WorldWideScience

Sample records for largest uranium production

  1. Canada: The largest uranium producer

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1985-01-01

    Despite all the current difficulties, previous erroneous forecasts and other mistakes, the longer term future looks good for uranium mining and for Canada's industry in particular. Saskatchewan continues to offer the most exciting new prospects, the huge and fabulously high grade Cigar Lake deposits being the most spectacular of the recent discoveries. Notwithstanding continuous mining for 30 years from Elliot Lake there still remain there significant uncommitted reserves which can be developed when the market for uranium is in better balance

  2. Uranium production

    International Nuclear Information System (INIS)

    Spriggs, M.

    1980-01-01

    The balance between uranium supply and demand is examined. Should new resources become necessary, some unconventional sources which could be considered include low-grade extensions to conventional deposits, certain types of intrusive rock, tuffs, and lake and sea-bed sediments. In addition there are large but very low grade deposits in carbonaceous shales, granites, and seawater. The possibility of recovery is discussed. Programmes of research into the feasibility of extraction of uranium from seawater, as a by-product from phosphoric acid production, and from copper leach solutions, are briefly discussed. Other possible sources are coal, old mine dumps and tailings, the latter being successfully exploited commercially in South Africa. The greatest constraints on increased development of U from lower grade sources are economics and environmental impact. It is concluded that apart from U as a by-product from phosphate, other sources are unlikely to contribute much to world requirements in the foreseeable future. (U.K.)

  3. World uranium production in 1995

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For the first time since the political and economic opening of the former Soviet Union and Eastern Europe, world uranium production actually increased in 1995. Preliminary estimates for 1996 continue this trend, indicating additional (if slight) production increases over 1995 levels. Natural uranium production increased by about 5% in 1995 to 34,218 tons uranium or 89 Mlbs U3O8. This is an increase of approximately 1700 tons of uranium or 4.3 Mlbs of U3O8 over the updated 1994 quantities. Data is presented for each of the major uranium producing countries, for each of the world's largest uranium mines, for each of the world's largest corporate producers, and for major regions of the world

  4. Uranium production

    International Nuclear Information System (INIS)

    Jones, J.Q.

    1981-01-01

    The domestic uranium industry is in a state of stagflation. Costs continue to rise while the market for the product remains stagnant. During the last 12 months, curtailments and closures of mines and mills have eliminated over 5000 jobs in the industry, plus many more in those industries that furnish supplies and services. By January 1982, operations at four mills and the mines that furnish them ore will have been terminated. Other closures may follow, depending on cost trends, duration of current contracts, the degree to which mills have been amortized, the feasibility of placing mines on standby, the grade of the ore, and many other factors. Open-pit mines can be placed on standby without much difficulty, other than the possible cost of restoration before all the ore has been removed. There are a few small, dry, underground mines that could be mothballed; however, the major underground producers are wet sandstone mines that in most cases could not be reopened after a prolonged shutdown; mills can be mothballed for several years. Figure 8 shows the location of all the production centers in operation, as well as those that have operated or are on standby. Table 1 lists the same production centers plus those that have been deferred, showing nominal capacity of conventional mills in tons of ore per calendar day, and the industry production rate for those mills as of October 1, 1981

  5. WISMUT AG: Past, present and future of the largest uranium producer in Europe

    International Nuclear Information System (INIS)

    Madel, J.

    1990-01-01

    The author gives a brief summary of WISMUT AG the largest uranium producer operating in Europe. The jointly owned German-Soviet company operates its production facilities in the southern part of the former German Democratic Republic. Given the new political and economic frame in Germany and the Soviet Union WISMUT AG will receive due recognition. Uranium exploration, mining, and milling activities are summarized from 1946-1989, and a summary of present activities and projections of future activities in the area of decontamination, restoration, and recultivation of present and abandoned mining and milling sites are noted. A statement of WISMUT AG's projected role in the international nuclear fuels market is made

  6. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  7. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  8. Uranium production in Sweden

    International Nuclear Information System (INIS)

    Bergh, S.

    1994-01-01

    The history of uranium production in Sweden is reviewed in the article. The World War II led to an exploitation of the Swedish alum shale on a large scale. In the last phase of the war it also became obvious that the shale might be used for energy production of quite another kind than oil. In 1947 AB Atom energy was founded, an enterprise with one of its purposes to extract uranium for peaceful use. A plant with a yearly capacity of 120 tons of uranium was erected at Ranstad and ready for production by 1965. From the start in Ranstad and for many years to come there was hardly any interest in an immediate large uranium production. It was decided to use the plant for studies on its more effective exploitation in case of an expansion in the future, bearing in mind the reactor programme. In the course of time economical reasons began to speak against the project. The shale seemed to have a future neither as oil nor as uranium resource. The complete termination of the work on uranium production from shale occurred in 1989

  9. Argentinian uranium production

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profit-making process for the exploitation of low grade uranium is presented. The process of lixiviation will be used, which will make it possible to obtain a final product whose humidity level will not exceed 10% and whose uranium oxide content will be no less than 68%. The operations of the plant are described. The plant can produce between 100 and 150 t of U 3 O 8 /yr in the form of yellow cake

  10. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Stipanicic, P.N.

    1985-05-01

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.) [pt

  11. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  12. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  13. Uranium rich granite and uranium productive granite in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-07-15

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  14. Uranium rich granite and uranium productive granite in south China

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  15. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  16. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  17. Production of uranium peroxide

    International Nuclear Information System (INIS)

    Caropreso, F.E.; Kreuz, D.F.

    1977-01-01

    A process is claimed of recovering uranium values as uranium peroxide from an aqueous uranyl solution containing dissolved vanadium and sodium impurities by treating the uranyl solution with hydrogen peroxide in an amount sufficient to have an excess of at least 0.5 parts H 2 O 2 per part of vanadium (V 2 O 5 ) above the stoichiometric amount required to form the uranium peroxide, the hydrogen peroxide treatment is carried out in three sequential phases consisting of I, a precipitation phase in which the hydrogen peroxide is added to the uranyl solution to precipitate the uranium peroxide and the pH of the reaction medium maintained in the range of 2.5 to 5.5 for a period of from about 1 to 60 minutes after the hydrogen peroxide addition; II, a digestion phase in which the pH of the reaction medium is maintained in the range of 3.0 to 7.0 for a period of about 5 to 180 minutes and III, a final phase in which the pH of the reaction medium is maintained in the range of 4.0 to 7.0 for a period of about 1 to 60 minutes during which time the uranium peroxide is separated from the reaction solution containing the dissolved vanadium and sodium impurities. The excess hydrogen peroxide is maintained during the entire treatment up until the uranium peroxide is separated from the reaction medium

  18. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  19. PRODUCTION OF URANIUM TUBING

    Science.gov (United States)

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  20. International uranium production. Namibian perspective

    International Nuclear Information System (INIS)

    Daniel, P.

    1984-01-01

    The Rossing uranium deposit is the only one currently being mined in Namibia. Construction began in 1974 and production started in 1979. Current production is close to 4800 s.t. U3O8 per annum. About 160 000 mt of ore and waste are removed from the open pit every day. Each truck load is radiometrically scanned to determine ore grade and is discharged either directly into the primary crusher or into low-grade stockpiles. The uranium is extracted in a sulphuric acid leaching plant and upgraded in an ion exchange and solvent extraction plant. An ion exchange plant recovers uranium from the tailings solution. Three thousand people are employed at the mine, most living in the nearby town site. Employee training and development are emphasized. Employee health is carefully monitored; no occupationally-related disease has been reported. Rossing contributes one third of the GNP of Namibia. (L.L.)

  1. Uranium resources, production and demand 1993

    International Nuclear Information System (INIS)

    1994-10-01

    This book is the Japanese edition of 'Uranium Resources, Production and Demand, 1993' published by OECD/NEA-IAEA in 1994. It contains data on uranium exploration activities, resources and production for about 50 countries. (K.I.)

  2. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    1990-01-01

    The thirteenth edition of the report looks at recent developments and their impact on the short term (i.e. to the year 2005) and presents a longer term (to 2030) analysis of supply possibilities in the context of a range of requirement scenarios. It presents results of a 1989 review of uranium supply and demand in the World Outside Centrally Planned Economies Areas. It contains updated information on uranium exploration activities, resources and production for over 40 countries including a few CPEs, covering the period 1987 and 1988

  3. Uranium production in Australia

    International Nuclear Information System (INIS)

    Fisk, B.G.

    1984-01-01

    The history of uranium mining and milling in Australia is briefly outlined, particular attention being given to the development of Australia's only two operating mills, Nabarlek and Ranger, and its only operating mine, Ranger. The latter project is used to illustrate the prerequisites for development of the industry and the complex roles of the various parties involved in establishing a new mine: equity holders, customers, financiers, the securities industry, trade unions, and the public. The moves currently being taken to resolve the future of the industry in Australia, particularly the examination of issues relating to Australia's role in the nuclear fuel cycle being conducted by the Australian Science and Technology Council, preclude any firm conclusions being drawn, but the various options open to the government are reviewed and the record of Australian governments and unions and the attitude of the Australian public are described. (Author) (3 tabs., fig.)

  4. Australian uranium resources and production in a world context

    International Nuclear Information System (INIS)

    Cleary, B.

    2003-01-01

    The aim of the paper is to discuss Australian uranium resources and production from the perspective of ERA, the world's third-largest uranium producer, and one of only three producing uranium mining companies in Australia. ERA is a long-term supplier of uranium concentrates for the nuclear power generation industry overseas, a key part of clean global energy supply. ERA's Ranger plant was designed to produce 3,000t U 3 Og/yr, with expansion of the plant hi the early 90s to a 5,700t U 3 O 8 /yr capacity. Australia continues to have the worlds' largest reserves of uranium recoverable at costs of US$40 kg or less, but lags behind Canada in primary production of uranium. This paper discusses some of the reasons for the gap between resources and production, with examples from the company's own experience. Political, social and environmental factors have played a big role in the development of the uranium industry - ERA has been in the forefront of these issues as it pursues sustainable development practices

  5. Uranium 2003 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2004-01-01

    Uranium 2003: Resources, Production and Demand paints a detailed statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020.

  6. Uranium production economics in Australia

    International Nuclear Information System (INIS)

    Sorentino, C.M.R.; Butler, R.D.; Thomas, C.M.; McIlveen, G.R.; Huxlin, M.E.

