among turbidity plumes, behavior of CLT prey fish , and CLT foraging behavior. KBC...activities. Fish actively seek out or avoid turbid waters for a number of reasons, including predator avoidance and food resources, and this...Birds 14:57-72. Atwood, J. L., and P. R. Kelly. 1984. Fish dropped on breeding colonies as indicators of Least Tern food habits. Wilson Bulletin 96: 34

  16. Foraging strategies of the Galapagos Marine Iguana (Amblyrhynchus Cristatus): adapting behavioral rules to ontogenetic size change

    OpenAIRE

    Wikelski, Martin; Trillmich, Fritz

    1994-01-01

    Ontogenetic development in reptiles entails major changes in size-related foraging options. We studied the changes in foraging behavior of marine iguanas. In this species, size increases about twenty- to hundredfold from hatching to full adult size. The foraging strategy of marine iguanas was studied at Miedo on Santa Fe Island in the Galapagos archipelago During low tide, large marine iguanas (>250 mm snout vent length (SVL)) foraged more in the lower intertidal than small ones (

  17. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Peter W Alderks

    Full Text Available The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2 = 0.92. The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis. Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  18. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    Science.gov (United States)

    Alderks, Peter W; Sisneros, Joseph A

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2) = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  19. Using diel movement behavior to infer foraging strategies related to ecological and social factors in elephants.

    Science.gov (United States)

    Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George

    2013-01-01

    Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement

  20. Gathering Baltimore's bounty: Characterizing behaviors, motivations, and barriers of foragers in an urban ecosystem

    Science.gov (United States)

    Colleen M. Synk; Brent F. Kim; Charles A. Davis; James Harding; Virginia Rogers; Patrick T. Hurley; Marla R. Emery; Keeve E. Nachman

    2017-01-01

    As a component of urban food systems, foraging—the collection of plant or fungal materials, such as berries and nuts, not deliberately cultivated for human use—may promote positive cultural, ecological, economic, and health outcomes. Foraging behaviors, motivations, and barriers in the urban context remain under-characterized despite emerging literature on the subject...

  1. Performance and goats behavior in pasture of Andropogon grass under different forage allowances

    Directory of Open Access Journals (Sweden)

    Daniel Louçana da Costa Araújo

    2015-07-01

    Full Text Available This study was accomplished to evaluate the behavior and performance of goats in to grazing on grass Andropogon gayanus Kunth var. Bisquamulatus (Hochst Hack. cv. Planaltina submitted to three forage allowances: 11, 15 and 19% BW/day, under continuous grazing. The experimental design to assess the grazing behaviour was randomized blocks in a split-plot with five replicates within the block. In the plots, we evaluated the effect of forage allowances and in the subplots, the months May and June. While for evaluation of animal performance was in complete block design with five replicates within the block. The different forage allowance did not cause structural changes in the pasture, except in height. However, there was an increase of dead material, leaf/stem ratio and reducing of height during the grazing period. The behavioral variables were not affected by forage allowance, except for the time of displacement, whereby goats spent more time in pastures with offer of 11% BW. The goats remained most part of the time in grazing and idle, corresponding to 89% and 5% of the evaluation time, respectively. Higher bit rate was observed in June, among the offerings, and 15 and 19% BW. The ingestive and grazing behaviour in goats is changed by the accumulation of dead material and stem in pasture from Andropogon grass during at rainy season. The forage supply 11% of BW increases the time of displacement of goats grazing on Andropogon grass. The management of grazing Andropogon grass with forage allowance being 11 and 19% of BW provides low weight gains in goats during the rainy season.

  2. Larval behavioral, morphological changes, and nematocyte dynamics during settlement of actinulae of Tubularia mesembryanthemum, Allman 1871 (Hydrozoa: Tubulariidae).

    Science.gov (United States)

    Yamashita, Keiji; Kawaii, Satoru; Nakai, Mitsuyo; Fusetani, Nobuhiro

    2003-06-01

    The marine colonial hydroid Tubularia mesembryanthemum produces a morphologically unique dispersive stage, the actinula larva. Detailed observations were made on the behaviors and nematocyte dynamics of actinula larvae during attachment and morphogenesis by employing microscopic and time lapse video techniques. These observations produced four primary results. (1) Actinula larvae demonstrated two forms of attachment: temporary attachment by atrichous isorhiza (AI)-nematocysts discharged from the aboral tentacle (AT) tips-and permanent settlement by cement secretion from the columnar gland cells of the basal protrusion. (2) During larval settlement, numerous AIs were discharged from the AT tips with sinuous movement and rubbing of the tentacles onto the substrata, leading to "nematocyte-printing" around the settlement site. (3) Simultaneous with the discharge of the AIs, migration of stenoteles, desmonemes, and microbasic mastigophores occurred, resulting in a dramatic change of nematocyte composition in the ATs after larval settlement. This was in parallel with changes in larval behavior and the tentacle function. (4) Nematocyte-printing behavior during settlement could be recognized as metamorphic behavior responsible for irreversible changes in AT function, from attachment to feeding and defense.

  3. Avian predator buffers against variability in marine habitats with flexible foraging behavior

    Science.gov (United States)

    Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.

    2018-01-01

    How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.

  4. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    Science.gov (United States)

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  5. A conceptual framework that links pollinator foraging behavior to gene flow

    Science.gov (United States)

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  6. Humpback whale song and foraging behavior on an antarctic feeding ground.

    Directory of Open Access Journals (Sweden)

    Alison K Stimpert

    Full Text Available Reports of humpback whale (Megaptera novaeangliae song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.

  7. The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees

    International Nuclear Information System (INIS)

    Meindl, George A.; Ashman, Tia-Lynn

    2013-01-01

    Metals in soil are known to negatively affect the health of many groups of organisms, but it is unclear whether they can affect plant-pollinator interactions, and whether pollinators that visit plants growing on contaminated soils are at risk of ingesting potentially toxic resources. We address whether the presence of metals in nectar alters foraging behavior by bumblebees by manipulating nectar with one of two common soil contaminants (Al or Ni) in flowers of Impatiens capensis (Balsaminaceae). While the presence of Al in nectar did not influence foraging patterns by bumblebees, flowers containing Ni nectar solutions were visited for shorter time periods relative to controls, and discouraged bees from visiting nearby Ni-contaminated flowers. However, because bumblebees still visited these flowers, they likely ingested a potentially toxic resource. Our findings suggest that soil metals could cascade to negatively affect pollinators in metal contaminated environments. -- Highlights: ► We address whether metals in nectar alter foraging behavior by bumblebees. ► Al in nectar did not influence foraging patterns by bumblebees. ► Ni nectar solutions were visited for shorter time periods relative to controls. ► Ni nectar solutions discouraged bees from visiting nearby Ni-contaminated flowers. ► Our findings suggest soil metals could cascade to negatively affect pollinators. -- We extend current understanding of the effects of plant chemistry on plant-pollinator interactions by describing the effects of metals in nectar on bee foraging

  8. Experimental Evidence that Social Relationships Determine Individual Foraging Behavior

    OpenAIRE

    Firth, Josh A.; Voelkl, Bernhard; Farine, Damien R.; Sheldon, Ben C.

    2015-01-01

    Social relationships are fundamental to animals living in complex societies [1-3]. The extent to which individuals base their decisions around their key social relationships, and the consequences this has on their behavior and broader population level processes, remains unknown. Using a novel experiment that controlled where individual wild birds (great tits, Parus major) could access food, we restricted mated pairs from being allowed to forage at the same locations. This introduced a conflic...

  9. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence.

    Science.gov (United States)

    Milotic, Dino; Milotic, Marin; Koprivnikar, Janet

    2017-08-01

    Large quantities of road salts are used for de-icing in temperate climates but often leach into aquatic ecosystems where they can cause harm to inhabitants, including reduced growth and survival. However, the implications of road salt exposure for aquatic animal susceptibility to pathogens and parasites have not yet been examined even though infectious diseases can significantly contribute to wildlife population declines. Through a field survey, we found a range of NaCl concentrations (50-560mg/L) in ponds known to contain larval amphibians, with lower levels found in sites close to gravel- rather than hard-surfaced roads. We then investigated how chronic exposure to environmentally-realistic levels of road salt (up to 1140mg/L) affected susceptibility to infection by trematode parasites (helminths) in larval stages of two amphibian species (Lithobates sylvaticus - wood frogs, and L. pipiens - northern leopard frogs) by considering effects on host anti-parasite behavior and white blood cell profiles. Wood frogs exposed to road salt had higher parasite loads, and also exhibited reduced anti-parasite behavior in these conditions. In contrast, infection intensity in northern leopard frogs had a non-monotonic response to road salts even though lymphocytes were only elevated at the highest concentration. Our results indicate the potential for chronic road salt exposure to affect larval amphibian susceptibility to pathogenic parasites through alterations of behavior and immunocompetence, with further studies needed at higher concentrations, as well as that of road salts on free-living parasite infectious stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Search and foraging behaviors from movement data: A comparison of methods.

    Science.gov (United States)

    Bennison, Ashley; Bearhop, Stuart; Bodey, Thomas W; Votier, Stephen C; Grecian, W James; Wakefield, Ewan D; Hamer, Keith C; Jessopp, Mark

    2018-01-01

    Search behavior is often used as a proxy for foraging effort within studies of animal movement, despite it being only one part of the foraging process, which also includes prey capture. While methods for validating prey capture exist, many studies rely solely on behavioral annotation of animal movement data to identify search and infer prey capture attempts. However, the degree to which search correlates with prey capture is largely untested. This study applied seven behavioral annotation methods to identify search behavior from GPS tracks of northern gannets ( Morus bassanus ), and compared outputs to the occurrence of dives recorded by simultaneously deployed time-depth recorders. We tested how behavioral annotation methods vary in their ability to identify search behavior leading to dive events. There was considerable variation in the number of dives occurring within search areas across methods. Hidden Markov models proved to be the most successful, with 81% of all dives occurring within areas identified as search. k -Means clustering and first passage time had the highest rates of dives occurring outside identified search behavior. First passage time and hidden Markov models had the lowest rates of false positives, identifying fewer search areas with no dives. All behavioral annotation methods had advantages and drawbacks in terms of the complexity of analysis and ability to reflect prey capture events while minimizing the number of false positives and false negatives. We used these results, with consideration of analytical difficulty, to provide advice on the most appropriate methods for use where prey capture behavior is not available. This study highlights a need to critically assess and carefully choose a behavioral annotation method suitable for the research question being addressed, or resulting species management frameworks established.

  11. Comparing the use of live trees and deadwood for larval foraging by aye-ayes (Daubentonia madagascariensis) at Kianjavato and Torotorofotsy, Madagascar.

    Science.gov (United States)

    Sefczek, Timothy M; Randimbiharinirina, Domenico; Raharivololona, Brigitte M; Rabekianja, Joseph D; Louis, Edward E

    2017-10-01

    Aye-aye (Daubentonia madagascariensis) feeding behavior has become synonymous with deadwood foraging. However, deadwood is not always the most frequently used substrate, as some aye-ayes use live trees more often to access invertebrates. We sought to compare the frequency of aye-aye invertebrate foraging in deadwood and live trees to better understand their feeding behaviors. We followed two male aye-ayes at Kianjavato, a heavily disturbed habitat in southeastern Madagascar, from October 2013 to October 2014, and one male and one female aye-aye at Torotorofotsy, a continuous forest in eastern Madagascar, from July 2014 to December 2015. We collected feeding data by recording the behavior of a focal aye-aye every 5 min for a total of 373 h at Kianjavato and 383 h at Torotorofotsy. Our results showed no difference in the amount of deadwood used between the individuals. However, there was a significant difference in the amount of live tree feeding between the female at Torotorofotsy and one of the males at Kianjavato. We conclude that feeding on invertebrates in live trees is more important to aye-ayes than previously realized and that aye-ayes are exceedingly flexible in their invertebrate feeding behaviors, adjusting to their habitat by using various substrates.

  12. Foraging ecology as related to the distribution of planktivorous auklets in the Bering Sea

    Science.gov (United States)

    Hunt, George L.; Harrison, Nancy M.; Piatt, John F.

    1993-01-01

    We review recent accounts of the foraging ecologies of  five species of small auklets found in the Bering Sea. These birds eat a wide variety of zooplankton and micronekton. Least Auklets Aethia pusilla and Whiskered Auklets A. pygmaea, as far as is known, primarily eat copepods, whereas Created Auklets A. cristatella appear to specialize on euphausiids, at least during the breeding season. The diet of Parakeet Auklets Cyclorrhynchus psittacula is much broader than that of most other Aethia species, and includes many gelatinous species and their commensals. Little is known of the diet of Cassin's Auklet Ptychoramphus aleuticus in the Bering Sea, although elsewhere they take large copepods, euphausiids, and larval fish.There are considerable differences in the at-sea distributions and foraging behaviors of these five species of auklet. Least Auklets in the norhtern Bering Sea concentrate their foraging activities over strongly stratified water and near fronts where pycnoclines may approach the surface. In the Aleutian Islands, Least Auklets forage where oceanic and tidal currents strike the shelf between the islands and rise toward the surface carrying plankton. Least Auklets and Crested Auklets are often found in large flocks, whereas Parakeet Auklets are rarely found in groups of more than three birds and are usually widely dispersed. The few at-sea observations of Whiskered Auklets have been of small flocks in turbulent waters of island passes. We relate prey types taken, foraging dispersion, and the use of hydrographic features by these auklet species.

  13. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker (Lepidoptera: Tortricidae.

    Directory of Open Access Journals (Sweden)

    Yi Feng

    Full Text Available The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions

  14. Nectar yeasts in the tall Larkspur Delphinium barbeyi (Ranunculaceae and effects on components of pollinator foraging behavior.

    Directory of Open Access Journals (Sweden)

    Robert N Schaeffer

    Full Text Available Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54-77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness.

  15. Nectar Yeasts in the Tall Larkspur Delphinium barbeyi (Ranunculaceae) and Effects on Components of Pollinator Foraging Behavior

    Science.gov (United States)

    Schaeffer, Robert N.; Phillips, Cody R.; Duryea, M. Catherine; Andicoechea, Jonathan; Irwin, Rebecca E.

    2014-01-01

    Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae) and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54–77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited) flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness. PMID:25272164

  16. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta at a foraging ground

    Directory of Open Access Journals (Sweden)

    Samir Harshad Patel

    2016-12-01

    Full Text Available Assessing sea turtle behavior at the foraging grounds has been primarily limited to the interpretation of remotely-sensed data. As a result, there is a general lack of detailed understanding regarding the habitat use of sea turtles during a phase that accounts for a majority of their lives. Thus, this study aimed to fill these data gaps by providing detailed information about the feeding habits, prey availability, buoyancy control and water column usage by 73 loggerhead turtles across 45.7 hours of video footage obtained from a remotely operated vehicle (ROV from 2008 – 2014. We developed an ethogram to account for 27 potential environmental and behavioral parameters. Turtles were filmed through the entire water column and we quantified the frequency of behaviors such as flipper beats, breaths, defecations, feedings and reactions to the ROV. We used the ROV’s depth sensor and visible cues (i.e. water surface or benthic zone in view to distinguish depth zones and assess the turtles’ use of the water column. We also quantified interactions with sympatric biota, including potential gelatinous and non-gelatinous prey species, fish (including sharks, marine mammals and other sea turtles. We discovered that turtles tended to remain within the near surface and surface zones of the water column through the majority of the footage. During benthic dives, turtles consistently exhibited negative buoyancy and some turtles exhibited a dichotomous foraging behavior, first foraging within the water column, then diving to the benthic environment. Videography allowed us to combine behavioral observations and habitat features that cannot be captured by traditional telemetry methods, resulting in a broader understanding of loggerheads’ ecological role in the U.S. Mid-Atlantic.

  17. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate.

    Science.gov (United States)

    Metz, Matthew C; Vucetich, John A; Smith, Douglas W; Stahler, Daniel R; Peterson, Rolf O

    2011-03-01

    Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  18. A Novel Adaptive Particle Swarm Optimization Algorithm with Foraging Behavior in Optimization Design

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2018-01-01

    Full Text Available The method of repeated trial and proofreading is generally used to the convention reducer design, but these methods is low efficiency and the size of the reducer is often large. Aiming the problems, this paper presents an adaptive particle swarm optimization algorithm with foraging behavior, in this method, the bacterial foraging process is introduced into the adaptive particle swarm optimization algorithm, which can provide the function of particle chemotaxis, swarming, reproduction, elimination and dispersal, to improve the ability of local search and avoid premature behavior. By test verification through typical function and the application of the optimization design in the structure of the reducer with discrete and continuous variables, the results are shown that the new algorithm has the advantages of good reliability, strong searching ability and high accuracy. It can be used in engineering design, and has a strong applicability.

  19. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    Directory of Open Access Journals (Sweden)

    Nor Atiqah Norazlimi

    2015-01-01

    Full Text Available A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus, Common redshank (Tringa totanus, Whimbrel (Numenius phaeopus, and Little heron (Butorides striata and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder. The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R=0.443, p<0.05, bill size and prey size (R=-0.052, p<0.05, bill size and probing depth (R=0.42, p=0.003, and leg length and water/mud depth (R=0.706, p<0.005. A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm and species (H=15.96, p=0.0012. Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  20. Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre

    Directory of Open Access Journals (Sweden)

    Julieta Grajales-Conesa

    2012-03-01

    Full Text Available Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre. Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange flowers and their effects on the foraging behavior of the stingless bee Scaptotrigona pectoralis. We found that each type of flower has its own specific blend of major compounds: limonene (62.9% for lemon flowers, and farnesol (26.5%, (E-nerolidol (20.8%, and linalool (12.7% for orange flowers. In the foraging experiments the S. pectoralis workers were able to use the flower extracts to orient to the food source, overlooking plates baited with hexane only. However, orange flower extracts were seemingly more attractive to these worker bees, maybe because of the particular blend present in it. Our results reveal that these fragrances are very attractive to S. pectoralis, so we can infer that within citric orchards they could be important visitors in the study area; however habitat destruction, overuse of pesticides and the competitive override by managed honeybees might have put at risk their populations and thus the ecological services they provide to us.

  1. Forage intake and behavior of goats on Tanzania-grass pasture at two regrowth ages - doi: 10.4025/actascianimsci.v35i1.16035 Forage intake and behavior of goats on Tanzania-grass pasture at two regrowth ages - doi: 10.4025/actascianimsci.v35i1.16035

    Directory of Open Access Journals (Sweden)

    Wellington Kelson Alvarenga Silva

    2013-01-01

    Full Text Available Normal 0 21 false false false The forage mass, sward structure, the ingestive and grazing behavior and forage intake by goats grazing on Tanzania-grass at 22 and 37 days of regrowth were evaluated. A completely randomized experimental design was used, with eight replications for evaluating the pasture and bite depth, and six replications for evaluating intake, feeding and grazing behavior. The forage canopy height ranged from 64.1 to 92.7 cm. Higher forage mass was observed at 37 days, and the best leaf/stem ratio, at 22 regrowth days. The bite depth did not differ between regrowth ages. The biting rate for the 22 regrowth days (23.07 bites min.-1 was higher than at 37 days (19.06 bites min.-1. The grazing time was longer at the regrowth age of 22 days (5.58h than at 37 days (4.51h. The average feed intake was 2.75% of the body weight and was not different between regrowth ages.  The forage mass, sward structure, the ingestive and grazing behavior and forage intake by goats grazing on Tanzania-grass at 22 and 37 days of regrowth were evaluated. A completely randomized experimental design was used, with eight replications for evaluating the pasture and bite depth, and six replications for evaluating intake, feeding and grazing behavior. The forage canopy height ranged from 64.1 to 92.7 cm. Higher forage mass was observed at 37 days, and the best leaf/stem ratio, at 22 regrowth days. The bite depth did not differ between regrowth ages. The biting rate for the 22 regrowth days (23.07 bites min.-1 was higher than at 37 days (19.06 bites min.-1. The grazing time was longer at the regrowth age of 22 days (5.58h than at 37 days (4.51h. The average feed intake was 2.75% of the body weight and was not different between regrowth ages.  

  2. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    LÚCIA H.P. KIILL

    2014-12-01

    Full Text Available The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 – ‘Yellow melon’ and Sancho -‘Piel de Sapo’ in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001, floral type (F = 47.25, p <0.0001 and resource foraged (F = 239.14, p <0.0001. The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  3. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  4. Performance, nutritional behavior, and metabolic responses of calves supplemented with forage depend on starch fermentability.

    Science.gov (United States)

    Mojahedi, S; Khorvash, M; Ghorbani, G R; Ghasemi, E; Mirzaei, M; Hashemzadeh-Cigari, F

    2018-05-16

    This study evaluated the interactive effects of forage provision on performance, nutritional behavior, apparent digestibility, rumen fermentation, and blood metabolites of dairy calves when corn grains with different fermentability were used. Sixty 3-d-old Holstein calves were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Dietary treatments were (1) steam-flaked (SF) corn without alfalfa hay (AH) supplementation (SF-NO), (2) SF corn with AH supplementation (SF-AH), (3) cracked (CR) corn without AH supplementation (CR-NO), and (4) CR corn with AH supplementation (CR-AH). All calves received the same amount of pasteurized whole milk and weaned on d 56 of the experiment; the study was terminated on d 70. Steam-flaked corn contained higher amounts of gelatinized starch in comparison with cracked corn (44.1 vs. 12.5% of total starch, respectively). Starter intake was not affected by corn processing methods or AH provision during the pre- or postweaning periods. However, we noted an interaction between corn processing methods and forage supplementation for starter intake during d 31 to 50 of the experiment, where calves fed on SF-AH starter had greater starter intake than those fed SF-NO starter, but the starter intake was not different between CR-NO and CR-AH fed calves. Furthermore, AH increased average daily gain (ADG) of calves fed an SF-based diet but not in calves fed a CR-based diet during the preweaning and overall periods. Interaction between forage provision and time was significant for ADG and feed efficiency, as calves supplemented with forage had higher ADG (0.982 vs. 0.592, respectively) and feed efficiency compared with forage unsupplemented calves at the weaning week. Forage supplementation resulted in more stable ruminal condition compared with nonforage-fed calves, as evidenced by higher ruminal pH (5.71 vs. 5.29, respectively) at postweaning and lower non-nutritive oral behavior around weaning time (55 vs. 70.5 min

  5. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  6. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Christof W Schneider

    Full Text Available The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee and clothianidin (0.05-2 ng/bee under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin and ≥1.5 ng/bee (imidacloprid during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further

  7. Effect of sociality and season on gray wolf (Canis lupus foraging behavior: implications for estimating summer kill rate.

    Directory of Open Access Journals (Sweden)

    Matthew C Metz

    Full Text Available BACKGROUND: Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. METHODOLOGY/PRINCIPAL FINDINGS: For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging. We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf decreased from 8.4±0.9 kg (mean ± SE in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  8. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  9. Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of Osmia bicornis.

    Science.gov (United States)

    Coudrain, Valérie; Rittiner, Sarah; Herzog, Felix; Tinner, Willy; Entling, Martin H

    2016-10-01

    Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they provide. Multiple-habitat users such as wild bees depend on both nesting and foraging habitat. Thus, they may be affected by the fragmentation of at least two habitat types. We investigated the effects of landscape-scale amount of and patch isolation from both nesting habitat (woody plants) and foraging habitat (specific pollen sources) on the abundance and diet of Osmia bicornis L. Trap-nests of O. bicornis were studied in 30 agricultural landscapes of the Swiss Plateau. Nesting and foraging habitats were mapped in a radius of 500 m around the sites. Pollen composition of larval diet changed as isolation to the main pollen source, Ranunculus, increased, suggesting that O. bicornis adapted its foraging strategy in function of the nest proximity to main pollen sources. Abundance of O. bicornis was neither related to isolation or amount of nesting habitat nor to isolation or abundance of food plants. Surprisingly, nests of O. bicornis contained fewer larvae in sites at forest edge compared to isolated sites, possibly due to higher parasitism risk. This study indicates that O. bicornis can nest in a variety of situations by compensating scarcity of its main larval food by exploiting alternative food sources. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  10. Several New Aspects of the Foraging Behavior of Osmia cornifrons in an Apple Orchard

    Directory of Open Access Journals (Sweden)

    Shogo Matsumoto

    2010-01-01

    Full Text Available We investigated the foraging behavior of Osmia cornifrons Radoszkowski, which is a useful pollinator in apple orchards consisting of only one kind of commercial cultivars such as “Fuji”, and of different types of pollinizers, such as the red petal type, “Maypole” or “Makamik”. It was confirmed that, in terms of the number of foraging flowers per day, visiting flowers during low temperatures, strong wind, and reduced sunshine in an apple orchard, O. cornifrons were superior to honeybees. We indicated that O. cornifrons seemed to use both petals and anthers as foraging indicator, and that not only female, but also males contributed to apple pollination and fertilization by the pollen grains attached to them from visiting flowers, including those at the balloon stage. It was confirmed that O. cornifrons acts as a useful pollinator in an apple orchard consisting of one kind of cultivar with pollinizers planted not more than 10 m from commercial cultivars.

  11. Ingestive behavior, performance and forage intake by beef heifers on tropical pasture systems

    Directory of Open Access Journals (Sweden)

    Renato Alves de Oliveira Neto

    2013-08-01

    Full Text Available The experiment was carried out to evaluate forage intake, performance and ingestive behavior of beef heifers. Productive, structural and chemical characteristics of the pasture were also evaluated. The experimental design was completely randomized in a 3 × 2 factorial arrangement, with three pasture systems (Alexandergrass [Urochloa plantaginea Link.] with and without supplement to heifers and Coastcross [Cynodon dactylon (L. Pers.] and two phenological stages: vegetative and flowering. The grazing method was put-and-take stocking. Grazing, ruminating and idle activities, feeding stations, displacement patterns, bite mass and bite rate were evaluated. The forage intake was estimated using chromic oxide as an indicator of fecal output. The heifers modified the use of feeding stations and displacement patterns between phenological stages and pasture systems. Heifers consumed more forage in the vegetative stage (2.81% of body weight in dry matter than in the flowering stage (1.92% of body weight in dry matter. Average daily gain, body condition and stocking rate were similar for heifers in the evaluated systems. Beef heifers receiving protein supplement on Alexandergrass pasture consumed more forage than heifers fed Coastcross exclusively. Regardless of the species, no difference was observed when the heifers were exclusively on pasture. Pasture systems on Alexandergrass or Coastcross provide suitable nutrient intake for heifers to be mated at 18 months of age.

  12. Role of olfaction in the foraging behavior and trial-and-error learning in short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Zhang, Wei; Zhu, Guangjian; Tan, Liangjing; Yang, Jian; Chen, Yi; Liu, Qi; Shen, Qiqi; Chen, Jinping; Zhang, Libiao

    2014-03-01

    We observed the foraging behavior of short-nosed fruit bats, Cynopterus sphinx, in captivity. The role of olfaction in their foraging behavior was examined using real fruit, mimetic fruit, and mimetic fruit soaked in the juice of real fruit. The results showed that C. sphinx visited the real fruit more often than the mimetic fruit, but they had no preference between real fruit and treated mimetic fruit. Our experiment indicates that this bat has the ability to find and identify fruit by olfaction. We also tested for behavior of trial-and-error learning. Our observations revealed that the bats could form a sensory memory of the olfactory cue (cedar wood oil) after five days of training because they responded to the olfactory cues. Our results provide the evidence that C. sphinx can establish the connection between the fruit and a non-natural odor through learning and memory with the assistance of olfaction, and can thus recognize a variety of odors by trial-and-error learning. This behavioral flexibility based on olfactory cues will be beneficial for the short-nosed fruit bat in foraging. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Foraging behavior and virulence of some entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Manana A. Lortkipanidze

    2016-06-01

    Full Text Available At present the biological control as a pest control technology is becoming more desirable. Biological formulations on basis of entomopathogenic nematodes are one of the effective means for the protection of agricultural and forest plants from harmful insects. Nowadays, the use of entomopathogenic nematodes as biological control agents is a key component in IPM system. The foraging strategies of entomopathogenic nematodes (EPNs vary between species. This variation is consistent with use of different foraging strategies between ambush, cruise and intermediate to find their host insects. In order to ambush prey, some species of EPNs nictate, or raise their bodies of the soil surface so they are better poised to attach passing insects, other species adopt a cruising strategy and rarely nictate. Some species adopt an intermediate strategy between ambush and cruise. We compared in laboratory the foraging strategies of the entomopathogenic nematode species: Steinernema carpocapsae, Heterorhabditis bacteriophora and the recently described species Steinernema tbilisiensis and assessed their virulence against mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae. The tests showed that S. tbilisiensis adopts both foraging strategies.

  14. Bryophyte-Feeders in a Basal Brachyceran Lineage (Diptera: Rhagionidae: Spaniinae: Adult Oviposition Behavior and Changes in the Larval Mouthpart Morphology Accompanied with the Diet Shifts.

    Directory of Open Access Journals (Sweden)

    Yume Imada

    Full Text Available Dipteran larval morphology exhibits overwhelming variety, affected by their diverse feeding habits and habitat use. In particular, larval mouthpart morphology is associated with feeding behavior, providing key taxonomic traits. Despite most larval Brachycera being carnivorous, a basal brachyceran family, Rhagionidae, contains bryophyte-feeding taxa with multiple feeding habits. To elucidate the life history, biology, and morphological evolution of the bryophyte-feeding rhagionids, the larval feeding behavior and morphology, and the adult oviposition behavior of four species belonging to three genera of Spaniinae (Spania Meigen, Litoleptis Chillcott and Ptiolina Zetterstedt are described. Moreover, changes of the larval morphology associated with the evolution of bryophyte-feeding are traced by molecular phylogenetic analyses. Spania and Litoleptis (thallus-miners of thallose liverworts share a toothed form of apical mandibular sclerite with an orifice on its dorsal surface, which contrasts to those of the other members of Rhagionidae possessing a blade-like mandibular hook with an adoral groove; whereas, Ptiolina (stem borer of mosses exhibits a weak groove on the adoral surface of mandible and highly sclerotized maxilla with toothed projections. Based on the larval feeding behavior of the thallus-miners, it is inferred that the toothed mandibles with the dorsal orifice facilitate scraping plant tissue and then imbibing it with a great deal of the sap. A phylogeny indicated that the bryophyte-feeding genera formed a clade with Spaniopsis and was sister to Symphoromyia, which presumably are detritivores. This study indicates that the loss or reduction of adoral mandibular groove and mandibular brush is coincident with the evolution of bryophyte-feeding, and it is subsequently followed by the occurrence of dorsal mandibular orifice and the loss of creeping welts accompanying the evolution of thallus-mining.

  15. Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis).

    Science.gov (United States)

    Rehan, Sandra M; Bulova, Susan J; O'Donnell, Sean

    2015-01-01

    In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by

  16. Roosevelt elk density and social segregation: Foraging behavior and females avoiding larger groups of males

    Science.gov (United States)

    Weckerly, F.; McFarland, K.; Ricca, M.; Meyer, K.

    2004-01-01

    Intersexual social segregation at small spatial scales is prevalent in ruminants that are sexually dimorphic in body size. Explaining social segregation, however, from hypotheses of how intersexual size differences affects the foraging process of males and females has had mixed results. We studied whether body size influences on forage behavior, intersexual social incompatibility or both might influence social segregation in a population of Roosevelt elk (Cervus elaphus roosevelt) that declined 40% over 5 y. Most males and females in the population occurred in the same forage patches, meadows, but occupied different parts of meadows and most groups were overwhelming comprised of one sex. The extent of segregation varied slightly with changing elk density. Cropping rate, our surrogate of forage ingestion, of males in mixed-sex groups differed from males in male-only groups at high, but not low, elk density. In a prior study of intersexual social interactions it was shown that females avoided groups containing ???6 males. Therefore, we predicted that females should avoid parts of meadows where groups of males ???6 were prevalent. Across the 5 y of study this prediction held because ???5% of all females were found in parts of meadows where median aggregation sizes of males were ???6. Social segregation was coupled to body size influences on forage ingestion at high density and social incompatibility was coupled to social segregation regardless of elk density.

  17. La conducta de larvas de Drosophila (Diptera; Drosophilidae: su etología, desarrollo, genética y evolución The behavior of Drosophila larvae: their ethology, development, genetics and evolution

    Directory of Open Access Journals (Sweden)

    RAÚL GODOY-HERRERA

    2001-03-01

    Full Text Available Este trabajo, en honor al Profesor Doctor Danko Brncic Juricic (Q.E.P.D., es una revisión de nuestras contribuciones sobre la etología, desarrollo, genética y evolución de patrones de conducta de larvas de Drosophila. Se discute el desarrollo de conductas larvales de forrajeo y sus bases hereditarias. También se discuten estrategias de investigación dirigidas a entender las relaciones entre genotipo y conducta durante el desarrollo de los organismos. Se relacionan patrones de desarrollo de conductas larvales con la filogenia de las especies del grupo mesophragmatica de Drosophila. Finalmente, se distingue entre evolución de elementos de conducta simple y evolución de conductas complejasThis is a review about our contributions in ethology, development, genetics, and evolution of larval behavioral patterns of Drosophila in honor of the late Professor Doctor Danko Brncic Juricic. The developmental behavioral genetics of larval foraging and pupation of Drosophila are discussed. It is also emphasized the importance of research strategies lead to understand properly the relationships between genotype and behavior during development of the organisms. Finally, a comparison between phylogenetic relationships of six Drosophila species of the mesophragmatica group and their developmental patterns of larval behaviors is provided

  18. Sympatric cattle grazing and desert bighorn sheep foraging

    Science.gov (United States)

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  19. Dynamics of Social Behavior in Fruit Fly Larvae

    Science.gov (United States)

    Durisko, Zachary; Kemp, Rebecca; Mubasher, Rameeshay; Dukas, Reuven

    2014-01-01

    We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior. PMID:24740198

  20. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    Science.gov (United States)

    Darrah, Abigail J.; Greeney, Harold F.; van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  1. Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway.

    Science.gov (United States)

    Lin, Qian; Jesuthasan, Suresh

    2017-06-22

    Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.

  2. Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carbidae)

    DEFF Research Database (Denmark)

    Bayley, M; Baatrup, E; Heimbach, U

    1995-01-01

    behavior of adult Pterostichus cupreus carabid beetles was quantified after being raised on copper-contaminated food and soil during larval development. Copper was found to have an acute toxic effect measured in larval mortality, to cause a slight increase in the developmental period of males......It is generally believed that copper causes changes in carabid communities indirectly by reducing food availability, because these animals are frequently found to have only slightly elevated metal contents even close to pollution sources. Using computer-centered video tracking, the locomotor......, but not to effect the emergence weights of adults of either sex. This toxic effect on the larvae was preserved through pupation to the surviving adults, which were normal in size and appearance, but displayed a dramatically depressed locomotor behavior. Copper analysis of these adults revealed that copper levels...

  3. Morphology and Efficiency of a Specialized Foraging Behavior, Sediment Sifting, in Neotropical Cichlid Fishes

    Science.gov (United States)

    Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L.; Winemiller, Kirk O.

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny. PMID:24603485

  4. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Hernán López-Fernández

    Full Text Available Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  5. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    Science.gov (United States)

    López-Fernández, Hernán; Arbour, Jessica; Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L; Winemiller, Kirk O

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  6. Consumption and foraging behaviors for common stimulants (nicotine, caffeine).

    Science.gov (United States)

    Phillips, James G; Currie, Jonathan; Ogeil, Rowan P

    2016-01-01

    Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.

  7. A day in the life of fish larvae: modeling foraging and growth using quirks.

    Directory of Open Access Journals (Sweden)

    Klaus B Huebert

    Full Text Available This article introduces "Quirks," a generic, individual-based model synthesizing over 40 years of empirical and theoretical insights into the foraging behavior and growth physiology of marine fish larvae. In Quirks, different types of larvae are defined by a short list of their biological traits, and all foraging and growth processes (including the effects of key environmental factors are modeled following one unified set of mechanistic rules. This approach facilitates ecologically meaningful comparisons between different species and environments. We applied Quirks to model young exogenously feeding larvae of four species: 5.5-mm European anchovy (Engraulis encrasicolus, 7-mm Atlantic cod (Gadus morhua, 13-mm Atlantic herring (Clupea harengus, and 7-mm European sprat (Sprattus sprattus. Modeled growth estimates explained the majority of variability among 53 published empirical growth estimates, and displayed very little bias: 0.65% ± 1.2% d(-1 (mean ± standard error. Prey organisms of ∼ 67% the maximum ingestible prey length were optimal for all larval types, in terms of the expected ingestion per encounter. Nevertheless, the foraging rate integrated over all favorable prey sizes was highest when smaller organisms made up >95% of the prey biomass under the assumption of constant normalized size spectrum slopes. The overall effect of turbulence was consistently negative, because its detrimental influence on prey pursuit success exceeded its beneficial influence on prey encounter rate. Model sensitivity to endogenous traits and exogenous environmental factors was measured and is discussed in depth. Quirks is free software and open source code is provided.

  8. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    Science.gov (United States)

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls.

    Science.gov (United States)

    Yamasaki, Takashi; Aki, Tsunehiro; Mori, Yuhsuke; Yamamoto, Takeki; Shinozaki, Masami; Kawamoto, Seiji; Ono, Kazuhisa

    2007-09-01

    In marine aquaculture, rotifers and Artemia nauplii employed as larval fish feed are often nutritionally enriched with forage such as yeast and algal cells supplemented with polyunsaturated fatty acids and xanthophylls, which are required for normal growth and a high survival ratio of fish larvae. To reduce the enrichment steps, we propose here the use of a marine thraustochytrid strain, Schizochytrium sp. KH105, producing docosahexaenoic acid, docosapentaenoic acid, canthaxanthin, and astaxanthin. The KH105 cells prepared by cultivation under optimized conditions were successfully incorporated by rotifers and Artemia nauplii. The contents of docosahexaenoic acid surpassed the levels required in feed for fish larvae, and the enriched Artemia showed an increased body length. The results demonstrate that we have developed an improved method of increasing the dietary value of larval fish feed.

  10. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  11. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae in a caatinga area of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo B. Ribeiro

    2011-09-01

    Full Text Available This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825 and T. semitaeniatus (Spix, 1825, as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation on lepidopteran larvae, coleopteran larvae and adults, and orthopteran nymphs and adults occurred in the wet season; however, hymenopterans/Formicidae were the most important prey items. The number of food items was similar between lizard species in both seasons; however the overlap for number of prey was smaller in the wet season. Preys ingested by T. hispidus during the wet season were also larger than those consumed by T. semitaeniatus. Seasonal comparisons of foraging intensity between the two species differed, mainly in the wet season, when T. hispidus exhibited less movement and fewer attacks on prey, and more time spent stationary if compared to T. semitaeniatus. Although both lizards are sit-and-wait foragers, T. semitaeniatus is more active than T. hispidus. The diet and foraging behavior of T. hispidus and T. semitaeniatus overlap under limiting conditions during the dry season, and are segregative factors that may contribute to the coexistence of these species in the wet season.

  12. Ant Foraging Behavior for Job Shop Problem

    Directory of Open Access Journals (Sweden)

    Mahad Diyana Abdul

    2016-01-01

    Full Text Available Ant Colony Optimization (ACO is a new algorithm approach, inspired by the foraging behavior of real ants. It has frequently been applied to many optimization problems and one such problem is in solving the job shop problem (JSP. The JSP is a finite set of jobs processed on a finite set of machine where once a job initiates processing on a given machine, it must complete processing and uninterrupted. In solving the Job Shop Scheduling problem, the process is measure by the amount of time required in completing a job known as a makespan and minimizing the makespan is the main objective of this study. In this paper, we developed an ACO algorithm to minimize the makespan. A real set of problems from a metal company in Johor bahru, producing 20 parts with jobs involving the process of clinching, tapping and power press respectively. The result from this study shows that the proposed ACO heuristics managed to produce a god result in a short time.

  13. Survival probability of larval sprat in response to decadal changes in diel vertical migration behavior and prey abundance in the Baltic Sea

    DEFF Research Database (Denmark)

    Hinrichsen, Hans-Harald; Peck, Myron A.; Schmidt, Jörn

    2010-01-01

    distribution and climate-driven abiotic and biotic environmental factors including variability in the abundance of different, key prey species (calanoid copepods) as well as seasonal changes, long-term trends, and spatial differences in water temperature. Climate forcing affected Baltic sprat larval survival......, larvae were predicted to experience optimal conditions to ensure higher survival throughout the later larval and early juvenile stages. However, this behavioral shift also increased the susceptibility of larvae to unfavorable winddriven surface currents, contributing to the marked increase in interannual...

  14. Fine-scale foraging ecology of leatherback turtles

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    2015-02-01

    Full Text Available Remote tracking of migratory species and statistical modeling of behaviors have enabled identification of areas that are of high ecological value to these widely distributed taxa. However, direct observations at fine spatio-temporal scales are often needed to correctly interpret behaviors. In this study, we combined GPS-derived locations and archival dive records (1 sec sampling rate with animal-borne video footage from foraging leatherback turtles (Dermochelys coriacea in Nova Scotia, Canada (Northwest Atlantic Ocean to generate the most highly detailed description of natural leatherback behavior presented to date. Turtles traveled shorter distances at slower rates and increased diving rates in areas of high prey abundance, which resulted in higher prey capture rates. Increased foraging effort (e.g., dive rate, dive duration, prey handling time, number of bites was not associated with increased time at the surface breathing to replenish oxygen stores. Instead, leatherbacks generally performed short, shallow dives in the photic zone to or above the thermocline, where they disproportionately captured prey at bottoms of dives and during ascents. This foraging strategy supports visual prey detection, allows leatherbacks to exploit physically structured prey at relatively shallow depths (typically <30m, and increases time turtles spend in warmer water temperatures, thus optimizing net energy acquisition. Our results demonstrate that leatherbacks appear to be continuously foraging during daylight hours while in continental shelf waters of Nova Scotia, and that leatherback foraging behavior is driven by prey availability, not by whether or not a turtle is in a resource patch characterized by a particular size or prey density. Our study demonstrates the fundamental importance of obtaining field-based, direct observations of true behaviors at fine spatial and temporal scales to enhance our efforts to both study and manage migratory species.

  15. Lateral Dispersal and Foraging Behavior of Entomopathogenic Nematodes in the Absence and Presence of Mobile and Non-Mobile Hosts.

    Directory of Open Access Journals (Sweden)

    Harit K Bal

    Full Text Available Entomopathogenic nematodes have been classified into cruisers (active searchers and ambushers (sit and wait foragers. However, little is known about their dispersal and foraging behavior at population level in soil. We studied lateral dispersal of the ambush foraging Steinernema carpocapsae (ALL strain and cruise foraging Heterorhabditis bacteriophora (GPS11 strain from infected host cadavers in microcosms (0.05 m2 containing Wooster silt-loam soil (Oxyaquic fragiudalf and vegetation in the presence or absence of non-mobile and mobile hosts. Results showed that the presence of a non-mobile host (Galleria mellonella larva in a wire mesh cage enhanced H. bacteriophora dispersal for up to 24 hr compared with no-host treatment, but had no impact on S. carpocapsae dispersal. In contrast, presence of a mobile host (G. mellonella larvae increased dispersal of S. carpocapsae compared with no host treatment, but had no effect on H. bacteriophora dispersal. Also H. bacteriophora was better at infecting non-mobile than mobile hosts released into the microcosms and S. carpocapsae was better at infecting mobile than non-mobile hosts, thus affirming the established cruiser-ambusher theory. However, results also revealed that a large proportion of infective juveniles (IJs of both species stayed near (≤ 3.8 cm the source cadaver (88-96% S. carpocapsae; 67-79% H. bacteriophora, and the proportion of IJs reaching the farthest distance (11.4 cm was significantly higher for S. carpocapsae (1.4% than H. bacteriophora (0.4% in the presence of mobile hosts. S. carpocapsae also had higher average population displacement than H. bacteriophora in the presence of both the non-mobile (5.07 vs. 3.6 cm/day and mobile (8.06 vs. 5.3 cm/day hosts. We conclude that the two species differ in their dispersal and foraging behavior at the population level and this behavior is affected by both the presence and absence of hosts and by their mobility.

  16. Role of serotonergic neurons in the Drosophila larval response to light

    Directory of Open Access Journals (Sweden)

    Campos Ana

    2009-06-01

    Full Text Available Abstract Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging. This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to

  17. Larval gizzard shad characteristics in Lake Oahe, South Dakota: A species at the northern edge of its range

    Science.gov (United States)

    Fincel, Mark J.; Chipps, Steven R.; Graeb, Brian D. S.; Edwards, Kris R.

    2013-01-01

    Gizzard shad, Dorosoma cepedianum, have generally been restricted to the lower Missouri River impoundments in South Dakota. In recent years, gizzard shad numbers have increased in Lake Oahe, marking the northern-most natural population. These increases could potentially affect recreational fishes. Specifically, questions arise about larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit fast or slow growth, both of which can have profound effects on piscivore populations in this reservoir. In this study, we evaluated larval gizzard shad hatch timing, growth, and density in Lake Oahe. We collected larval gizzard shad from six sites from May to July 2008 and used sagittal otoliths to estimate the growth and back-calculate the hatch date. We found that larval gizzard shad hatched earlier in the upper part of the reservoir compared to the lower portion and that hatch date appeared to correspond to warming water temperatures. The peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) and varied significantly among reservoir sites. Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/d) and differed spatially within the reservoir. We found no relationship between the larval gizzard shad growth or density and small- or large-bodied zooplankton density (p > 0.05). As this population exhibits slow growth and low densities, gizzard shad should remain a suitable forage option for recreational fishes in Lake Oahe.

  18. Host choice in a bivoltine bee: how sensory constraints shape innate foraging behaviors.

    Science.gov (United States)

    Milet-Pinheiro, Paulo; Herz, Kerstin; Dötterl, Stefan; Ayasse, Manfred

    2016-04-11

    Many insects have multiple generations per year and cohorts emerging in different seasons may evolve their own phenotypes if they are subjected to different selection regimes. The bivoltine bee Andrena bicolor is reported to be polylectic and oligolectic (on Campanula) in the spring and summer generations, respectively. Neurological constraints are assumed to govern pollen diet in bees. However, evidence comes predominantly from studies with oligolectic bees. We have investigated how sensory constraints influence the innate foraging behavior of A. bicolor and have tested whether bees of different generations evolved behavioral and sensory polyphenism to cope better with the host flowers available in nature when they are active. Behavioral and sensory polyphenisms were tested in choice assays and electroantennographic analyses, respectively. In the bioassays, we found that females of both generations (1) displayed a similar innate relative reliance on visual and olfactory floral cues irrespective of the host plants tested; (2) did not prefer floral cues of Campanula to those of Taraxacum (or vice versa) and (3) did not display an innate preference for yellow and lilac colors. In the electroantennographic analyses, we found that bees of both generations responded to the same set of compounds. Overall, we did not detect seasonal polyphenism in any trait examined. The finding that bees of both generations are not sensory constrained to visit a specific host flower, which is in strict contrast to results from studies with oligolectic bees, suggest that also bees of the second generation have a flexibility in innate foraging behavior and that this is an adaptive trait in A. bicolor. We discuss the significance of our findings in context of the natural history of A. bicolor and in the broader context of host-range evolution in bees.

  19. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae) in a caatinga area of northeastern Brazil

    OpenAIRE

    Ribeiro,Leonardo B.; Freire,Eliza M. X.

    2011-01-01

    This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825) and T. semitaeniatus (Spix, 1825), as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items) in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation...

  20. On-Plant Larval Movement and Feeding Behavior of Fall Armyworm (Lepidoptera: Noctuidae) on Reproductive Corn Stages.

    Science.gov (United States)

    Pannuti, L E R; Baldin, E L L; Hunt, T E; Paula-Moraes, S V

    2016-02-01

    Spodoptera frugiperda J.E. Smith (fall armyworm) is considered one of the most destructive pests of corn throughout the Americas. Although this pest has been extensively studied, little is known about its larval movement and feeding behavior on reproductive compared to vegetative corn stages. Thus, we conducted studies with two corn stages (R1 and R3) and four corn plant zones (tassel, above ear, ear zone, and below ear) in the field at Concord, NE (USA), and in the field and greenhouse at Botucatu, SP (Brazil), to investigate on-plant larval movement. The effects of different corn tissues (opened tassel, closed tassel, silk, kernel, and leaf), two feeding sequence scenarios (closed tassel-leaf-silk-kernel and leaf-silk-kernel), and artificial diet (positive control) on larval survival and development were also evaluated in the laboratory. Ear zone has a strong effect on feeding choice and survival of fall armyworm larvae regardless of reproductive corn stage. Feeding site choice is made by first-instar. Corn leaves of reproductive plants were not suitable for early instar development, but silk and kernel tissues had a positive effect on survival and development of fall armyworm larvae on reproductive stage corn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Influence of poisoned prey on foraging behavior of ferruginous hawks

    Science.gov (United States)

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  2. Testing Optimal Foraging Theory Using Bird Predation on Goldenrod Galls

    Science.gov (United States)

    Yahnke, Christopher J.

    2006-01-01

    All animals must make choices regarding what foods to eat, where to eat, and how much time to spend feeding. Optimal foraging theory explains these behaviors in terms of costs and benefits. This laboratory exercise focuses on optimal foraging theory by investigating the winter feeding behavior of birds on the goldenrod gall fly by comparing…

  3. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    James R. Hagler

    2004-01-01

    Full Text Available The sweetpotato whitefly, Bemisia tabaci (Gennadius is fed on by a wide variety of generalist predators, but there is little information on these predator-prey interactions. A laboratory investigation was conducted to quantify the foraging behavior of the adults of five common whitefly predators presented with a surfeit of whitefly eggs, nymphs, and adults. The beetles, Hippodamia convergens Guérin-Méneville and Collops vittatus (Say fed mostly on whitefly eggs, but readily and rapidly preyed on all of the whitefly lifestages. The true bugs, Geocoris punctipes (Say and Orius tristicolor (Say preyed almost exclusively on adult whiteflies, while Lygus hesperus Knight preyed almost exclusively on nymphs. The true bugs had much longer prey handling times than the beetles and spent much more of their time feeding (35-42% than the beetles (6-7%. These results indicate that generalist predators vary significantly in their interaction with this host, and that foraging behavior should be considered during development of a predator-based biological control program for B. tabaci.

  4. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  5. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  6. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa.

    Directory of Open Access Journals (Sweden)

    Ann I Larsson

    Full Text Available Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼ 160 µm large neutral or negatively buoyant eggs, to 120-270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6-8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s(-1 initially residing in the upper part of the water column, with bottom probing behavior starting 3-5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations.

  7. Amygdala Signaling during Foraging in a Hazardous Environment.

    Science.gov (United States)

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of

  8. The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: Effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods

    Directory of Open Access Journals (Sweden)

    M. Firoj JAMAN, Michael A. HUFFMAN, Hiroyuki TAKEMOTO

    2010-04-01

    Full Text Available In the wild, primate foraging behaviors are related to the diversity and nutritional properties of food, which are affected by seasonal variation. The goal of environmental enrichment is to stimulate captive animals to exhibit similar foraging behavior of their wild counterparts, e.g. to extend foraging time. We conducted a 12-month study on the foraging behavior of Japanese macaques in a semi-naturally forested enclosure to understand how they use both provisioned foods and naturally available plant foods and what are the nutritional criteria of their consumption of natural plants. We recorded time spent feeding on provisioned and natural plant foods and collected the plant parts ingested of their major plant food species monthly, when available. We conducted nutritional analysis (crude protein, crude lipid, neutral detergent fiber-‘NDF’, ash and calculated total non-structural carbohydrate – ‘TNC’ and total energy of those food items. Monkeys spent 47% of their feeding time foraging on natural plant species. The consumption of plant parts varied significantly across seasons. We found that leaf items were consumed in months when crude protein, crude protein-to-NDF ratio, TNC and total energy were significantly higher and NDF was significantly lower, fruit/nut items in months when crude protein and TNC were significantly higher and crude lipid content was significantly lower, and bark items in months when TNC and total energy were higher and crude lipid content was lower. This preliminary investigation showed that the forested enclosure allowed troop members to more fully express their species typical flexible behavior by challenging them to adjust their foraging behavior to seasonal changes of plant item diversity and nutritional content, also providing the possibility for individuals to nutritionally enhance their diet [Current Zoology 56 (2: 198–208, 2010].

  9. Interactions Increase Forager Availability and Activity in Harvester Ants.

    Directory of Open Access Journals (Sweden)

    Evlyn Pless

    Full Text Available Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  10. Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.

    Science.gov (United States)

    Pope, Nathaniel S; Jha, Shalene

    2018-01-01

    Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.

  11. Effects of beach morphology and waves on onshore larval transport

    Science.gov (United States)

    Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.

    2015-12-01

    Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.

  12. Location Isn't Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment.

    Directory of Open Access Journals (Sweden)

    Megan J Donahue

    Full Text Available Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward.

  13. Red-cockaded woodpecker male/female foraging differences in young forest stands.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2010-07-01

    ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering seven woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.

  14. Moving evidence into practice: cost analysis and assessment of macaques' sustained behavioral engagement with videogames and foraging devices.

    Science.gov (United States)

    Bennett, Allyson J; Perkins, Chaney M; Tenpas, Parker D; Reinebach, Alma L; Pierre, Peter J

    2016-12-01

    Environmental enrichment plans for captive nonhuman primates often include provision of foraging devices. The rationale for using foraging devices is to promote species-typical activity patterns that encourage physical engagement and provide multi-sensory stimulation. However, these devices have been shown to be ineffective at sustaining manipulation over long periods of time, and often produce minimal cognitive engagement. Here we use an evidence-based approach to directly compare the amount of object-directed behavior with a foraging device and a computer-based videogame system. We recorded 11 adult male rhesus monkeys' interactions with a foraging device and two tasks within a joystick videogame cognitive test battery. Both techniques successfully produced high levels of engagement during the initial 20 min of observation. After 1 hr the monkeys manipulated the foraging device significantly less than the joystick, F(2,10) = 43.93, P videogame play for the majority of a 5 hr period, provided that they received a 94 mg chow pellet upon successful completion of trials. Using a model approach, we developed previously as a basis for standardized cost:benefit analysis to inform facility decisions, we calculated the comprehensive cost of incorporating a videogame system as an enrichment strategy. The videogame system has a higher initial cost compared to widely-used foraging devices, however, the ongoing labor and supply costs are relatively low. Our findings add to two decades of empirical studies by a number of laboratories that have demonstrated the successful use of videogame-based systems to promote sustained non-social cognitive engagement for macaques. The broader significance of the work lies in the application of a systematic approach to compare and contrast enrichment strategies and encourage evidence-based decision making when choosing an enrichment strategy in a manner that promotes meaningful cognitive enrichment to the animals. © 2016 Wiley

  15. Moving Evidence into Practice: Cost Analysis and Assessment of Macaques’ Sustained Behavioral Engagement with Videogames and Foraging Devices

    Science.gov (United States)

    Bennett, Allyson J.; Perkins, Chaney M.; Tenpas, Parker D.; Reinebach, Alma L.; Pierre, Peter J.

    2017-01-01

    Environmental enrichment plans for captive nonhuman primates often include provision of foraging devices. The rationale for using foraging devices is to promote species-typical activity patterns that encourage physical engagement and provide multi-sensory stimulation. However, these devices have been shown to be ineffective at sustaining manipulation over long periods of time, and often produce minimal cognitive engagement. Here we use an evidence-based approach to directly compare the amount of object-directed behavior with a foraging device and a computer-based videogame system. We recorded 11adult male rhesus monkeys’ interactions with a foraging device and two tasks within a joystick videogame cognitive test battery. Both techniques successfully produced high levels of engagement during the initial 20-min of observation. After 1-hr the monkeys manipulated the foraging device significantly less than the joystick, F(2,10)= 43.93, p videogame play for the majority of a 5-hr period, provided that they received a 94mg chow pellet upon successful completion of trials. Using a model approach we developed previously as a basis for standardized cost:benefit analysis to inform facility decisions, we calculated the comprehensive cost of incorporating a videogame system as an enrichment strategy. The videogame system has a higher initial cost compared to widely-used foraging devices however, the ongoing labor and supply costs are relatively low. Our findings add to two decades of empirical studies by a number of laboratories that have demonstrated the successful use of videogame-based systems to promote sustained non-social cognitive engagement for macaques. The broader significance of the work lies in the application of a systematic approach to compare and contrast enrichment strategies and encourage evidence-based decision making when choosing an enrichment strategy in a manner that promotes meaningful cognitive enrichment to the animals. PMID:27404766

  16. Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis)

    Science.gov (United States)

    Nifong, James C.; Nifong, Rachel L.; Silliman, Brian R.; Lowers, Russell H.; Guillette, Louis J.; Ferguson, Jake M.; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  17. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus).

    Science.gov (United States)

    Mallott, Elizabeth K; Garber, Paul A; Malhi, Ripan S

    2017-02-01

    Invertebrate foraging strategies in nonhuman primates often require complex extractive foraging or prey detection techniques. As these skills take time to master, juveniles may have reduced foraging efficiency or concentrate their foraging efforts on easier to acquire prey than adults. We use DNA barcoding, behavioral observations, and ecological data to assess age-based differences in invertebrate prey foraging strategies in a group of white-faced capuchins (Cebus capucinus) in northeastern Costa Rica. Invertebrate availability was monitored using canopy traps and sweep netting. Fecal samples were collected from adult female, adult male, and juvenile white-faced capuchins (n = 225). COI mtDNA sequences were compared with known sequences in GenBank and the Barcode of Life Database. Frequencies of Lepidoptera and Hymenoptera consumption were higher in juveniles than in adults. A significantly smaller proportion of juvenile fecal samples contained Gryllidae and Cercopidae sequences, compared with adults (0% and 4.2% vs. 4.6% and 12.5%), and a significantly larger proportion contained Tenthredinidae, Culicidae, and Crambidae (5.6%, 9.7%, and 5.6% vs. 1.3%, 0.7%, and 1.3%). Juveniles spent significantly more time feeding and foraging than adults, and focused their foraging efforts on prey that require different skills to capture or extract. Arthropod availability was not correlated with foraging efficiency, and the rate of consumption of specific orders of invertebrates was not correlated with the availability of those same taxa. Our data support the hypothesis that juveniles are concentrating their foraging efforts on different prey than adults, potentially focusing their foraging efforts on more easily acquired types of prey. © 2016 Wiley Periodicals, Inc.

  18. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  19. Variation in foraging behavior and body mass in broods of Emperor Geese (Chen canagica): Evidence for interspecific density dependence

    Science.gov (United States)

    Schmutz, J.A.; Laing, K.K.

    2002-01-01

    Broods of geese spend time feeding according to availability and quality of food plants, subject to inherent foraging and digestive constraints. We studied behavioral patterns of broods of Emperor Geese (Chen canagica) on the Yukon–Kuskokwim Delta, Alaska, and examined how feeding and alert behavior varied in relation to habitat and goose density. During 1994–1996, time spent feeding by Emperor Goose goslings and adult females was positively related to multispecies goose densities near observation blinds, and not to just Emperor Goose density. Similarly, body mass of Emperor Goose goslings was more strongly related (negatively) to multispecies goose densities than intraspecific densities. A grazing experiment in 1995 indicated that most above ground primary production by Carex subspathacea, a preferred food plant, was consumed by grazing geese. Those results demonstrate that interspecific competition for food occurred, with greatest support for goslings whose behavioral repertoire is limited primarily to feeding, digesting, and resting. Although the more abundant Cackling Canada Geese (Branta canadensis minima) differed from Emperor Geese in their preferred use of habitats during brooding rearing (Schmutz 2001), the two species occurred in equal abundance in habitats preferred by Emperor Goose broods. Thus, Cackling Canada Geese were a numerically significant competitor with Emperor Geese. Comparing these results to an earlier study, time spent feeding by goslings, adult females, and adult males were greater during 1993–1996 than during 1985–1986. During the interval between those studies, densities of Cackling Canada Geese increased two to three times whereas Emperor Goose numbers remained approximately stable, which implies that interspecific competition affected foraging behavior over a long time period. These density-dependent changes in foraging behavior and body mass indicate that interspecific competition affects nutrient acquisition and gosling

  20. Foraging behavior of selected insectivorous birds in Cauvery Delta region of Nagapattinam District, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    S. Asokan

    2010-02-01

    Full Text Available This paper reports the foraging behavior of five insectivorous birds, namely White-breasted Kingfisher Halcyon smyrnensis, Small Bee-eater Merops orientalis, Indian Roller Coracias benghalensis, Common Myna Acridotheres tristis and Black Drongo Dicrurus macrocercus in Nagapattinam District of Tamil Nadu, India. The birds used a variety of perch types for hunting insect prey; in general the electric power line was a common perch type used by all species except the Common Myna. The perching and foraging height used by birds were classified into 3 meter categories, up to 12m. Aerial feeding or hawking in Bee-eaters and ground feeding in Common Mynas were major feeding techniques, recorded 68% and 86% of the time respectively. The other three species used gleaning as a feeding technique. The highest niche overlap was recorded between Indian Rollers and Black Drongos and between White-breasted Kingfishers and Indian Rollers.

  1. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    Science.gov (United States)

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  2. Dynamic optimal foraging theory explains vertical migrations of bigeye tuna

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Sommer, Lene; Evans, Karen

    2016-01-01

    Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory...... behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments...

  3. Information Foraging in E-Voting

    DEFF Research Database (Denmark)

    Vatrapu, Ravi; Robertson, Scott

    2009-01-01

    with others. Interaction analysis of the case study data consisted of applying Information Foraging Theory to understand participant specific behaviors in searching and browsing. Case study results show skewed time allocation to activities, a tradeoff between enrichment vs. exploitation of search results...

  4. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    Science.gov (United States)

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  5. By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle

    Science.gov (United States)

    Simonis, Anne Elizabeth

    The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian

  6. Canopy characteristics, animal behavior and forage intake by goats grazing on Tanzania-grass pasture with different heights - doi: 10.4025/actascianimsci.v34i4.14544

    Directory of Open Access Journals (Sweden)

    Maurílio Souza dos Santos

    2012-10-01

    Full Text Available This study evaluated the influence of Tanzania-grass sward height (30, 50, 70 and 90 cm on the morphological characteristics of the canopy, grazing behavior and forage intake by adult Anglo Nubian female goats. A completely randomized experimental design was employed, with two replicates in space and two replicates in time. Six animals were used to assess the grazing behavior, and four, the ingestion process. The rise in sward height increased the forage and leaf mass, the percentages of stem and dead material, and reduced the leaf stem-1 ratio. Above 50 cm there was an increase in grazing time and a decrease in leisure time. A positive linear correlation was detected between sward height and bite depth. The consumed forage mass, ingestion rate and daily intake were higher at 50 cm, indicating that the other heights reduced the intake process. The sward height was negatively correlated to the bite rate and positively to the bite time. The sward height of 50 cm presents the best combination of features, favoring the grazing and ingestive behavior of female adult goats.

  7. Effect of early weaning and concentrate supplementation at forage intake and ingestive behavior of sheep grazing Tifton 85 (Cynodon spp.

    Directory of Open Access Journals (Sweden)

    Marina Gabriela Berchiol da Silva

    2012-12-01

    Full Text Available The objective of this study was to evaluate then early weaning and concentrate supplementation effect at pasture characteristics, forage intake and ingestive behavior of lambs grazing Tifton 85 (Cynodon spp.. A randomized block design was used with four treatments, three replications and five lambs per replicate. A total of 60 Suffolk lambs, that 36 were females and 24 steers. The treatments had corresponded to the combinations between early weaning precocious and concentrate supplementation strategies, that resulted in the following ones finishing systems: 1 lambs kept with mothers without supplementation; 2 lambs kept with mothers supplemented with concentrate in creep feeding at 2% of body weigh (BW in DM/day; 3 weaned lambs at 45 ± 5 days without supplementation and 4 weaned lambs at 45 ± 5 days and supplemented with concentrate at 2% of BW in DM/day. Grazing utilization method was continuous stocking with adjustment every 21 days, to maintain forage offer at 12% of BW in DM/day. To characterize the pastoral environment was assessed: morphological composition of pasture. There were made four observations the behavioral activities for individually lambs per 24 hours, such as: grazing, ruminating, suckling, supplementation, and others activities. The intake rate was measured using the technique of double sampling and determination of bite rate was made by visual observation of the number of bits made for animal. The behavior and the distribution of daily activities made by the lambs are influenced for the strategies evaluated. The exclusive presence of milk or supplement concentrate in the diet are important modulators of grazing activity, and the absence of these nutrient sources were offset per an increase in grazing time. This response considered the decrease in nutritional support and lower efficiency in harvesting the forage by lambs. The weaning influenced the morphological characteristics of the pasture, which showed favored the

  8. Meeting reproductive demands in a dynamic upwelling system: foraging strategies of a pursuit-diving seabird, the marbled murrelet

    Science.gov (United States)

    M. Zachariah Peery; Scott H. Newman; Curt D. Storlazzi; Steven R. Beissinger

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes...

  9. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda (Aves: Tyrannidae

    Directory of Open Access Journals (Sweden)

    Tomaz Nascimento de Melo

    Full Text Available ABSTRACT Southwestern Amazonia has great bird diversity which includes birds specialized in bamboo forests. In this region, bamboo is considered a key element of the landscape. The objective of this study was to investigate and describe the foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum (Swainson, 1835 and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda Chapman, 1925, which occur sympatrically in the region and are considered bamboo specialists. This study was conducted between November 2013 and September 2014, within two fragments in the eastern portion of the state of Acre: Fazenda Experimental Catuaba, in the municipality of Senador Guiomard; and Reserva Florestal Humaitá, in Porto Acre. A total of 109 and 97 foraging events were registered, for the Large-headed Flatbill and the Dusky-tailed Flatbill, respectively. The two species frequently used bamboos for searching and capturing their prey. However, the large-headed Flatbill was more specialized in bamboo substrates. Both species use similar foraging techniques and the differences found between the two are minor, but when taken together, these differences may explain their ability to co-exist.