    1990-02-01

    This review of the economics of production of uranium in Australia provides a detailed description of eleven important uranium deposits including capital and production costs estimates and supply curves. For each mine a detailed assessment has been made of its potential production capacity to the year 2000. Socio-economic factors that play an all-too-important role in the Australian uranium industry are extensively reviewed to provide an insight into the factors affecting Australia's ability to supply. The study is based on a detailed computer-based economic engineering model where all major costs such as labor, consumables and capital recovery charges are analyzed for each mine, and levellised break-even prices determined. It is argued that at the present low market prices, the three on-going operations are profitable, and at least three other deposits could be brought to viable production, given the necessary Government approval. Several other deposits appear to be marginal at the set Australian export floor price of US$26 per pound. Annual production could be raised from about 6,000 tonnes of U 3 O 8 to 16,000 tonnes by the turn of century, with the development of three additional deposits. It is concluded that, if Australian producers were allowed to compete freely on the international market, annual production would pass the 10,000 tonne/annum mark between 1995 and 2000. 35 figs., 38 tabs., 81 refs

  7. Australia's uranium resources and production in the world context

    International Nuclear Information System (INIS)

    McKay, A.; Lambert, I.; Miezitis, Y.

    2001-01-01

    Australia has 654 000 tonnes uranium (U) in Reasonably Assured Resources (RAR) recoverable at ≤US$40/kg U, which is the largest of all national resource estimates reported in this category. Australia also has the world's largest resources in RAR recoverable at ≤US$80/kg U, with 29% of world resources in this category. Other countries that have large resources in this category include Kazakhstan (19%), Canada (14%), South Africa (10%), Brazil (7%), Namibia (6%), Russian Federation (6%), and United States (5%). In 2000, the main developments in Australia's uranium mining industry were that production reached a record level of 8937 t U 3 O 8 (7579 t U), and commercial operations commenced at the new in situ leach operation at Beverley during November. Australia's total production for 2000 was 27% higher than for 1999. Uranium oxide was produced at the Olympic Dam (4500 t U 3 O 8 ), Ranger (4437 t U 3 O 8 ) and Beverley operations, although production from Beverley for the year was not reported. Australia's share of the world's annual uranium production has increased steadily from about 10.8% (3,712 tonnes U) in 1995 to 21.9% in 2000. Throughout this period Australia has maintained its position as the world's second-largest producer of uranium, behind Canada

  8. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    Vance, Robert

    2014-01-01

    's largest producer by a large margin. In situ leaching (ISL, sometimes referred to as in situ recovery, or ISR) production accounted for 45% of world production in 2012, largely because of increases in Kazakhstan, along with other ISL production in Australia, China, the Russian Federation, the United States and Uzbekistan. At the end of 2012, a total of 437 commercial nuclear reactors were connected to the grid with a net generating capacity of 372 GWe requiring some 61 600 tU, as measured by uranium acquisitions. By the year 2035, world nuclear capacity, taking into account changes in policies announced in Belgium, France, Germany, Italy and Switzerland following the Fukushima Daiichi accident, is projected to grow to between about 400 GWe net in the low demand case and 678 GWe net in the high case, increases of 7% and 82% respectively. Accordingly, world annual reactor-related uranium requirements are projected to rise to between 72 000 tU and 122 000 tU by 2035. The currently defined resource base is more than adequate to meet high case uranium demand through 2035, but doing so will depend upon timely investments given the typically long lead times required to turn resources into refined uranium suitable for nuclear fuel production. Other concerns in mine development include geopolitical factors, technical challenges, increasing expectations of governments hosting uranium mining and other issues facing producers in some regions. (author)

  9. Uranium Resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Periodic assessments of world uranium supply and demand have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report URANIUM RESOURCES, PRODUCTION AND DEMAND, commonly referred to as the RED BOOK, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest Red Book, published in 1988, was based on data collected mainly in early 1987. Most of the data for 1987 were therefore provisional. The STATISTICAL UPDATE 1988 provides updated 1987 data collected in 1988 and provisional data for 1988. The publication, which covers OECD Countries and gives Secretariat estimates for the rest of the World Outside Centrally Planned Economies (WOCA), is being issued every second year, between publications of more complete Red Books

  10. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    1986-01-01

    Periodic assessments of world uranium supply have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report Uranium resources, production and demand, commonly referred to as the red book, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest red book, published in 1986, was based on data collected mainly in early 1985. Most of the data for 1985 were therefore provisional. The statistical update 1986 provides updated 1985 data collected in 1986 and provisional data for 1986. This is the first time such an annual update of key Red Book statistical data has been prepared. This year it covers only OECD countries with a secretariat estimate for the rest of Woca

  11. Uranium 2007 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  12. Uranium 2005 Resources, Production and Demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris. Nuclear Energy Agency

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  13. Uranium 2014 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  14. URANIUM 1991 resources, production and demand

    International Nuclear Information System (INIS)

    1992-01-01

    The uranium supply aspects of the nuclear fuel cycle have undergone considerable change during the last few years. Nuclear power generating capacity can continue to expand only if there is confidence in the final supply of uranium. This report presents governmental compilations of uranium resource and production data, as established in 1991. It also presents short-term projections of the nuclear industry future natural uranium requirements and reviews the status of uranium exploration, resources and production throughout the world. 10 refs., 14 figs., 15 tabs., 6 appendices

  15. Past and future of uranium production

    International Nuclear Information System (INIS)

    Max, A.; Mason, T.

    1996-01-01

    Changes in world politics over the last few years have directly affected supplies and price levels in the front-end nuclear industry. Limited by the advance of CIS and East European uranium and nuclear fuel services into the west, the trend towards a declining uranium industry continued until 1994. The expected introduction of military uranium from Russian and American warheads into the civil nuclear fuel cycle creates additional unknowns in the nuclear fuel market. However, the long lasting recession in the uranium industry may already be coming to an end: The uranium inventories still in existence and uranium from the conversion of nuclear warheads will not last long enough to close the existing gap between uranium demand and supply. Additional uranium production will be required as a result. (orig.) [de

  16. Uranium 2003: resources, production and demand

    International Nuclear Information System (INIS)

    2004-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. This edition, the 20., presents the results of a thorough review of world uranium supplies and demand as of 1 January 2003 based on official information received from 43 countries. Uranium 2003: Resources, Production and Demand paints a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. The long lead times required to bring resources into production underscore the importance of making timely decisions to pursue production capability well in advance of any supply shortfall. (author)

  17. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  18. Uranium 2009: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry - the first critical link in the fuel supply chain for nuclear reactors - is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23. edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres around the world, as well as from countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also featured, along with an analysis of long-term uranium supply and demand issues

  19. The uranium resources and production of Namibia

    International Nuclear Information System (INIS)

    Palfi, A.G.

    1997-01-01

    The promulgation of the Minerals (Prospecting and Mining) Act, 1992, on 1 April 1994 and the simultaneous repeal of restrictive South African legislation on reporting uranium exploration and production results, allowed the Namibian Government for the first time to present information for publication of the report ''Uranium 1995 - Resource, Production and Demand'', by the OECD Nuclear Energy Agency and the IAEA. Namibia, one of the youngest independent nations in Africa, has a large number of uranium occurrences and deposits in several geological environments. The total estimated uranium resource amounts to about 299 thousand tonnes recoverable uranium at a cost of less than US$ 130/kg U, within the known conventional resources category. The most prominent geological type of these is the unique, granite-related uranium occurrences located in the central part of the Namib Desert. Permo-Triassic age Karoo sandstone-hosted uranium deposits were subject to only limited exploration due to the down-turn of uranium prices in the latter part of 1980s, despite they very encouraging exploration results. As only limited Karoo sandstone-covered areas were tested there is still great potential for further discoveries. The planned output of Roessing Uranium Mine at 40,000 tonnes of ore per day which results in an annual production of 4536 tonnes of uranium oxide, was achieved in 1979. In case of improved uranium market conditions, Namibia is in a strong position to increase uranium production and open up new production centres to strengthen the country's position as an important uranium producer in the world. 6 figs, 2 tabs

  20. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  1. Human Resource Development for Uranium Production Cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Concluding Remarks & Suggestions: • HRD will be one of the major challenges in the expanding nuclear power program in countries like China and India. • China and India get uranium raw material from domestic mines and international market. In addition, China has overseas uranium property. India is also exploring the possibility of overseas Joint Venture and uranium properties. For uranium production cycle there is a need for trained geologist, mining engineers, chemical and mechanical engineers. • There is a need for introducing specialization course on “uranium production cycle” at post graduate levels in government and private universities. Overseas Utilities and private firms in India engaged in nuclear power and fuel cycle activities may like to sponsor MTech students with assurance of employment after the successful completion of the course. • The IAEA may consider to extend Technical Assistance to universities in HRD in nuclear power and fuel cycle in general and uranium production cycle in particular - IAEA workshops, with participation of international experts, on uranium geology, mining, milling and safety and best practices in uranium production cycle will be of great help. • The IAEA – UPSAT could play an important role in HRD in uranium production cycle

  2. Uranium production from low grade Swedish shale

    International Nuclear Information System (INIS)

    Carlsson, O.

    1977-01-01

    In view of the present nuclear programmes a steep increase in uranium demand is foreseen which will pose serious problems for the uranium industry. The annual additions to uranium ore reserves must almost triple within the next 15 years in order to support the required production rates. Although there are good prospects for the discovery of further conventional deposits of uranium there is a growing interest in low grade uranium deposits. Large quantities of uranium exist in black shales, phosphates, granites, sea water and other unconventional sources. There are however factors which limit the utilization of these low grade materials. These factors include the extraction costs, the environmental constrains on mining and milling of huge amounts of ore, the development of technologies for the beneficiation of uranium and, in the case of very low grade materials, the energy balance. The availability of by-product uranium is limited by the production rate of the main product. The limitations differ very much according to types of ores, mining and milling methods and the surroundings. As an illustration a description is given of the Swedish Ranstad uranium shale project, its potential, constraints and technical solutions

  3. Uranium 2009 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  4. Uranium production and the environment in Kazakhstan

    International Nuclear Information System (INIS)

    Fyodorov, G.V.