  11. Quasi-planktonic behavior of foraging top marine predators

    Science.gov (United States)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  12. King eider foraging effort during the pre-breeding period in Alaska

    Science.gov (United States)

    Oppel, Steffen; Powell, Abby N.; Butler, Malcolm G.

    2011-01-01

    For reproduction, many arctic-nesting migratory birds rely on nutrients obtained on the breeding grounds, so they devote sufficient time to foraging immediately prior to nesting. However, little is known about the increase in foraging effort necessary to meet the energetic requirements of reproduction. In early June 2006 and 2008, we quantified the proportion of time spent foraging before breeding by a large sea duck, the King Eider (Somateria spectabilis), on its breeding grounds in northern Alaska. During >235 hours of behavioral observations, both male and female King Eiders spent >50% of the day loafing (resting, sleeping, comfort behavior, or being alert). Females foraged on average 30% of the time (mean 7.2 hr day-1,95% CI 6.0-8.4 hr day-1), three times as much as males (9%; 2.3 hr day-1, 95% CI 1.5–2.8 hr day-1). The most common prey in ponds where the eiders foraged were chironomid larvae and worms ranging in length from 1 to 30 mm. If the King Eider's daily energy expenditure on its breeding grounds is similar to values published for related species, it would need to ingest only 0.2–0.6 g dry mass of invertebrates per minute of foraging to meet its energetic requirements. Males did not lose body mass before breeding, and we assume that their foraging effort was sufficient for energy balance. Therefore, female King Eiders appear to triple their foraging effort over maintenance requirements to meet the energetic challenges of egg formation.

  13. Proteomics Insights: Proteins related to Larval Attachment and Metamorphosis of Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    KONDETHIMMANAHALLI eCHANDRAMOULI

    2014-10-01

    Full Text Available The transition in an animal from a pelagic larval stage to a sessile benthic juvenile typically requires major morphological and behavioral changes. Larval competency, attachment and initiation of metamorphosis are thought to be regulated by intrinsic chemical signals and specific sets of proteins. However, the molecular mechanisms that regulate larval attachment and metamorphosis in marine invertebrates have yet to be fully elucidated. Despite the many challenges associated with analysis of the larvae proteome, recent proteomic technologies have been used to address specific questions in larval developmental biology. These and other molecular studies have generated substantial amount of information of the proteins and molecular pathways involved in larval attachment and metamorphosis. Furthermore, the results of these studies have shown that systematic changes in protein expression patterns and post-translational modifications (PTM are crucial for the transition from larva to juvenile. The degeneration of larval tissues is mediated by protein degradation, while the development of juvenile organs may require PTM. In terms of application, the identified proteins may serve as targets for antifouling compounds, and biomarkers for environmental stressors. In this review we highlight the strengths and limitations of proteomic tools in the context of the study of marine invertebrate larval biology.

  14. Proteomics insights: proteins related to larval attachment and metamorphosis of marine invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2014-10-31

    The transition in an animal from a pelagic larval stage to a sessile benthic juvenile typically requires major morphological and behavioral changes. Larval competency, attachment and initiation of metamorphosis are thought to be regulated by intrinsic chemical signals and specific sets of proteins. However, the molecular mechanisms that regulate larval attachment and metamorphosis in marine invertebrates have yet to be fully elucidated. Despite the many challenges associated with analysis of the larvae proteome, recent proteomic technologies have been used to address specific questions in larval developmental biology. These and other molecular studies have generated substantial amount of information of the proteins and molecular pathways involved in larval attachment and metamorphosis. Furthermore, the results of these studies have shown that systematic changes in protein expression patterns and post-translational modifications (PTMs) are crucial for the transition from larva to juvenile. The degeneration of larval tissues is mediated by protein degradation, while the development of juvenile organs may require PTM. In terms of application, the identified proteins may serve as targets for antifouling compounds, and biomarkers for environmental stressors. In this review we highlight the strengths and limitations of proteomic tools in the context of the study of marine invertebrate larval biology.

  15. Proteomics insights: proteins related to larval attachment and metamorphosis of marine invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Qian, Pei-Yuan; Ravasi, Timothy

    2014-01-01

    The transition in an animal from a pelagic larval stage to a sessile benthic juvenile typically requires major morphological and behavioral changes. Larval competency, attachment and initiation of metamorphosis are thought to be regulated by intrinsic chemical signals and specific sets of proteins. However, the molecular mechanisms that regulate larval attachment and metamorphosis in marine invertebrates have yet to be fully elucidated. Despite the many challenges associated with analysis of the larvae proteome, recent proteomic technologies have been used to address specific questions in larval developmental biology. These and other molecular studies have generated substantial amount of information of the proteins and molecular pathways involved in larval attachment and metamorphosis. Furthermore, the results of these studies have shown that systematic changes in protein expression patterns and post-translational modifications (PTMs) are crucial for the transition from larva to juvenile. The degeneration of larval tissues is mediated by protein degradation, while the development of juvenile organs may require PTM. In terms of application, the identified proteins may serve as targets for antifouling compounds, and biomarkers for environmental stressors. In this review we highlight the strengths and limitations of proteomic tools in the context of the study of marine invertebrate larval biology.

  16. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    Science.gov (United States)

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  17. Parasitized honey bees are less likely to forage and carry less pollen.

    Science.gov (United States)

    Lach, Lori; Kratz, Madlen; Baer, Boris

    2015-09-01

    Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.A.; Robinson, G.E. [Univ. of Illinois, Urbana, IL (United States); Conner, J.K. [Univ. of Illinois, Champaign, IL (United States)

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.

  19. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Collins, S.A.; Robinson, G.E.; Conner, J.K.

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth's surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab

  20. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  1. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Directory of Open Access Journals (Sweden)

    Nobuo Kokubun

    Full Text Available Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting occurred over the ocean basin (bottom depth >1,000 m. Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1 flight, characterized by regular wing flapping, (2 resting on water, characterized by non-active behavior, and (3 foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3% compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%. The mean duration of foraging (2.4 ± 2.9 min was shorter than that of flight between prey patches (24.2 ± 53.1 min. Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight. Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  2. Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.

    Science.gov (United States)

    Forward, Richard B

    2009-06-01

    This synthesis reviews the physiological ecology and behavior of larvae of the benthic crab Rhithropanopeus harrisii, which occurs in low-salinity areas of estuaries. Larvae are released rhythmically around the time of high tide in tidal estuaries and in the 2-h interval after sunset in nontidal estuaries. As in most subtidal crustaceans, the timing of larval release is controlled by the developing embryos, which release peptide pheromones that stimulate larval release behavior by the female to synchronize the time of egg hatching. Larvae pass through four zoeal stages and a postlarval or megalopal stage that are planktonic before metamorphosis. They are retained near the adult population by means of an endogenous tidal rhythm in vertical migration. Larvae have several safeguards against predation: they undergo nocturnal diel vertical migration (DVM) and have a shadow response to avoid encountering predators, and they bear long spines as a deterrent. Photoresponses during DVM and the shadow response are enhanced by exposure to chemical cues from the mucus of predator fishes and ctenophores. The primary visual pigment has a spectral sensitivity maximum at about 500 nm, which is typical for zooplankton and matches the ambient spectrum at twilight. Larvae can detect vertical gradients in temperature, salinity, and hydrostatic pressure, which are used for depth regulation and avoidance of adverse environmental conditions. Characteristics that are related to the larval habitat and are common to other crab larval species are considered.

  3. Record and foraging behavior of ants (Hymenoptera, Formicidae in vertebrate carcasses

    Directory of Open Access Journals (Sweden)

    Tatiane Tagliatti Maciel

    2016-12-01

    Full Text Available Knowing the importance of participation by insects at cadaverous decomposition processes, and the limited use of the family Formicidae in criminal investigations, this study aims to record the foraging activity of four genera of ants in carcasses of birds and mammals. Observations occurred accidentally in two locations in the State of Minas Gerais, Brazil. In total, seven species of ants foraging in eight vertebrate carcasses were recorded. In addition, the study reported for the first time the presence of Wasmannia in carcasses in Brazil.

  4. Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds.

    Science.gov (United States)

    Peck, Hannah L; Pringle, Henrietta E; Marshall, Harry H; Owens, Ian P F; Lord, Alexa M

    2014-05-01

    Resource competition is one potential behavioral mechanism by which invasive species can impact native species, but detecting this competition can be difficult due to the interactions that variable environmental conditions can have on species behavior. This is particularly the case in urban habitats where the disturbed environment can alter natural behavior from that in undisturbed habitats. The rose-ringed parakeet ( Psittacula krameri ), is an increasingly common invasive species, predominantly associated with large urban centers. Using an experimental approach, we tested the behavioral responses of native garden birds in response to the presence of a rose-ringed parakeet versus the presence of a similarly sized and dominant native bird, the great spotted woodpecker ( Dendrocopos major ). Parakeet presence significantly reduced feeding rates and increased vigilance among native birds compared with our control treatments. Of visits made by native birds in the presence of a parakeet, feeding was more likely to occur in sites within the parakeet range compared with sites outside, suggesting some habituation of native birds has occurred following prior exposure to parakeets but overall foraging behavior is still disrupted. The results of our study suggest that nonnative species can have complex and subtle impacts on native fauna and show that a nonnative competitor can impact native species simply through their presence near resources.

  5. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    Science.gov (United States)

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  6. Snag Condition and Woodpecker Foraging Ecology in a Bottomland Hardwood Forest

    Science.gov (United States)

    Richard N. Conner; Stanley D. Jones; Gretchen D. Jones

    1994-01-01

    We studied woodpecker foraging behavior, snag quality, and surrounding habitat in a bottomland hardwood forest in the Stephen F. Austin Experimental Forest from December 1984 through November 1986. The amount and location of woodpecker foraging excavations indicated that woodpeckers excavated mainly at the well-decayed tops and bases of snags. Woodpeckers preferred to...

  7. [Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter].

    Science.gov (United States)

    Chen, Fa-jun; Yang, Qing-qing; Long, Li; Hu, Hong-mei; Duan, Bin; Chen, Wen-nian

    2016-01-01

    Bees and other pollinating insects are the important parts of biodiversity due to their great role in plant reproduction and crop production. To explore the role of city garden in native bees conservation, activity patterns, visiting behaviors and flowering plants with nectar or pollen were recorded in south Sichuan in winter. The results showed that, worker bees (Apis cerana cerana) were active to collect food out hive under suitable weather conditions, the duration of working was long. Peaks of the number of outgoing, entrance and foragers without pollen appeared at 14:00-15:00, and bimodal patterns were observed. While, peak of bees with pollen appeared at 11:00, and a unimodal pattern was observed. Time significantly affected the activity of workers. The workload of honey bees on nectar and pollen collection were different, just less than twenty percent foragers carrying pollen. Temperature and humidity also affected flights of bees to some degree, and bee activities showed similar patterns on different days. However, the activities had diverse characteristics in some time. Though a less number of plants were in flowering, most of them could be utilized by A. cerana cerana, and colonies could effectively get the food resource by behavior adjustment. In addition, visiting activities of bees on the flowers of main garden plants, such as Camellia japonica, showed obvious rhythm. Increasing the flowering plants with nectar and pollen in winter by scientific management of urban gardens would facilitate the creation of suitable habitats for A. cerana cerana and maintaining the wild population.

  8. The regulation of ant colony foraging activity without spatial information.

    Directory of Open Access Journals (Sweden)

    Balaji Prabhakar

    Full Text Available Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  9. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  10. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    Science.gov (United States)

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  11. forage systems mixed with forage legumes grazed by lactating cows

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2017-02-01

    Full Text Available Current research evaluates productivity, stocking and nutritional rates of three forage systems with Elephant Grass (EG + Italian Ryegrass (IR + Spontaneous Growth Species (SGS, without forage legumes; EG + IR + SGS + Forage Peanut (FP, mixed with FP; and EG + IR + SGS + Red Clover (RC, mixed with RC, in rotational grazing method by lactating cows. IR developed between rows of EG. FP was maintained, whilst RC was sow to respective forage systems. The experimental design was completely randomized, with three treatments and two replication, subdivided into parcels over time. Mean rate for forage yield and average stocking rate were 10.6, 11.6 and 14.4 t ha-1; 3.0, 2.8 and 3.1 animal unit ha-1 day-1, for the respective systems. Levels of crude protein and total digestible nutrients were 17.8, 18.7 and 17.5%; 66.5, 66.8 and 64.8%, for the respective forage systems. The presence of RC results in better and higher forage yield in the mixture, whilst FP results in greater control of SGS. The inclusion of forage legumes in pasture systems provides better nutritional rates.

  12. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    Science.gov (United States)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  13. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish

  14. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  15. Temporal pattern of foraging and microhabitat use by Galápagos marine iguanas, Amblyrhynchus cristatus.

    Science.gov (United States)

    Buttemer, William A; Dawson, William R

    1993-10-01

    We observed a colony of marine iguanas (Amblyrhynchus cristatus) on Isla Fernandina, Galápagos, Ecuador, while measuring local micrometeorological and tidal conditions. We found size-related differences in foraging mode, with smaller iguanas feeding intertidally during daytime low tides and larger iguanas feeding subtidally. Despite having greater opportunity, subtidal foragers did not time their foraging bouts or exploit their environment in ways that optimized their period at high body temperature. Instead, the foraging schedule of these iguanas served to maximize their rate of rewarming following emergence from the cool sea. Intertidal feeders, by contrast, showed much greater behavioral flexibility in attempting to exploit their thermal environment. We suggest that size-ordered differences in marine iguana thermoregulatory behavior reflect underlying ontogenetic changes in costs and benefits of thermoregulation due to differences in predator pressure, quantity of food and electrolytes taken at each feeding, mode of foraging, and agonistic tendencies.

  16. Observing the Behavior of Larval Sea Lamprey in the St Clair River

    Science.gov (United States)

    Howard, M.

    2016-12-01

    The objective of this study was to use student-built underwater water quality monitoring systems to monitor the behavior of larval sea lamprey during a lampricide treatment in the St Clair River, MI. In addition, the monitoring systems were used to gather video evidence to show that lampricide does not affect the surrounding wildlife. This camera system was an addition to the Great Lakes Fisheries Commission's (GLFC) study because they previously did not have video recording capabilities. To collect the needed video data, we lined eight cameras down each side of a 25 by 20 meter lampricide plot in the middle channel of the St Clair River, which was approximately 1 to 5 meters deep. This setup allowed us to collect 8 hours worth of video after a 24 hour delay, which was then saved as a MP4 format for easy access by the GLFC scientists. After retrieving the systems from the study plot, we had found mussels growing on the monitoring systems' housings. When analyzing the cameras' data, we also saw regular wildlife activity, such as groups of fish swimming normally past the cameras. We know that the wildlife's behavior was not affected, because in the videos that were captured during the application of this lampricide treatment showed no abnormal wildlife behavior. Through this study, we learned that the Bayluscide 70% wettable powder did not affect fish, aquatic plants, or any other sea life in the treatment area. Our water quality monitoring systems were an impact in the GLFC's lampricide study, because they provided evidence that lampricide does not affect any other wildlife in the treatment area.

  17. Human disturbance provides foraging opportunities for birds in primary subalpine forest

    DEFF Research Database (Denmark)

    DuBay, Shane G.; Hart Reeve, Andrew; Wu, Yongjie

    2017-01-01

    or Cettia major, and Heteroxenicus stellatus. This behavior is likely a modification of pre-existing interspecific foraging associations with pheasants and large mammals in the region. These larger animals disturb the earth and lower vegetation layers upon passage and while foraging, exposing previously...... opportunities. We cut and cleared small swaths of dense bamboo growth for an unrelated study. Multiple insectivorous species were recruited to the cleared areas, foraging extensively in the disturbed earth, often within 1 m of us. These species included Tarsiger chrysaeus, Tarsiger indicus, Cettia brunnifrons...

  18. Variability in the Foraging Distribution and Diet of Cape Gannets between the Guard and Post-guard Phases of the Breeding Cycle

    Directory of Open Access Journals (Sweden)

    Jonathan A. Botha

    2018-02-01

    Full Text Available During breeding, seabirds are central place foragers and are sensitive to changes in local prey availability. As the breeding season progresses, foraging behavior and distribution is expected to change in response to possible changes in local prey availability. In addition, adult gender, and the increasing nutritional demands of a growing chick may also influence the foraging behavior of individuals. At present, relatively few studies have assessed the foraging behavior of adult birds during the late post-guard stages of chick rearing. Through a combination of GPS tracking and diet sampling we investigated the foraging distances, spatial distribution, and prey composition of adult Cape gannets (Morus capensis during the guard and post-guard stages of chick rearing. We found no clear evidence for consistent sex-specific differences in foraging distances and spatial distribution during the guard stage, although marginal differences in the location of core foraging areas during the post-guard stage were apparent. Results, however, revealed a clear increase in foraging range from the early guard to the late post-guard stage of chick rearing. During December the diet was comprised almost exclusively of anchovy (Engraulis encrasicolus, the proportion of which had decreased significantly in the diet by January. This was mirrored by a substantial increase in the proportion of saury (Scomberesox saurus. These results suggest that Cape gannets show flexibility in the foraging behavior and diet, which may be related to changes in the abundance and distribution of prey or may reflect changes in the energetic requirements of the growing offspring. This study provides the first assessment of Cape gannet foraging behavior and spatial distribution during the post-guard stage of chick rearing. The importance of considering intra-annual variability in foraging distribution when using seabird tracking data in trophic and marine spatial planning studies are

  19. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  20. Foraging for brain stimulation: toward a neurobiology of computation.

    Science.gov (United States)

    Gallistel, C R

    1994-01-01

    The self-stimulating rat performs foraging tasks mediated by simple computations that use interreward intervals and subjective reward magnitudes to determine stay durations. This is a simplified preparation in which to study the neurobiology of the elementary computational operations that make cognition possible, because the neural signal specifying the value of a computationally relevant variable is produced by direct electrical stimulation of a neural pathway. Newly developed measurement methods yield functions relating the subjective reward magnitude to the parameters of the neural signal. These measurements also show that the decision process that governs foraging behavior divides the subjective reward magnitude by the most recent interreward interval to determine the preferability of an option (a foraging patch). The decision process sets the parameters that determine stay durations (durations of visits to foraging patches) so that the ratios of the stay durations match the ratios of the preferabilities.

  1. Foraging Behavior in Golden Hamsters (Mesocricetus Auratus: Effect of the Distance among Multiple Patches

    Directory of Open Access Journals (Sweden)

    Felipe Cabrera

    2008-05-01

    Full Text Available The pattern of travel and the efficiency in foraging behavior was evaluated in four hamsters searching for food within an enclosure with multiple patches. Two different distances among patches were randomly arranged: Near-Patches (10 cm separation and Distant-Patches (21.5 cm separation. Subjects obtained the food by mounting over the cylinders (stations placed in the enclosure of 110 cm2. Results showed that in both, Near and Distant conditions, the distance between responses was longer in late stages of the trials then in early stages. Nonetheless, the most choices to adjacent stations were in Distant-Patches condition, while skips and diagonal-station choices were more frequently showed in the Near-Patches condition.

  2. Subjective costs drive overly patient foraging strategies in rats on an intertemporal foraging task.

    Science.gov (United States)

    Wikenheiser, Andrew M; Stephens, David W; Redish, A David

    2013-05-14

    Laboratory studies of decision making often take the form of two-alternative, forced-choice paradigms. In natural settings, however, many decision problems arise as stay/go choices. We designed a foraging task to test intertemporal decision making in rats via stay/go decisions. Subjects did not follow the rate-maximizing strategy of choosing only food items associated with short delays. Instead, rats were often willing to wait for surprisingly long periods, and consequently earned a lower rate of food intake than they might have by ignoring long-delay options. We tested whether foraging theory or delay discounting models predicted the behavior we observed but found that these models could not account for the strategies subjects selected. Subjects' behavior was well accounted for by a model that incorporated a cost for rejecting potential food items. Interestingly, subjects' cost sensitivity was proportional to environmental richness. These findings are at odds with traditional normative accounts of decision making but are consistent with retrospective considerations having a deleterious influence on decisions (as in the "sunk-cost" effect). More broadly, these findings highlight the utility of complementing existing assays of decision making with tasks that mimic more natural decision topologies.

  3. GPS tracking devices reveal foraging strategies of black-legged kittiwakes

    Science.gov (United States)

    Kotzerka, Jana; Garthe, Stefan; Hatch, Scott A.

    2010-01-01

    The Black-legged Kittiwake Rissa tridactyla is the most abundant gull species in the world, but some populations have declined in recent years, apparently due to food shortage. Kittiwakes are surface feeders and thus can compensate for low food availability only by increasing their foraging range and/or devoting more time to foraging. The species is widely studied in many respects, but long-distance foraging and the limitations of conventional radio telemetry have kept its foraging behavior largely out of view. The development of Global Positioning System (GPS) loggers is advancing rapidly. With devices as small as 8 g now available, it is possible to use this technology for tracking relatively small species of oceanic birds like kittiwakes. Here we present the first results of GPS telemetry applied to Black-legged Kittiwakes in 2007 in the North Pacific. All but one individual foraged in the neritic zone north of the island. Three birds performed foraging trips only close to the colony (within 13 km), while six birds had foraging ranges averaging about 40 km. The maximum foraging range was 59 km, and the maximum distance traveled was 165 km. Maximum trip duration was 17 h (mean 8 h). An apparently bimodal distribution of foraging ranges affords new insight on the variable foraging behaviour of Black-legged Kittiwakes. Our successful deployment of GPS loggers on kittiwakes holds much promise for telemetry studies on many other bird species of similar size and provides an incentive for applying this new approach in future studies.

  4. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  5. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    Science.gov (United States)

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  6. Foraging

    NARCIS (Netherlands)

    Ydenberg, R.C.; Prins, H.H.T.

    2012-01-01

    This chapter describes the role played by behavioural adjustments to foraging behaviour in accommodating rapid environmental change. It looks into the adjustments of foraging behaviour to predation danger as a result of changes in the type and array of food available. It investigates the effects of

  7. Cognitive plasticity in foraging Vespula germanica wasps.

    Science.gov (United States)

    D'Adamo, Paola; Lozada, Mariana

    2011-01-01

    Vespula germanica (F.) (Hymenoptera: Vespidae) is a highly invasive social wasp that exhibits a rich behavioral repertoire in which learning and memory play a fundamental role in foraging. The learning abilities of these wasps were analyzed while relocating a food source and whether V. germanica foragers are capable of discriminating between different orientation patterns and generalizing their choice to a new pattern. Foraging wasps were trained to associate two different stripe orientation patterns with their respective food locations. Their response to a novel configuration that maintained the orientation of one of the learned patterns but differed in other aspects (e.g. width of stripes) was then evaluated. The results support the hypothesis that V. germanica wasps are able to associate a particular oriented pattern with the location of a feeder and to generalize their choice to a new pattern, which differed in quality, but presented the same orientation.

  8. Optimally frugal foraging

    Science.gov (United States)

    Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.

    2018-02-01

    We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.

  9. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior.

    Directory of Open Access Journals (Sweden)

    Jan Oettler

    Full Text Available One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.

  10. Influence of larval and pupal products on the oviposition behavior of Aedes Fluviatilis (Lutz (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Rotraut A. G. B. Consoli

    1988-06-01

    Full Text Available Several larval and pupal products of Aedes fluviatilis (Lutz were tested for their influence on the oviposition behaviour of females of the same species. Significant (alfa = 0,05 atractiveness was shown by: larval water, previously containing 5 to 15 larvae/1,5 ml; larval water, preserved up to 38 days; evaporate and reconstructed larval water extracts up to 2 years after production and water filtered through fresh or dried ground larvae. hexanic larval water extracts and water filtered through fresh or dired ground pupae did not influence oviposition.Estudou-se a influência sobre o comportamento de oviposição das fêmeas de Aedes fluviatilis (Lutz de produtos derivados das formas imaturas da mesma espécie. As fêmeas foram atraídas significativamente (x=0,05 por ocasião da ovoposição por: água destilada que contivera 5 ou 15 larvas/1,5 ml, a mesma água (5 larvas/1,5 mlapós sua preservação por 38 dias; extratos evaporados e reconstituídos de água que conteve larvas, por até dois anos a sua produção, e filtrados de macerados frescos e secos de larvas. Extratos hexânicos de água que conteve larvas e filtrados de macerados descos e secos de pupas não atraíram a ovoposição das fêmeas.

  11. Foraging behavior of Melipona rufiventris Lepeletier (Apinae; Meliponini in Ubatuba, SP, Brazil

    Directory of Open Access Journals (Sweden)

    AO. Fidalgo

    Full Text Available This study describes how the foraging activity of Melipona rufiventris is influenced by the environment and/or by the state of a colony. Two colonies were studied in Ubatuba, SP (44° 48’ W and 23° 22’ S from July/2000 to June/2001. These colonies were classified as strong (Colony 1 and intermediate (Colony 2 according to their general conditions: population and brood comb size and number of food pots. The bees were active from dawn to dusk. The number of pollen loads presented a positive correlation with relative humidity (r s = 0.401; p <0.01 and was highest between 70 and 90%. However, it was negatively correlated with temperature (r s = -0.228; p <0.01 showing a peak between 18 and 23 °C. The number of nectar loads presented a positive correlation with temperature (r s = 0.244; p <0.01 and light intensity (r s = 0.414; p <0.01; it was greater between 50 and 90% of relative humidity and 20 and 30 °C of temperature. They collected more nectar than pollen throughout the day, and were more active between 6 and 9 hours. Workers from Colony 1 (strong collected nectar in greater amounts and earlier than those from Colony 2 (intermediate. The number of pollen, nectar and resin loads varied considerably between the study days. Peaks of pollen collection occurred earlier in months with longer days and in a hotter and more humid climate. The foraging behavior of M. rufiventris is probably affected by the state of the colony and by environmental conditions, notably temperature, relative humidity, light intensity and length of the day.

  12. Larval fish feeding ecology, growth and mortality from two basins with contrasting environmental conditions of an inner sea of northern Patagonia, Chile.

    Science.gov (United States)

    Landaeta, Mauricio F; Bustos, Claudia A; Contreras, Jorge E; Salas-Berríos, Franco; Palacios-Fuentes, Pámela; Alvarado-Niño, Mónica; Letelier, Jaime; Balbontín, Fernando

    2015-05-01

    During austral spring 2011, a survey was carried out in the inland sea (41°30'-44°S) of north Patagonia, South Pacific, studying a northern basin (NB: Reloncaví Fjord, Reloncaví Sound and Ancud Gulf) characterized by estuarine regime with stronger vertical stratification and warmer (11-14 °C) and most productive waters, and a southern basin (SB: Corcovado Gulf and Guafo mouth), with more oceanic water influence, showed mixed conditions of the water column, colder (11-10.5 °C) and less productive waters. Otolith microstructure and gut content analysis of larval lightfish Maurolicus parvipinnis and rockfish Sebastes oculatus were studied. Larval M. parvipinnis showed similar growth rates in both regions (0.13-0.15 mm d(-1)), but in NB larvae were larger-at-age than in SB. Larval S. oculatus showed no differences in size-at-age and larval growth (0.16 and 0.11 mm d(-1) for NB and SB, respectively). M. parvipinnis larvae from NB had larger number of prey items (mostly invertebrate eggs), similar total volume in their guts and smaller prey size than larvae collected in SB (mainly calanoid copepods). Larval S. oculatus had similar number, volume and body width of prey ingested at both basins, although prey ingestion rate by size was 5 times larger in NB than in SB, and prey composition varied from nauplii in NB to copepodites in SB. This study provides evidence that physical-biological interactions during larval stages of marine fishes from Chilean Patagonia are species-specific, and that in some cases large size-at-age correspond to increasing foraging success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats — A Review

    Directory of Open Access Journals (Sweden)

    Katsunori Sunagawa

    2016-02-01

    Full Text Available The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h

  14. Correlated evolution of herbivory and food chemical discrimination in iguanian and ambush foraging lizards

    OpenAIRE

    William E. Cooper

    2003-01-01

    To efficiently locate and assess foods, animal sensory capacities and behavioral discriminations based on them must be appropriate for the diet and method of hunting. In lizards, actively foraging insectivores identify animal prey using lingually sampled chemical cues, but ambush foragers do not. Among plant eaters derived from active foragers, plant chemical discrimination is added to prey chemical discrimination, resulting in correlated evolution of plant diet and plant chemical discriminat...

  15. Effects of natural and synthetic alarm pheromone and individual pheromone components on foraging behavior of the giant Asian honey bee, Apis dorsata.

    Science.gov (United States)

    Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C

    2014-10-01

    Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination. © 2014. Published by The Company of Biologists Ltd.

  16. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Science.gov (United States)

    Burke, Chantelle M; Montevecchi, William A; Regular, Paul M

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  17. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Directory of Open Access Journals (Sweden)

    Chantelle M Burke

    Full Text Available Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge, where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15 and males (n = 9 during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  18. Site-specific flight speeds of nonbreeding Pacific dunlins as a measure of the quality of a foraging habitat

    NARCIS (Netherlands)

    Reurink, Florian; Hentze, Nathan; Rourke, Jay; Ydenberg, Ron

    2016-01-01

    Many studies have investigated how foraging behavior such as prey choice varies with factors such as prey size or density. Models of such relationships can be applied "in reverse" to translate easily observed foraging behaviors into assays of habitat attributes that cannot (easily) be measured

  19. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    International Nuclear Information System (INIS)

    Peterson, Sarah H.; Peterson, Michael G.; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C.; Malarvannan, Govindan; Crocker, Daniel E.; Schwarz, Lisa K.; Costa, Daniel P.

    2015-01-01

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in 13 C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep

  20. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  1. Evolution of brains and behavior for optimal foraging: A tale of two predators

    Science.gov (United States)

    Catania, Kenneth C.

    2012-01-01

    Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352

  2. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin

    Science.gov (United States)

    McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.

    2017-01-01

    Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785

  3. Foraging strategy of little auks during chick rearing in northwest Greenland

    DEFF Research Database (Denmark)

    Mosbech, Anders; Møller, Eva Friis; Johansen, Kasper Lambert

    of the ongoing warming of the Arctic. Here we present the first results from GPS tracking of breeding little auks in northwest Greenland, involving data from four different breeding colonies. We examine time budgets, foraging trip patterns and habitat preferences at foraging areas, including comparison......Foraging strategy of little auks during chick rearing in northwest Greenland Anders Mosbech, Kasper Johansen, Eva Friis Møller & Peter Lyngs Department of Biology and Arctic Center, Aarhus University, Denmark An estimated 80 % of the global little auk population breeds in the coastal landscape...... bordering the north water polynya in high Arctic northwest Greenland, and from this main breeding area very little is known on foraging behavior. Little auks are feeding on lipid-rich copepods associated with cold artic waters, and are potentially important for monitoring and assessing the impact...

  4. A review of postfeeding larval dispersal in blowflies: implications for forensic entomology

    Science.gov (United States)

    Gomes, Leonardo; Godoy, Wesley Augusto Conde; von Zuben, Claudio José

    2006-05-01

    Immature and adult stages of blowflies are one of the primary invertebrate consumers of decomposing animal organic matter. When the food supply is consumed or when the larvae complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as postfeeding larval dispersal. Several important ecological and physiological aspects of this process were studied since the work by Green (Ann Appl Biol 38:475, 1951) 50 years ago. An understanding of postfeeding larval dispersal can be useful for determining the postmortem interval (PMI) of human cadavers in legal medicine, particularly because this interval may be underestimated if older dispersing larvae or those that disperse longer, faster, and deeper are not taken into account. In this article, we review the process of postfeeding larval dispersal and its implications for legal medicine, in particular showing that aspects such as burial behavior and competition among species of blowflies can influence this process and consequently, the estimation of PMI.

  5. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    Science.gov (United States)

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  6. Novel foraging in the swash zone on Pacific sand crabs (Emerita analoga, Hippidae) by mallards

    Science.gov (United States)

    Lafferty, Kevin D.; McLaughlin, John P.; Dugan, Jenifer E.

    2013-01-01

    Mallards (Anas platyrhynchos) have been observed foraging on intertidal Pacific sand crabs (Hippidae, Emerita analoga) in the swash zone of sandy beaches around Coal Oil Point Reserve, California, and several other beaches on the west coast since at least November 2010. Unlike foraging shorebirds, Mallards do not avoid incoming swashes. Instead, the incoming swash lifts and deposits them down the beach. Shorebirds and diving ducks commonly feed on sand crabs, but sand crabs appear to be a novel behavior and food source for Mallards. Previous surveys of beaches did not report foraging Mallards on regional beaches, whereas foraging Mallards were common in contemporary (recent) surveys and anecdotal reports. Observations of this potentially new behavior were separated by as much as 1,300 km, indicating that this was not a local phenomenon. Mallards foraged singly, in pairs, and in flocks. An expansion of diet to sand crabs carries risks of exposure to surf, human disturbance, high salt intake, and transmission of acanthocephalan and trematode parasites for Mallards but has the benefit of providing a dependable source of animal protein.