    2002-01-01

    The production of uranium from open-pit and underground mines in Kazakhstan has terminated. Currently, uranium is extracted in Kazakhstan only by the In Situ Leaching (ISL) method. This method has a number of economical and ecological advantages. During a short period in the 70s-80s, Kazakhstan created a firm basis for developing uranium extraction by the ISL method. Now more than half of the world's uranium reserves amenable to the ISL method are located in Kazakhstan. By 2005, a significant increase in uranium production is planned. Thereby, Kazakhstan has the ability to grow into a world leader in uranium extraction through a lower cost and low environmental impact operations using the ISL method. (author)

  5. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  6. Uranium production, the United States perspective

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1984-06-01

    U.S. uranium production appears to be headed for a level of approximately one quarter of the peak production of the early 1980's. In a free world market the majority of the U.S. production capability is noncompetitive and unnecessary to supply the free world's demand. Those world producers which can produce into the competitive uranium market of the present and the foreseeable future will be sufficient to supply the uranium needs of the world for the next ten to fifteen years. Thus, the U.S. production industry once the leading producer in the world will not regain nor approach that status in the foreseeable future

  7. Australian uranium production and trade trends

    International Nuclear Information System (INIS)

    Armstrong, G.; Braddick, P.

    1994-01-01

    After overviewing the factors influencing the worldwide production and consumption of uranium, the authors review the world situation and assess the industry in Australia and the impact of Government policy on uranium mining. The conclusion is that Australia, with almost 30 per cent of the western world's uranium resources, including several of the highest grade and lowest cost deposits in the world, remains well placed to enjoy a substantial share of growth in the uranium market, should existing Government restrictions be lifted. 6 figs., 2 tabs

  8. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This 22. edition provides a comprehensive review of world uranium supply and demand as of 1. January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  9. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This second edition provides a comprehensive review of world uranium supply and demand as of first January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  10. World uranium production and demand: A review

    International Nuclear Information System (INIS)

    Tauchid, M.; Mueller Kahle, E.

    1993-01-01

    Despite the growing public concern on the use of nuclear energy, nuclear power generation capacity in the world is expected to follow a modest, but positive growth at least during the next two decades. Uranium production needed to fuel these reactors has been below demand since 1985. The WOCA production figure for 1991 is in the order of 27,000 tonnes U which is 39% below the peak production of 1980. With the exception of Australia, all other countries produced less uranium than in the previous year. It is expected that the production figure for 1992 will shrink even further to about 23,000 tonnes U. In-situ leaching uranium production contributed about 16% to the 1991 world production figure, most of which came from Eastern Europe and Central Asia. With the closing of a number of production facilities the relative contribution of in-situ leaching to the world uranium production is expected to grow. Only about 60% of WOCA's reactor related uranium demand for 1991 was supplied from its own production. The remaining 40% was filled from existing inventories and imports from the Russian Federation and China. The estimated gap between the world uranium production and reactor related demand for 1991 is in the order 10,900 tones U or 19.7%. The cumulative requirement for the world reactor related demand to the year 2010 has been estimated to be about 1,270,000 tonnes U. (author). 6 refs, 10 figs

  11. Uranium 1999. Resources, production and demand

    International Nuclear Information System (INIS)

    2000-01-01

    In recent years, the world uranium market has been characterised by an imbalance between demand and supply and persistently depressed uranium prices. World uranium production currently satisfies between 55 and 60 per cent of the total reactor-related requirements, while the rest of the demand is met by secondary sources including the conversion of excess defence material and stockpiles, primarily from Eastern Europe. Although the future availability of these secondary sources remains unclear, projected low-cost production capability is expected to satisfy a considerable part of demand through to 2015. Information in this report provides insights into changes expected in uranium supply and demand over the next 15 years. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost world reference on uranium. It is based on official information from 49 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1999. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States. It also contains an international expert analysis of industry statistics and world-wide projections of nuclear energy growth, uranium requirements and uranium supply. (authors)

  12. Uranium 2011: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, are also featured, along with an analysis of long-term uranium supply and demand issues

  13. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    Santos, Ivan

    2008-01-01

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF 6 ) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  14. World uranium: resources, production and demand

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The OECD Nuclear Energy Agency recently announced the publication of a new edition of its report on Uranium resources, production and demand which has been published periodically since 1965, jointly with the International Atomic Energy Agency. In addition to bringing uranium resources and production estimates up-to-date, the new edition offers a more comprehensive treatment of exploration activity and uranium availability, and includes a greater number of countries within the scope of the survey. Information on uranium demand has also been revised, in the light of more recent forecasts of the growth of nuclear power. Finally, a comparison is made between uranium availability and requirements, and the implications of this comparison analysed. The main findings and conclusions of the report are summarized here. (author)

  15. International uranium production. A South African perspective

    International Nuclear Information System (INIS)

    Sinclair-Smith, D.

    1984-01-01

    Between 1981 and 1983 South Africa experienced a decline in its uranium resources of 23% in the less than $80/kg U category and 12% in the less than $130/kg U category. In 1983 only $5 million was spent on exploration, with activities being concentrated in the Witwatersrand Basin as a byproduct of gold exploration. South Africa has maintained a production level of around 6000 mt U in 1981, 1982 and 1983. One unusual feature of the South African uranium scene is the ability to selectively dump relatively high grade uranium tailings after the extraction of gold and to rework this material as well as material dumped prior to the emergence of the uranium industry. Uranium from this source amounted to some 28% of total production in 1983. (L.L.) (2 tabs., 6 figs.)

  16. Uranium 2001: resources, production and demand

    International Nuclear Information System (INIS)

    2002-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. Its contents are based on official information received from 45 countries, supplemented by unofficial information for two others. This edition, the 19., presents the results of a thorough review of world uranium supply and demand as of 1 January 2001 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and, for the first time, includes a report on Tajikistan. This edition also features international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. (authors)

  17. Human resource development for uranium production cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Nuclear fission energy is a viable option for meeting the ever increasing demand for electricity and high quality process heat in a safe, secured and sustainable manner with minimum carbon foot print and degradation of the environment. The growth of nuclear power has shifted from North America and Europe to Asia, mostly in China and India. Bangladesh, Vietnam, Indonesia, Malaysia and the United Arab Emirates are also in the process of launching nuclear power program. Natural uranium is the basic raw material for U-235 and Pu-239, the fuels for all operating and upcoming nuclear power reactors. The present generation of nuclear power reactors are mostly light water cooled and moderated reactor (LWR) and to a limited extent pressurized heavy water reactor (PHWR). The LWRs and PHWRs use low enriched uranium (LEU with around 5% U-235) and natural uranium as fuel in the form of high density UO_2 pellets. The uranium production cycle starts with uranium exploration and is followed by mining and milling to produce uranium ore concentrate, commonly known as yellow cake, and ends with mine and mill reclamation and remediation. Natural uranium and its daughter products, radium and radon, are radioactive and health hazardous to varying degrees. Hence, radiological safety is of paramount importance to uranium production cycle and there is a need to review and share best practices in this area. Human Resource Development (HRD) is yet another challenge as most of the experts in this area have retired and have not been replaced by younger generation because of the continuing lull in the uranium market. Besides, uranium geology, exploration, mining and milling do not form a part of the undergraduate or post graduate curriculum in most countries. Hence, the Technical Co-operation activities of the IAEA are required to be augmented and more country specific and regional training and workshop should be conducted at different universities with the involvement of international experts

  18. Uranium 2016: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2016-01-01

    Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of base-load low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues. (authors)

  19. World uranium resources, production and demand

    International Nuclear Information System (INIS)

    Lindholm, I.

    1988-01-01

    Reasonably assured resources of uranium in WOCA (World Outside the Centrally Planned Economies Area) countries recoverable at less than US $80/kg U increased by about 9% between 1983 and 1985 and currently stand at 1.5 million tonnes. Uranium also exists in significant quantities in higher cost resources or in less known resources. However, the annual exploration expenditure is less than 20% that of the 1979 level. Uranium production in WOCA countries was higher than consumption during the period 1965 to 1984 and considerable stocks were accumulated. However, the production figures for 1985 were estimated to be slightly less than those of consumption. Production from centres now on stand-by or new centres will probably be necessary around 1990. Analysis of the longer term production possibilities indicates that uranium supplies will probably not be constrained by an ultimate resource adequacy. Constraints, if any, are more likely to be of political nature. (author). 11 figs, 1 tab

  20. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  1. A mathematical model to forecast uranium production

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.

    1987-01-01

    The uranium production forecasting program described in this paper projects production from reasonably assured, estimated additional and speculative resources in the cost categories of less than $130/kg U. Originally designed to handle South African production, it has been expanded and redimensioned using available published information to forecast production for countries of the Western World. The program forecasts production from up to 400 plants over a period of fifty years and has built-in production models derived from documented historical data of the more important uranium provinces. It is particularly suitable to assess production capabilities on a national and global scale where variations in outputs for the individual plants tend to even out. The program is aimed at putting the uranium potential of any one country into a realistic perspective, and it could thus be useful for planning purposes and marketing strategies

  2. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  3. Current U.S. uranium production costs

    International Nuclear Information System (INIS)

    Steyn, J.J.; Douglas, R.F.

    1989-01-01

    The U.S. uranium industry has undergone significant changes in the 1980s. These changes have come about largely as a result of the much slower growth of nuclear power than that initially anticipated and the deployment of an excess uranium supply capacity by 1979. The demand and supply imbalance has led to a substantial build-up in excess inventories which will not be remedied until well into the 1990s. At the same time as domestic inventories were building, large low cost uranium deposits were being discovered and developed in Canada and Australia. Additionally, in the past year or so it has become apparent that low cost uranium from the Soviet Union and the Peoples Republic of China will increasingly become a factor in the marketplace. The soft demand, large inventories, and competitive imports, stimulated by the recently ratified U.S.-Canada Free Trade Agreement, have caused the U.S. uranium industry to contract to one-tenth of its size ten years ago, if employment is taken at the gage. In light of the foregoing, this paper examines the current U.S. uranium production cost outlook for the 1990s. It is based on a direct cost analysis of all identifiable uranium deposits, mines, and production centers

  4. Full production approaching at Rossing Uranium

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Rossing uranium mine, in South West Africa's Namib Desert, is an extraordinary operation by any standards. The open pit mining operation; the highly complex metallurgical plant that, unlike those at mines in South Africa extracts the uranium as far as the uranium oxide or yellowcake product; the back-up services; and the team of people who run Rossing were all seen in action on a recent visit by Coal Gold and Base Minerals. This article examines the geology, the initial exploration and the open pit

  5. Uranium production, exploration and mine development in Canada

    International Nuclear Information System (INIS)