  7. Human memory retrieval as Lévy foraging

    Science.gov (United States)

    Rhodes, Theo; Turvey, Michael T.

    2007-11-01

    When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.

  8. Social familiarity modulates group living and foraging behaviour of juvenile predatory mites

    Science.gov (United States)

    Strodl, Markus A.; Schausberger, Peter

    2012-04-01

    Environmental stressors during early life may have persistent consequences for phenotypic development and fitness. In group-living species, an important stressor during juvenile development is the presence and familiarity status of conspecific individuals. To alleviate intraspecific conflicts during juvenile development, many animals evolved the ability to discriminate familiar and unfamiliar individuals based on prior association and use this ability to preferentially associate with familiar individuals. Assuming that familiar neighbours require less attention than unfamiliar ones, as predicted by limited attention theory, assorting with familiar individuals should increase the efficiency in other tasks. We assessed the influence of social familiarity on within-group association behaviour, development and foraging of juvenile life stages of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. The observed groups consisted either of mixed-age familiar and unfamiliar juvenile mites or of age-synchronized familiar or unfamiliar juvenile mites or of pairs of familiar or unfamiliar larvae. Overall, familiar mites preferentially grouped together and foraged more efficiently, i.e. needed less prey at similar developmental speed and body size at maturity, than unfamiliar mites. Preferential association of familiar mites was also apparent in the inter-exuviae distances. Social familiarity was established by imprinting in the larval stage, was not cancelled or overridden by later conspecific contacts and persisted into adulthood. Life stage had an effect on grouping with larvae being closer together than nymphal stages. Ultimately, optimized foraging during the developmental phase may relax within-group competition, enhance current and future food supply needed for optimal development and optimize patch exploitation and leaving under limited food.

  9. Foraging dives by post-breeding northern pintails

    Science.gov (United States)

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  10. Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal

    Science.gov (United States)

    Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi

    2017-06-01

    The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.

  11. Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae).

    Science.gov (United States)

    Cornelius, Mary L; Osbrink, Weste L A

    2010-06-01

    This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.

  12. The role of individual variation in marine larval dispersal

    KAUST Repository

    Nanninga, Gerrit B.

    2014-12-08

    The exchange of individuals among patchy habitats plays a central role in spatial ecology and metapopulation dynamics. Dispersal is frequently observed to vary non-randomly within populations (e.g., short vs. long), indicating that variability among individuals may shape heterogeneity in patterns of connectivity. The concept of context- and condition-dependent dispersal describes the balance between the costs and benefits of dispersal that arises from the interaction of temporal and spatial landscape heterogeneity (the context) with phenotypic variability among individuals (the condition). While this hypothesis is widely accepted in terrestrial theory, it remains questionable to what extent the concept of adaptive dispersal strategies may apply to marine larval dispersal, a process that is largely determined by stochastic forces. Yet, larvae of many taxa exhibit strong navigational capabilities and there is mounting evidence of widespread intra-specific variability in biological traits that are potentially correlated with dispersal potential. While so far there are few known examples of real larval dispersal polymorphisms, intra-specifically variable dispersal strategies may be common in marine systems. Whether adaptive or not, it is becoming apparent that inter-individual heterogeneity in morphology, behavior, condition, and life history traits may have critical effects on population-level heterogeneity in dispersal. Here, we explore the eco-evolutionary causes and consequences of intrinsic and extrinsic variability on larval dispersal by synthesizing the existing literature and drawing conceptual parallels from terrestrial theory. We emphasize the potential importance of larval dispersal polymorphisms in marine population dynamics.

  13. Habitat use and foraging patterns of molting male Long-tailed Ducks in lagoons of the central Beaufort Sea, Alaska

    Science.gov (United States)

    Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,

    2016-01-01

    From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.

  14. From foraging to operant conditioning: a new computer-controlled Skinner box to study free-flying nectar gathering behavior in bees.

    Science.gov (United States)

    Sokolowski, Michel B C; Abramson, Charles I

    2010-05-15

    The experimental study of nectar foraging behavior in free-flying bees requires the use of automated devices to control solution delivery and measure dependent variables associated with nectar gathering. We describe a new computer-controlled artificial flower and provide calibration data to measure the precision of the apparatus. Our device is similar to a "Skinner box" and we present data of an experiment where various amounts of a 50% sugar solution are presented randomly to individual bees. These data show large individual variations among subjects across several dependent variables. Finally, we discuss possible applications of our device to problems in behavioral sciences. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Linking animal population dynamics to alterations in foraging behaviour

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Sibly, Richard; Tougaard, Jakob

    Background/Question/Methods The survival of animal populations is strongly influenced by the individuals’ ability to forage efficiently, yet there are few studies of how populations respond when disturbances cause animals to deviate from their natural foraging behavior. Animals that respond...... that are increasingly exposed to noise from ships, wind turbines, etc. In the present study we investigate how the dynamics of the harbor porpoise population (Phocoena phocoena) in the inner Danish waters is influenced by disturbances using an agent- based simulation model. In the model animal movement, and hence...... the animals’ ability to forage efficiently and to sustain their energy intake, is influenced by noise emitted from wind turbines and ships. The energy levels in turn affect their survival. The fine-scale movements of the simulated animals was governed by a spatial memory, which allowed the model to produce...

  16. Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia?

    Science.gov (United States)

    Elbroch, L Mark; Wittmer, Heiko U

    2013-01-01

    Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus) influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor), in ways comparable to direct risks of predation for prey to address three questions: 1) Do condors exact a foraging cost on pumas?; 2) If so, do pumas exhibit behaviors indicative of these risks?; and 3) Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma "giving up times" (GUTs) across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas.

  17. Recalling items from a category for 1 hour: an inquiry into power-law behavior and memory foraging.

    Science.gov (United States)

    Rhodes, Theo

    2013-07-01

    There are two complementary approaches to characterizing performance in a free recall task (retrieving items from a specified category). The historic, or top down approach, considers the overall structure of the produced responses, generally as the parameters of a fitted cumulative recall curve. Alternatively, free recall can be considered as a time series of recalls or inter-recall intervals. Earlier work employing this approach (Rhodes & Turvey, 2007) suggested power law behavior. Long trial durations (1 hour) are employed to more rigorously test for the presence of power law behavior and more generally, the hypothesis that the dynamics of free recall reflect complex, multiplicative processes. The outlined empirical methods are also employed to test predictions about the relative structure of differently sized categories. Consequences for an asymptotic curve based understanding of free recall and foraging metaphors of retrieval are discussed.

  18. Nonlinear Dynamic in an Ecological System with Impulsive Effect and Optimal Foraging

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2014-01-01

    Full Text Available The population dynamics of a three-species ecological system with impulsive effect are investigated. Using the theories of impulsive equations and small-amplitude perturbation scales, the conditions for the system to be permanent when the number of predators released is less than some critical value can be obtained. Furthermore, because the predator in the system follows the predictions of optimal foraging theory, it follows that optimal foraging promotes species coexistence. In particular, the less beneficial prey can support the predator alone when the more beneficial prey goes extinct. Moreover, the influences of the impulsive effect and optimal foraging on inherent oscillations are studied using simulation, which reveals rich dynamic behaviors such as period-halving bifurcations, a chaotic band, a periodic window, and chaotic crises. In addition, the largest Lyapunov exponent and the power spectra of the strange attractor, which can help analyze the chaotic dynamic behavior of the model, are investigated. This information will be useful for studying the dynamic complexity of ecosystems.

  19. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence

    Science.gov (United States)

    Wheeler, Jeanette D.; Chan, Kit Yu Karen; Anderson, Erik J.; Mullineaux, Lauren S.

    2016-01-01

    ABSTRACT Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology

  20. Optimal foraging and predator-prey dynamics III

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Eisner, Jan

    2003-01-01

    Roč. 63, - (2003), s. 269-279 ISSN 0040-5809 R&D Projects: GA ČR GA201/03/0091; GA MŠk LA 101 Institutional research plan: CEZ:AV0Z5007907 Keywords : Optimal foraging theory * adaptive behavior * predator-prec population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 2.261, year: 2003

  1. Local Orientation and the Evolution of Foraging: Changes in Decision Making Can Eliminate Evolutionary Trade-offs

    Science.gov (United States)

    van der Post, Daniel J.; Semmann, Dirk

    2011-01-01

    Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape. PMID:21998571

  2. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    Science.gov (United States)

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  3. Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology

    Science.gov (United States)

    Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.

    2016-02-01

    During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.

  4. Is Bumblebee Foraging Efficiency Mediated by Morphological Correspondence to Flowers?

    Directory of Open Access Journals (Sweden)

    Ikumi Dohzono

    2011-01-01

    Full Text Available Preference for certain types of flowers in bee species may be an adaptation for efficient foraging, and they often prefer flowers whose shape fits their mouthparts. However, it is unclear whether such flowers are truly beneficial for them. We address this issue by experimentally measuring foraging efficiency of bumblebees, the volume of sucrose solution consumed over handling time (μL/second, using long-tongued Bombus diversus Smith and short-tongued B. honshuensis Tkalcu that visit Clematis stans Siebold et Zuccarini. The corolla tube length of C. stans decreases during a flowering period, and male flowers are longer than female flowers. Long- and short-tongued bumblebees frequently visited longer and shorter flowers, respectively. Based on these preferences, we hypothesized that bumblebee foraging efficiency is higher when visiting flowers that show a good morphological fit between the proboscis and the corolla tube. Foraging efficiency of bumblebees was estimated using flowers for which nectar quality and quantity were controlled, in an experimental enclosure. We show that 1 the foraging efficiency of B. diversus was enhanced when visiting younger, longer flowers, and that 2 the foraging efficiency of B. honshuensis was higher when visiting shorter female flowers. This suggests that morphological correspondence between insects and flowers is important for insect foraging efficiency. However, in contradiction to our prediction, 3 short-tongued bumblebees B. honshuensis sucked nectar more efficiently when visiting younger, longer flowers, and 4 there was no significant difference in the foraging efficiency of B. diversus between flower sexes. These results suggest that morphological fit between the proboscis and the corolla tube is not a sole determinant of foraging efficiency. Bumblebees may adjust their sucking behavior in response to available rewards, and competition over rewards between bumblebee species might change visitation patterns

  5. Flexibility and persistence of chimpanzee (Pan troglodytes) foraging behavior in a captive environment.

    Science.gov (United States)

    Bonnie, Kristin E; Milstein, Marissa S; Calcutt, Sarah E; Ross, Stephen R; Wagner, Kathy E; Lonsdorf, Elizabeth V

    2012-07-01

    As a result of environmental variability, animals may be confronted with uncertainty surrounding the presence of, or accessibility to, food resources at a given location or time. While individuals can rely on personal experience to manage this variability, the behavior of members of an individual's social group can also provide information regarding the availability or location of a food resource. The purpose of the present study was to measure how captive chimpanzees individually and collectively adjust their foraging strategies at an artificial termite mound, as the availability of resources provided by the mound varied over a number of weeks. As predicted, fishing activity at the mound was related to resource availability. However, chimpanzees continued to fish at unbaited locations on the days and weeks after a location had last contained food. Consistent with previous studies, our findings show that chimpanzees do not completely abandon previously learned habits despite learning individually and/or socially that the habit is no longer effective. © 2012 Wiley Periodicals, Inc.

  6. Dynamics of foraging trails in the Neotropical termite Velocitermes heteropterus (Isoptera: Termitidae).

    Science.gov (United States)

    Haifig, Ives; Jost, Christian; Fourcassié, Vincent; Zana, Yossi; Costa-Leonardo, Ana Maria

    2015-09-01

    Foraging behavior in termites varies with the feeding habits of each species but often occurs through the formation of well-defined trails that connect the nest to food sources in species that build structured nests. We studied the formation of foraging trails and the change in caste ratio during foraging in the termite Velocitermes heteropterus. This species is widespread in Cerrado vegetation where it builds epigeal nests and forages in open-air at night. Our aim was to understand the processes involved in the formation of foraging trails, from the exploration of new unmarked areas to the recruitment of individuals to food and the stabilization of traffic on the trails, as well as the participation of the different castes during these processes. Foraging trails were videotaped in the laboratory and the videos were then analyzed both manually and automatically to assess the flow of individuals and the caste ratio on the trails as well as to examine the spatial organization of traffic over time. Foraging trails were composed of minor workers, major workers, and soldiers. The flow of individuals on the trails gradually increased from the beginning of the exploration of new areas up to the discovery of the food. The caste ratio remained constant throughout the foraging excursion: major workers, minor workers and soldiers forage in a ratio of 8:1:1, respectively. The speed of individuals was significantly different among castes, with major workers and soldiers being significantly faster than minor workers. Overall, our results show that foraging excursions in V. heteropterus may be divided in three different phases, characterized by individual speeds, differential flows and lane segregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Forage selection by Royle's pika (Ochotona roylei) in the western Himalaya, India.

    Science.gov (United States)

    Bhattacharyya, Sabuj; Adhikari, Bhupendra S; Rawat, Gopal S

    2013-10-01

    Forage selection decisions of herbivores are often complex and dynamic; they are modulated by multiple cues, such as quality, accessibility and abundance of forage plants. To advance the understanding of plant-herbivore interactions, we explored foraging behavior of the alpine lagomorph Royle's pika (Ochotona roylei) in Kedarnath Wildlife Sanctuary, India. Pika bite counts on food plants were recorded through focal sampling in three permanently marked plots. Food plant abundance was recorded by traditional quadrat procedures; forage selection was estimated with Jacob's selection index. Multiple food-choice experiments were conducted to determine whether forage selection criteria would change with variation in food plant composition. We also analyzed leaf morphology and nutrient content in both major food plants and abundantly available non-food plants. Linear regression models were used to test competing hypotheses in order to identify factors governing forage selection. Royle's pika fed primarily on 17 plant species and each forage selection decision was positively modulated by leaf area and negatively modulated by contents of avoided substances (neutral detergent fiber, acid detergent fiber, acid detergent lignin and tannin) in food plants. Furthermore, significance of the interaction term "leaf size × avoided substance" indicates that plants with large leaves were selected only when they had low avoided substance content. The forage selection criteria did not differ between field and laboratory experiments. The parameter estimates of best fit models indicate that the influence of leaf size or amount of avoided substance on pika forage selection was modulated by the magnitude of predation risk. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Directory of Open Access Journals (Sweden)

    Deborah M Gordon

    Full Text Available The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  9. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Science.gov (United States)

    Gordon, Deborah M

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  10. Long-term spatial memory in Vespula germanica social wasps: the influence of past experience on foraging behavior.

    Science.gov (United States)

    Moreyra, Sabrina; D'Adamo, Paola; Lozada, Mariana

    2017-10-01

    Social insects exhibit complex learning and memory mechanisms while foraging. Vespula germanica (Fab.) (Hymenoptera: Vespidae) is an invasive social wasp that frequently forages on undepleted food sources, making several flights between the resource and the nest. Previous studies have shown that during this relocating behavior, wasps learn to associate food with a certain site, and can recall this association 1 h later. In this work, we evaluated whether this wasp species is capable of retrieving an established association after 24 h. For this purpose, we trained free flying individuals to collect proteinaceous food from an experimental plate (feeder) located in an experimental array. A total of 150 individuals were allowed 2, 4, or 8 visits. After the training phase, the array was removed and set up again 24 h later, but this time a second baited plate was placed opposite to the first. After 24 h we recorded the rate of wasps that returned to the experimental area and those which collected food from the previously learned feeding station or the nonlearned one. During the testing phase, we observed that a low rate of wasps trained with 2 collecting visits returned to the experimental area (22%), whereas the rate of returning wasps trained with 4 or 8 collecting visits was higher (51% and 41%, respectively). Moreover, wasps trained with 8 feeding visits collected food from the previously learned feeding station at a higher rate than those that did from the nonlearned one. In contrast, wasps trained 2 or 4 times chose both feeding stations at a similar rate. Thus, significantly more wasps returned to the previously learned feeding station after 8 repeated foraging flights but not after only 2 or 4 visits. This is the first report that demonstrates the existence of long-term spatial memory in V. germanica wasps. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  11. Social coercion of larval development in an ant species.

    Science.gov (United States)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  12. Social coercion of larval development in an ant species

    Science.gov (United States)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  13. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  14. Impact of Different Forms of Environmental Enrichment on Foraging and Activity Levels in Gorillas (Gorilla gorilla gorilla

    Directory of Open Access Journals (Sweden)

    Kristie Charmoy

    2015-08-01

    Full Text Available The maintenance of species-specific behaviors for animals in zoological institutions is of top priority, as this can help ensure high levels of animal welfare. Strict feeding schedules within institutions can often impact natural foraging behaviors of animals, as they are no longer required to seek out or manipulate food items. In the wild, western lowland gorillas would spend a majority of their time foraging. The goal of the current study was to examine the impact of different forms of environmental enrichment on activity and foraging levels in gorillas at the Brookfield Zoo. Results suggest that automatic belt feeders that can feed at randomized times, will have the largest impact on behavior of all enrichment tested. However, there were individual differences observed between animals and the level of impact on their behavior. Using enrichment to increase the amount of time that zoo-housed gorillas spend searching for, acquiring, and consuming food can increase their overall activity levels and shift their behavior towards a more naturalistic direction.

  15. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  16. Foraging behavior of the mangrove sesarmid crab Neosarmatium trispinosum enhances food intake and nutrient retention in a low-quality food environment

    Science.gov (United States)

    Harada, Yota; Lee, S. Y.

    2016-06-01

    The large sesarmid crab Neosarmatium trispinosum has been reported to actively collect freshly fallen mangrove leaves and store them in its burrow where they are assumed to age prior to consumption. This leaf-catching behavior was hypothesized to improve the palatability and nutritional quality of leaves through leaching of feeding deterrent and microbial enrichment during storage. Earlier studies also hypothesized that N. trispinosum feeds on sediment or animal material to meet their N needs. A series of experiments was carried out to investigate the foraging behavior of N. trispinosum against these hypotheses. Study of foraging behavior using remotely operated cameras indicated that this crab spends the far majority of time (97.5 ± 2.5%, SD) underground and only a small percentage of time outside its burrow foraging (2.2 ± 2.3%). Collection of fresh mangrove litter was swift but no record of predation was evident over 31 h of video records. A field leaf tethering experiment showed that this crab started to consume the leaves immediately after collection rather than storing whole leaves, refuting the leaf-aging hypothesis. N. trispinosum also showed a preference for senescent yellow leaves over decaying brown leaves. This behavior may only aim to stock leaves (i.e. to ensure food availability) rather than conditioning them through decay (i.e. to improve food quality). Analysis of gut contents showed that vascular plant material was the dominant food item (83.3 ± 4.6%), followed by sediment (9.2 ± 4.6%) but no animal materials were recorded. N. trispinosum therefore relies minimally on animal food but are capable of removing 50% of the daily leaf litter production. Elemental C, N analysis shows that sediment inside the burrow is a sufficient potential food source (C/N = 13 to 15). While having a lower C/N ratio than fresh green or yellow leaves, the N content of sediment (∼0.1%) was significantly lower than those of mangrove leaves (0.3-0.9%), and may thus

  17. Molecular characterization of larval peripheral thermosensory responses of the malaria vector mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Thermosensation provides vital inputs for the malaria vector mosquito, Anopheles gambiae which utilizes heat-sensitivity within a broad spectrum of behaviors, most notably, the localization of human hosts for blood feeding. In this study, we examine thermosensory behaviors in larval-stage An. gambiae, which as a result of their obligate aquatic habitats and importance for vectorial capacity, represents an opportunistic target for vector control as part of the global campaign to eliminate malaria. As is the case for adults, immature mosquitoes respond differentially to a diverse array of external heat stimuli. In addition, larvae exhibit a striking phenotypic plasticity in thermal-driven behaviors that are established by temperature at which embryonic development occurs. Within this spectrum, RNAi-directed gene-silencing studies provide evidence for the essential role of the Transient Receptor Potential sub-family A1 (TRPA1 channel in mediating larval thermal-induced locomotion and thermal preference within a discrete upper range of ambient temperatures.

  18. Patch dynamics of a foraging assemblage of bees.

    Science.gov (United States)

    Wright, David Hamilton

    1985-03-01

    The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.

  19. Individual foraging strategies reveal niche overlap between endangered galapagos pinnipeds.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis and sea lions (Zalophus wollebaeki share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0-80 m depth and mostly at 19-22 h. Most sea lion dives also occurred at night (63%, between 0-40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19-22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0-30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h, depth during overlapping time (21-24 m, and foraging range (37.7%. Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging "hot spot" for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during

  20. Turbulence-enhanced prey encounter rates in larval fish : Effects of spatial scale, larval behaviour and size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; MacKenzie, Brian

    1995-01-01

    Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....

  1. Larval Performance in the Context of Ecological Diversification and Speciation in Lycaeides Butterflies

    Directory of Open Access Journals (Sweden)

    Cynthia F. Scholl

    2012-01-01

    Full Text Available The role of ecology in diversification has been widely investigated, though few groups have been studied in enough detail to allow comparisons of different ecological traits that potentially contribute to reproductive isolation. We investigated larval performance within a species complex of Lycaeides butterflies. Caterpillars from seven populations were reared on five host plants, asking if host-specific, adaptive larval traits exist. We found large differences in performance across plants and fewer differences among populations. The patterns of performance are complex and suggest both conserved traits (i.e., plant effects across populations and more recent dynamics of local adaptation, in particular for L. melissa that has colonized an exotic host. We did not find a relationship between oviposition preference and larval performance, suggesting that preference did not evolve to match performance. Finally, we put larval performance within the context of several other traits that might contribute to ecologically based reproductive isolation in the Lycaeides complex. This larger context, involving multiple ecological and behavioral traits, highlights the complexity of ecological diversification and emphasizes the need for detailed studies on the strength of putative barriers to gene flow in order to fully understand the process of ecological speciation.

  2. Larval competition of Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae): behavior and ecological studies of two blow fly species of forensic significance.

    Science.gov (United States)

    Shiao, Shiuh-Feng; Yeh, Ta-Chuan

    2008-07-01

    Chrysomya megacephala and Chrysomya rufifacies are two predominant necrophagous species in Taiwan. Larvae of the latter can prey on other maggots, including that of their own species as facultative food. This facultative characteristic of C. rufifacies may enhance its competitive advantage over other maggots and could also change the situation of other coexisting colonies. In this study, these two species were colonized in the laboratory, and the main objective was to try to understand the effect of competition on larval development. According to our results, intraspecific competition mostly occurred as competition for food; when the rearing density was increased, larvae pupated earlier, resulting in a lighter adult dry weight. The tendencies were similar in both species, but C. megacephala developed smaller viable adults and had higher survivorship at high densities. Although C. rufifacies could use the food resource of cannibalism, its survivorship was still low. Our results also showed there were significant interactions between intraspecific competition and the density factor. However, with interspecific competition, the first-instar larvae of C. rufifacies invaded maggot masses of C. megacephala to feed together. The third instars of C. rufifacies were able to expel C. megacephala larvae from food by using a fleshy protrusion on their body surface; C. megacephala was usually forced to pupate earlier by shortening its larval stages. The results indicated that a temporary competitive advantage could only be obtained by C. rufifacies under a proper larval density. In addition, the effects on different larval stages, the responses to different competition intensities, and the temperature-dependent effects on interspecific competition are also discussed. In general, under mixed-species rearing at different temperatures and densities, larval duration, adult dry weight, and survivorship of both species decreased. However, our results did not completely agree with

  3. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    Science.gov (United States)

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. (c) 2009 Wiley-Liss, Inc.

  4. Attraction of Vespula germanica (Hymenoptera: Vespidae) foragers by conspecific heads.

    Science.gov (United States)

    d'Adamo, P; Corley, J C; Lozada, M

    2001-08-01

    The socialwasp Vespula germanica (F.) is a serious pest in many regions it has invaded. Control programs to reduce its populations are commonly based on the use of poison baits. These baits also attract nonpestiferous invertebrates and vertebrates. In this work we studied the attraction of V. germanica foragers by conspecific worker squashes, comparing the effect of head and abdomen squashes in wasps behavior. We found that head squashes attract V. germanica foragers, elicit landing and transportation to nests. Furthermore, the addition of squashed heads to a protein bait increased attraction. This could be an alternative to improve baiting programs.

  5. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    Science.gov (United States)

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  6. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    Directory of Open Access Journals (Sweden)

    Michael eRivera

    2015-05-01

    Full Text Available Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

  7. Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata

    DEFF Research Database (Denmark)

    Ratcliffe, John M; Jakobsen, Lasse; Kalko, Elisabeth K V

    2011-01-01

    The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a 'monotonous' sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 k......Hz (high-note call). The frequencies of these low-high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1......) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive...

  8. Division of labor associated with brood rearing in the honey bee: how does it translate to colony fitness?

    Directory of Open Access Journals (Sweden)

    Ramesh R Sagili

    2011-02-01

    Full Text Available Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.

  9. Effect of mercury on survival, metabolism and behavior of larval Uca pugilator (Brachyura)

    Energy Technology Data Exchange (ETDEWEB)

    DeCoursey, P J; Vernberg, W B

    1972-01-01

    A battery of tests was used to determine the effects of three dilute mercuric chloride solutions on larval stages (Zoea I, III, V) of the fiddler crab Uca pugilator(Bosc). The influence of both acute and chronic exposures on viability, oxygen consumption, and swimming activity was measured. No stage V and only a few stage I or III larvae were able to survive a concentration of 9 x 10/sup -7/ M HgCl/sub 2/ (0.18 ppm Hg) longer than 24 hr; an exposure as short as 6 hr resulted in reduced metabolism and swimming rate of all stages. Although concentrations of 9 x 10/sup -9/ M Hg Cl/sub 2/ (0.0018 ppm) and 9 x 10/sup -11/ M HgCl/sub 2/ (0.000018 ppm) were sublethal, 24-hr exposures did affect metabolism and swimming. Some larvae reared in the more dilute mercury solutions developed to the megalopa stage, but survival was reduced in relation to the mercury concentration. The data from all tests suggest that toxicity of mercury increases with larval age. 20 references, 6 figures.

  10. Intra-instar larval cannibalism in Anopheles gambiae (s.s.) and Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Porretta, Daniele; Mastrantonio, Valentina; Crasta, Graziano; Bellini, Romeo; Comandatore, Francesco; Rossi, Paolo; Favia, Guido; Bandi, Claudio; Urbanelli, Sandra

    2016-11-02

    Cannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented. In anopheline malaria vectors the inter-instar cannibalism between fourth- and first-instar larvae (L4-L1) has been shown in several species, while intra-instar cannibalism remains poorly investigated. In this study we tested the occurrence of intra-instar cannibalism within larvae of second-, third- and fourth-instar (L2, L3 and L4) of Anopheles gambiae (s.s.) and An. stephensi. Experiments were set up under laboratory conditions and the effects of larval density, duration of the contact period among larvae and the presence of an older larva (i.e. a potential cannibal of bigger size) on cannibalism rate were analysed. Cannibalism was assessed by computing the number of missing larvae after 24 and 48 h from the beginning of the experiments and further documented by records with a GoPro videocamera. Intra-instar cannibalism was observed in all larval instars of both species with higher frequency in An. gambiae (s.s.) than in An. stephensi. In both species the total number of cannibalistic events increased from 0-24 to 0-48 h. The density affected the cannibalism rate, but its effect was related to the larval instar and to the presence of older larvae. Interestingly, the lower cannibalism rate between L4 larvae was observed at the highest density and the cannibalism rate between L3 larvae decreased when one L4 was added. The present study provides experimental evidence of intra-instar cannibalism in the malaria vectors An. gambiae (s.s.) and An. stephensi and highlights the possible occurrence of complex interactions between all larval instars potentially present in the breeding sites. We hypothesize that the high density and the presence of a potential cannibal of bigger size could affect the readiness to attack conspecifics, resulting into low risk larval behavior and lower cannibalism rate. The understanding of

  11. Intra-instar larval cannibalism in Anopheles gambiae (s.s. and Anopheles stephensi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Daniele Porretta

    2016-11-01

    Full Text Available Abstract Background Cannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented. In anopheline malaria vectors the inter-instar cannibalism between fourth- and first-instar larvae (L4-L1 has been shown in several species, while intra-instar cannibalism remains poorly investigated. In this study we tested the occurrence of intra-instar cannibalism within larvae of second-, third- and fourth-instar (L2, L3 and L4 of Anopheles gambiae (s.s. and An. stephensi. Experiments were set up under laboratory conditions and the effects of larval density, duration of the contact period among larvae and the presence of an older larva (i.e. a potential cannibal of bigger size on cannibalism rate were analysed. Cannibalism was assessed by computing the number of missing larvae after 24 and 48 h from the beginning of the experiments and further documented by records with a GoPro videocamera. Results Intra-instar cannibalism was observed in all larval instars of both species with higher frequency in An. gambiae (s.s. than in An. stephensi. In both species the total number of cannibalistic events increased from 0–24 to 0–48 h. The density affected the cannibalism rate, but its effect was related to the larval instar and to the presence of older larvae. Interestingly, the lower cannibalism rate between L4 larvae was observed at the highest density and the cannibalism rate between L3 larvae decreased when one L4 was added. Conclusions The present study provides experimental evidence of intra-instar cannibalism in the malaria vectors An. gambiae (s.s. and An. stephensi and highlights the possible occurrence of complex interactions between all larval instars potentially present in the breeding sites. We hypothesize that the high density and the presence of a potential cannibal of bigger size could affect the readiness to attack conspecifics, resulting into low risk larval behavior

  12. Modification of feeding circuits in the evolution of social behavior.

    Science.gov (United States)

    Fischer, Eva K; O'Connell, Lauren A

    2017-01-01

    Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification. © 2017. Published by The Company of Biologists Ltd.

  13. Characterisation of Culex quinquefasciatus (Diptera: Culicidae larval habitats at ground level and temporal fluctuations of larval abundance in Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    Marta Grech

    2013-09-01

    Full Text Available The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.

  14. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  15. The Role of Semantic Clustering in Optimal Memory Foraging

    Science.gov (United States)

    Montez, Priscilla; Thompson, Graham; Kello, Christopher T.

    2015-01-01

    Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in…

  16. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  17. Dynamics of Foraging and Recruitment Behavior in the Asian Subterranean Termite Coptotermes gestroi (Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    Alberto Arab

    2012-01-01

    Full Text Available The present study investigated the trail-following behavior of the subterranean termite Coptotermes gestroi (Wasmann Rhinotermitidae under laboratory conditions. The results showed that workers were the first to initiate the exploration to the food source. When food was discovered they returned to the nest laying a trail for recruiting nestmates to the food source. In this situation, workers always traveled significantly faster when returning from the arenas. Both workers and soldiers were recruited to the food source; however, the soldier/worker proportion was higher during the first phase of the recruitment. When no food was available, the number of recruited nestmates and the speed on their way back to the nest were significantly lower. The results also showed that scout foragers always laid trail pheromones when entering into unknown territories, and that chemical signals found in the food could induce workers of C. gestroi to increase their travel speed.

  18. Contribution of a natural polymorphism, protein kinase G, modulates electroconvulsive seizure recovery in D. melanogaster.

    Science.gov (United States)

    Kelly, Stephanie P; Risley, Monica G; Miranda, Leonor E; Dawson-Scully, Ken

    2018-05-24

    Drosophila melanogaster is a well-characterized model for neurological disorders and is widely used for investigating causes of altered neuronal excitability leading to seizure-like behavior. One method used to analyze behavioral output of neuronal perturbance is recording the time to locomotor recovery from an electroconvulsive shock. Based on this behavior, we sought to quantify seizure susceptibility in larval D. melanogaster with differences in the enzymatic activity levels of a major protein, cGMP-dependent protein kinase (PKG). PKG, encoded by foraging , has two natural allelic variants and has previously been implicated in several important physiological characteristics including: foraging patterns, learning and memory, and environmental stress tolerance. The well-established NO/cGMP/PKG signaling pathway found in the fly, which potentially targets downstream K + channel(s), which ultimately impacts membrane excitability; leading to our hypothesis: altering PKG enzymatic activity modulates time to recovery from an electroconvulsive seizure. Our results show that by both genetically and pharmacologically increasing PKG enzymatic activity, we can decrease the locomotor recovery time from an electroconvulsive seizure in larval D. melanogaster . © 2018. Published by The Company of Biologists Ltd.

  19. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.

    Science.gov (United States)

    Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce

    2016-12-01

    The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.

  20. New Developments in Forage Varieties

    Science.gov (United States)

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  1. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera).

    Science.gov (United States)

    Chicas-Mosier, Ana M; Cooper, Bree A; Melendez, Alexander M; Pérez, Melina; Oskay, Devrim; Abramson, Charles I

    2017-09-01

    Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors. Copyright © 2017. Published by Elsevier Inc.

  2. The influence of substrate material on ascidian larval settlement.

    Science.gov (United States)

    Chase, Anna L; Dijkstra, Jennifer A; Harris, Larry G

    2016-05-15

    Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Food availability and foraging near human developments by black bears

    Science.gov (United States)

    Merkle, Jerod A.; Robinson, Hugh S.; Krausman, Paul R.; Alaback, Paul B.

    2013-01-01

    Understanding the relationship between foraging ecology and the presence of human-dominated landscapes is important, particularly for American black bears (Ursus americanus), which sometimes move between wildlands and urban areas to forage. The food-related factors influencing this movement have not been explored, but can be important for understanding the benefits and costs to black bear foraging behavior and the fundamental origins of bear conflicts. We tested whether the scarcity of wildland foods or the availability of urban foods can explain when black bears forage near houses, examined the extent to which male bears use urban areas in comparison to females, and identified the most important food items influencing bear movement into urban areas. We monitored 16 collared black bears in and around Missoula, Montana, during 2009 and 2010, while quantifying the rate of change in green vegetation and the availability of 5 native berry-producing species outside the urban area, the rate of change in green vegetation, and the availability of apples and garbage inside the urban area. We used parametric time-to-event models in which an event was a bear location collected within 100 m of a house. We also visited feeding sites located near houses and quantified food items bears had eaten. The probability of a bear being located near a house was 1.6 times higher for males, and increased during apple season and the urban green-up. Fruit trees accounted for most of the forage items at urban feeding sites (49%), whereas wildland foods composed fruit trees, appear to be more important than the availability of garbage in influencing when bears forage near houses.

  4. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal

    KAUST Repository

    Matsumura, K.

    2014-02-26

    Gregarious settlement, an essential behavior for many barnacle species that can only reproduce by mating with a nearby barnacle, has long been thought to rely on larval ability to recognize chemical signals from conspecifics during settlement. However, the cyprid, the settlement stage larva in barnacles, has one pair of compound eyes that appear only at the late nauplius VI and cyprid stages, but the function(s) of these eyes remains unknown. Here we show that cyprids of the intertidal barnacle Balanus (=Amphibalanus) amphitrite can locate adult barnacles even in the absence of chemical cues, and prefer to settle around them probably via larval sense of vision. We also show that the cyprids can discriminate color and preferred to settle on red surfaces. Moreover, we found that shells of adult B. amphitrite emit red auto-fluorescence and the adult extracts with the fluorescence as a visual signal attracted cyprid larvae to settle around it. We propose that the perception of specific visual signals can be involved in behavior of zooplankton including marine invertebrate larvae, and that barnacle auto-fluorescence may be a specific signal involved in gregarious larval settlement.

  5. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior

    Directory of Open Access Journals (Sweden)

    Bruno Díaz LÓPEZ

    2009-08-01

    Full Text Available The extent to which prey abundance influences both bottlenose dolphin foraging behavior and group size in the presence of human activities has not previously been studied. The primary aim of this study was to identify and quantify how wild bottlenose dolphins respond, individually and as groups, to the relative abundance of prey around a fish farm. Detailed views of dolphins’ behavior were obtained by focal following individual animals whilst simultaneously collecting surface and underwater behavioral data. A total of 2150 dive intervals were analyzed, corresponding to 342 focal samples, lasting over 34 hours. Bottlenose dolphins remained submerged for a mean duration of 46.4 seconds and a maximum of 249 seconds. This study provides the first quantified data on bottlenose dolphin diving behavior in a marine fin-fish farm area. This study’s results indicate that within a fish farm area used intensively by bottlenose dolphins for feeding, dolphins did not modify dive duration. Additionally, underwater observations confirmed that dolphins find it easier to exploit a concentrated food source and it appears that hunting tactic and not group size plays an important role during feeding activities. Thus, bottlenose dolphins appear capable of modifying their hunting tactics according to the abundance of prey. When top predators display behavioral responses to activities not directed at them, the task of studying all possible effects of human activities can become even more challenging [Current Zoology 55(4: 243–248, 2009].

  6. Forage quantity and quality

    Science.gov (United States)

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  7. Effects of Tall Fescue Forage Mass on Steer Ingestive Behavior and Performance

    Science.gov (United States)

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh] is a well adapted perennial pasture species utilized across the north-south transition zone of the United States and in similar environments worldwide. This 3-yr trial evaluated the influence of three forage masses (FM) on steer and pasture respons...

  8. Sandeel ( Ammodytes marinus ) larval transport patterns in the North Sea from an individual-based hydrodynamic egg and larval model

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Jensen, Henrik; Mosegaard, Henrik

    2008-01-01

    We have calculated a time series of larval transport indices for the central and southern North Sea covering 1970-2004, using a combined three-dimensional hydrodynamic and individual-based modelling framework for studying sandeel (Ammodytes marinus) eggs, larval transport, and growth. The egg phase...... is modelled by a stochastic, nonlinear degree-day model describing the extended hatch period. The larval growth model is parameterized by individually back-tracking the local physical environment of larval survivors from their catch location and catch time. Using a detailed map of sandeel habitats...... analyzed, and we introduce novel a scheme to quantify direct and indirect connectivity on equal footings in terms of an interbank transit time scale....

  9. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    Science.gov (United States)

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  10. Optimal Foraging in Semantic Memory

    Science.gov (United States)

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  11. Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens.

    Science.gov (United States)

    Wellington, C G; Mayer, C M; Bossenbroek, J M; Stroh, N A

    2010-05-01

    Laboratory experiments were conducted to determine how larval and juvenile yellow perch Perca flavescens respond to changes in prey density when exposed to different levels and types of turbidity (phytoplanktonic or sedimentary). Across prey densities, consumption by P. flavescens tended to be less in phytoplanktonic turbidity compared with sedimentary turbidity. For larvae, this effect was dependent on turbidity level (consumption differed between turbidity types only at high turbidity), while for juveniles the difference with turbidity type was equal across turbidity levels. These results suggest that phytoplankton blooms are detrimental to the ability of late season age 0 year P. flavescens to forage and support the need to control factors leading to excessive phytoplankton growth in lakes.

  12. Larval Behavior and Natural Trace Element Signatures as Indicators of Crustacean Population Connectivity

    OpenAIRE

    Miller, Seth Haylen

    2011-01-01

    In an era of increasing governmental protection of marine resources and accelerating climate change, knowing how benthic populations of marine organisms are connected is of paramount importance. However, little is known about connectivity in the nearshore environment, particularly at ecologically and demographically relevant scales. Because the dispersive larval stage is the key to understanding population connectivity, my dissertation focused on developing a new technique for tracking larvae...

  13. Forage production in mixed grazing systems of elephant grass with arrowleaf clover or forage peanut

    Directory of Open Access Journals (Sweden)

    Daiane Cristine Seibt

    Full Text Available ABSTRACT Most dairy production systems are pasture-based, usually consisting of sole grass species. This system facilitates pasture management, but results in high production costs, mainly because of nitrogen fertilizers. An alternative to making forage systems more sustainable is to introduce legumes into the pasture. Mixed pastures allow better forage distribution over time and reduce fertilization costs. Thus, the objective of this study was to evaluate, throughout the year, three forage systems (FS: FS1 (control - elephant grass (EG, ryegrass (RG, and spontaneous species (SS; FS2 - EG + RG + SS + arrowleaf clover; and FS3 - EG + RG + SS + forage peanut. Elephant grass was planted in rows spaced 4 m apart. Ryegrass was sown between the EG lines, in the winter. Arrowleaf clover was sown according to the respective treatments and forage peanut was preserved. Evaluation was carried out using Holstein cows. The experiment was arranged in a completely randomized design, with three treatments (FS, and three repetitions (paddocks with repeated measurements (grazing cycles. Forage mass achieved 3.46, 3.80, and 3.91 t ha-1 for the treatments FS1, FS2 and FS3, respectively. The forage systems intercropped with legumes produced the best results.

  14. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  15. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  16. Neurogenomic signatures of spatiotemporal memories in time-trained forager honey bees

    Science.gov (United States)

    Naeger, Nicholas L.; Van Nest, Byron N.; Johnson, Jennifer N.; Boyd, Sam D.; Southey, Bruce R.; Rodriguez-Zas, Sandra L.; Moore, Darrell; Robinson, Gene E.

    2011-01-01

    Honey bees can form distinct spatiotemporal memories that allow them to return repeatedly to different food sources at different times of day. Although it is becoming increasingly clear that different behavioral states are associated with different profiles of brain gene expression, it is not known whether this relationship extends to states that are as dynamic and specific as those associated with foraging-related spatiotemporal memories. We tested this hypothesis by training different groups of foragers from the same colony to collect sucrose solution from one of two artificial feeders; each feeder was in a different location and had sucrose available at a different time, either in the morning or afternoon. Bees from both training groups were collected at both the morning and afternoon training times to result in one set of bees that was undergoing stereotypical food anticipatory behavior and another that was inactive for each time of day. Between the two groups with the different spatiotemporal memories, microarray analysis revealed that 1329 genes were differentially expressed in the brains of honey bees. Many of these genes also varied with time of day, time of training or state of food anticipation. Some of these genes are known to be involved in a variety of biological processes, including metabolism and behavior. These results indicate that distinct spatiotemporal foraging memories in honey bees are associated with distinct neurogenomic signatures, and the decomposition of these signatures into sets of genes that are also influenced by time or activity state hints at the modular composition of this complex neurogenomic phenotype. PMID:21346126

  17. The influence of past experience on wasp choice related to foraging behavior.

    Science.gov (United States)

    Sabrina, Moreyra; D'Adamo, Paola; Lozada, Mariana

    2014-12-01

    Memory has been little studied in social wasps. Vespula germanica (Fab.) (Hymenoptera: Vespidae) frequently revisits nondepleted food sources, making several trips between the resource and the nest. In this study, we analyzed this relocating behavior in order to evaluate whether this species is capable of remembering an established association after 1 h. To this end, we trained wasps to feed from a certain array. Then it was removed, setting it up again 1 h later, but this time 2 baited feeders were put in place, one at the original feeding site and the other opposite the first. We recorded the proportion of returning foragers, and their choice of feeder, after either 1 or 4 feeding trials. After 1 h, 78% of wasps trained with 4 feeding trials and 65% trained with 1, returned to the experimental area. Furthermore, during the testing phase, wasps trained with 4 feeding trials collected food from the previously learned feeder significantly more frequently than from the nonlearned one (P germanica is capable of remembering an association 1 h after the last associative event, demonstrating that 1 h does not impair memory retention if 4 feeding experiences have occurred. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers in Ecballium elaterium (Cucurbitaceae).

    Science.gov (United States)

    Dukas, Reuyen

    1987-12-01

    The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.

  19. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    Science.gov (United States)

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.

  20. Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community.

    Science.gov (United States)

    Polito, Michael J; Brasso, Rebecka L; Trivelpiece, Wayne Z; Karnovsky, Nina; Patterson, William P; Emslie, Steven D

    2016-11-01

    Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas)

    Science.gov (United States)

    Webber, H.M.; Haines, T.A.

    2003-01-01

    Mercury contamination of fish is widespread in North America and has resulted in the establishment of fish consumption advisories to protect human health, However, the effects of mercury exposure to fish have seldom been investigated. We examined the effects of dietary mercury exposure at environmental levels in a common forage species, golden shiner (Notemigonus crysoleucas). Fish were fed either an unaltered diet (12 ng/g wet wt methylmercury [MeHg] as Hg), a low-Hg diet (455 ng/g Hg), or a high-Hg diet (959 ng/g Hg). After 90 d mean fish whole-body total Hg concentrations were 41, 230, and 518 ng/g wet wt, respectively, which were within the range of concentrations found in this species in northern U.S. lakes. There were no mortalities or differences in growth rate among groups. Groups of fish from each treatment were exposed to a model avian predator and their behavioral response videotaped for analysis. Brain acetylcholinesterase (AChE) activity was determined in fish after behavioral testing. Fish fed the high-Hg diet had significantly greater shoal vertical dispersal following predator exposure, took longer to return to pre-exposure activity level, and had greater shoal area after return to pre-exposure activity than did the other treatments, all of which would increase vulnerability of the fish to predation. There were no differences in brain AChE among treatments. We conclude that mercury exposure at levels currently occurring in northern United States lakes alters fish predator-avoidance behavior in a manner that may increase vulnerability to predation. This finding has significant implications for food chain transfer of Hg and Hg exposure of fish predators.

  2. Predator-Prey Dynamics in the Mesopelagic: Odontocete Foraging Ecology and Anti-predator Behavior of Prey

    Science.gov (United States)

    Benoit-Bird, K. J.

    2016-02-01

    We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.

  3. Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters

    Science.gov (United States)

    Jiang, H.; Wheeler, J.; Anderson, E.

    2016-02-01

    Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.

  4. Larval dispersal modeling of pearl oyster Pinctada margaritifera following realistic environmental and biological forcing in Ahe atoll lagoon.

    Directory of Open Access Journals (Sweden)

    Yoann Thomas

    Full Text Available Studying the larval dispersal of bottom-dwelling species is necessary to understand their population dynamics and optimize their management. The black-lip pearl oyster (Pinctada margaritifera is cultured extensively to produce black pearls, especially in French Polynesia's atoll lagoons. This aquaculture relies on spat collection, a process that can be optimized by understanding which factors influence larval dispersal. Here, we investigate the sensitivity of P. margaritifera larval dispersal kernel to both physical and biological factors in the lagoon of Ahe atoll. Specifically, using a validated 3D larval dispersal model, the variability of lagoon-scale connectivity is investigated against wind forcing, depth and location of larval release, destination location, vertical swimming behavior and pelagic larval duration (PLD factors. The potential connectivity was spatially weighted according to both the natural and cultivated broodstock densities to provide a realistic view of connectivity. We found that the mean pattern of potential connectivity was driven by the southwest and northeast main barotropic circulation structures, with high retention levels in both. Destination locations, spawning sites and PLD were the main drivers of potential connectivity, explaining respectively 26%, 59% and 5% of the variance. Differences between potential and realistic connectivity showed the significant contribution of the pearl oyster broodstock location to its own dynamics. Realistic connectivity showed larger larval supply in the western destination locations, which are preferentially used by farmers for spat collection. In addition, larval supply in the same sectors was enhanced during summer wind conditions. These results provide new cues to understanding the dynamics of bottom-dwelling populations in atoll lagoons, and show how to take advantage of numerical models for pearl oyster management.

  5. Bust economics: foragers choose high quality habitats in lean times

    Directory of Open Access Journals (Sweden)

    Sonny S. Bleicher

    2016-01-01

    Full Text Available In environments where food resources are spatially variable and temporarily impoverished, consumers that encounter habitat patches with different food density should focus their foraging initially where food density is highest before they move to patches where food density is lower. Increasing missed opportunity costs should drive individuals progressively to patches with lower food density as resources in the initially high food density patches deplete. To test these expectations, we assessed the foraging decisions of two species of dasyurid marsupials (dunnarts: Sminthopsis hirtipes and S. youngsoni during a deep drought, or bust period, in the Simpson Desert of central Australia. Dunnarts were allowed access to three patches containing different food densities using an interview chamber experiment. Both species exhibited clear preference for the high density over the lower food density patches as measured in total harvested resources. Similarly, when measuring the proportion of resources harvested within the patches, we observed a marginal preference for patches with initially high densities. Models analyzing behavioral choices at the population level found no differences in behavior between the two species, but models analyzing choices at the individual level uncovered some variation. We conclude that dunnarts can distinguish between habitat patches with different densities of food and preferentially exploit the most valuable. As our observations were made during bust conditions, experiments should be repeated during boom times to assess the foraging economics of dunnarts when environmental resources are high.

  6. Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins

    Science.gov (United States)

    Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.

    2016-02-01

    Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  7. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    Science.gov (United States)

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  8. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan

    2012-08-01

    The polychaete . Hydroides elegans (Serpulidae, Lophotrochozoa) is a problematic marine fouling organism in most tropical and subtropical coastal environment. Competent larvae of . H. elegans undergo the transition from the swimming larval stage to the sessile juvenile stage with substantial morphological, physiological, and behavior changes. This transition is often referred to as larval settlement and metamorphosis. In this study, we examined the possible involvement of calmodulin (CaM) - a multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid residues. It was highly expressed in 12. h post-metamorphic juveniles, and remained high in adults. . In situ hybridization conducted in competent larvae and juveniles revealed that . He-CaM gene was continuously expressed in the putative growth zones, branchial rudiments, and collar region, suggesting that . He-CaM might be involved in tissue differentiation and development. Our subsequent bioassay revealed that the CaM inhibitor W7 could effectively inhibit larval settlement and metamorphosis, and cause some morphological defects of unsettled larvae. In conclusion, our results revealed that CaM has important functions in the larval settlement and metamorphosis of . H. elegans. © 2012 Elsevier Inc..

  9. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    International Nuclear Information System (INIS)

    Peschke, H.

    1981-01-01

    After systematic application of 15 N-ammonium nitrate, the change of the dinuclidic composition and 15 N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15 N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15 N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15 N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  10. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  11. PDK1 and HR46 gene homologs tie social behavior to ovary signals.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available The genetic basis of division of labor in social insects is a central question in evolutionary and behavioral biology. The honey bee is a model for studying evolutionary behavioral genetics because of its well characterized age-correlated division of labor. After an initial period of within-nest tasks, 2-3 week-old worker bees begin foraging outside the nest. Individuals often specialize by biasing their foraging efforts toward collecting pollen or nectar. Efforts to explain the origins of foraging specialization suggest that division of labor between nectar and pollen foraging specialists is influenced by genes with effects on reproductive physiology. Quantitative trait loci (QTL mapping of foraging behavior also reveals candidate genes for reproductive traits. Here, we address the linkage of reproductive anatomy to behavior, using backcross QTL analysis, behavioral and anatomical phenotyping, candidate gene expression studies, and backcross confirmation of gene-to-anatomical trait associations. Our data show for the first time that the activity of two positional candidate genes for behavior, PDK1 and HR46, have direct genetic relationships to ovary size, a central reproductive trait that correlates with the nectar and pollen foraging bias of workers. These findings implicate two genes that were not known previously to influence complex social behavior. Also, they outline how selection may have acted on gene networks that affect reproductive resource allocation and behavior to facilitate the evolution of social foraging in honey bees.

  12. A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.

    Science.gov (United States)

    Engel, J E; Xie, X J; Sokolowski, M B; Wu, C F

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila.

  13. Artificial root foraging optimizer algorithm with hybrid strategies

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.

  14. Evidence of trapline foraging in honeybees.

    Science.gov (United States)

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. © 2016. Published by The Company of Biologists Ltd.

  15. Retrospective analysis of bottlenose dolphin foraging: a legacy of anthropogenic ecosystem disturbance

    Science.gov (United States)

    Rossman, Sam; Barros, Nélio B.; Ostrom, Peggy H.; Stricker, Craig A.; Hohn, Aleta A.; Gandhi, Hasand; Wells, Randall S.

    2013-01-01

    We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.

  16. Visual Foraging With Fingers and Eye Gaze

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-03-01

    Full Text Available A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a The fact that a sizeable number of observers (in particular during gaze foraging had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  17. Habitat-specific foraging strategies in Australasian gannets

    Directory of Open Access Journals (Sweden)

    Melanie R. Wells

    2016-07-01

    Full Text Available Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26, in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change.

  18. Rehydration of forensically important larval Diptera specimens.

    Science.gov (United States)

    Sanford, Michelle R; Pechal, Jennifer L; Tomberlin, Jeffery K

    2011-01-01

    Established procedures for collecting and preserving evidence are essential for all forensic disciplines to be accepted in court and by the forensic community at large. Entomological evidence, such as Diptera larvae, are primarily preserved in ethanol, which can evaporate over time, resulting in the dehydration of specimens. In this study, methods used for rehydrating specimens were compared. The changes in larval specimens with respect to larval length and weight for three forensically important blow fly (Diptera: Calliphoridae) species in North America were quantified. Phormia regina (Meigen), Cochliomyia macellaria (F.), and Chrysomya rufifacies (Macquart) third-instar larvae were collected from various decomposing animals and preserved with three preservation methods (80% ethanol, 70% isopropyl alcohol, and hot-water kill then 80% ethanol). Preservative solutions were allowed to evaporate. Rehydration was attempted with either of the following: 80% ethanol, commercial trisodium phosphate substitute solution, or 0.5% trisodium phosphate solution. All three methods partially restored weight and length of specimens recorded before preservation. Analysis of variance results indicated that effects of preservation, rehydration treatment, and collection animal were different in each species. The interaction between preservative method and rehydration treatment had a significant effect on both P. regina and C. macellaria larval length and weight. In addition, there was a significant interaction effect of collection animal on larval C. macellaria measurements. No significant effect was observed in C. rufifacies larval length or weight among the preservatives or treatments. These methods could be used to establish a standard operating procedure for dealing with dehydrated larval specimens in forensic investigations.

  19. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads.

    Science.gov (United States)

    Jennings, David E; Krupa, James J; Rohr, Jason R

    2016-07-01

    Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  20. Sensory response system of social behavior tied to female reproductive traits.

    Directory of Open Access Journals (Sweden)

    Jennifer M Tsuruda

    Full Text Available Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding. We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size, physiology (yolk protein level, and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH, which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar. To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER assay and quantified ovary size and vitellogenin (yolk precursor gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles are characterized by higher levels of

  1. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    Science.gov (United States)

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  2. Increased Foraging in Outdoor Organic Pig Production—Modeling Environmental Consequences

    Directory of Open Access Journals (Sweden)

    Malene Jakobsen

    2015-11-01

    Full Text Available Consumers’ motivations for buying organic products include a wish of acquiring healthy, environmentally friendly products from production systems that also ensure a high level of animal welfare. However, the current Danish organic pig production faces important challenges regarding environmental impact of the system. High ammonia emissions arise from outdoor concrete areas with growing pigs and sows on pasture possess an increased risk of nitrogen (N leaching. Direct foraging in the range area is suggested as a way to improve the nutrient efficiency at farm level and to support a more natural behavior of the pig. Thus, by modeling, we investigated the environmental consequences of two alternative scenarios with growing pigs foraging in the range area and different levels of crops available for foraging—grass–clover or a combination of Jerusalem artichokes and lucerne. It was possible to have growing pigs on free-range without increasing N leaching compared to the current practice. The alternative system with Jerusalem artichokes and lucerne (high integration of forage showed the lowest carbon foot print with 3.12 CO2 eq kg−1 live weight pig compared to the current Danish pasture based system with 3.69 kg CO2 eq kg−1 live weight pig. Due to positive impact on soil carbon sequestration, the second alternative system based on grass-clover (low integration of forage showed a similar carbon foot print compared to current practice with 3.68 kg CO2 eq kg−1 live weight pig. It is concluded that in practice there is room for development of organic farming systems where direct foraging plays a central role.

  3. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng

    2012-10-24

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  4. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  5. Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function.

    Science.gov (United States)

    Charpentier, Corie L; Cohen, Jonathan H

    2015-11-01

    Several predator avoidance strategies in zooplankton rely on the use of light to control vertical position in the water column. Although light is the primary cue for such photobehavior, predator chemical cues or kairomones increase swimming responses to light. We currently lack a mechanistic understanding for how zooplankton integrate visual and chemical cues to mediate phenotypic plasticity in defensive photobehavior. In marine systems, kairomones are thought to be amino sugar degradation products of fish body mucus. Here, we demonstrate that increasing concentrations of fish kairomones heightened sensitivity of light-mediated swimming behavior for two larval crab species (Rhithropanopeus harrisii and Hemigrapsus sanguineus). Consistent with these behavioral results, we report increased visual sensitivity at the retinal level in larval crab eyes directly following acute (1-3 h) kairomone exposure, as evidenced electrophysiologically from V-log I curves and morphologically from wider, shorter rhabdoms. The observed increases in visual sensitivity do not correspond with a decline in temporal resolution, because latency in electrophysiological responses actually increased after kairomone exposure. Collectively, these data suggest that phenotypic plasticity in larval crab photobehavior is achieved, at least in part, through rapid changes in photoreceptor structure and function. © 2015. Published by The Company of Biologists Ltd.

  6. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Directory of Open Access Journals (Sweden)

    David T Peck

    Full Text Available Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  7. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees

    Science.gov (United States)

    Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015

  8. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Science.gov (United States)

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  9. Utilization of /sup 15/N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion

    1981-12-01

    After systematic application of /sup 15/N-ammonium nitrate, the change of the dinuclidic composition and /sup 15/N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative /sup 15/N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The /sup 15/N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are /sup 15/N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors.

  10. A Marriage Of Larval Modeling And Empirical Data: Linking Adult, Larval And Juvenile Scallops In An Estuary

    Science.gov (United States)

    Bayer, S.; Wahle, R.; Brooks, D. A.; Brady, D. C.

    2016-02-01

    The giant sea scallop, Placopecten magellanicus, is a commercially valuable sedentary broadcast spawner that occupies offshore banks and coastal bays and estuaries in the Northwest Atlantic. Although area closures have helped repopulate depleted scallop populations, little is known about whether populations at densities that yield larvae supply local or distant populations. Surveying scallop populations in the Damariscotta River estuary in Maine during the 2013 and 2014 spawning seasons, and settling out spat bags to collect settling larvae along the gradient of the estuary, we were able to compare adult densities to newly settled juvenile (`spat') abundance. Using the location where we found a high density of adults, we incorporated previously published behavior, pelagic larval duration, wind and current data into a particle dispersal model within the estuary to determine likely sinks for larvae from the 2013 and 2014 spawning seasons. Preliminary model simulations demonstrate where in the estuary swimming is effective in affecting water column position for larvae, and that most larvae are retained much closer to the mouth of the estuary than previously expected. Combining larval dispersal modeling with empirical data on adult densities and spat settlement on the scale of an embayment or estuary may be helpful in determining sources, sinks and areas that are both sources and sinks for shellfish species that are endangered or economically critical. This may aid in determining small area closures or Marine Protected Areas along coastal regions in the Gulf of Maine and beyond.

  11. Effect of physical form of forage on performance, feeding behavior, and digestibility of Holstein calves.

    Science.gov (United States)

    Montoro, C; Miller-Cushon, E K; DeVries, T J; Bach, A

    2013-02-01

    The physical form of forage may influence rumen development and, consequently, the body weight gain, dry matter (DM) consumption, digestibility, and welfare of dairy calves. The objective of this study was to determine the effect of 2 different physical forms of forage on performance, apparent digestibility, and feeding behavior of young calves. Twenty Holstein male calves (46.8 ± 1.2 kg) were randomly assigned at birth to 1 of 2 feeding treatments in which they were exposed to a mixed ration containing (on a DM basis) 90% crumb starter concentrate and either (1) 10% coarsely chopped (3 to 4 cm) grass hay (CRS; n=10) or (2) 10% finely ground (2mm) grass hay (FN; n=10). All calves were offered 8L/d of milk replacer (MR; 1.2 kg of DM) from birth; the amount of MR was progressively reduced after 5 wk to enable weaning by the end of wk 7. The study finished after wk 8. Consumption of the mixed ration, MR, and water was recorded daily, and calves were weighed twice weekly. Samples of feed and orts were taken in wk 7 and 8 for nutrient content analysis. Behavioral data for each calf were obtained for 2h/d during wk 6 and 8, for a total observation time per animal of 28 h. Total feces were collected during wk 8 to determine apparent digestibility. Calves fed CRS had greater DM intake than those fed FN (2.70 vs. 2.45 ± 0.11 kg/d, respectively) during the week after weaning (wk 8). Body weight gain was similar between treatments; however, calves fed CRS tended to have a greater gain-to-feed ratio than calves fed FN (0.68 vs. 0.63 ± 0.02 kg of gain/kg of DM intake). No differences were observed in crude protein and acid detergent fiber consumption between treatments; however, calves fed CRS tended to consume more neutral detergent fiber than calves fed FN during the last week of the study (719.2 vs. 610.5 ± 25.84 g/d). Calves receiving CRS sorted in favor of neutral detergent fiber to a greater extent than calves consuming FN, whereas calves fed FN sorted in favor of

  12. Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis.

    Directory of Open Access Journals (Sweden)

    Alexander Silvis

    Full Text Available Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.

  13. Alaska northern fur seal migration and foraging strategies telemetry and environmental data, 2009-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was used for the analysis of adult male and female northern fur seal winter migration and foraging behavior published by Sterling et al. (2014)....

  14. Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: only a matter of size?

    Science.gov (United States)

    Rosa, Elena; Saastamoinen, Marjo

    2017-07-01

    Organisms with complex life-cycles acquire essential nutrients as juveniles, and hence even a short-term food stress during development can impose serious fitness costs apparent in adults. We used the Glanville fritillary butterfly to investigate the effects of larval food stress on adult performance under semi-natural conditions in a population enclosure. We were specifically interested in whether the negative effects observed were due to body mass reduction only or whether additional effects unrelated to pupal mass were evident. The two sexes responded differently to the larval food stress. In females, larval food stress reduced pupal mass and reproductive performance. The reduced reproductive performance was partially mediated by pupal mass reduction. Food stressed females also had reduced within-patch mobility, and this effect was not dependent on pupal mass. Conversely, food stress had no effect on male pupal mass, suggesting a full compensation via prolonged development time. Nonetheless, food stressed males were less likely to sire any eggs, potentially due to changes in their territorial behavior, as indicated by food stress also increasing male within-patch mobility (i.e., patrolling behavior). When males did sire eggs, the offspring number and viability were unaffected by male food stress treatment. Viability was in general higher for offspring sired by lighter males. Our study highlights how compensatory mechanisms after larval food stress can act in a sex-specific manner and that the alteration in body mass is only partially responsible for the reduced adult performance observed.

  15. Models of prey capture in larval fish

    NARCIS (Netherlands)

    Drost, M.R.

    1986-01-01

    The food uptake of larval carp and pike is described from high speed movies with synchronous lateral and ventral views.

    During prey intake by larval fishes the velocities of the created suction flow are high relative to their own size: 0.3 m/s for carp larvae of 6

  16. A compound produced by fruigivorous Tephritidae (Diptera) larvae promotes oviposition behavior by the biological control agent Diachasmimorpha longicaudata (Hymenoptera: Braconidae).

    Science.gov (United States)

    Stuhl, Charles; Sivinski, John; Teal, Peter; Paranhos, Beatriz; Aluja, Martin

    2011-06-01

    Tephritid fruit fly parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determined. We collected the volatiles from four species of tropical and subtropical Tephritidae: Anastrepha suspensa (Loew), Bactrocera dorsalis Hendel, Bactrocera cucurbitae Coquillett, and Ceratitis capitata (Wiedemann), representing two subfamilies (Dacinae and Trypetinae). Para-ethylacetophenone, an analog of a known tephritid parasitoid attractant, was a major constituent of all four, and was not associated with larvae of another acalypterate fly, Drosophila melanogaster Meigen, or with the calypterate Musca domestica L. It also was present in volatiles from whole, A. suspensa infested fruits of Eugenia uniflora (L.). Para-ethylacetophenone was not necessarily produced as a direct consequence of fruit consumption because it also was detected from larvae that developed in two artificial diets and in spent diets subsequent to larval development. Sensillae on both the antennae and ovipositor of the opiine braconid fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead) responded to the para-ethylacetophenone in larval volatiles and as a synthetic. Although a potential cue to foraging parasitoids, para-ethylacetophenone showed no long range (>1m) attractiveness to the adult female parasitoid, but did stimulate ovipositor-insertion and oviposition into both a natural (fruit) and an artificial (parafilm) substrate. Thus it may prove useful in colonizing and mass-rearing opine fruit fly parasitoids.

  17. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Science.gov (United States)

    Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul

    2012-01-01

    We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196

  18. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Directory of Open Access Journals (Sweden)

    Adam eJohnson

    2012-07-01

    Full Text Available We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation.