    Vance, R. E

    2006-01-01

    Full text: Full text: Canada has been the world leader in uranium production since the early 1990's and production in 2005 was 11,629 te U. The Elliott Lake region of Ontario was once the centre of production, but after the last facilities closed in 1996, all production now comes from the Athabasca Basin in northern Saskatchewan. Average grades of the world's two largest high grade deposits at McArthur River and Cigar Lake are 10 to 100 times the grade of deposits mined elsewhere. McArthur River has been in production since late 1999 and first production from Cigar Lake is expected in 2007. If all expansion and probable mine openings come to fruition, annual Canadian production could amount to 16,000 te U by 2011. All currently operating uranium mines have been the subject of a comprehensive environmental assessment and review process. Uranium mining brings significant benefits to local area residents in northern Saskatchewan. Residents of northern Saskatchewan are active participants in Environmental Quality Committees. Recent survey results show the majority of Saskatchewan residents support the continuation of uranium mining in the province. The closed uranium mines in Canada have been successfully decommissioned and rehabilitated in particular in the Elliott Lake region of Ontario. The principle exploration target in Canada remains the Athabasca Basin, but activity has also been reported in several of the other territories and provinces. Natural Resources Canada estimates that some $CAN81M was spent on exploration in Canada in 2005. Under the Canadian Constitution, natural resources are owned by the provinces or by the federal government if they are on federal lands north of 60 0 C latitude. The provinces have jurisdiction over exploration activities within their borders and for most commodities have jurisdiction over mine development and production, operations, health and safety and environmental matters. Once a company starts to develop a deposit into a mine

  6. Preliminary analysis about reducing production costs in uranium mining and metallurgy at Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Wu Sanmao

    1999-01-01

    The production costs in uranium ming and metallurgy have been analyzed quantitatively term by term according to present production situation for The Uranium Mining and Metallurgy Corp, which is part of Fuzhou Uranium Mine. The principal factors influencing on the production costs and the main means reducing the production costs have been found

  7. Data feature World natural Uranium production 1992

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    NUKEM estimates that world uranium production fell more than 13% last year, from 40,729 tonnes U [106 million lbs U308] in 1991 to 35,363 tonnes U [92 million lbs U308] in 1992. Production fell in both the Western World and non-Western World. How much of demand was met by production? World uranium production in 1992 amounted to about 65% of reactor consumption. That's assuming that reactor demand of the non-Western World has not changed much from the Uranium Institute's estimate for 1991. Civilian stockpiles are being drawn down on a massive scale while the world waits to see what will become of the military stockpiles that could soon enter the global supply picture

  8. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  9. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  10. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  11. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  12. Uranium 1990 resources, production and demand

    International Nuclear Information System (INIS)

    1990-01-01

    Periodic assessments of world uranium supply and demand have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report URANIUM RESOURCES, PRODUCTION AND DEMAND, commonly referred to as the RED BOOK, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest Red Book, published in 1990, was based on data collected mainly in early 1989. Most of the data for 1989 were therefore provisional. The STATISTICAL UPDATE 1990 provides updated 1989 data collected in 1990 and provisional for 1990 [fr

  13. Methods and measures of enhancing production capacity of uranium mines

    International Nuclear Information System (INIS)

    Ni Yuhui

    2013-01-01

    Limited by resource conditions and mining conditions, the production capacity of uranium mines is generally small. The main factors to affect the production capacity determination of uranium mines are analyzed, the ways and measures to enhance the production capacity of uranium mines are explored from the innovations of technology and management mode. (author)

  14. International uranium production. An eastern Canadian perspective

    International Nuclear Information System (INIS)

    Albino, G.R.

    1984-01-01

    The Eastern Canadian perspective on uranium production is based on 30 years of continuous mining at Elliot Lake and on the experience of selling uranium over the same time period, mainly to export markets. In Ontario the orebodies are basically contiguous, being part of the same large formation. All the mining is underground. Ore grades are low, but economic extraction is improved by continuity and uniformity of grades, stable ground conditions, and the ability to mine and mill on a large scale. Mining is being carried out by two companies, Denison and Rio Algom. It is unlikely that mine capacity will be increased. Government policies have significant effects on the Eastern Canadian uranium industry in particular, as to U.S. import policies. (L.L.)

  15. Uranium resources, production and demand in South Africa

    International Nuclear Information System (INIS)

    Brynard, H.J.; Ainslie, L.C.

    1990-01-01

    This paper provides a review of the historical development of the South African uranium market and the current status of uranium exploration, resources and production. A prognosticated view of possible future demand for uranium in South Africa is attempted, taking cognisance of the finite nature of the country's coal resources and estimated world uranium demand. Although well endowed with uranium resources, South Africa could face a shortage of this commodity in the next century, should the predicted electricity growth materials. (author)

  16. Uranium resources, production and demand in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brynard, H J; Ainslie, L C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides a review of the historical development of the South African uranium market and the current status of uranium exploration, resources and production. A prognosticated view of possible future demand for uranium in South Africa is attempted, taking cognisance of the finite nature of the country's coal resources and estimated world uranium demand. Although well endowed with uranium resources, South Africa could face a shortage of this commodity in the next century, should the predicted electricity growth materials. (author)

  17. New information on world uranium resource, production, supply and demand

    International Nuclear Information System (INIS)

    Zhang Jianguo; Meng Jin

    2006-01-01

    New information on world uranium resource, production, supply and demand is introduced. Up to now, explored uranium resources at production cost < USD 40/kg U has 2523257 t uranium; production cost < USD 80/kg U has 5911514 t uranium; production cost < USD130/kg U has 11280488 t uranium; and cost range unassigned has 3102000 t uranium. At moment, the demand uranium of each year is about 67000 t U. After 2020, world uranium demand will rise well above 100000 t per annum with sharp revival of nuclear power plants. With three kinds of economic growth the cumulative requirement of the uranium in low demand case, middle demand case and high demand case from 2000 to 2050 is 3390000, 5394100 and 7577300 t respectively. In the world market uranium price rises from 20 years lowest 18.2 USD/kg U to 75.4 USD/kg U. In 2003, global uranium product is about 35385 t U, and 2004, global uranium product is about 40475 t U. In 2004's world uranium production underground mining, open pit, in situ, by product, and combination account for 39%, 27%, 19%, 11% and 4% respectively. (authors)

  18. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  19. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  20. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  1. Production capability of the US uranium industry

    International Nuclear Information System (INIS)

    deVergie, P.C.; Anderson, J.R.; Miley, J.W.; Frederick, C.J.L.

    1980-01-01

    Demand for U 3 O 8 through the late 1990s could be met at the grades and costs represented by the $30 resources, although for the next 3 or 4 years, production will probably be from the lower cost portions of these resources if prices remain low. However, to meet currently projected uranium requirements beyond the year 2000, there will have to be a transition by the mid-1990s to higher cost and lower grade production in order to include supply from the additional increment of resources available between the $30 and $50 levels. Plans and financial commitments required to accomplish such a transition must be initiated y the mid-1980s, since lead times are increasing for exploration and for mill licensing and construction. Engineering planning and feasibility analyses would have to be carried out under a more advanced time frame than previously required. The importance of the potential resources can easily be seen. In meeting the high-case demand during the years 2005 through 2019 more than 50% of the production would be from resources assigned to the $50 probable potential resource category. By about the year 2006, there will have had to be considerable development of the possible, and perhaps, some of the speculative resources to assure continued production expansion; by 2020, more than 50% of the production would depend on the previous successes in finding and developing such resources. The continuation of the current trend in production curtailment and decreasing exploration will significantly lessen the domestic uranium industry's ability to respond quickly to the projected increases in uranium requirements. The industry's future will be unsettled until it preceives clear indications of demand and price incentives that will justify long-term capital investments

  2. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    Underhill, D.H.

    2002-01-01

    Even with a modest forecast of nuclear power growth for the next 25 years, it is expected that the world uranium requirements will increase. This analysis indicates uranium mine production will continue to be the primary supply of requirements through 2020. Secondary supplies, such as low enriched uranium blended from highly enriched uranium, reprocessing of spent fuel would have to make-up the remaining balance, although the contribution of US and Russian strategic stockpiles is not well known at this time. (author)

  3. Uranium Production Safety Assessment Team. UPSAT. An international peer review service for uranium production facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme is designed to assist Member States to improve the safe operation of uranium production facilities. This programme facilitates the exchange of knowledge and experience between team members and industry personnel. An UPSAT mission is an international expert review, conducted outside of any regulatory framework. The programme is implemented in the spirit of voluntary co-operation to contribute to the enhancement of operational safety and practices where it is most effective, at the facility itself. An UPSAT review supplements other facility and regulatory efforts which may have the same objective

  4. Uranium supply/demand projections to 2030 in the OECD/NEA-IAEA ''Red Book''. Nuclear growth projections, global uranium exploration, uranium resources, uranium production and production capacity

    International Nuclear Information System (INIS)

    Vance, Robert

    2009-01-01

    World demand for electricity is expected to continue to grow rapidly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by many governments that nuclear power can produce competitively priced, base load electricity that is essentially free of greenhouse gas emissions, combined with the role that nuclear can play in enhancing security of energy supplies, has increased the prospects for growth in nuclear generating capacity. Since the mid-1960s, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every 2 years) on world uranium resources, production and demand. These updates have been published by the OECD/NEA in what is commonly known as the ''Red Book''. The 2007 edition replaces the 2005 edition and reflects information current as of 1 st January 2007. Uranium 2007: Resources, Production and Demand presents, in addition to updated resource figures, the results of a recent review of world uranium market fundamentals and provides a statistical profile of the world uranium industry. It contains official data provided by 40 countries (and one Country Report prepared by the IAEA Secretariat) on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements to 2030 as well as a discussion of long-term uranium supply and demand issues are also presented. (orig.)

  5. Glances on uranium. Tome 2. Exploration, production

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1997-01-01

    This book is an homage to all participants of uranium prospecting and mining exploitation who have contributed to satisfy the nuclear energy needs during the last 50 years. The first chapter describes the economical, administrative and environmental constraints of uranium mining projects. The second chapter describes the different steps of the exploration (permits, inventory, mineralisation, quality, resource estimation, quantifying), the direct and indirect exploratory techniques and methods (radiometry, geochemistry, drillings and well logging, mapping, tele-detection, geophysical surveys..) and the exploration costs. The third chapter deals with the legal, administrative, technical, socio-economical and financial aspects which must be taken into account in the risk evaluation of a mining project. Chapter 4 concerns the start up of the project while the development and production methods are detailed in chapter 5 (opencast and underground mining, in-situ lixiviation, ore processing, chemical extraction etc.). The last chapter is devoted to the environmental aspects of uranium mining: legal aspects, nuisances, dusts, contamination, the case of in-situ lixiviation, the rehabilitation of sites. (J.S.)