  19. Comportamento de pastejo e ingestão de forragem por novilhas de corte em pastagens de milheto e papuã Grazing behavior and forage ingestion by beef heifers on pearl millet and alexander grass pastures

    Directory of Open Access Journals (Sweden)

    Vagner Guasso da Costa

    2011-02-01

    Full Text Available Foram estudados o desempenho, o comportamento e a ingestão de forragem por novilhas de corte em pastagem de milheto (Pennisetum americanum (L. Leeke e papuã (Urochloa plantaginea no período de janeiro a abril de 2008. Foi utilizado o método de pastejo contínuo com número variável de animais. A ingestão de forragem foi estimada nos estádios vegetativo e reprodutivo das forrageiras usando o óxido de cromo como indicador da produção fecal. As avaliações de comportamento foram feitas por meio de observação visual, em quatro períodos contínuos de 24 horas. Os valores médios de massa de forragem, oferta de forragem e oferta de lâminas foliares foram de 3.927 kg/ha de MS, 14,6 kg de MS/100 kg de peso corporal (PC e 3,36 kg de MS/100 kg de PC, respectivamente. As variáveis do pasto, o desempenho animal, o comportamento ingestivo e a ingestão de forragem foram semelhantes entre milheto e papuã. As variáveis da forragem, desempenho animal e tempos de pastejo, ócio e ruminação e número de bocados por dia apresentaram variação ao longo dos dias de utilização da pastagem. A ingestão de forragem foi de 2,49% do peso corporal e não variou conforme o estádio fenológico. Em áreas infestadas com papuã, sua utilização em pastejo proporciona desempenho semelhante ao obtido com milheto.It was studied performance, behavior and forage ingestion by beef heifers on pearl millet (Pennisetum americanum (L. Leeke and Alexander grass (Urochloa plantaginea pastures from January to April 2008. The continuous grazing method with a variable number of animals was used. Forage ingestion was estimated during vegetative and reproductive stage of forage plants using chromic oxide as fecal production marker. Evaluations of behavior were carried out by visual observation in four 24-hour continuous periods. Mean values of forage mass, forage offer and leaf blade offer were 3,927 kg/ha of DM, 14.6 kg of DM/100 kg BW and 3.36 kg of DM/100 kg BW

  20. Space use and resource selection by foraging Indiana bats at the northern edge of their distribution

    Science.gov (United States)

    Jachowski, David S.; Johnson, Joshua B.; Dobony, Christopher A.; Edwards, John W.; Ford, W. Mark

    2014-01-01

    Despite 4 decades of conservation concern, managing endangered Indiana bat (Myotis sodalis) populations remains a difficult wildlife resource issue facing natural resource managers in the eastern United States. After small signs of population recovery, the recent emergence of white-nose syndrome has led to concerns of local and/or regional extirpation of the species. Where Indiana bats persist, retaining high-quality foraging areas will be critical to meet physiological needs and ensure successful recruitment and overwinter survival. However, insight into foraging behavior has been lacking in the Northeast of the USA. We radio-tracked 12 Indiana bats over 2 summers at Fort Drum, New York, to evaluate factors influencing Indiana bat resource selection during night-time foraging. We found that foraging space use decreased 2% for every 100 m increase in distance to water and 6% for every 100 m away from the forest edge. This suggests high use of riparian areas in close proximity to forest and is somewhat consistent with the species’ foraging ecology in the Midwest and upper South. Given the importance of providing access to high-quality foraging areas during the summer maternity season, Indiana bat conservation at the northern extent of the species’ range will be linked to retention of forested habitat in close proximity to riparian zones. 

  1. Foraging behavior of bee pollinators on the tropical weed Triumfetta semitriloba: flight distance and directionality.

    Science.gov (United States)

    Collevatti, R G; Schoereder, J H; Campos, L A

    2000-02-01

    We studied flight distance and directionality of bee pollinators on the tropical shrub weed Triumfetta semitriloba Jacq. (Tiliaceae), addressing (1) within- and between-plant movement pattern; (2) distances flown between plants; (3) flight directionality. Flowering plants were distributed in well-delimited clumps, in each of two pasture areas (A1 and A2) and one area of forest gap (A3), in Viçosa, southeastern Brazil. Five solitary bee species, Augochlorella michaelis, Augochloropsis cupreola, Pseudocentron paulistana, Ceratinula sp., Melissodes sexcincta, and two social bee, Plebeia droryana, P. cf. nigriceps were observed. All species moved mainly to the nearest flower on the same individual plant and, in between-plant movements, to the first or second nearest neighbor. All species moved non-randomly, presenting a flight directionality in departures (maintenance of flight direction), but with a high frequency of turn angles. It is suggested that this foraging behavior pattern occurred because of the resource quantity and quality (pollen or nectar), and environmental characteristics such as flower density and resource distribution.

  2. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  3. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  4. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  5. Larval dispersion of the estuarine crab Neohelice granulata in coastal marine waters of the Southwest Atlantic

    Science.gov (United States)

    Bas, Claudia; Luppi, Tomás; Spivak, Eduardo; Schejter, Laura

    2009-08-01

    The estuarine brachyuran crab Neohelice granulata export their larvae from the parental intertidal population of the Mar Chiquita coastal lagoon, and probably other populations, to marine waters. The degree of larval dispersion or self-recruitment of populations is unknown. We evaluated the presence of all larval stages of N. granulata in coastal waters of Argentina between 37.9° and 35.8° S, at two different spatial scales: a broad scale of tens to hundreds of kilometers from the Río de la Plata estuary in the north, to Mar Chiquita lagoon in the south, and a small scale of hundreds of meters to some kilometers around the mouth of Mar Chiquita, during spring and summer. Additionally, we registered the larval composition and density at San Clemente creek population, in Samborombon Bay (Río de la Plata estuary), every 3 h along a 30-hour period. Evidence indicates that larval release of N. granulata is temporally synchronized with nocturnal ebb tides and all development from Zoea I to Zoea IV occur in areas close to the parental population, even with very different oceanographic characteristics. A possible mechanism based on salinity selection and wind-driven transport is proposed for such behavior, and some considerations related to the connectivity of present populations are made.

  6. Individual lifetime pollen and nectar foraging preferences in bumble bees

    Science.gov (United States)

    Hagbery, Jessica; Nieh, James C.

    2012-10-01

    Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.

  7. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    Science.gov (United States)

    Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  8. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  9. Spotted wing drosophila prefer low hanging fruit: insights into foraging behavior and management strategies

    Science.gov (United States)

    Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive insect that attacks ripe, small fruit such as raspberries, blackberries, and blueberries. Little is known about SWD foraging ecology, and current trapping and monitoring systems are ineffective at commercial scales. In caged foragin...

  10. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  11. Agronomic and forage characteristics of Guazuma ulmifolia Lam.

    OpenAIRE

    Manríquez-Mendoza, Leonor Yalid; López-Ortíz, Silvia; Pérez-Hernández, Ponciano; Ortega- Jiménez, Eusebio; López-Tecpoyotl, Zenón Gerardo; Villarruel-Fuentes, Manuel

    2011-01-01

    Native trees are an important source of forage for livestock, particularly in regions having prolonged dry periods. Some tree species have fast growth rates, good nutritional quality, and the ability to produce forage during dry periods when the need for forage is greater. Guazuma ulmifolia Lam. is a tree native to tropical America that has a high forage potential. This species is mentioned in a number of studies assessing the forage potential of trees in a diverse array of environments and v...

  12. Transport infrastructure shapes foraging habitat in a raptor community.

    Science.gov (United States)

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.

  13. Movements and foraging effort of Steller's Eiders and Harlequin Ducks wintering near Dutch Harbor, Alaska

    Science.gov (United States)

    Reed, J.A.; Flint, Paul L.

    2007-01-01

    We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.

  14. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2010-04-01

    Full Text Available Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS. By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi, we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen rather than toward carbohydrate (nectar sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources.

  15. BEE FORAGE MAPPING BASED ON MULTISPECTRAL IMAGES LANDSAT

    Directory of Open Access Journals (Sweden)

    A. Moskalenko

    2016-10-01

    Full Text Available Possibilities of bee forage identification and mapping based on multispectral images have been shown in the research. Spectral brightness of bee forage has been determined with the use of satellite images. The effectiveness of some methods of image classification for mapping of bee forage is shown. Keywords: bee forage, mapping, multispectral images, image classification.

  16. Hooded seal Cystophora cristata foraging areas in the Northeast Atlantic Ocean-Investigated using three complementary methods.

    Directory of Open Access Journals (Sweden)

    Jade Vacquie-Garcia

    Full Text Available Identifying environmental characteristics that define the ecological niche of a species is essential to understanding how changes in physical conditions might affect its distribution and other aspects of its ecology. The present study used satellite relay data loggers (SRDLs to study habitat use by Northeast Atlantic hooded seals (N = 20; 9 adult females, 3 adult males, and 8 juveniles. Three different methods were used in combination to achieve maximum insight regarding key foraging areas for hooded seals in this region, which have decline by 85% in recent decades: 1 first passage time (FPT; 2 vertical transit rate and; 3 change in dive drift rate. Generalized additive mixed models (GAMM were applied to each method to determine whether specific habitat characteristics were associated with foraging. Separate models were run for the post-molting and the post-breeding seasons; sex and age classes were included in the GAMMs. All three methods highlighted a few common geographic areas as being important foraging zones; however, there were also some different areas identified by the different methods, which highlights the importance of using multiple indexes when analyzing tracking and diving data to study foraging behavior. Foraging occurred most commonly in relatively shallow areas with high Sea Surface Temperatures (SST, corresponding to continental shelf areas with Atlantic Water masses. All age and sex classes overlapped spatially to some extent, but the different age and sex groups showed differences in the bathymetry of their foraging areas as well as in their vertical use of the water column. When foraging, pups dove in the upper part of the water column in relatively deep areas. Adult females foraged relatively shallowly in deep water areas too, though in shallower areas than pups. Adult males foraged close to the bottom in shallower areas.

  17. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  18. Dental evidence for wild tuber processing among Titicaca Basin foragers 7000 ybp.

    Science.gov (United States)

    Watson, James T; Haas, Randall

    2017-09-01

    The objective of this work is to characterize dental wear in a skeletal sample dating to the Middle/Late Archaic period transition (8,000-6,700 cal. B.P.) from the Lake Titicaca Basin, Peru to better define subsistence behaviors of foragers prior to incipient sedentism and food production. The dental sample consists of 251 teeth from 11 individuals recovered from the site of Soro Mik'aya Patjxa (SMP), the earliest securely dated burial assemblage in the Lake Titicaca Basin and the only burial assemblage in the region from an unequivocal forager context. Occlusal surface wear was quantified according to Smith (1984) and Scott (1979a) to characterize diversity within the site and to facilitate comparison with other foraging groups worldwide. General linear modeling was used to assess observation error and principal axis analysis was used to compare molar wear rates and angles. Teeth were also examined for caries and specialized wear. Occlusal surface attrition is generally heavy across the dental arcade and tends to be flat among posterior teeth. Only one carious lesion was observed. Five of the 11 individuals exhibit lingual surface attrition of the maxillary anterior teeth (LSAMAT). Tooth wear rates, molar wear plane, and caries rates are consistent with terrestrial foraging and a diverse diet. The presence of LSAMAT indicates tuber processing. The results therefore contribute critical new data toward our understanding of forager diet in the Altiplano prior to plant and animal domestication in the south-central Andes. © 2017 Wiley Periodicals, Inc.

  19. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification.

    Science.gov (United States)

    Passarelli, M C; Cesar, A; Riba, I; DelValls, T A

    2017-10-01

    Changes in the marine carbonate system may affect various calcifying organisms. This study is aimed to compare the sensitivity of embryo-larval development of two species of sea urchins (Paracentrutos lividus and Lytechinus variegatus) collected and exposed to samples from different coastal zone (Spain and Brazil) to ocean acidification. The results showed that the larval stages are very sensitive to small changes in the seawater's pH. The larvae from P. lividus species showed to be more sensitive to acidified elutriate sediments than larvae from L. variegatus sea urchin. Furthermore, this study has demonstrated that the CO 2 enrichment in aquatic ecosystems cause changes on the mobility of the metals: Zn, Cu, Fe, Al and As, which was presented different behavior among them. Although an increase on the mobility of metals was found, the results using the principal component analysis showed that the pH reduction show the highest correlations with the toxicity and is the main cause of embryo-larval development inhibition. In this comparative study it is demonstrated that both species are able to assess potential effects of the ocean acidification related to CO 2 enrichment by both near future scenarios and the risk associated with CO 2 leakages in the Carbon Capture and Storage (CCS) process, and the importance of comparative studies in different zones to improve the understanding of the impacts caused by ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Failure to Burrow and Tunnel Reveals Roles for jim lovell in the Growth and Endoreplication of the Drosophila Larval Tracheae.

    Directory of Open Access Journals (Sweden)

    Fanli Zhou

    Full Text Available The Drosophila protein Jim Lovell (Lov is a putative transcription factor of the BTB/POZ (Bric- a-Brac/Tramtrack/Broad/ Pox virus and Zinc finger domain class that is expressed in many elements of the developing larval nervous system. It has roles in innate behaviors such as larval locomotion and adult courtship. In performing tissue-specific knockdown with the Gal4-UAS system we identified a new behavioral phenotype for lov: larvae failed to burrow into their food during their growth phase and then failed to tunnel into an agarose substratum during their wandering phase. We determined that these phenotypes originate in a previously unrecognized role for lov in the tracheae. By using tracheal-specific Gal4 lines, Lov immunolocalization and a lov enhancer trap line, we established that lov is normally expressed in the tracheae from late in embryogenesis through larval life. Using an assay that monitors food burrowing, substrate tunneling and death we showed that lov tracheal knockdown results in tracheal fluid-filling, producing hypoxia that activates the aberrant behaviors and inhibits development. We investigated the role of lov in the tracheae that initiates this sequence of events. We discovered that when lov levels are reduced, the tracheal cells are smaller, more numerous and show lower levels of endopolyploidization. Together our findings indicate that Lov is necessary for tracheal endoreplicative growth and that its loss in this tissue causes loss of tracheal integrity resulting in chronic hypoxia and abnormal burrowing and tunneling behavior.

  1. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio rerio FED A PROCESSED DIET, LIVE FOOD, OR THE COMBINATION

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the cu...

  2. A New Perspective on the Foraging Ecology of Apex Predators in the California Current: Results from a Fully Coupled Ecosystem Model

    Science.gov (United States)

    Fiechter, J.; Huckstadt, L. A.; Rose, K.; Costa, D. P.; Curchitser, E. N.; Hedstrom, K.; Edwards, C. A.; Moore, A. M.

    2016-02-01

    Results from a fully coupled end-to-end ecosystem model for the California Current Large Marine Ecosystem are used to describe the impact of environmental variability on the foraging ecology of its most abundant apex predator, California sea lions (Zalophus californianus). The ecosystem model consists of a biogeochemical submodel embedded in a regional ocean circulation submodel, and both coupled with a multi-species individual-based submodel for forage fish (sardine and anchovy) and California sea lions. For sea lions, bioenergetics and behavioral attributes are specified using available TOPP (Tagging Of Pacific Predators) data on their foraging patterns and diet in the California Current. Sardine and anchovy are explicitly included in the model as they represent important prey sources for California sea lions and exhibit significant interannual and decadal variability in population abundances. Output from a 20-year run (1989-2008) of the model demonstrates how different physical and biological processes control habitat utilization and foraging success of California sea lions on interannual time scales. A principal component analysis of sea lion foraging patterns indicates that the first mode of variability is alongshore and tied to sardine availability, while the second mode is cross-shore and associated with coastal upwelling intensity (a behavior consistent with male sea lion tracking data collected in 2004 vs. 2005). The results also illustrate how variability in environmental conditions and forage fish distribution affects sea lions feeding success. While specifically focusing on the foraging ecology of sea lions, our modeling framework has the ability to provide new and unique perspectives on trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.

  3. Synergy in spreading processes: from exploitative to explorative foraging strategies.

    Science.gov (United States)

    Pérez-Reche, Francisco J; Ludlam, Jonathan J; Taraskin, Sergei N; Gilligan, Christopher A

    2011-05-27

    An epidemiological model which incorporates synergistic effects that allow the infectivity and/or susceptibility of hosts to be dependent on the number of infected neighbors is proposed. Constructive synergy induces an exploitative behavior which results in a rapid invasion that infects a large number of hosts. Interfering synergy leads to a slower and sparser explorative foraging strategy that traverses larger distances by infecting fewer hosts. The model can be mapped to a dynamical bond percolation with spatial correlations that affect the mechanism of spread but do not influence the critical behavior of epidemics. © 2011 American Physical Society

  4. Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency

    Directory of Open Access Journals (Sweden)

    Marianna Chimienti

    2014-09-01

    Full Text Available Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model

  5. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Luan D. Lima

    2013-12-01

    Full Text Available Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae. Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, the present study aimed to investigate E. vizottoi's foraging strategies and dietary habits. First, we determined how abiotic factors constrained E. vizottoi's foraging patterns in the field by monitoring the foraging activity of 16 colonies on eight different days across two seasons. Second, we characterized E. vizottoi's diet by monitoring another set of 26 colonies during peak foraging activity. Our results show that E. vizottoi has foraging strategies that are similar to those of congeneric species. In spite of having a low efficiency index, colonies adopted strategies that allowed them to successfully obtain food resources while avoiding adverse conditions. These strategies included preying on other ant species, a foraging tactic that could arise if a wide variety of food items are not available in the environment or if E. vizottoi simply prefers, regardless of resource availability, to prey on other invertebrates and especially on other ant species.

  6. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Patrick W Robinson

    Full Text Available The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species' range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.

  7. Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal

    OpenAIRE

    Kazuharu Ohashi; Alison Leslie; James D. Thomson

    2013-01-01

    Animals collecting food from renewable resource patches scattered in space often establish small foraging areas to which they return faithfully. Such area fidelity offers foraging advantages through selection of profitable patches, route minimization, and regular circuit visits to these patches (“trapline foraging”). Resource distribution under field conditions may often vary in time, however, especially when competitors suddenly vanish and a number of patches become available for their neigh...

  8. The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging.

    Science.gov (United States)

    Killen, Shaun S; Brown, Joseph A; Gamperl, A Kurt

    2007-07-01

    1. In many species, individuals will alter their foraging strategy in response to changes in prey density. However, previous work has shown that prey density has differing effects on the foraging mode decisions of ectotherms as compared with endotherms. This is likely due to differences in metabolic demand; however, the relationship between metabolism and foraging mode choice in ectotherms has not been thoroughly studied. 2. Juvenile lumpfish Cyclopterus lumpus forage using one of two modes: they can actively search for prey while swimming, or they can 'sit-and-wait' for prey while clinging to the substrate using a ventral adhesive disk. The presence of these easily distinguishable foraging modes makes juvenile lumpfish ideal for the study of foraging mode choice in ectotherms. 3. Behavioural observations conducted during laboratory experiments showed that juvenile lumpfish predominantly use the 'cling' foraging mode when prey is abundant, but resort to the more costly 'swim' mode to seek out food when prey is scarce. The metabolic cost of active foraging was also quantified for juvenile lumpfish using swim-tunnel respirometry, and a model was devised to predict the prey density at which lumpfish should switch between the swim and cling foraging modes to maximize energy intake. 4. The results of this model do not agree with previous observations of lumpfish behaviour, and thus it appears that juvenile lumpfish do not try to maximize their net energetic gain. Instead, our data suggest that juvenile lumpfish forage in a manner that reduces activity and conserves space in their limited aerobic scope. This behavioural flexibility is of great benefit to this species, as it allows young individuals to divert energy towards growth as opposed to activity. In a broader context, our results support previous speculation that ectotherms often forage in a manner that maintains a minimum prey encounter rate, but does not necessarily maximize net energy gain.

  9. Genetic diversity, classification and comparative study on the larval ...

    African Journals Online (AJOL)

    Genetic diversity, classification and comparative study on the larval phenotypic ... B. mori showed different performance based on larval phenotypic data. The analysis of variance regarding the studied traits showed that different strains have ...

  10. Neural Mechanisms of Foraging

    OpenAIRE

    Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS

    2012-01-01

    Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...

  11. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    Science.gov (United States)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  12. Impaired Olfactory Associative Behavior of Honeybee Workers Due to Contamination of Imidacloprid in the Larval Stage

    Science.gov (United States)

    Yang, En-Cheng; Chang, Hui-Chun; Wu, Wen-Yen; Chen, Yu-Wen

    2012-01-01

    The residue of imidacloprid in the nectar and pollens of the plants is toxic not only to adult honeybees but also the larvae. Our understanding of the risk of imidacloprid to larvae of the honeybees is still in a very early stage. In this study, the capped-brood, pupation and eclosion rates of the honeybee larvae were recorded after treating them directly in the hive with different dosages of imidacloprid. The brood-capped rates of the larvae decreased significantly when the dosages increased from 24 to 8000 ng/larva. However, there were no significant effects of DMSO or 0.4 ng of imidacloprid per larva on the brood-capped, pupation and eclosion rates. Although the sublethal dosage of imidacloprid had no effect on the eclosion rate, we found that the olfactory associative behavior of the adult bees was impaired if they had been treated with 0.04 ng/larva imidacloprid in the larval stage. These results demonstrate that a sublethal dosage of imidacloprid given to the larvae affects the subsequent associative ability of the adult honeybee workers. Thus, a low dose of imidacloprid may affect the survival condition of the entire colony, even though the larvae survive to adulthood. PMID:23166680

  13. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  14. The Effects of Forage Policy on Feed Costs in Korea

    Directory of Open Access Journals (Sweden)

    Jae Bong Chang

    2018-05-01

    Full Text Available Feeding operations are substantial on livestock farms, besides being potentially expensive. Feeding efficiency has been considered a major influence on profits in the livestock industry. Indeed, feed costs are shown to be the largest single item of production cost in Korea. To promote production and use of domestic forage, the Korean government has enforced the forage base expansion program that strengthens the competitiveness of the livestock industry by reducing the production cost. The forage base expansion program includes three main policies: subsidized forage production, support for processing and distribution, and expanding land for forage production. This paper investigates the influence of the government’s policies often conjectured to have pronounced effects on forage production. To evaluate the forage policies, this paper uses a path-analysis approach linking government spending on forage base expansion programs and feed costs. Results indicate that the Korean government’s spending on supporting domestic forage production results in a decrease in the ratio of forage expenses to total feed cost.

  15. Diel and lunar variations in larval supply to Malindi Marine Park ...

    African Journals Online (AJOL)

    Understanding larval ecology and the mechanisms used in dispersal and habitat selection helps to better understand the population dynamics of coral reef communities. However, few studies have examined patterns of larval supply to reefs sites especially in the WIO region. Temporal patterns of fish larval occurrence in ...

  16. Forage evaluation by analysis after

    African Journals Online (AJOL)

    by forages, can be estimated by amino acid analysis of the products of fermentation in vitro. Typical results of such analyses are presented in Table 1. These results indicate that after fermentation the amino acid balance of forages is not optimal for either milk or meat production, with histidine usually being the first limiting.

  17. Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students

    Science.gov (United States)

    Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.

    2015-01-01

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…

  18. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    Science.gov (United States)

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  19. Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance.

    Science.gov (United States)

    Wisniewska, Danuta Maria; Johnson, Mark; Teilmann, Jonas; Rojano-Doñate, Laia; Shearer, Jeanne; Sveegaard, Signe; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-06-06

    The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Foraging behavior of larval cod ( Gadus morhua ) influenced by prey density and hunger

    DEFF Research Database (Denmark)

    Munk, Peter

    1995-01-01

    activity, prey selectivity, and hunger in a variable prey environment. Gadus morhua eggs were collected in March 1992 and 1993 from the Kattegat area, Denmark, fertilised and incubated in the laboratory. After hatching, the larvae were transferred to rearing tanks of 172 litres. The behaviour of larvae (6...... their prey size selectivity. Behavioural response was to a large degree determined by the level of hunger, represented by the number of newly ingested prey in the gut. The findings show that cod larvae have a flexible response to changes in feeding conditions and imply that larvae can grow and survive even...

  1. File list: His.Lar.50.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.50.AllAg.Larval_brain dm3 Histone Larvae Larval brain SRX1426943,SRX1426945... http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.50.AllAg.Larval_brain.bed ...

  2. File list: His.Lar.10.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.10.AllAg.Larval_brain dm3 Histone Larvae Larval brain SRX1426945,SRX1426943... http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.10.AllAg.Larval_brain.bed ...

  3. File list: His.Lar.20.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.20.AllAg.Larval_brain dm3 Histone Larvae Larval brain SRX1426943,SRX1426945... http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.20.AllAg.Larval_brain.bed ...

  4. Multiple-stage decisions in a marine central-place forager.

    Science.gov (United States)

    Friedlaender, Ari S; Johnston, David W; Tyson, Reny B; Kaltenberg, Amanda; Goldbogen, Jeremy A; Stimpert, Alison K; Curtice, Corrie; Hazen, Elliott L; Halpin, Patrick N; Read, Andrew J; Nowacek, Douglas P

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager

  5. Multiple-stage decisions in a marine central-place forager

    Science.gov (United States)

    Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager

  6. State of emergency: behavior of gerbils is affected by the hunger state of their predators.

    Science.gov (United States)

    Berger-Tal, Oded; Kotler, Burt P

    2010-02-01

    Predator-prey interactions are usually composed of behaviorally sophisticated games in which the values of the strategies of foraging prey individuals may depend on those of their predators, and vice versa. Therefore, any change in the behavior of the predator should result in changes to the behavior of the prey. However, this key prediction has rarely been tested. To examine the effects of the predator state on prey behavior, we manipulated the state of captive Barn Owls, Tyto alba, and released them into an enclosure containing Allenby's gerbils, Gerbillus andersoni allenbyi, a common prey of the owls. The owls were significantly more active when hungry. In response, the gerbils altered their behavior according to the state of the owl. When the owl was hungry, the gerbils visited fewer food patches, foraged in fewer patches, and harvested less food from each patch. Moreover, the gerbils kept their foraging bouts closer to their burrow, which reduced the overlap among foraging ranges of individual gerbils. Thus, changes in the state of the predator affect the foraging behavior of its prey and can also mediate competition among prey individuals.

  7. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  8. Quality of the forage apparently consumed by beef calves in natural grassland under fertilization and oversown with cool season forage species

    Directory of Open Access Journals (Sweden)

    Denise Adelaide Gomes Elejalde

    2012-06-01

    Full Text Available The objective of this study was to evaluate the chemical composition of the forage apparently consumed by steers in a natural grassland on region of Campanha, in Rio Grande do Sul, Brazil, subjected or not to different inputs: NP - natural pasture without inputs; FNP - fertilized natural pasture and INP - improved natural grassland with fertilization and over-seeded with cultivated winter species. Three Angus steers testers and a variable number of regulator animals per experimental unit were utilized in order to maintain 13 kg of DM/100 kg of live weight (LW as forage allowance. One time at each season, hand plucking samples were performed along the daily grazing time simulating forage harvested by the animals. The collected samples after drying and grind were submitted to chemical analysis to determine the forage quality. Except in winter and spring, the values of neutral detergent fiber were higher than the critical value of 550 g/kg of DM, which could limit forage intake, demonstrating that the values of forage on offer provided (15.6; 13.7; 13.5; 15.8 kg of DM/100 kg of LW/day in summer, autumn, winter and spring, respectively were not restrictive to intake. The oversowing of winter cultivated species or fertilization positively alter the degradable fiber content. The seasons had marked influence on the chemical composition of forage apparently consumed; positively increasing some fractions of forage chemical composition in the seasons in which native or cultivated winter species increased their participation. The forage chemical composition is the determining factor in animal performance in natural pasture.

  9. Optogenetics in a transparent animal: circuit function in the larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Severi, Kristen E; Wyart, Claire; Ahrens, Misha B

    2013-02-01

    Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches. Copyright © 2012. Published by Elsevier Ltd.

  10. Efficiency of selection methods for increased ratio of pupal-larval to adult-larval weight gains in Tribolium.

    Science.gov (United States)

    Campo, J L; Cobos, P

    1994-01-12

    Four lines of Tribolium castaneum were selected in each of three replicates for increased ratio of (pupal-larval) to (adult-larval) weight gains, using selection for increased (pupal-larval) weight gain (PL), selection for decreased (adult-larval) weight gain (AL), direct selection for the ratio (R) and linear selection index of larval, pupal and adult weights (I), respectively, for four generations. Linear index was calculated with economic weights of m(2) -m(3) , m(3) -m(1) and m(1) -m(2) , respectively, with m(1) , m(2) and m(3) being the means for larval, pupal and adult weights. Selection to increase the ratio is considered to be a method to maximize the mean response in (adult-larval) weight while controlling the response in (pupal-adult) weight, and as a form of antagonistic selection to increase the weight gain during a given age period relative to the gain at another age period. Larval, pupal and adult weights were measured at 14, 21 and 28 days after adult emergence, respectively. The selected proportion was 20 % in all lines. The response observed for the ratio differed significantly among lines (p adulto-peso de larva en Tribolium Cuatro líneas de Tribolium castaneum fueron seleccionadas en cada una de tres repeticiones para incrementar el cociente (peso de pupa-peso de larva)/(peso de adulto-peso de larva); la línea PL fue seleccionada para aumentar la diferencia (peso de pupa-pesp de larva), la línea AL fue seleccionada para disminuir la diferencia (peso de adulto-peso de larva), fa línea R fue seleccionada directamente para el cociente, y la línea I fue seleccionada por medio de un índice lineal basado en los pesos de larva, pupa y adulto, durante cuatro generaciones. El índice lineal se calculó con pesos económicos de (m(2) -m(3) ), (m(3) -m(1) ), y (m(1) -m(2) ) respectivamentee, siendo m(1) , m(2) , y m(3) los valores medios para el peso de larva, pupa y adulto. La selección para aumentar el cociente indicado es un método para maximizar

  11. Prey or predator – expanding the food web role of sandeel (Ammodytes marinus)

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Deurs, Mikael van; Behrens, Jane

    2014-01-01

    We report an unexpected observation of lesser sandeel Ammodytes marinus foraging on juveniles and late larval stages of the same species. This recording sheds new light on the cannibalistic and piscivorous capacity of forage fish and raises a number of questions about the role of forage fish in m...

  12. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    Directory of Open Access Journals (Sweden)

    Michael W. Chi

    2014-08-01

    Full Text Available Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  13. Reduced foraging in the presence of predator cues by the Black Spiny-tailed Iguana, Ctenosaura similis (Sauria: Iguanidae

    Directory of Open Access Journals (Sweden)

    Vincent R. Farallo

    2010-12-01

    Full Text Available The presence of a predator may have direct and indirect effects on the behavior of the prey. Although altered behavior may help prey avoid predators, it also can have a potential impact on critical activities such as foraging. Predator-prey interactions are routinely studied in laboratory-based experiments owing to theperceived difficulties of conducting such experiments in natural settings. We conducted an experimental study under field conditions in Palo Verde National Park in northwestern Costa Rica to assess behavioral responses of Black Spiny-tailed Iguanas (Ctenosaurasimilis to the presence of predators and predator cues. Free-roaming iguanas were offered mango in designated areas in the presence of a predator (Boa constrictor, a predator cue (B. constrictor feces, and a control (no predator or predator cue. Results indicate that iguanas reduced their foraging efforts in the presence of both a predator and its cue.

  14. Rodent foraging is affected by indirect, but not by direct, cues of predation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Danielson, Brent, J.; Brinkerhoff, R., Jory

    2004-01-01

    Behavioral Ecology Vol. 15 No. 3: 433 - 437 We used foraging trays to determine whether old field mice, Peromyscus polionotus , altered foraging in response to direct cues of predation risk (urine of native and nonnative predators) and indirect cues of predation risk (foraging microhabitat, precipitation, and moon illumination). The proportion of seeds remaining in each tray (a measure of the giving-up density [GUD]) was used to measure risk perceived by mice. Mice did not alter their GUD when presented with cues of native predators (bobcats, Lynx r ufus , and red foxes, Vulpes vulpes), recently introduced predators (coyotes, Canis latrans ), nonnative predators (ocelots, Leopardus pardalis ), a native herbivore (white-tailed deer, Odocoileus virginianus), or a water control. Rather, GUD was related to microhabitat: rodents removed more seeds from foraging trays sheltered beneath vegetative cover compared with exposed trays outside of cover. Rodents also removed more seeds during nights with precipitation and when moon illumination was low. Our results suggest that P. polionotus used indirect cues rather than direct cues to assess risk of vertebrate predation. Indirect cues may be more reliable than are direct scent cues for estimating risk from multiple vertebrate predators that present the most risk in open environments.

  15. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion.

    Science.gov (United States)

    Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C

    2017-09-01

    In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling

  16. File list: ALL.Lar.50.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.50.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426944,SRX14...26943,SRX1426945,SRX1426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.50.AllAg.Larval_brain.bed ...

  17. File list: ALL.Lar.20.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.20.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426944,SRX14...26943,SRX1426945,SRX1426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.20.AllAg.Larval_brain.bed ...

  18. File list: ALL.Lar.05.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.05.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426945,SRX14...26944,SRX1426946,SRX1426943 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.05.AllAg.Larval_brain.bed ...

  19. File list: ALL.Lar.10.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.10.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426945,SRX14...26944,SRX1426943,SRX1426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.10.AllAg.Larval_brain.bed ...

  20. Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior.

    Science.gov (United States)

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2017-12-01

    Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills ( Alca torda , N  = 5, from Fair Isle, UK) and common guillemots ( Uria aalge , N  = 2 from Fair Isle and N  = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive ( N  = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives ( N  = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

  1. Effect of Emamectin Benzoate on Mortality, Proboscis Extension, Gustation and Reproduction of the Corn Earworm, Helicoverpa zea

    OpenAIRE

    López, Juan D.; Latheef, M. A.; Hoffmann, W. C.

    2010-01-01

    Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult fee...

  2. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    Directory of Open Access Journals (Sweden)

    Paula Pappalardo

    Full Text Available Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule, which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in

  3. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    Science.gov (United States)

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.

  4. Fish larval transport in the coastal waters through ecological modelling

    Digital Repository Service at National Institute of Oceanography (India)

    George, G.

    are as follows: (i) to find out the influence of environmental parameters on the biology of the given ecosystem (ii) to track larval transport and biological abundance in relation to environmental vari- ables (iii) to compare biological abundance and fish larval... include the following investigations: (i) analysis of satellite chlorophyll data along the southwest coastal waters of India to derive a biological calender for sardine (ii) tracking the larval survival and establish a link between food and sardine inter...

  5. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    Science.gov (United States)

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  6. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.

    Science.gov (United States)

    Dananay, Kacey L; Krynak, Katherine L; Krynak, Timothy J; Benard, Michael F

    2015-10-01

    Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments. © 2015 SETAC.

  7. Afferent Connections to the Rostrolateral Part of the Periaqueductal Gray: A Critical Region Influencing the Motivation Drive to Hunt and Forage

    Directory of Open Access Journals (Sweden)

    Sandra Regina Mota-Ortiz

    2009-01-01

    Full Text Available Previous studies have shown that a particular site in the periaqueductal gray (PAG, the rostrolateral PAG, influences the motivation drive to forage or hunt. To have a deeper understanding on the putative paths involved in the decision-making process between foraging, hunting, and other behavioral responses, in the present investigation, we carried out a systematic analysis of the neural inputs to the rostrolateral PAG (rlPAG, using Fluorogold as a retrograde tracer. According to the present findings, the rlPAG appears to be importantly driven by medial prefrontal cortical areas involved in controlling attention-related and decision-making processes. Moreover, the rlPAG also receives a wealth of information from different amygdalar, hypothalamic, and brainstem sites related to feeding, drinking, or hunting behavioral responses. Therefore, this unique combination of afferent connections puts the rlPAG in a privileged position to influence the motivation drive to choose whether hunting and foraging would be the most appropriate adaptive responses.

  8. Safety of methionine, a novel biopesticide, to adult and larval honey bees (Apis mellifera L.).

    Science.gov (United States)

    Weeks, Emma N I; Schmehl, Daniel R; Baniszewski, Julie; Tomé, Hudson V V; Cuda, James P; Ellis, James D; Stevens, Bruce R

    2018-03-01

    Methionine is an essential/indispensible amino acid nutrient required by adult and larval honey bees (Apis mellifera L. [Hymenoptera: Apidae]). Bees are unable to rear broods on pollen deficient in methionine, and reportedly behaviorally avoid collecting pollen or nectar from florets deficient in methioinine. In contrast, it has been demonstrated that methionine is toxic to certain pest insects; thus it has been proposed as an effective biopesticide. As an ecofriendly integrated pest management agent, methionine boasts a novel mode of action differentiating it from conventional pesticides, while providing non-target safety. Pesticides that minimize collateral effects on bees are desirable, given the economic and ecological concerns about honey bee health. The aim of the present study was to assess the potential impact of the biopesticide methionine on non-target adult and larval honey bees. Acute contact adult toxicology bioassays, oral adult assessments and chronic larval toxicity assessments were performed as per U.S. Environmental Protection Agency (EPA) requirements. Our results demonstrated that methionine fits the U.S. EPA category of practically nontoxic (i.e. lethal dose to 50% mortality or LD 50 > 11µg/bee) to adult honey bees. The contact LD 50 was > 25µg/bee and the oral LD 50 was > 100µg/bee. Mortality was observed in larval bees that ingested DL-methionine (effective concentration to 50% mortality or EC 50 560µg/bee). Therefore, we conclude that methionine poses little threat to the health of the honey bee, due to unlikely exposure at concentrations shown to elicit toxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Maroua, Ferdenache; Aribi, Nadia

    2017-11-01

    Botanical insecticides are a promising alternative to reduce the harmful effects of synthetic chemicals. Among the botanical biopesticides, azadirachtin obtained from the Indian neem tree Azadirachta indica A. Juss. (Meliaceae) is probably the biorational insecticide with greatest agriculture use nowadays due to its broad insecticide activity. The current study, evaluated the lethal and sublethal effects of azadirachtin on larval avoidance, food intake and digestive enzymes of Drosophila melanogaster larvae as biological model. Azadirachtin was applied topically at two doses LD 25 (0.28μg) and LD 50 (0.67μg) on early third instars larvae. Results evaluated 24h after treatment showed that larvae exhibited significant repellence to azadirachtin and prefer keeping in untreated arenas rather than moving to treated one. In addition, azadirachtin avoidance was more marked in larvae previously treated with this compound as compared with naïf larvae (controls). Moreover, azadirachtin treatment decreased significantly the amount of larval food intake. Finally, azadirachtin reduced significantly the activity of larval α-amylase, chitinase and protease and increased the activity of lipase. This finding showed that azadirachtin induced behavioral and physiological disruption affecting the ability of the insect to digest food. This rapid installation of avoidance and long term antifeedancy might reinforce the action of azadirachtin and provide a new behavioral strategy for integrated pest management programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Breeding limits foraging time : Evidence of interrupted foraging response from body mass variation in a tropical environment

    NARCIS (Netherlands)

    Nwaogu, Chima J.; Dietz, Maurine W.; Tieleman, B. Irene; Cresswell, Will

    Birds should store body reserves if starvation risk is anticipated; this is known as an ‘interrupted foraging response’. If foraging remains unrestricted, however, body mass should remain low to limit the predation risk that gaining and carrying body reserves entails. In temperate environments mass

  11. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae.

    Science.gov (United States)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter; Rämert, Birgitta; Meyling, Nicolai V

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae adults, but with variable virulence. When host patches were inoculated with M. brunneum conidia in a no-choice situation, more eggs were laid by T. rapae in hosts of those patches compared to control and B. bassiana treated patches. Females that later succumbed to mycosis from either fungus laid significantly more eggs than non-mycosed females, indicating that resources were allocated to increased oviposition due to perceived decreased life expectancy. When presented with a choice between healthy and fungal infected hosts, T. rapae females laid more eggs in healthy larvae than in M. brunneum infected larvae. This was less pronounced for B. bassiana. Based on our results we propose that T. rapae can perceive and react towards IGP risk posed by M. brunneum but not B. bassiana to the foraging female herself and her offspring. Thus, M. brunneum has the potential to be used for biological control against D. radicum with a limited risk to T. rapae populations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover

    Directory of Open Access Journals (Sweden)

    Ricardo Lima de Azevedo Junior

    2012-04-01

    Full Text Available The objective of this research was to estimate three pasture-based systems mixed with elephantgrass + spontaneous growth species, annual ryegrass, for pasture-based system 1; elephantgrass + spontaneous growth species + forage peanut, for pasture-based system 2; and elephantgrass + spontaneous growth species + annual ryegrass + red clover, for pasture-based system 3. Elephantgrass was planted in rows 4 m apart from each other. During the cool-season, annual ryegrass was sown in the alleys between the rows of elephantgrass; forage peanut and red clover were sown in the alleys between the elephantgrass according to the respective treatment. The experimental design was totally randomized in the three treatments (pasture-based systems, two replicates (paddocks in completely split-plot time (grazing cycles. Holstein cows receiving 5.5 kg-daily complementary concentrate feed were used in the evaluation. Pre-grazing forage mass, botanical composition and stocking rate were evaluated. Samples of simulated grazing were collected to analyze organic matter (OM, neutral detergent fiber (NDF, crude protein (CP and organic matter in situ digestibility (OMISD. Nine grazing cycles were performed during the experimental period (341 days. The average dry matter values for pre-grazing and stocking rate were 3.34; 3.46; 3.79 t/ha, and 3.28; 3.34; 3.60 AU/ha for each respective pasture-based system. Similar results were observed between the pasture-based systems for OM, NDF, CP and OMISD. Considering forage mass, stocking rate and nutritive value, the pasture-based system intercropped with forage legumes presented better performance.

  13. Analysis of Inter- and Intra-individual Variation in Foraging Habits of the Endangered Hawaiian Petrel Using Stables Isotopes

    Science.gov (United States)

    Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.

    2014-12-01

    Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs

  14. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Morales-Ramos, Juan A; Rojas, M Guadalupe

    2015-10-01

    Crowding conditions of larvae may have a significant impact on commercial production efficiency of some insects, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, no reports were found on the effects of crowding on food utilization. The effect of larval density on food utilization efficiency of T. molitor larvae was studied by measuring efficiency of ingested food conversion (ECI), efficiency of digested food conversion (EDC), and mg of larval weight gain per gram of food consumed (LWGpFC) at increasing larval densities (12, 24, 36, 48, 50, 62, 74, and 96 larvae per dm(2)) over four consecutive 3-wk periods. Individual larval weight gain and food consumption were negatively impacted by larval density. Similarly, ECI, ECD, and LWGpFC were negatively impacted by larval density. Larval ageing, measured as four consecutive 3-wk periods, significantly and independently impacted ECI, ECD, and LWGpFC in a negative way. General linear model analysis showed that age had a higher impact than density on food utilization parameters of T. molitor larvae. Larval growth was determined to be responsible for the age effects, as measurements of larval mass density (in grams of larvae per dm(2)) had a significant impact on food utilization parameters across ages and density treatments (in number of larvae per dm(2)). The importance of mass versus numbers per unit of area as measurements of larval density and the implications of negative effects of density on food utilization for insect biomass production are discussed. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  15. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  16. Breeding success of a marine central place forager in the context of climate change: A modeling approach.

    Directory of Open Access Journals (Sweden)

    Lauriane Massardier-Galatà

    Full Text Available In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS, including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella, which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.

  17. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    Science.gov (United States)

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  18. Evaluating interception of larval pallid sturgeon on the Lower Missouri River- data acquisition, interpolation, and visualization

    Science.gov (United States)

    Bulliner, E. A., IV; Erwin, S. O.; Anderson, B. J.; Wilson, H.; Jacobson, R. B.

    2016-12-01

    The transition from endogenous to exogenous feeding is an important life-stage transition for many riverine fish larvae. On the Missouri River, U.S., riverine alteration has decreased connectivity between the navigation channel and complex, food-producing and foraging areas on the channel margins, namely shallow side channels and sandbar complexes. A favored hypothesis, the interception hypothesis, for recruitment failure of pallid sturgeon is that drifting larvae are not able to exit the highly engineered navigation channel, and therefore starve. We present work exploring measures of hydraulic connectivity between the navigation channel and channel margins using multiple data-collection protocols with acoustic Doppler current profilers (ADCPs). As ADCP datasets alone often do not have high enough spatial resolution to characterize interception and connectivity sufficiently at the scale of drifting sturgeon larvae, they are often supplemented with physical and empirical models. Using boat-mounted ADCPs, we collected 3-dimensional current velocities with a variety of driving techniques (specifically, regularly spaced transects, reciprocal transects, and irregular patterns) around areas of potential larval interception. We then used toolkits based in Python to interpolate 3-dimensional velocity fields at spatial scales finer than the original measurements, and visualized resultant velocity vectors and flowlines in the software package Paraview. Using these visualizations, we investigated the necessary resolution of field measurements required to model connectivity with channel margin areas on large, highly engineered river ecosystems such as the Missouri River. We anticipate that results from this work will be used to help inform models of larval interception under current conditions. Furthermore, results from this work will be useful in developing monitoring strategies to evaluate the restoration of channel complexity to support ecological functions.

  19. The Role of Non-Foraging Nests in Polydomous Wood Ant Colonies.

    Science.gov (United States)

    Ellis, Samuel; Robinson, Elva J H

    2015-01-01

    A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.

  20. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.

    Science.gov (United States)

    Silva-Soares, Nuno F; Nogueira-Alves, A; Beldade, P; Mirth, Christen Kerry

    2017-06-07

    Understanding how species adapt to new niches is a central issue in evolutionary ecology. Nutrition is vital for the survival of all organisms and impacts species fitness and distribution. While most Drosophila species exploit rotting plant parts, some species have diversified to use ripe fruit, allowing earlier colonization. The decomposition of plant material is facilitated by yeast colonization and proliferation. These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations. We compared larval performance, feeding behaviour and adult oviposition site choice between the ripe fruit colonizer and invasive pest Drosophila suzukii, and a closely-related rotting fruit colonizer, Drosophila biarmipes. Through the manipulation of protein:carbohydrate ratios in artificial diets, we found that D. suzukii larvae perform better at lower protein concentrations and consume less protein rich diets relative to D. biarmipes. For adult oviposition, these species differed in preference for substrate hardness, but not for the substrate nutritional composition. Our findings highlight that rather than being an exclusive specialist on ripe fruit, D. suzukii's adaptation to use ripening fruit allow it to colonize a wider range of food substrates than D. biarmipes, which is limited to soft foods with higher protein concentrations. Our results underscore the importance of nutritional performance and feeding behaviours in the colonization of new food niches.

  1. Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging.

    Science.gov (United States)

    Saleh, Nehal; Chittka, Lars

    2007-04-01

    To test the relative importance of long-term and working spatial memories in short-range foraging in bumblebees, we compared the performance of two groups of bees. One group foraged in a stable array of six flowers for 40 foraging bouts, thereby enabling it to establish a long-term memory of the array, and adjust its spatial movements accordingly. The other group was faced with an array that changed between (but not within) foraging bouts, and thus had only access to a working memory of the flowers that had been visited. Bees in the stable array started out sampling a variety of routes, but their tendency to visit flowers in a repeatable, stable order ("traplining") increased drastically with experience. These bees used shorter routes and converged on four popular paths. However, these routes were mainly formed through linking pairs of flowers by near-neighbour movements, rather than attempting to minimize overall travel distance. Individuals had variations to a primary sequence, where some bees used a major sequence most often, followed by a minor less used route, and others used two different routes with equal frequency. Even though bees foraging in the spatially randomized array had access to both spatial working memory and scent marks, this manipulation greatly disrupted foraging efficiency, mainly via an increase in revisitation to previously emptied flowers and substantially longer search times. Hence, a stable reference frame greatly improves foraging even for bees in relatively small arrays of flowers.

  2. Adaptive Lévy processes and area-restricted search in human foraging.

    Directory of Open Access Journals (Sweden)

    Thomas T Hills

    Full Text Available A considerable amount of research has claimed that animals' foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods-comparing alternative distributions using maximum likelihood methods-showed the strongest support for bounded power-law distributions (truncated Lévy flights. However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32 participants. Moreover, paths in the patchy environment (but not the dispersed environment showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments-where search was area-restricted. Furthermore, our results

  3. Fear of feces? Trade-offs between disease risk and foraging drive animal activity around raccoon latrines

    Science.gov (United States)

    Weinstein, Sara B.; Moura, Chad W.; Mendez, Jon Francis; Lafferty, Kevin D.

    2017-01-01

    Fear of predation alters prey behavior, which can indirectly alter entire landscapes. A parasite-induced ecology of fear might also exist if animals avoid parasite-contaminated resources when infection costs outweigh foraging benefits. To investigate whether animals avoid parasite contaminated sites, and if such avoidance balances disease costs and foraging gains, we monitored animal behavior at raccoon latrines – sites that concentrate both seeds and pathogenic parasite eggs. Using wildlife cameras, we documented over 40 potentially susceptible vertebrate species in latrines and adjacent habitat. Latrine contact rates reflected background activity, diet preferences and disease risk. Disease-tolerant raccoons and rats displayed significant site attraction, while susceptible birds and small mammals avoided these high-risk sites. This suggests that parasites, like predators, might create a landscape of fear for vulnerable hosts. Such non-consumptive parasite effects could alter disease transmission, population dynamics, and even ecosystem structure.

  4. Descriptions of four larval forms of Nilodosis Kieffer from East Asia

    Directory of Open Access Journals (Sweden)

    Hongqu Tang

    2012-10-01

    Full Text Available Larval material putatively assigned to the genus Nilodosis Kieffer from Korea, China and Japan has been compared. The results show that the Japanese larval form has the club- to balloon-shaped cephalic setae S7 and S9 in common with the Korean larval form, but it can be separated from the latter by the shape of the inner mandibular teeth and the premandibular teeth. The larval forms from China (Guangdong and Yunnan apparently consist of two independent species. It is most likely that there will be more species in this genus found in Asia. Larvae are mud-sandy bottom-dwellers that can occur in the littoral of lakes and the potamal of larger rivers, up to a maximum depth of 5 meters. The specific larval characters show that it probably is a semi-psammorheophilic predator. doi: 10.5324/fn.v31i0.1406.Published online: 17 October 2012. 

  5. Risso's dolphins plan foraging dives.

    Science.gov (United States)

    Arranz, Patricia; Benoit-Bird, Kelly J; Southall, Brandon L; Calambokidis, John; Friedlaender, Ari S; Tyack, Peter L

    2018-02-28

    Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives. © 2018. Published by The Company of Biologists Ltd.

  6. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  7. Three-dimensional foraging habitat use and niche partitioning in two sympatric seabird species, Phalacrocorax auritus and P. penicillatus

    Science.gov (United States)

    Peck-Richardson, Adam G.; Lyons, Donald E.; Roby, Daniel D.; Cushing, Daniel A.; Lerczak, James A.

    2018-01-01

    Ecological theory predicts that co-existing, morphologically similar species will partition prey resources when faced with resource limitations. We investigated local movements, foraging dive behavior, and foraging habitat selection by breeding adults of 2 closely related cormorant species, double-crested cormorants Phalacrocorax auritus and Brandt’s cormorants P. penicillatus. These species nest sympatrically at East Sand Island in the Columbia River estuary at the border of Oregon and Washington states, USA. Breeding individuals of each species were tracked using GPS tags with integrated temperature and depth data-loggers. The overall foraging areas and core foraging areas (defined as the 95% and 50% kernel density estimates of dive locations, respectively) of double-crested cormorants were much larger and covered a broader range of riverine, mixed-estuarine, and nearshore marine habitats. Brandt’s cormorant foraging areas were less expansive, were exclusively marine, and mostly overlapped with double-crested cormorant foraging areas. Within these areas of overlap, Brandt’s cormorants tended to dive deeper (median depth = 6.48 m) than double-crested cormorants (median depth = 2.67 m), and selected dive locations where the water was deeper. Brandt’s cormorants also utilized a deeper, more benthic portion of the water column than did double-crested cormorants. Nevertheless, the substantial overlap in foraging habitat between the 2 cormorant species in the Columbia River estuary, particularly for Brandt’s cormorants, suggests that superabundant prey resources allow these 2 large and productive cormorant colonies to coexist on a single island near the mouth of the Columbia River.

  8. Resource diversity and landscape-level homogeneity drive native bee foraging.

    Science.gov (United States)

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  9. Information Foraging in Nuclear Power Plant Control Rooms

    International Nuclear Information System (INIS)

    Boring, R.L.

    2011-01-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  10. Information Foraging in Nuclear Power Plant Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  11. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  12. File list: InP.Lar.10.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.10.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.10.AllAg.Larval_brain.bed ...

  13. File list: InP.Lar.50.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.50.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.50.AllAg.Larval_brain.bed ...

  14. File list: InP.Lar.05.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.05.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.05.AllAg.Larval_brain.bed ...

  15. File list: InP.Lar.20.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.20.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.20.AllAg.Larval_brain.bed ...

  16. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

    Science.gov (United States)

    Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L

    2017-07-01

    Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

  17. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.

  18. Utilization of Swamp Forages from South Kalimantan on Local Goat Performances

    Directory of Open Access Journals (Sweden)

    T. Rostini

    2014-04-01

    Full Text Available Forages in swamp area consist of grass and legumes that have good productivity and nutrient quality. This research was aimed to evaluate the potency of swamp forage on digestibility and performance of goats. There were 24 local male goats aged 10-12 months with initial body weight of 13.10±1.55 kg, allocated into 6 treatments. Those were control (R0: 60% grass and 40% legumes; (R1: 60% swamp forages and 40% concentrate; (R2: 100% swamp forages; (R3: 100% swamp forage hay; (R4: 100% swamp forage silage; (R5: 100% haylage swamp forages. Results showed that silage treatment significantly increased (P<0.05 consumption and digestibility. Swamp forages could be utilized well by preservation (silage, hay, and haylage. Ensilage of swamp forages increased protein content from 13.72% to 14.02%, protein intake (74.62 g/d, dry matter intake (532.11 g/d, nitrogen free extract intake (257.39 g/d, with total body weight gain (3.5 kg in eight weeks and average daily gain (62.60 g/d. It is concluded that ensilage of swamp forages (R4 is very potential to be utilized as forage source for ruminants such as goats.

  19. Effects of two stressors on amphibian larval development.

    Science.gov (United States)

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2012-05-01

    In parallel with a renewed interest in nuclear power and its possible environmental impacts, a new environmental radiation protection system calls for environmental indicators of radiological stress. However, because environmental stressors seldom occur alone, this study investigated the combined effects of an ecological stressor (larval density) and an anthropogenic stressor (ionizing radiation) on amphibians. Scaphiopus holbrookii tadpoles reared at different larval densities were exposed to four low irradiation dose rates (0.13, 2.4, 21, and 222 mGy d(-1)) from (137)Cs during the sensitive period prior to and throughout metamorphosis. Body size at metamorphosis and development rate served as fitness correlates related to population dynamics. Results showed that increased larval density decreased body size but did not affect development rate. Low dose rate radiation had no impact on either endpoint. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task.

    Science.gov (United States)

    Van Nest, Byron N; Wagner, Ashley E; Marrs, Glen S; Fahrbach, Susan E

    2017-09-01

    The mushroom bodies (MBs) are insect brain regions important for sensory integration, learning, and memory. In adult worker honey bees (Apis mellifera), the volume of neuropil associated with the MBs is larger in experienced foragers compared with hive bees and less experienced foragers. In addition, the characteristic synaptic structures of the calycal neuropils, the microglomeruli, are larger but present at lower density in 35-day-old foragers relative to 1-day-old workers. Age- and experience-based changes in plasticity of the MBs are assumed to support performance of challenging tasks, but the behavioral consequences of brain plasticity in insects are rarely examined. In this study, foragers were recruited from a field hive to a patch comprising two colors of otherwise identical artificial flowers. Flowers of one color contained a sucrose reward mimicking nectar; flowers of the second were empty. Task difficulty was adjusted by changing flower colors according to the principle of honey bee color vision space. Microglomerular volume and density in the lip (olfactory inputs) and collar (visual inputs) compartments of the MB calyces were analyzed using anti-synapsin I immunolabeling and laser scanning confocal microscopy. Foragers displayed significant variation in microglomerular volume and density, but no correlation was found between these synaptic attributes and foraging performance. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1057-1071, 2017. © 2017 Wiley Periodicals, Inc.

  1. Feeding, growth, and survival of post-larval abalone Haliotis asinina on different benthic diatoms

    Directory of Open Access Journals (Sweden)

    Emmanuel C. Capinpin, Jr.

    2007-12-01

    Full Text Available The feeding behavior, digestive efficiency, growth, and survival of post-larval abalone Haliotis asininafed with 5 species of locally isolated benthic diatom strains (Navicula mollis, N. ramosissima, Stauroneissp., Pleurosigma sp., and Cocconeis sp. were examined in the laboratory. Two 15-day feeding trialsusing 1 mm post-larvae were conducted. No significant differences were observed in sizes of post-larvalabalone after 15 days in all diatom treatments (P>0.05. However, in both trials, Cocconeis sp. resulted inhigh survival rates (88.9±5.6% and 80.0±20.0% for Trials 1 and 2, respectively. Cocconeis sp. wasefficiently digested by post-larval abalone, with most of the cells being ruptured during ingestion and/orpassage through the gut. One diatom strain, Pleurosigma sp., resulted to a high survival but producedthe slowest growth rate (<10 ìm.d-1 SL. It was probably not ingested easily during the experiment due toits large size or mobility. For the other diatom strains, N. mollis and N. ramosissima, most cells passedthrough the gut with the cells left intact. Stauroneis sp. is highly digestible, but did not result to highsurvival, although the remaining live post-larval abalone fed on this diatom as well as on N. mollis grewfaster during the second week of both feeding trials. N. ramosissima resulted to poorest survival rate(<10% due to its poor digestibility. Only Cocconeis sp. showed a fairly high growth rate, digestionefficiency, and survival rate. N. mollis which gave a fairly high survival rate and Stauroneis may be addedtowards the later stages of post-larval rearing as well as other large diatoms. The digestion efficiency ofdiatom strains is considered an important factor determining its dietary value, but other factors may alsobe important such as volume contents, biochemical composition, and other physical characteristics.

  2. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

  3. Adaptive intertemporal preferences in foraging-style environments

    Directory of Open Access Journals (Sweden)

    Michael T. Bixter

    2013-06-01

    Full Text Available Decision makers often face choices between smaller more immediate rewards and larger more delayed rewards. For example, when foraging for food, animals must choose between actions that have varying costs (e.g., effort, duration, energy expenditure and varying benefits (e.g., amount of food intake. The combination of these costs and benefits determine what optimal behavior is. In the present study, we employ a foraging-style task to study how humans make reward-based choices in response to the real-time constraints of a dynamic environment. On each trial participants were presented with two rewards that differed in magnitude and in the delay until their receipt. Because the experiment was of a fixed duration, maximizing earnings required decision makers to determine how to trade off the magnitude and the delay associated with the two rewards on each trial. To evaluate the extent to which participants could adapt to the decision environment, specific task characteristics were manipulated, including reward magnitudes (Experiment 1 and the delay between trials (Experiment 2. Each of these manipulations was designed to alter the pattern of choices made by an optimal decision maker. Several findings are of note. First, different choice strategies were observed with the manipulated environmental constraints. Second, despite contextually-appropriate shifts in behavior between conditions in each experiment, choice patterns deviated from theoretical optimality. In particular, the delays associated with the rewards did not exert a consistent influence on choices as required by exponential discounting. Third, decision makers nevertheless performed surprisingly well in all task environments with any deviations from strict optimality not having particularly deleterious effects on earnings. Taken together, these results suggest that human decision makers are capable of exhibiting intertemporal preferences that reflect a variety of environmental constraints.

  4. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México.

    Science.gov (United States)

    Macías-Macías, J O; Tapia-Gonzalez, J M; Contreras-Escareño, F

    2017-01-01

    Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  5. Contributions for larval development optimization of Homarus gammarus

    Directory of Open Access Journals (Sweden)

    Pedro Tiago Fonseca Sá

    2014-06-01

    The seawater rising temperature resulted in a decrease of intermoult period in all larval development stages and at all tested temperatures, ranging from 4.77 (Z1 to 16.5 days (Z3 at 16°C, whereas at 23°C, ranged from 3:02 (Z1 and 9.75 days (Z3. The results obtained are an extremely useful guide for future optimization of protocols on larval development of H. gammarus.

  6. Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller and V. tropica (bigger preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w, colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55-79% and residence times by 17-33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose, colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger, colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees.

  7. 7 CFR 457.117 - Forage production crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117 Forage..., or a mixture thereof, or other species as shown in the Actuarial Documents. Harvest—Removal of forage... different price elections by type, in which case you may select one price election for each forage type...

  8. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini).

    Science.gov (United States)

    Streinzer, Martin; Huber, Werner; Spaethe, Johannes

    2016-10-01

    Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

  9. Characterization of forage and extrusa clones dwarf elephant grass under rotational stocking

    Directory of Open Access Journals (Sweden)

    Tatiana Pires Pereira

    2014-10-01

    Full Text Available The objective of this trial was to evaluate the behavior ingestive of crossbred heifers and chemical characteristics of the material from two clones of dwarf elephant grass (BRS Kurumi ‘and CNPGL 01/03/00 submitted to different management strategies through sampling of forage (whole plant extrusa and manual hand plucking. The experiment was conducted at Embrapa Dairy Cattle, Coronel Pacheco, MG. We used a completely randomized design with factorial (2x2x2 with three replications. The treatments consisted of two clones of elephant grass (BRS Kurumi ‘and CNPGL 01/03/00, two light interception at the entrance of the animals (90 and 95% and two heights of post-grazing residue (30 and 50 cm with three replications. The chemical analysis showed that the methodology manual grazing simulation enables an acceptable estimate of the forage selected by grazing animals and the sampling of the whole plant is not selected by the animal diet. To harvest extrusa rate evaluation and mass bit, fractions and chemical composition of the plant of the ingested material was taken. Characteristics, structural and nutritional value of clone BRS ‘Kurumi’ facilitated greater forage intake by the animal, suggesting its use in grazing systems.

  10. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    Science.gov (United States)

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.

  11. Foraging behavior of Anastrepha Ludens, A. obliqua, and A. serpentina in response to feces extracts containing host marking pheromone.

    Science.gov (United States)

    Aluja, Martin; Díaz-Fleischer, Francisco

    2006-02-01

    Following oviposition, females of many Tephritid flies deposit host marking pheromones (HMPs) to indicate that the host fruit has been occupied. We describe the foraging behavior of these three economically important species (Anastrepha ludens and A. obliqua from the fraterculus species group and A. serpentina from the serpentina species group) when they encounter an artificial fruit (green agar spheres wrapped in Parafilm) marked with intra- and interspecific feces extracts that contain, among other substances, host marking pheromone. When flies encountered fruit treated with either 1 or 100 mg/ml feces extract, there were drastic and statistically significant reductions in tree residence time, mean time spent on fruit, and in the number of oviposition attempts or actual ovipositions when compared to the control treatment (clean fruit). These responses were almost identical irrespective of extract origin (i.e., fly species), indicating complete interspecific HMP cross-recognition by all three Anastrepha species tested. We discuss the ecological and practical implications of our findings.

  12. Review: Feeding conserved forage to horses: recent advances and recommendations.

    Science.gov (United States)

    Harris, P A; Ellis, A D; Fradinho, M J; Jansson, A; Julliand, V; Luthersson, N; Santos, A S; Vervuert, I

    2017-06-01

    The horse is a non-ruminant herbivore adapted to eating plant-fibre or forage-based diets. Some horses are stabled for most or the majority of the day with limited or no access to fresh pasture and are fed preserved forage typically as hay or haylage and sometimes silage. This raises questions with respect to the quality and suitability of these preserved forages (considering production, nutritional content, digestibility as well as hygiene) and required quantities. Especially for performance horses, forage is often replaced with energy dense feedstuffs which can result in a reduction in the proportion of the diet that is forage based. This may adversely affect the health, welfare, behaviour and even performance of the horse. In the past 20 years a large body of research work has contributed to a better and deeper understanding of equine forage needs and the physiological and behavioural consequences if these are not met. Recent nutrient requirement systems have incorporated some, but not all, of this new knowledge into their recommendations. This review paper amalgamates recommendations based on the latest understanding in forage feeding for horses, defining forage types and preservation methods, hygienic quality, feed intake behaviour, typical nutrient composition, digestion and digestibility as well as health and performance implications. Based on this, consensual applied recommendations for feeding preserved forages are provided.

  13. Granulomatous responses in larval taeniid infections.

    Science.gov (United States)

    Díaz, Á; Sagasti, C; Casaravilla, C

    2018-05-01

    Granulomas are responses to persistent nonliving bodies or pathogens, centrally featuring specialized macrophage forms called epithelioid and multinucleated giant cells. The larval stages of the cestode parasites of the Taeniidae family (Taenia, Echinococcus) develop for years in fixed tissue sites in mammals. In consequence, they are targets of granulomatous responses. The information on tissue responses to larval taeniids is fragmented among host and parasite species and scattered over many decades. We attempt to draw an integrated picture of these responses in solid tissues. The intensity of inflammation around live parasites spans a spectrum from minimal to high, parasite vitality correlating with low inflammation. The low end of the inflammatory spectrum features collagen capsules proximal to the parasites and moderate distal infiltration. The middle of the spectrum is dominated by classical granulomatous responses, whereas the high end features massive eosinophil invasions. Across the range of parasite species, much observational evidence suggests that eosinophils are highly effective at killing larval taeniids in solid tissues, before and during chronic granulomatous responses. The evidence available also suggests that these parasites are adapted to inhibit host granulomatous responses, in part through the exacerbation of host regulatory mechanisms including regulatory T cells and TGF-β. © 2018 John Wiley & Sons Ltd.

  14. Developing Cyber Foraging Applications for Portable Devices

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents the Locusts cyber foraging framework. Cyber foraging is the opportunistic use of computing resources available in the nearby environment, and using such resources thus fall into the category of distributed computing. Furthermore, for the resources to be used efficiently, paral...

  15. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  16. Comparative Effect of Sole Forage and Mixed Concentrate-Forage ...

    African Journals Online (AJOL)

    There was no statistical (P>0.05) difference in average intake of forage between the two treatment groups. Economically, Treatment 1 proves to be better for the enhancement of body weight in growing rabbits than Treatment 2. Key words: Weaner rabbits,Poultry grower mesh, Tridax procumbens, Feed intake,Body weight ...