  6. Fact sheet on uranium exploration, mining production and environmental protection

    International Nuclear Information System (INIS)

    2006-01-01

    During the last 3 years, there has been a dramatic revival and comeback of the uranium industry in the light of the expanding nuclear power programme all over the world. As a result, there has been a boom in uranium exploration, mining and production activities to meet the higher demand of uranium and reduce the gap between uranium demand and uranium supply from mines. In coming years, additional requests for TC, training/workshop and CRPs are expected in the areas of: 1) advanced aerial and ground geophysical techniques for discovery of new deposits which could be deeply buried; 2) investigations of uranium sources in sedimentary, igneous and metamorphic environments; 3) In-Situ leaching (ISL) of uranium deposits; 4) advanced acid/alkali leaching of low, medium and high grade uranium ores and purification of uranium; 5) reclamation of used uranium mines and related environmental protection issues; and 6) uranium supply, demand and market issues. Services provided by the Nuclear Fuel Cycle and Materials Section could be workshops and hands-on field trainings at National and/or Regional levels in mines, mills and sites covering the following activities: uranium exploration involving conventional and advanced geophysical techniques and instruments, advanced drilling equipment and tools, etc.; uranium mining (open-cast and underground), recovery and purification by acid/alkali leaching, In-Situ leaching (ISL), purification by conventional and advanced solvent extraction and ion exchange techniques and concentration of uranium in the form of yellowcake (ammonium diuranate, magnesium diuranate and uranium peroxide); promoting best practices in uranium mining and milling (including tailing pond), covering environmental issues, reclamation of used uranium mines and chemistry of uranium production cycle and ground water and sustainability of uranium production. Member States interested in uranium geology, exploration, mining, milling, purification and environmental issues

  7. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  8. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  9. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  10. Estimating uranium resources and production. A guide to future supply

    International Nuclear Information System (INIS)

    Taylor, D.M.; Haeussermann, W.

    1983-01-01

    Nuclear power can only continue to grow if sufficient fuel, uranium, is available. Concern has been expressed that, in the not too distant future, the supply of uranium may be inadequate to meet reactor development. This will not be the case. Uranium production capability, actual and planned, is the main indicator of short- and medium-term supply. However, for the longer term, uranium resource estimates and projections of the possible rate of production from the resource base are important. Once an estimate has been made of the resources contained in a deposit, several factors influence the decision to produce the uranium and also the rates at which the uranium can be produced. The effect of these factors, which include uranium market trends and ever increasing lead times from discovery to production, must be taken into account when making projections of future production capability and before comparing these with forecasts of future uranium requirements. The uranium resource base has developed over the last two decades mainly in response to dramatically changing projections of natural uranium requirements. A study of this development and the changes in production, together with the most recent data, shows that in the short- and medium-term, production from already discovered resources should be sufficient to cover any likely reactor requirements. Studies such as those undertaken during the International Uranium Resources Evaluation Project, and others which project future discovery rates and production, are supported by past experience in resource development in showing that uranium supply could continue to meet demand until well into the next century. The uranium supply potential has lessened the need for the early large-scale global introduction of the breeder reactor

  11. NEA Uranium Activities: Reliable supply - Safe and environmentally responsible production

    International Nuclear Information System (INIS)

    Vance, Robert

    2014-01-01

    Conclusions: • Shift in axis of nuclear power development (and uranium mining) away from OECD countries (83% of world nuclear generating capacity); • Nuclear capacity increase will create additional uranium demand, but countries with the largest and growing demand may meet all requirements using traditional market means; • Market reforms needed in liberalized markets to maintain or increase nuclear generation share; • Opportunities remain for producers, but may need to adjust expectations to these new circumstances; • Secondary supply not done yet

  12. Recent developments in uranium exploration, production and environmental issues. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-09-01

    The uranium industry is in a period of transition. In Europe, the industry is in transition from uranium production to site rehabilitation. The WISMUT project in Germany, which is featured in this publication, is the largest and one of the most advanced rehabilitation projects in the world. By contrast, other countries such as China, India and Argentina are expanding their industries to meet growing uranium demand. Activities in these countries, which are also described in this publication, range from new project licensing to application of new technology to increase productivity and lower costs at existing operations. Changes within the uranium industry are nowhere more evident than in the marketplace, where the price of uranium has more than doubled in the past two years. There is a discussion of the reasons for this price rise and the adequacy of production capacity to meet reactor uranium requirements. Many developing countries are striving for self-sufficiency in their uranium production capabilities. Accordingly, the papers deal with a range of topics including uranium exploration, project licensing, and research directed towards improving uranium production efficiency and costs. European papers emphasize uranium site rehabilitation, reflecting the fact that uranium production has all but ceased in Europe. These papers describe site remediation technology that is being utilized at a variety of sites ranging from tailings ponds to mine water treatment plants. The recent rapid increase in the uranium market price has dominated discussions among uranium producers and users alike. Not surprisingly the price increase was also a much-discussed topic at this Technical Meeting. One paper reviewed the reasons for the rapid price increase and the relationship between market price and uranium supply-demand relationships. Uranium production is likely to become more important to Niger's economy if the recent price increase is sustainable. Accordingly, Niger's uranium

  13. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    1998-08-01

    This report was prepared to assess the changing uranium supply and demand situation as well as the adequacy of uranium resources and the production capability to supply uranium concentrate to meet reactor demand through 2020. Uranium production has been meeting only 50 to 60 percent of the world requirements with the balance met from sale of excess inventory offered on the market at low prices. It is generally agreed by most specialists that the end of the excess inventory is approaching. With inventory no longer able to meet the production shortfall it is necessary to significantly expand uranium production to fill an increasing share of demand. Non-production supplies of uranium, such as the blending of highly enriched uranium (HEU) warheads to produce low enriched reactor fuel and reprocessing of spent fuel, are also expected to grow in importance as a fuel source. This analysis addresses three major concerns as follows: adequacy of resources to meet projected demand; adequacy of production capability to produce the uranium; and market prices to sustain production to fill demand. This analysis indicates uranium mine production to be the primary supply providing about 76 to 78 percent of cumulative needs through 2020. Alternative sources supplying the balance, in order of relative importance are: (1) low enriched uranium (LEU) blended from 500 tonnes of highly enriched uranium (HEU) Russian weapons, plus initial US Department of Energy (US DOE) stockpile sales (11 to 13%); (2) reprocessing of spent nuclear fuel (6%) and; (3) utility and Russian stockpiles. Further this report gives uranium production profiles by countries: CIS producers (Kazakhstan, Russian Federation, Ukraine, Uzbekistan) and other producers (Australia, Canada, China, Gabon, Mongolia, Namibia, Niger, South Africa, United States of America)

  14. RIB production with photofission of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts. E-mail: oganessian@flnr.jinr.ru; Dmitriev, S.N.; Kliman, J.; Maslov, O.A.; Starodub, G.Ya.; Belov, A.G.; Tretiakova, S.P

    2002-04-22

    The process of uranium photofission with electron beams of 20-50 MeV is considered in terms of the production of fission fragments. It is shown that in the interaction between an electron beam (25 MeV in energy and 20 {mu}A in intensity), produced by a compact accelerator of the microtron type, and a uranium target of about 40 g/cm{sup 2} in thickness, an average of 1.5x10{sup 11} fission events per second is generated. According to the calculations and test experiments, this corresponds to the yield of {sup 132}Sn and {sup 142}Xe isotopes of approximately 2x10{sup 9}/s. The results of experiments on the optimal design of the U-target are presented. Problems are discussed connected with the separation of isotopes and isobars for their further acceleration up to energies of 5-18 MeV A. The photofission reactions of a heavy nucleus are compared with other methods of RIB production of medium mass nuclei.

  15. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  16. Operating conditions of T.B.P. line uranium purification plant, for uranium dioxide production

    International Nuclear Information System (INIS)

    Vardich, R.N.; La Gamma, A.M.; Anasco, R.; Soler, S.M.G. de; Isnardi, E.; Gea, V.; Chiaraviglio, R.; Matyjasczyk, E.; Aramayo, R.

    1992-01-01

    In this contribution are presented the operative conditions and the results obtained step of the Uranium dioxide production plant of Argentina. The refining step involve the Uranium concentrate dissolution, the silica ageing, the filtration and liquid - liquid extraction with n-tributyl phosphate solution in kerosene. The established operative conditions allow to obtain Uranyl nitrate solutions of nuclear purity in industrial scale. (author)

  17. South African uranium resource and production capability estimates

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.; Toens, P.D.

    1980-09-01

    South Africa, along with Canada and the United States, submitted forecasts of uranium capacities and capabilites to the year 2025 for the 1979 'Red Book' edition. This report deals with the methodologies used in arriving at the South African forecasts. As the future production trends of the South African uranium producers cannot be confidently defined, chiefly because uranium is extracted as a by-product of the gold mining industry and is thus highly sensitive to market fluctuations for both uranium and gold, the Evaluation Group of the Atomic Energy Board has carried out numerous forecast exercises using current and historical norms and assuming various degrees of 'adverse', 'normal' and 'most favourable' conditions. The two exercises, which were submitted for the 'Red Book', are shown in the Appendices. This paper has been prepared for presentation to the Working Group on Methodologies for Forecasting Uranium Availability of the NEA/IAEA Steering Group on Uranium Resources [af

  18. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  19. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  20. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  1. The uranium production cycle and the environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Within the international community it is widely recognized that the responsibility for management of uranium production and all related activities should be independent of the organizations providing for the oversight and regulatory function. An important role of the IAEA is establishing international safety standards for protection of health and environment against exposure to ionizing radiation. Once legally binding laws, regulations and standards are established,either through national and international programmes, it becomes the responsibility of the management and operators of uranium production projects for carrying our all activities to meet these requirements. The major emphasis of the IAEA's Project on Raw Materials for Reactor Fuels is to improve and strengthen the practice of preventive measures by establishing guidelines for environmental impact assessment and mitigation and the recognition and promotion of good practice and modern technology. The Waste Technology programme provides advice on the cleanup and remediation of old production sites and wastes. One important mechanism for recognizing and promoting best practice in environmental management of uranium production is fostering information exchange among specialists. The IAEA exercises this mechanism, for examples though publications, electronic information exchange and, particularly, through large gatherings of specialists and decision makers at international conferences, symposia and seminars. The topics covered at the symposium were: Energy needs and challenges for the 21{sup st} Century; uranium supply for the short and long term; sustainable development, energy resources and nuclear energy's role in greenhouse gas abatement; economic impact of world mining; impacts of mining on developed and developing countries; environmental and social impacts of uranium mining in several countries; examples of positive and negative impacts of uranium mining projects on local communities; environmental

  2. The uranium production cycle and the environment. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    Within the international community it is widely recognized that the responsibility for management of uranium production and all related activities should be independent of the organizations providing for the oversight and regulatory function. An important role of the IAEA is establishing international safety standards for protection of health and environment against exposure to ionizing radiation. Once legally binding laws, regulations and standards are established,either through national and international programmes, it becomes the responsibility of the management and operators of uranium production projects for carrying our all activities to meet these requirements. The major emphasis of the IAEA's Project on Raw Materials for Reactor Fuels is to improve and strengthen the practice of preventive measures by establishing guidelines for environmental impact assessment and mitigation and the recognition and promotion of good practice and modern technology. The Waste Technology programme provides advice on the cleanup and remediation of old production sites and wastes. One important mechanism for recognizing and promoting best practice in environmental management of uranium production is fostering information exchange among specialists. The IAEA exercises this mechanism, for examples though publications, electronic information exchange and, particularly, through large gatherings of specialists and decision makers at international conferences, symposia and seminars. The topics covered at the symposium were: Energy needs and challenges for the 21 st Century; uranium supply for the short and long term; sustainable development, energy resources and nuclear energy's role in greenhouse gas abatement; economic impact of world mining; impacts of mining on developed and developing countries; environmental and social impacts of uranium mining in several countries; examples of positive and negative impacts of uranium mining projects on local communities; environmental issues

  3. Production and analysis of ultradispersed uranium oxide powders

    Science.gov (United States)

    Zajogin, A. P.; Komyak, A. I.; Umreiko, D. S.; Umreiko, S. D.

    2010-05-01

    Spectroscopic studies are made of the laser plasma formed near the surface of a porous body containing nanoquantities of uranium compounds which is irradiated by two successive laser pulses. The feasibility of using laser chemical methods for obtaining nanoclusters of uranium oxide particles in the volume of a porous body and the simultaneous possibility of determining the uranium content with good sensitivity are demonstrated. The thermochemical and spectral characteristics of the analogs of their compounds with chlorine are determined and studied. The possibility of producing uranium dioxides under ordinary conditions and their analysis in the reaction products is demonstrated.

  4. Uranium production, acquisition and exploration in North America. Uran in Nordamerika: Produktion - Akquisition - Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Akin, H; Kuchelka, R

    1991-06-01

    Uranerz Exploration and Mining Limited (UEM or Uranerz), the Canadian subsidiary of Uranerzbergbau GmbH, Bonn, has become a significant producer of uranium concentrates in the world during the last 20 years. The first step in this development was the acquisition of a large share in the former Rabbit Lake deposit and mill in 1970. Five years later UEM discovered the famous Key Lake deposit, containing the Gaertner and Deilmann orebodies, which today form the basis of the single largest and probably most economic uranium mine and mill complex in the world. Recently, the acquisition of a share in the 'new' Rabit Lake mill together with major adjacent uranium deposits at Collins Bay and Eagle Point has been concluded. In the United States, where there is less hope for large rich uranium deposits to be found, Uranerz has concentrated on the development of in situ leaching technology which enables low cost production from relatively low grade deposits. The latest exploration success in Canada was achieved in the McArthur River Joint Ventures by drilling an underground uranium deposit, which can be compared with Key Lake in grade and size. This will further improve the reserve base and ensure that Uranerz will maintain its position in a growing uranium market even after the turn of the century. (orig.).

  5. Uranium problem in production of wet phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gorecka, H; Gorecki, H [Politechnika Wroclawska (Poland)

    1980-01-01

    The balance of the uranium in the wet dihydrate method was presented. This balance shows that a large quantity of the uranium compounds shift from mineral phosphate rock to liquid phase of decomposition pulp (about 70-85% U) and the rest moves to phosphogypsum (about 15-25% U). The contents of uranium in phosphate rock imported for our country and in products and by-products of the fertilizer industry, were determined. Concentration of uranium in the phosphogypsum is dependent on the type of mineral rock and the process of phosphogypsum crystallization. Analysis of the uranium contents in phosphogypsum samples and results of the sedimentation analysis indicated influence of the specific surface of phosphogypsum crystals on the uranium concentration. Investigation of the sets of samples obtained in the industrial plant proved that phosphogypsum cake washed counter-currently on the filter contained from 10 to 20 ..mu..g U/g. The radioactivity of these samples fluctuated from 35 to 60 pCi/g. Using solution sulphuric acid of concentration in range 2-4% by weight H/sub 2/SO/sub 4/ to washing and repulpation of the phosphogypsum enables to reduce its radioactivity to level below 25 pCi/g. This processing makes possible to utilize this waste material in the building industry. Extraction of uranium from the wet phosphoric acid using kerosen solution of the reaction product between octanol -1 and phosphorus pentaoxide showed possibility to recover over 80% of uranium contained in phosphate rock.

  6. Recovering and recycling uranium used for production of molybdenum-99

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  7. Patterns and Features of Global Uranium Resources and Production

    Science.gov (United States)

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  8. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  9. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  10. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  11. Uranium in South Africa: 1983 assessment of resources and production

    International Nuclear Information System (INIS)

    1984-06-01

    NUCOR assesses South Africa's uranium resource and production capabilities on an ongoing basis. Assessments are carried out in close co-operation with the mining companies and the Government Mining Engineer. In carrying out this evaluation, the classification recommended by the NEA/IAEA Working Party on Uranium Resources is followed. In order to preserve company confidentiality, the details of the findings are released in summary form only. Within South Africa, uranium occurrences are found in Precambrian quartz-pebble conglomerates, Precambrian alkaline complexes, Cambrian to Precambrian granite gneisses, Permo-Triassic sandstones and coal, and Recent to Tertiary surficial formations. South Africa's uranium resources were reassessed during 1983 and the total recoverable resources in the Reasonably Assured and Estimated Additional Resource categories recoverable at less than $130/kg U were estimated to be 460 000 t U. This represents a decrease of 13,4% when compared with the 1981 assessment. South Africa's uranium production for 1983 amounted to 6 060 t U, a 4,21 % increase over the 1982 production of 5 816 t U. Ninety-seven percent of the production is derived from the Witwatersrand quartz-pebble conglomerates, the rest being produced as a by-product of copper mining at Palabora. South Africa maintained its position as a major low-cost uranium producer, holding 14% of the WOCA uranium resources, and during 1982 it produced 14% of WOCA's uranium. In making future production capability projections it may be safely concluded that South Africa would be able to produce uranium at substantial levels well into the next century

  12. World Nuclear University School of Uranium Production: Eight years' experience

    International Nuclear Information System (INIS)

    Trojacek, J.

    2014-01-01

    The World Nuclear University School of Uranium Production was established by DIAMO, state enterprise in 2006 year under the auspices of the World Nuclear University in London in partnership with international nuclear organizations – OECD/NEA and IAEA. Using the expertise and infrastructure of DIAMO State Enterprise, in conjuction with national and international universities, scientific institutions, regulatory authorities and other individual experts, the “school” covers its mission with the aim to provide world-class training on all aspects of uranium production cycle to equip operators, regulators and executives with the knowledge and expertise needed to provide expanded, environmentally-sound uranium mining throughout the world: • to educate students on all aspects of uranium production cycle including exploration, planning, development, operation, remediation and closure of uranium production facilities; • to improve the state of the art of uranium exploration, mining and mine remediation through research and development; • to provide a forum for the exchange of information on the latest uranium mining technologies and experiences – best practices.

  13. Worldwide prospects of uranium prospection and production

    International Nuclear Information System (INIS)

    Beaumont, Claude; Duval, B.C.; Sarcia, J.A.

    1978-01-01

    The reserves of uranium ores, at present known in the western world, at a mining price below 80 US dollars per kilo, permit the needs corresponding to the life of the existing reactors to be satisfied until 1988; the more expensive estimated resources taken into account would permit an extension beyond the end of the century. But the transition from available reserves and their renewal to the evaluated reserves necessitates from now a considerable prospecting effort. There are great geological possibilities to cover needs: beside the known types of deposits which give the present production, there exist numerous other prospects which appear of interest to underline; nevertheless, they require a certain amount of progress, other methods of detection such as the metal extractive processes which are not necessarily beyond the reach of science and techniques. Obstacles are due to the fact that the scrupules of ecologic necessities are often slightly inconsiderate, and that states intervene more and more in the extractive industry when the object is not to satisfy their own needs. Lastly, the uncertainty of the long market (breeder or not) risk to discourage the effort of investors [fr

  14. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  15. Analyses of uranium in some phosphate commercial products

    International Nuclear Information System (INIS)

    Kamel, N.H.M.; Sohsah, M.; Mohammad, H.M.; Sadek, M.

    2005-01-01

    The raw materials used in manufacturing of phosphate fertilizer products were derived from rocks. Rocks contain a remarkable of natural radioactivity. Uranium and phosphorous were originally initiated at the same time of the initiated rocks. The purpose of this research is to investigate solubility of uranium phosphate species at the phosphate fertilizer samples, samples including; raw phosphate material, single super phosphates (SSP) granules and powdered, triple super phosphates (TSP) and phosphogypsum samples were obtained from Abu-Zabal factory in Egypt. Solubility of uranium phosphate species was estimated. It was found that, less than half of the uranium phosphate species are soluble in water. The soluble uranium may be enter into the food chains by plant. Therefore, restriction should be done in order to limit contamination of land and the public

  16. Production from new uranium mines a Cogema resources Saskatchewan perspective

    International Nuclear Information System (INIS)

    Pollock, B.