  17. Foraging efficiency of a predator flock for randomly moving prey: A simulation study

    Science.gov (United States)

    Lee, Sang-Hee; Kwon, Ohsung

    2016-03-01

    Flocking behavior of animals is highly advantageous for taking food resources. The degree of the advantage is related to the ability of flock members to detect their prey and the mobility of prey individuals. In this study, to explore the relation, we constructed a model to simulate a predator flock and its randomly moving prey. The predator members have the prey detection ability, which was characterized as sensing distance, R, and a sensing angle, θ. The mobility of the prey individuals was characterized as the maximum traveling distance of an iteration time step, L. The relative flock foraging efficiency, ɛ, was defined as ɛ = 1 - (Td/Tup). Tup and Td represent the spent time for the flock to eat all prey individuals and to uptake the last remaining 10% prey, respectively. Simulation results showed that ɛ increased, maximized, and decreased with the increase of R, regardless of L. As the number of prey, N, increased, the tendency of the increasing and decreasing was diluted. The result was briefly discussed in relation to the flock foraging behavior and the development of the model toward applications for real ecosystems.

  18. Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae Foraging

    Directory of Open Access Journals (Sweden)

    Fiona C. Riddell Pearce

    2013-01-01

    Full Text Available Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1 foraging performance by calculating distance by decoding waggle dances, (2 hive foraging rate by counting forager departure rate, (3 forage quality by assessing sugar content of nectar from returning foragers, and (4 forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011 to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees.

  19. Bursts and heavy tails in temporal and sequential dynamics of foraging decisions.

    Directory of Open Access Journals (Sweden)

    Kanghoon Jung

    2014-08-01

    Full Text Available A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a a highly biased choice distribution; and (b preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.

  20. Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions

    Science.gov (United States)

    Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung

    2014-01-01

    A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498

  1. 7 CFR 407.13 - Group risk plan for forage.

    Science.gov (United States)

    2010-01-01

    ... acres of hay in the county, as specified in the actuarial documents. The actuarial documents will... a period for forage regrowth. 2. Crop Insured The insured crop will be the forage types shown on the... the Group Risk Plan Common Policy, acreage seeded to forage after July 1 of the previous crop year...

  2. Influence of vegetation on the nocturnal foraging behaviors and vertebrate prey capture by endangered Burrowing Owls

    Directory of Open Access Journals (Sweden)

    Alan Marsh

    2014-06-01

    Full Text Available Restrictions in technology have limited past habitat selection studies for many species to the home-range level, as a finer-scale understanding was often not possible. Consequently, these studies may not identify the true mechanism driving habitat selection patterns, which may influence how such results are applied in conservation. We used GPS dataloggers with digital video recorders to identify foraging modes and locations in which endangered Burrowing Owls (Athene cunicularia captured prey. We measured the coarse and fine-scale characteristics of vegetation at locations in which owls searched for, versus where they caught, vertebrate prey. Most prey items were caught using hover-hunting. Burrowing Owls searched for, and caught, vertebrate prey in all cover types, but were more likely to kill prey in areas with sparse and less dense vegetative cover. Management strategies designed to increase Burrowing Owl foraging success in the Canadian prairies should try to ensure a mosaic of vegetation heights across cover types.

  3. Adaptive Feeding behavior and functional responses in pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Saiz, Enrico; Tiselius, Peter

    2018-01-01

    Zooplankton may modify their feeding behavior in response to prey availability and presence of predators with implications to populations of both predators and prey. Optimal foraging theory predicts that such responses result in a type II functional response for passive foragers and a type III re...

  4. Foraging niche segregation in Malaysian babblers (Family: Timaliidae.

    Directory of Open Access Journals (Sweden)

    Mohammad Saiful Mansor

    Full Text Available Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i how these babblers forage in the wild and use vegetation to obtain food, and ii how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  5. Foraging niche segregation in Malaysian babblers (Family: Timaliidae).

    Science.gov (United States)

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  6. Foraging niche segregation in Malaysian babblers (Family: Timaliidae)

    Science.gov (United States)

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause’ law of competitive exclusion, which states two species occupying the same niche will not stably coexist. PMID:28253284

  7. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    Science.gov (United States)

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  8. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    Science.gov (United States)

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  9. The role of landscape characteristics for forage maturation and nutritional benefits of migration in red deer.

    Science.gov (United States)

    Mysterud, Atle; Vike, Brit Karen; Meisingset, Erling L; Rivrud, Inger Maren

    2017-06-01

    Large herbivores gain nutritional benefits from following the sequential flush of newly emergent, high-quality forage along environmental gradients in the landscape, termed green wave surfing. Which landscape characteristics underlie the environmental gradient causing the green wave and to what extent landscape characteristics alone explain individual variation in nutritional benefits remain unresolved questions. Here, we combine GPS data from 346 red deer ( Cervus elaphus ) from four partially migratory populations in Norway with the satellite-derived normalized difference vegetation index (NDVI), an index of plant phenology. We quantify whether migratory deer had access to higher quality forage than resident deer, how landscape characteristics within summer home ranges affected nutritional benefits, and whether differences in landscape characteristics could explain differences in nutritional gain between migratory and resident deer. We found that migratory red deer gained access to higher quality forage than resident deer but that this difference persisted even after controlling for landscape characteristics within the summer home ranges. There was a positive effect of elevation on access to high-quality forage, but only for migratory deer. We discuss how the landscape an ungulate inhabits may determine its responses to plant phenology and also highlight how individual behavior may influence nutritional gain beyond the effect of landscape.

  10. SILAGE QUALITY OF CORN AND SORGHUM ADDED WITH FORAGE PEANUTS

    Directory of Open Access Journals (Sweden)

    WALKÍRIA GUIMARÃES CARVALHO

    2016-01-01

    Full Text Available Corn and sorghum are standard silage crops because of their fermentative characteristics. While corn and sorghum silages have lower crude protein (CP contents than other crops, intercropping with legumes can increase CP content. Furthermore, one way to increase CP content is the addition of legumes to silage. Consequently, the research objective was to evaluate the fermentative and bromatological characteristics of corn (Zea mays and sorghum (Sorghum bicolor silages added with forage peanuts (Arachis pintoi. The experimental design was completely randomized with four replicates. The treatments consisted of corn silage, sorghum silage, forage peanut silage, corn silage with 30% forage peanut, and sorghum silage with 30% forage peanut. The results showed that the corn and sorghum added with peanut helped to improve the silage fermentative and bromatological characteristics, proving to be an efficient technique for silage quality. The forage peanut silage had lower fermentative characteristics than the corn and sorghum silages. However, the forage peanut silage had a greater CP content, which increased the protein contents of the corn and sorghum silages when intercropped with forage peanuts.

  11. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini in temperate climate of Jalisco, México

    Directory of Open Access Journals (Sweden)

    J. O. Macías-Macías

    Full Text Available Abstract Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  12. First feeding of larval herring

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Munk, Peter; Støttrup, Josianne

    1985-01-01

    The transition period from endogenous to exogenous feeding by larval herring was investigated in the laboratory for four herring stocks in order to evaluate the chances of survival at the time of fiest feeding. Observations on larval activity, feeding and growth were related to amount of yolk......, visual experience with potential prey organisms prior to first feeding and prey density. Herring larvae did not initiate exogenous feeding until around the time of yolk resorption. The timing of first feeding was not influenced by prior exposure to potential prey organisms during the yolk sac stage....... In the light of these observations, the ecological significance of the yolk sac stage is discussed. Initiation of exogenous feeding was delayed by 1-4 days at a low (7.5 nauplii .cntdot. l-1) compared to a high (120 nauplii .cntdot. l-1) prey density, but even at prey densities corresponding to the lower end...

  13. Effect of Temperature on Feeding Period of Larval Blacklegged Ticks (Acari: Ixodidae) on Eastern Fence Lizards.

    Science.gov (United States)

    Rulison, Eric L; Lebrun, Roger A; Ginsberg, Howard S

    2014-11-01

    Ambient temperature can influence tick development time, and can potentially affect tick interactions with pathogens and with vertebrate hosts. We studied the effect of ambient temperature on duration of attachment of larval blacklegged ticks, Ixodes scapularis Say, to eastern fence lizards, Sceloporus undulatus (Bosc & Daudin). Feeding periods of larvae that attached to lizards under preferred temperature conditions for the lizards (WARM treatment: temperatures averaged 36.6°C at the top of the cage and 25.8°C at the bottom, allowing behavioral thermoregulation) were shorter than for larvae on lizards held under cool conditions (COOL treatment temperatures averaged 28.4°C at top of cage and 24.9°C at the bottom). The lizards were infested with larvae four times at roughly monthly intervals. Larval numbers successfully engorging and dropping declined and feeding period was longer after the first infestation. © 2014 Entomological Society of America.

  14. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    Science.gov (United States)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  15. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  16. Mercury bioaccumulation and risk to three waterbird foraging guilds is influenced by foraging ecology and breeding stage

    International Nuclear Information System (INIS)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; De La Cruz, Susan E.W.; Takekawa, John Y.

    2009-01-01

    We evaluated mercury (Hg) in five waterbird species representing three foraging guilds in San Francisco Bay, CA. Fish-eating birds (Forster's and Caspian terns) had the highest Hg concentrations in thier tissues, but concentrations in an invertebrate-foraging shorebird (black-necked stilt) were also elevated. Foraging habitat was important for Hg exposure as illustrated by within-guild differences, where species more associated with marshes and salt ponds had higher concentrations than those more associated with open-bay and tidal mudflats. Importantly, Hg concentrations increased with time spent in the estuary. Surf scoter concentrations tripled over six months, whereas Forster's terns showed an up to 5-fold increase between estuary arrival and breeding. Breeding waterbirds were at elevated risk of Hg-induced reproductive impairment, particularly Forster's terns, in which 48% of breeding birds were at high risk due to their Hg levels. Our results highlight the importance of habitat and exposure timing, in addition to trophic position, on waterbird Hg bioaccumulation and risk. - The influence of foraging habitat, trophic position, and exposure timing on mercury bioaccumulation and risk to reproduction is evaluated in three waterbird guilds.

  17. Artificial pheromone for path selection by a foraging swarm of robots.

    Science.gov (United States)

    Campo, Alexandre; Gutiérrez, Alvaro; Nouyan, Shervin; Pinciroli, Carlo; Longchamp, Valentin; Garnier, Simon; Dorigo, Marco

    2010-11-01

    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.

  18. Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement

    Science.gov (United States)

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan

    2012-01-01

    provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process. PMID:23056329

  19. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng

    2012-10-02

    provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.

  20. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Yan

    this study shall provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.

  1. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.

  2. Vegetative substrates used by larval northern pike in Rainy and Kabetogama Lakes, Minnesota

    Science.gov (United States)

    Anne L. Timm; Rodney B. Pierce

    2015-01-01

    Our objective was to identify characteristics of aquatic vegetative communities used as larval northern pike nursery habitat in Rainy and Kabetogama lakes, glacial shield reservoirs in northern Minnesota. Quatrefoil light traps fished at night were used to sample larval northern pike in 11 potential nursery areas. Larval northern pike were most commonly sampled among...

  3. Long bone cross-sectional geometric properties of Later Stone Age foragers and herder�foragers

    Directory of Open Access Journals (Sweden)

    Michelle E. Cameron

    2014-09-01

    Full Text Available Diaphyseal cross-sectional geometry can be used to infer activity patterns in archaeological populations. We examined the cross-sectional geometric (CSG properties of adult Later Stone Age (LSA herder-forager long bones from the inland lower Orange River Valley of South Africa (n=5 m, 13 f. We then compared their CSG properties to LSA forager adults from the coastal fynbos (n=23 m, 14 f and forest (n=17 m, 19 f regions, building on a previous report (Stock and Pfeiffer, 2004. The periosteal mould method was used to quantify total subperiosteal area, torsional strength, bilateral asymmetry and diaphyseal circularity (Imax/Imin at the mid-distal (35% location of upper arms (humeri and the mid-shaft (50% location of upper legs (femora. Maximum humerus and femur lengths were similar among the three samples, suggesting that adult stature was similar in all three regions. When compared to the previous study, CSG property values obtained using the periosteal mould method correlated well, and there were no significant differences between data collected using the different methods. No statistically significant differences were found among the humerus or femur CSG properties from the different regions. This finding suggests that all individuals undertook similar volitional habitual activities in regard to their upper limbs, and also had similar degrees of terrestrial mobility. These results indicate relative behavioural homogeneity among LSA foragers and herder foragers from South Africa. The small degree of regional variation apparent among the three samples may reflect local ecology and the subsistence demands affecting populations in these different regions.

  4. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.

    Science.gov (United States)

    Cantalapiedra-Hijar, G; Yáñez-Ruiz, D R; Martín-García, A I; Molina-Alcaide, E

    2009-02-01

    The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions.

  5. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    Science.gov (United States)

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  6. Kauri seeds and larval somersaults

    DEFF Research Database (Denmark)

    Dupont, Steen Thorleif

    2012-01-01

    The trunk morphology of the larvae of the kauri pine (Agathis) seed infesting moth Agathiphaga is described using conventional, polarization, and scanning electron microscopy. The pine seed chamber formed by the larva is also described and commented on. The simple larval chaetotaxy includes more ...

  7. Work or sleep? : honeybee foragers opportunistically nap during the day when forage is not available

    OpenAIRE

    Klein, Barrett; Seeley, Thomas D.

    2011-01-01

    Shifts in work schedules test humans’ capacity to be flexible in the timing of both work and sleep. Honeybee, Apis mellifera, foragers also shift their work schedules, but how flexible they are in the timing of sleep as they shift the timing of work is unknown, despite the importance of colony-level plasticity in the face of a changing environment. We hypothesized that sleep schedules of foragers are not fixed and instead vary depending on the time when food is available. We trained bees to v...

  8. Penaeid prawns in the St Lucia Lake System: Post-larval recruitment ...

    African Journals Online (AJOL)

    Penaeid prawns in the St Lucia Lake System: Post-larval recruitment and the bait fishery. ... Recruitment of post-larval penaeid prawns and the bait prawn fishery in the St Lucia Lake System were monitored for ... AJOL African Journals Online.

  9. Determinants of spatial behavior of a tropical forest seed predator: The roles of optimal foraging, dietary diversification, and home range defense.

    Science.gov (United States)

    Palminteri, Suzanne; Powell, George V N; Peres, Carlos A

    2016-05-01

    Specialized seed predators in tropical forests may avoid seasonal food scarcity and interspecific feeding competition but may need to diversify their daily diet to limit ingestion of any given toxin. Seed predators may, therefore, adopt foraging strategies that favor dietary diversity and resource monitoring, rather than efficient energy intake, as suggested by optimal foraging theory. We tested whether fine-scale space use by a small-group-living seed predator-the bald-faced saki monkey (Pithecia irrorata)-reflected optimization of short-term foraging efficiency, maximization of daily dietary diversity, and/or responses to the threat of territorial encroachment by neighboring groups. Food patches across home ranges of five adjacent saki groups were widely spread, but areas with higher densities of stems or food species were not allocated greater feeding time. Foraging patterns-specifically, relatively long daily travel paths that bypassed available fruiting trees and relatively short feeding bouts in undepleted food patches-suggest a strategy that maximizes dietary diversification, rather than "optimal" foraging. Travel distance was unrelated to the proportion of seeds in the diet. Moreover, while taxonomically diverse, the daily diets of our study groups were no more species-rich than randomly derived diets based on co-occurring available food species. Sakis preferentially used overlapping areas of their HRs, within which adjacent groups shared many food trees, yet the density of food plants or food species in these areas was no greater than in other HR areas. The high likelihood of depletion by neighboring groups of otherwise enduring food sources may encourage monitoring of peripheral food patches in overlap areas, even if at the expense of immediate energy intake, suggesting that between-group competition is a key driver of fine-scale home range use in sakis. © 2015 Wiley Periodicals, Inc.

  10. Ants can learn to forage on one-way trails.

    Directory of Open Access Journals (Sweden)

    Pedro Leite Ribeiro

    Full Text Available The trails formed by many ant species between nest and food source are two-way roads on which outgoing and returning workers meet and touch each other all along. The way to get back home, after grasping a food load, is to take the same route on which they have arrived from the nest. In many species such trails are chemically marked by pheromones providing orientation cues for the ants to find their way. Other species rely on their vision and use landmarks as cues. We have developed a method to stop foraging ants from shuttling on two-way trails. The only way to forage is to take two separate roads, as they cannot go back on their steps after arriving at the food or at the nest. The condition qualifies as a problem because all their orientation cues -- chemical, visual or any other -- are disrupted, as all of them cannot but lead the ants back to the route on which they arrived. We have found that workers of the leaf-cutting ant Atta sexdens rubropilosa can solve the problem. They could not only find the alternative way, but also used the unidirectional traffic system to forage effectively. We suggest that their ability is an evolutionary consequence of the need to deal with environmental irregularities that cannot be negotiated by means of excessively stereotyped behavior, and that it is but an example of a widespread phenomenon. We also suggest that our method can be adapted to other species, invertebrate and vertebrate, in the study of orientation, memory, perception, learning and communication.

  11. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2015-05-01

    Full Text Available One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM model. Three different basic simulation scenarios (with irrigation were carried out using forage crops (namely maize, soybean and sorghum for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  12. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.

    Science.gov (United States)

    Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L

    2015-05-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  13. Scheduling and development support in the Scavenger cyber foraging system

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2010-01-01

    Cyber foraging is a pervasive computing technique where small mobile devices offload resource intensive tasks to stronger computing machinery in the vicinity. One of the main challenges within cyber foraging is that it is very difficult to develop cyber foraging enabled applications. An applicati...

  14. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  15. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    Full Text Available In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  16. Comparative Sucrose Responsiveness in Apis mellifera and A. cerana Foragers

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y.; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources. PMID:24194958

  17. Immunocytochemistry and metamorphic fate of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata)

    DEFF Research Database (Denmark)

    Wanninger, Andreas; Koop, Demian; Degnan, Bernard M.

    2005-01-01

    The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin...... that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought....... and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ....... FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral...

  18. Foraging task specialisation and foraging labour allocation in stingless bees

    NARCIS (Netherlands)

    Hofstede, Frouke Elisabeth

    2006-01-01

    Social bees collect nectar and pollen from flowering plants for energy of the adult bees and for feeding the larvae in the colony. The flowering patterns of plants imply that periods of high food availability are often followed by periods of meagre foraging conditions. Being dependent on such a

  19. The larval development of the red mangrove crab Sesarma meinerti ...

    African Journals Online (AJOL)

    The larval stages of the red mangrove crab Sesarma meinerti de Man were reared in the laboratory. Larval development consists of five zoeal stages and one megalopa. Zoeal development lasts an average of 25 days at 25°C. The external morphology of larvae is described in detail and their relationship with larvae of.

  20. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  1. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral.

    Science.gov (United States)

    Strader, Marie E; Aglyamova, Galina V; Matz, Mikhail V

    2018-01-04

    Molecular mechanisms underlying coral larval competence, the ability of larvae to respond to settlement cues, determine their dispersal potential and are potential targets of natural selection. Here, we profiled competence, fluorescence and genome-wide gene expression in embryos and larvae of the reef-building coral Acropora millepora daily throughout 12 days post-fertilization. Gene expression associated with competence was positively correlated with transcriptomic response to the natural settlement cue, confirming that mature coral larvae are "primed" for settlement. Rise of competence through development was accompanied by up-regulation of sensory and signal transduction genes such as ion channels, genes involved in neuropeptide signaling, and G-protein coupled receptor (GPCRs). A drug screen targeting components of GPCR signaling pathways confirmed a role in larval settlement behavior and metamorphosis. These results gives insight into the molecular complexity underlying these transitions and reveals receptors and pathways that, if altered by changing environments, could affect dispersal capabilities of reef-building corals. In addition, this dataset provides a toolkit for asking broad questions about sensory capacity in multicellular animals and the evolution of development.

  2. Nutrient balance affects foraging behaviour of a trap-building predator

    DEFF Research Database (Denmark)

    Mayntz, David; Toft, Søren; Vollrath, Fritz

    2009-01-01

    Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey...

  3. Trade-offs between energy maximization and parental care in a central place forager, the sea otter

    Science.gov (United States)

    Thometz, N M; Staedler, M.M.; Tomoleoni, Joseph; Bodkin, James L.; Bentall, G.B.; Tinker, M. Tim

    2016-01-01

    Between 1999 and 2014, 126 archival time–depth recorders (TDRs) were used to examine the foraging behavior of southern sea otters (Enhydra lutris nereis) off the coast of California, in both resource-abundant (recently occupied, low sea otter density) and resource-limited (long-occupied, high sea otter density) locations. Following predictions of foraging theory, sea otters generally behaved as energy rate maximizers. Males and females without pups employed similar foraging strategies to optimize rates of energy intake in resource-limited habitats, with some exceptions. Both groups increased overall foraging effort and made deeper, longer and more energetically costly dives as resources became limited, but males were more likely than females without pups to utilize extreme dive profiles. In contrast, females caring for young pups (≤10 weeks) prioritized parental care over energy optimization. The relative importance of parental care versus energy optimization for adult females with pups appeared to reflect developmental changes as dependent young matured. Indeed, contrary to females during the initial stages of lactation, females with large pups approaching weaning once again prioritized optimizing energy intake. The increasing prioritization of energy optimization over the course of lactation was possible due to the physiological development of pups and likely driven by the energetic deficit incurred by females early in lactation. Our results suggest that regardless of resource availability, females at the end of lactation approach a species-specific ceiling for percent time foraging and that reproductive females in the central portion of the current southern sea otter range are disproportionately affected by resource limitation.

  4. Specialized learning in antlions (Neuroptera: Myrmeleontidae, pit-digging predators, shortens vulnerable larval stage.

    Directory of Open Access Journals (Sweden)

    Karen L Hollis

    Full Text Available Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas "median survival time," the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical "learning curve" but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning.

  5. Observations on the reproductive and larval biology of Blennius pavo (Pisces: Teleostei)

    Science.gov (United States)

    Westernhagen, H.

    1983-09-01

    Social behaviour and spawning of adult Blennius pavo kept in the laboratory are described. Eggs are deposited in batches on the walls of artificial spawning places (PVC pipes). One male guards and tends the eggs of different females in one spawning place. Larval hatching occurs in groups according to oviposition. Minimum incubation temperature is around 14 15°C. Larval survival in 1-1 rearing jars is not related to larval total length but to density of larval stock. An experimental population of laboratory reared juvenile and adolescent B. pavo displays a male to female ratio of 1:1.4. Factors possibly influencing the sex ratio of this littoral fish are discussed in view of the situation in its natural environment.

  6. Abbreviated larval development of Macrobrachium inpa Kensley and Walker, 1982 (Crustacea: Decapoda: Palaemonidae from an Amazon Basin forest stream, Brazil, reared in the laboratory

    Directory of Open Access Journals (Sweden)

    Célio Magalhães

    Full Text Available Abstract This paper brings the description and illustrations of the abbreviated larval development of the Amazonian freshwater palaemonid shrimp, Macrobrachium inpa Kensley and Walker, 1982. The study was based on ovigerous females (mean total body length of 27.0 ± 1.64 mm collected in a small forest stream in the Reserva Florestal Ducke, near Manaus, Brazil, of which four released their larvae in the laboratory. The females carried 8 to 19 eliptical (2.39 ± 0.10 X 1.67 ± 0.08 mm, yolk-rich eggs. The larval period consists of three benthic, lecithotrophic larval stages, and lasts 10-11 days. The newly-hatched larvae bear very advanced morphological features such as antenna with several marginal plumose seta on scaphocerite and long, multi-articulated flagellum; fully developed, functional uniramous pereiopods 3-5 (walking legs and biramous pleopods. The morphology of the carapace, all appendages of the cephalothorax and pleon, and the tail fan are described in detail and illustrated. The larval form was considered to be a decapodid because of the benthic behavior and due to the fact that functional walking legs and pleopods are the main structures for displacement and propulsion. The larval development of M. inpa is compared with those of the so-called "continental" group of the caridean shrimps from the Amazon River basin.

  7. Information Foraging Theory: A Framework for Intelligence Analysis

    Science.gov (United States)

    2014-11-01

    oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT

  8. Multi-Robot Item Delivery and Foraging: Two Sides of a Coin

    Directory of Open Access Journals (Sweden)

    Somchaya Liemhetcharat

    2015-09-01

    Full Text Available Multi-robot foraging has been widely studied in the literature, and the general assumption is that the robots are simple, i.e., with limited processing and carrying capacity. We previously studied continuous foraging with slightly more capable robots, and in this article, we are interested in using similar robots for item delivery. Interestingly, item delivery and foraging are two sides of the same coin: foraging an item from a location is similar to satisfying a demand. We formally define the multi-robot item delivery problem and show that the continuous foraging problem is a special case of it. We contribute distributed multi-robot algorithms that solve the item delivery and foraging problems and describe how our shared world model is synchronized across the multi-robot team. We performed extensive experiments on simulated robots using a Java simulator, and we present our results to demonstrate that we outperform benchmark algorithms from multi-robot foraging.

  9. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Science.gov (United States)

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  10. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Lucy A. Heap

    2018-01-01

    Full Text Available The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC/stratum griseum periventriculare (SPV, and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  11. Geographic profiling and animal foraging.

    Science.gov (United States)

    Le Comber, Steven C; Nicholls, Barry; Rossmo, D Kim; Racey, Paul A

    2006-05-21

    Geographic profiling was originally developed as a statistical tool for use in criminal cases, particularly those involving serial killers and rapists. It is designed to help police forces prioritize lists of suspects by using the location of crime scenes to identify the areas in which the criminal is most likely to live. Two important concepts are the buffer zone (criminals are less likely to commit crimes in the immediate vicinity of their home) and distance decay (criminals commit fewer crimes as the distance from their home increases). In this study, we show how the techniques of geographic profiling may be applied to animal data, using as an example foraging patterns in two sympatric colonies of pipistrelle bats, Pipistrellus pipistrellus and P. pygmaeus, in the northeast of Scotland. We show that if model variables are fitted to known roost locations, these variables may be used as numerical descriptors of foraging patterns. We go on to show that these variables can be used to differentiate patterns of foraging in these two species.

  12. Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs Limulus polyphemus in the Great Bay estuary, New Hampshire

    Directory of Open Access Journals (Sweden)

    Wan-Jean LEE

    2010-10-01

    Full Text Available Although concerns about harvesting levels of the American Horseshoe Crab, Limulus polyphemus have prompted increased research into its ecology, current understanding of the species’ foraging ecology is mostly limited to mid-Atlantic populations. This study elucidates the spatial and temporal pattern of Limulus foraging on an intertidal mudflat of a northern New England estuary. A novel survey method was used to monitor Limulus foraging activity without disturbing the sediment. A fixed 50 m´2 m transect was monitored with monthly surveys of the number of Limulus feeding pits from June to October 2009, May and June 2010. Snorkelling surveys were also carried out to observe individual behavior and examine the spatial scale of activity of individual animals. Results showed frequent and intensive use of the mudflat by foraging Limulus. Limulus were actively foraging within the survey area during all months surveyed. Foraging patterns exhibited a seasonal pattern with activity levels peaking in August 2009 and increased significantly towards the end of the study in June 2010. It was also shown that Limulus intertidal foraging persisted and peaked after the spring breeding season. Observations of foraging Limulus revealed that individual predators dig multiple pits within a single high tide, with little disturbance to the sediment in between. In addition to altering the perception of Limulus as a subtidal predator outside of the breeding season, findings from this study suggests a segregation of spawning and feeding habitats, thus underscoring the need to consider a wider range of critical habitats in the management of Limulus populations [Current Zoology 56 (5: 611–617, 2010].

  13. Measuring larval nematode contamination on cattle pastures: Comparing two herbage sampling methods.

    Science.gov (United States)

    Verschave, S H; Levecke, B; Duchateau, L; Vercruysse, J; Charlier, J

    2015-06-15

    Assessing levels of pasture larval contamination is frequently used to study the population dynamics of the free-living stages of parasitic nematodes of livestock. Direct quantification of infective larvae (L3) on herbage is the most applied method to measure pasture larval contamination. However, herbage collection remains labour intensive and there is a lack of studies addressing the variation induced by the sampling method and the required sample size. The aim of this study was (1) to compare two different sampling methods in terms of pasture larval count results and time required to sample, (2) to assess the amount of variation in larval counts at the level of sample plot, pasture and season, respectively and (3) to calculate the required sample size to assess pasture larval contamination with a predefined precision using random plots across pasture. Eight young stock pastures of different commercial dairy herds were sampled in three consecutive seasons during the grazing season (spring, summer and autumn). On each pasture, herbage samples were collected through both a double-crossed W-transect with samples taken every 10 steps (method 1) and four random located plots of 0.16 m(2) with collection of all herbage within the plot (method 2). The average (± standard deviation (SD)) pasture larval contamination using sampling methods 1 and 2 was 325 (± 479) and 305 (± 444)L3/kg dry herbage (DH), respectively. Large discrepancies in pasture larval counts of the same pasture and season were often seen between methods, but no significant difference (P = 0.38) in larval counts between methods was found. Less time was required to collect samples with method 2. This difference in collection time between methods was most pronounced for pastures with a surface area larger than 1 ha. The variation in pasture larval counts from samples generated by random plot sampling was mainly due to the repeated measurements on the same pasture in the same season (residual variance

  14. Forage yield and nutritive value of Elephant grass, Italian ryegrass and spontaneous growing species mixed with forage peanut or red clover

    Directory of Open Access Journals (Sweden)

    Michelle Schalemberg Diehl

    2014-10-01

    Full Text Available The objective of this research was to evaluate of three grazing systems (GS with elephant grass (EG, Italian ryegrass (IR + spontaneous growing species (SGS; EG + IR + SGS + forage peanut (FP; and EG + IR + SGS + red clover (RC, during the winter and summer periods in rotational grazing with dairy cattle. Experimental design was completely randomized with three treatments, two replicates with repeated measures. Lactating Holstein cows receiving 1% BW-daily feed supplement with concentrate were used in the evaluation. Eight grazing cycles were performed during the experimental period. The values of pre forage mass and stocking rate were 2.52, 2.60 and 2.99 t ha-1 and 2.64, 2.77 and 3.14 animal unit ha-1, respectively for GS. Samples of forage were collected by hand-plucking technique to analyze the crude protein (CP, neutral detergent fiber (NDF, in situ dry matter digestibility (ISDMD, in situ organic matter digestibility (ISOMD of forage present between rows of elephant grass, in the rows of elephant grass and the legumes. Higher value of CP, ISOMD and lower of NDF were observed for the grazing systems mixed with legumes forage.

  15. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  16. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni

    Science.gov (United States)

    Criales, M. M.; Anger, K.

    1986-09-01

    Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.

  17. Application of genomics to forage crop breeding for quality traits

    DEFF Research Database (Denmark)

    Lübberstedt, Thomas

    2007-01-01

    Forage quality depends on the digestibility of fodder, and can be directly measured by the intake and metabolic conversion in animal trials. However, animal trials are time-consuming, laborious, and thus expensive. It is not possible to study thousands of plant genotypes, as required in breeding...... studied in detail and sequence motifs with likely effect on forage quality have been identified by association studies. Moreover, transgenic approaches substantiated the effect of several of these genes on forage quality. Perspectives and limitations of these findings for forage crop breeding...

  18. Floral odor learning within the hive affects honeybees' foraging decisions

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2007-03-01

    Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.

  19. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  20. Effect of massing on larval growth rate.

    Science.gov (United States)

    Johnson, Aidan P; Wallman, James F

    2014-08-01

    Estimation of minimum postmortem interval commonly relies on predicting the age of blowfly larvae based on their size and an estimate of the temperatures to which they have been exposed throughout their development. The majority of larval growth rate data have been developed using small larval masses in order to avoid excess heat generation. The current study collected growth rate data for larvae at different mass volumes, and assessed the temperature production of these masses, for two forensically important blow fly species, Chrysomya rufifacies and Calliphora vicina. The growth rate of larvae in a small mass, exposed to the higher temperatures equivalent to those experienced by large masses, was also assessed to determine if observed differences were due to the known temperature effects of maggot masses. The results showed that temperature production increased with increasing mass volume, with temperature increases of 11 °C observed in the large Ch. rufifacies masses and increases of 5 °C in the large C. vicina masses. Similarly, the growth rate of the larvae was affected by mass size. The larvae from small masses grown at the higher temperatures experienced by large masses displayed an initial delay in growth, but then grew at a similar rate to those larvae at a constant 23 °C. Since these larvae from masses of equivalent sizes displayed similar patterns of growth rate, despite differing temperatures, and these growth rates differed from larger masses exposed to the same temperatures, it can be concluded that larval growth rate within a mass may be affected by additional factors other than temperature. Overall, this study highlights the importance of understanding the role of massing in larval development and provides initial developmental data for mass sizes of two forensically important blowfly species commonly encountered in Australian forensic casework. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.