    2001-01-01

    The province of Saskatchewan is best known for the large flat tracts of land in the south that are primarily used for agricultural purposes. Less well known is the fact that the northern part of the province hosts the richest uranium mines in the world. In fact, to use a petroleum analogy, Saskatchewan has been referred to as the 'Saudi Arabia' of the uranium producing countries. The mining industry in Saskatchewan is a flourishing, high technology industry and supplies approximately one-third of the annual world primary production of uranium. The purpose of this paper is to examine the uranium mining industry in Saskatchewan and why this province stands alone as the dominant uranium producer in the world and will maintain that position into the foreseeable future. As well, an overview of the significant role played by COGEMA Resources in developing the Saskatchewan uranium industry will be undertaken. This company whose roots date back almost 40 years in the province, now holds significant interests in all four of the mines currently producing uranium. With investments of over one billion dollars (U.S.) in this province, COGEMA has established itself as a long-term player in the Saskatchewan Uranium Industry. (author)

  17. Establishing Effective Environmental and Safety Performance Indicators: A Best Practice Approach in Uranium Production

    International Nuclear Information System (INIS)

    Rezansoff, D.; White, G.

    2010-01-01

    Cameco Corporation (Cameco), with headquarters in Saskatoon, Saskatchewan, Canada, is the world's largest, low-cost uranium producer, currently supplying sufficient uranium to meet 20% of the world's demand. It is characterized by a diverse range of operations in Canada, the United States and Central Asia, for which Cameco is the majority owner and/or operator, including exploration, mining, milling, refining and conversion. Cameco had four business segments: Uranium; Conversion services; Nuclear energy generation; and Gold Also, in 2002, Cameco revised its vision statement to indicate, 'Cameco will be a dominant nuclear energy company producing uranium fuel and generating clean electricity'. Commensurate with this, Cameco has re-confirmed its overall measures of success as follows: A safe, healthy and rewarding workplace; A clean environment; Supportive communities; and Solid financial performance - all reflected in a growing return to shareholders. Like most organizations, Cameco recognizes the importance of conducting its operations in ways that promote continual improvement in environmental and safety performance. Demonstrating the environmental advantages of nuclear is a vital part of the overall best management practices approach. Detractors often try to point to the uranium production side of the nuclear fuel cycle in pursuit of trying to make the case that the nuclear option does not carry any special environmental advantage. These attempts are mostly based on performance from eras past, not modern performance. The uranium sector must be able to present its case in a modern context, which is largely based on sustainable development principles. This paper focuses on establishing environment and safety performance indicators for the uranium production and conversion aspects of Cameco's business, as well as in support of the environmental advantages of nuclear energy generation

  18. Uranium 2014: Resources, Production and Demand - Executive Summary

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  19. Wyoming uranium miners set sights on higher production

    International Nuclear Information System (INIS)

    White, L.

    1975-01-01

    The rising price of U 3 O 8 due to current shortage of supply and stiff environmental regulations on the uranium mining serve as grounds for caution in assessing the future of the uranium industry. Some projections of the need for doubled uranium production in the next 5 years have sparked much exploration and mining in Wyoming. Currently working or near-working mining operations are discussed briefly. The discussions are divided as to the company carrying out the operation-- from Exxon to small drilling contractors

  20. Pilot production of 325 kg of uranium carbide

    International Nuclear Information System (INIS)

    Clozet, C.; Dessus, J.; Devillard, J.; Guibert, M.; Morlot, G.

    1969-01-01

    This report describes the pilot fabrication of uranium carbide rods to be mounted in bundles and assayed in two channels of the EL 4 reactor. The fabrication process includes: - elaboration of uranium carbide granules by carbothermic reduction of uranium dioxide; - electron bombardment melting and continuous casting of the granules; - machining of the raw ingots into rods of the required dimensions; finally, the rods will be piled-up to make the fuel elements. Both qualitative and quantitative results of this pilot production chain are presented and discussed. (authors) [fr

  1. Uranium tetrafluoride production via dioxide by wet process

    International Nuclear Information System (INIS)

    Aquino, A.R. de.

    1988-01-01

    The study for the wet way obtention of uranium tetrafluoride by the reaction of hydrofluoric acid and powder uranium dioxide, is presented. From the results obtained at laboratory scale a pilot plant was planned and erected. It is presently in operation for experimental data aquisition. Time of reaction, temperature, excess of reagents and the hydrofluoric acid / uranium dioxide ratio were the main parameters studied to obtain a product with the following characteristics: - density greater than 1 g/cm 3 , conversion rate greater than 96%, and water content equal to 0,2% that allows its application to heaxafluoride convertion or to magnesiothermic process. (author) [pt

  2. Uranium Exploration, Resources and Production in South Africa 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, L.C., E-mail: lee.ainslie@necsa.co.za [South African Nuclear Energy Agency (Necsa), Pretoria (South Africa)

    2014-05-15

    The paper gives a brief history of uranium mining in South Africa. The types of uranium deposits in South Africa are described and their distribution given. The majority of uranium is hosted as a by-product in the quartz-pebble conglomerates of the Witwatersrand Basin with lesser amounts in tabular sandstone and coal hosted deposits. The exploration activities of companies operating in South Africa are discussed and the reserves and resources identified are presented. A substantial increase in reserves has been recorded over the last two years because of intensive investigation of known deposits. Only a marginal increase in total resources was reported because of a lack of “greenfield” exploration. Production is far down from the levels achieved in the 1970s and 1980s. The surge in the uranium market resulted in a number of companies investigating their production options. The recent decline in the market has slowed down some of these activities and forced the closure of an operating mine. However a new mine has come into production and feasibility studies are being carried out on other deposits. The recently promulgated Nuclear Energy Policy for the Republic of South Africa defines Necsa’s role in nuclear fuel cycle and the uranium mining industry emphasizing security of supply. South African uranium resources will be able to supply all local needs for the foreseeable future. (author)

  3. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    Science.gov (United States)

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  4. Uranium-mediated electrocatalytic dihydrogen production from water

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  5. Eldorado Port Hope refinery - uranium production (1933-1951)

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2008-01-01

    Since the discovery of pitchblende in 1930 by Gilbert LaBine at Great Bear Lake (GBL), North West Territories, uranium has played a central role in the growth of the Canadian mining sector and it in turn has propelled the country into it's present position as the world's top uranium producer. The rich ore mined there was used originally by Eldorado Gold Mines Limited to build a business based on the extraction of radium, which was selling at $70,000 a gram at the time, and silver which was present in the ore in commercial amounts. The mine site on GBL became known as Port Radium. In 1933 Eldorado brought a refinery on-line at Port Hope, Ontario nearly 4,000 miles away from the mine, and began to produce radium, silver and uranium products. Initially uranium played a minor role in the business and the products were sold into the ceramics industry to manufacture a variety of crockery with long-lasting colours. In addition, there were sales and loans of uranium products to research laboratories that were exploring nuclear energy for possible use in weapons and power generation, as the potential for this was clearly understood from 1939 onwards. These laboratories included the National Research Council (George Laurence), Columbia University (Enrico Fermi) and International Chemical Industries (J.P. Baxter). With the beginning of World War II the radium business suffered from poor sales and by 1940 the mine was closed but the refinery continued operation, using accumulated stockpiles. By 1942 uranium had become a strategic material, the mine was reopened, and the refinery began to produce large quantities of uranium oxide destined for The Manhattan Project. As events unfolded Eldorado was unable to produce sufficient ore from GBL so that a large quantity of ore from the Belgian Congo was also processed at Port Hope. Ultimately, as a result of the efforts of this enterprise, World War II was finally ended by use of atomic weapons. After World War II the refinery

  6. Eldorado Port Hope refinery - uranium production (1933-1951)

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E

    2008-03-15

    Since the discovery of pitchblende in 1930 by Gilbert LaBine at Great Bear Lake (GBL), North West Territories, uranium has played a central role in the growth of the Canadian mining sector and it in turn has propelled the country into it's present position as the world's top uranium producer. The rich ore mined there was used originally by Eldorado Gold Mines Limited to build a business based on the extraction of radium, which was selling at $70,000 a gram at the time, and silver which was present in the ore in commercial amounts. The mine site on GBL became known as Port Radium. In 1933 Eldorado brought a refinery on-line at Port Hope, Ontario nearly 4,000 miles away from the mine, and began to produce radium, silver and uranium products. Initially uranium played a minor role in the business and the products were sold into the ceramics industry to manufacture a variety of crockery with long-lasting colours. In addition, there were sales and loans of uranium products to research laboratories that were exploring nuclear energy for possible use in weapons and power generation, as the potential for this was clearly understood from 1939 onwards. These laboratories included the National Research Council (George Laurence), Columbia University (Enrico Fermi) and International Chemical Industries (J.P. Baxter). With the beginning of World War II the radium business suffered from poor sales and by 1940 the mine was closed but the refinery continued operation, using accumulated stockpiles. By 1942 uranium had become a strategic material, the mine was reopened, and the refinery began to produce large quantities of uranium oxide destined for The Manhattan Project. As events unfolded Eldorado was unable to produce sufficient ore from GBL so that a large quantity of ore from the Belgian Congo was also processed at Port Hope. Ultimately, as a result of the efforts of this enterprise, World War II was finally ended by use of atomic weapons. After World War II the

  7. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  8. Process development study on production of uranium metal from monazite sourced crude uranium tetra-fluoride

    International Nuclear Information System (INIS)

    Chowdhury, S; Satpati, S.K.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    Development of an economic process for recovery, process flow sheet development, purification and further conversion to nuclear grade uranium metal from the crude UF 4 has been a technological challenge and the present paper, discusses the same.The developed flow-sheet is a combination of hydrometallurgical and pyrometallurgical processes. Crude UF 4 is converted to uranium di-oxide (UO 2 ) by chemical conversion route and UO 2 produced is made fluoride-free by repeated repulping, followed by solid liquid separation. Uranium di-oxide is then purified by two stages of dissolution and suitable solvent extraction methods to get uranium nitrate pure solution (UNPS). UNPS is then precipitated with air diluted ammonia in a leak tight stirred vessel under controlled operational conditions to obtain ammonium di-uranate (ADU). The ADU is then calcined and reduced to produce metal grade UO 2 followed by hydro-fluorination using anhydrous hydrofluoric acid to obtain metal grade UF 4 with ammonium oxalate insoluble (AOI) content of 4 is essential for critical upstream conversion process. Nuclear grade uranium metal ingot is finally produced by metallothermic reduction process at 650℃ in a closed vessel, called bomb reactor. In the process, metal-slag separation plays an important role for attaining metal purity as well as process yield. Technological as well economic feasibility of indigenously developed process for large scale production of uranium metal from the crude UF 4 has been established in Bhabha Atomic Research Centre (BARC), India

  9. Basic status of uranium mine production at the beginning of the new century

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    At the beginning of the new century, the global uranium mine production declined slightly, the spot uranium price was close to or slightly higher than that of the last century. The uranium consumption in global nuclear electricity generation does not fluctuate greatly, remains stable as a whole. Although certain accidents have taken place during the period of uranium mine production, uranium production remains stable, uranium's demand and supply remain balanced basically. In the global uranium mine production at the beginning of the new century, production from hard rock uranium mines still plays the leading role, and production from in-situ leachable sandstone-type uranium mines increases by a small margin and makes up one fifth of the total global uranium mine production. Several transnational uranium industry companies have become the main stockholders of low cost uranium production centers all around the world. Most mining uranium deposits and uranium production centers have centralized in a few countries. The globalized distribution of uranium resources during the progress of the world's economy globalization has taken shape in the uranium industry. (authors)

  10. Uranium. Resources, production, and market - 2009 Red Book

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The ''Red Book'' has been compiled since the mid-1960s as a joint OECD/NEA and IAEA publication. The analysis presents an overview of present uranium supply and demand with perspectives reaching as far as 2035. Data from 35 countries were accumulated about exploration, resources, production, and prices. The 23 rd edition contains the most recent basic evaluations of the world uranium market, providing a profile of nuclear fuel supply. Forecasts of nuclear generating capacity and uranium requirement for reactor use up until 2035 are presented along with a discussion of uranium supplies and aspects of demand beyond that time frame. Worldwide expenditures for the exploration of uranium resources in 2008 totaled more than US $1.6 billion, which is a 133% increase over expenses in 2006. Most of the important producer countries reported rising expenses for exploration as well as for commissioning new production centers. The total ''identified'' (=reasonably assured and inferred) reserves as of January 1, 2009 in the 3 O 8 ) category decreased slightly to 5,404,000 t U while a clear increase to 6,306,300 t U was seen in the re-introduced ''high cost'' category ( 3 O 8 ). Uranium production in 2008 amounted to 43,880 t U, which is an increase of 6% over 2007 (41,244 t U), and of 11% over 2006 (39,617 t U). In 2008, worldwide uranium production (43,880 t U) covered roughly 74% of the worldwide requirement for use in reactors (59,065 t U). The balance was met out of secondary sources. (orig.)

  11. Study of reactions for the production of uranium titrafluoride and uranium hexafluoride

    International Nuclear Information System (INIS)

    Guzella, M.F.R.

    1985-01-01

    The main production processes of uranium hexafluoride in pilot plants and industrial facilities are described. The known reactions confirmed in laboratory experiments that lead to Uf 6 or other intermediate fluorides are discussed. For the purpose of determining a thermodinamically feasible reaction involving the sulfur hexafluoride as fluorinating agent, a mock-up facility was designed and constructed as a part of the R and D work planned at the CDTN (Nuclebras Center for Nuclear Technology Development). IN the uranium tatrafluoride synthesis employing U 3 O 8 and SF 6 several experimental parameters are studied. The reaction time, gasflow, temperature and stoechiometic relations among reagents are described in detail. (Author) [pt

  12. Method for the production of uranium chloride salt

    Science.gov (United States)

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  13. Nuclear purity and the production of uranium (1962)

    International Nuclear Information System (INIS)

    Verte, P.

    1962-01-01

    When the production of 'nuclear grade' uranium is dealt with, it is difficult, the author of this study points out, to separate its chemical, technical, and economical bearings. While recalling the evolution of chemical processes in various countries and describing the technic of uranium manufacture in the plant of the French 'Commissariat a l'Energie Atomique' at Le Bouchet, the author outlines the effect of economical contingencies on the problems the chemists and engineer are faced with. The question of cost price is also considered here with particular attention. (author) [fr

  14. New developments in uranium exploration, resources, production and demand

    International Nuclear Information System (INIS)

    1992-06-01

    In view of the economic importance, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD have had a long standing interest in uranium exploration, resources, production and demand. It was the objective of this Technical Committee Meeting to bring together specialists in the field and to collect information on new developments, especially from countries which in the past considered uranium a strategic commodity and the related information as confidential or even secret. Separate abstracts were prepared for each of the 29 papers in this volume. Refs, figs, tabs, charts and maps

  15. Study on environmental impact assessment index system of uranium production base construction plan

    International Nuclear Information System (INIS)

    Liu Xiaochao; Song Liquan

    2008-01-01

    The index system on planning environmental impact assessment of uranium mining base construction is discussed by using the hiberarchy method according to characteristics of uranium production and environmental protection object of planning assessment. The suggested index system is in favor of persistent exploitation of uranium resource and environmental protection in the uranium mining area, and can provide a reference for planning environmental impact assessment of uranium mining base construction in China. (authors)

  16. Production of uranium in Navoi Mining and Metallurgy Combinat, Uzbekistan

    International Nuclear Information System (INIS)

    Kuchersky, N.; Tolstov, E.A.; Mazurkevich, A.P.; Inozemzev, S.B.

    2001-01-01

    Full text: Under the conditions of constantly increasing level of development of the nuclear power, it is inevitable that the uranium stockpiles accumulated to 1985 will soon be depleted. This consideration underlies the development concept of uranium production in the Navoi Mining and Metallurgy Combinat, Uzbekistan. Because this product has become a source of hard currency revenues for the Republic, there will be a significant increase in the processed ore and output of uranium oxide within the next few years. Uranium production in the Navoi Mining and Metallurgy Combinat represents a full-cycle operations ranging from geological survey through hydrometallurgical processing resulting in the output of uranium concentrate in the form of uranium protoxide-oxide (U 3 O 8 ). The NMMC uranium operations include the Hydrometallurgical Plant and three facilities accomplishing ISL mining facilities. A successful start on the development of the Uchkuduk deposit by ISL method in the 1960s gave rise to scientific and production approach for development of other uranium deposits of the infiltration bedded (sandstone) type. Uranium recovery by ISL has become a separate mining branch within the 30-year period of its history and the contribution of this branch in uranium production has steadily grown. Since 1995 all uranium produced by Navoi Mining and Metallurgy Combinat is attributed to ISL. During this evolution period of the ISL method, a whole range of systematic scientific research and practical works were carried out covering improvement of process flowsheets, equipment, operational methods and techniques for particular mining conditions at those specific sites. In co-operation with design and scientific research institutions, a significant number of scientific researches, test works, design and engineering projects were achieved in order to create optimal conditions for ISL mining and further processing of pregnant solutions by sorption as well as to appropriately equip

  17. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  18. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  19. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  20. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  1. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  2. Energies and media nr 28. Uranium mining exploitations and residues. Uranium mines in Niger. Depleted uranium as a by-product of enrichment

    International Nuclear Information System (INIS)

    2009-02-01

    After some comments on recent events in the nuclear sector in different countries (USA, China, India, UK, Sweden, Italy and France), this publication addresses the issue of uranium mining exploitations and of their residues. It comments the radioactivity in mining areas, briefly discusses the issue of low doses, describes the uranium ore and its processing, indicates which are the various residues of the mining activity (sterile uncovered tailings, non exploitable mineralized rocks, ore and residue processing, residue radioactivity, mine closing down, witnesses on health in ancient mines). Some reflections are stated about uranium mines in Niger, and about depleted uranium as a by-product of the enrichment activity

  3. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  4. Steps for preparing uranium production feasibility studies: A guidebook

    International Nuclear Information System (INIS)

    1996-06-01

    Uranium exploration, development and eventual production, form a series of progressive and logical steps. Each step is part of a progression of activities with the objective of obtaining new or additional information from which a crucial decision is to be made. This guidebook is primarily aimed at mineral management personnel in developing countries who have little or no experience in preparing feasibility studies in uranium production. It is not a textbook which describes the geology, mining or processing of uranium. This guidebook deals with the philosophy, basic principles and important factors in the various stages of economic evaluation of the project. This guidebook is primarily concerned with small to medium sized mining projects. However, it can also provide useful guidance for the initial study of larger mining projects. More detailed studies of larger projects, however, should be left to well known experts in the field. While the mineral commodity in question is uranium, the procedures and approaches outlined in this guidebook are generally applicable to the study of other commodities. Refs, figs, tabs

  5. Uranium favourability and evaluation in Mongolia (phase II), recent events in uranium resources and production in Mongolia

    International Nuclear Information System (INIS)

    Batbold, T.

    2001-01-01

    Uranium exploration in Mongolia covered a period of over 5 decades. The main results of these activities were the discoveries of 6 uranium deposits and about 100 occurrences as well as numerous favourable indications. Sizable resources are found mainly in deposits of the sandstone, volcanic and alkaline intrusive types. Of these, the first two are considered to be of economic importance. Uranium production in Mongolia started in 1989 with the exploitation of volcanic type uranium deposits of the Mongol-Priargun metallogenic province, known as the Dornot Mine. Due to political and economic changes in the country and neighbouring areas of the Russian Federation, this uranium production was terminated in 1995. A new plan to restart production at the Mardai-gol deposits as a joint venture between Mongolia, the Russian Federation and a US company is being considered. (author)

  6. World uranium exploration, resources, production and related activities

    International Nuclear Information System (INIS)

    Hanly, A.

    2014-01-01

    A Nuclear Energy Series publication entitled “World Uranium Exploration, Resources, Production and Related Activities” (WUERPRA) will soon be published by the IAEA. The objective of the publication is to provide a comprehensive compilation of historic uranium exploration, resources, production and related activities based primarily on information from the 1966 to 2009 editions of the publication “Uranium Resources, Production and Demand”, a joint publication of the International Atomic Energy Agency and the Nuclear Energy Agency/Organization for Economic Cooperation and Development commonly known as the ‘Red Book’. This has been supplemented by historic information from other reliable sources. The publications also include, where enough information was available, descriptions of the relative potential for discovery of new uranium resources on a per country basis. To recover complete historic information it is frequently necessary to refer to earlier editions of the Red Book, many of which may not be readily available. This publication aims to provide one comprehensive source for much of this type of information which will reduce the effort required to prepare future editions of the Red Book, as well as make the historic Red Book information, together with select related information from other sources, more readily available to all users with an interest in uranium. WUERPRA comprises 6 volumes containing 164 country reports, each organized by region; Volume 1: Africa (53 countries); Volume 2: Central, Eastern and Southeastern Europe (25 countries); Volume 3: Southeastern Asia, Pacific, East Asia (18 countries); Volume 4: Western Europe (22 countries); Volume 5: Middle East, Central and Southern Asia (19 countries), and; Volume 6: North America, Central America and South America (27 countries). The report also contains information on countries that have not reported to the Red Book. The poster will summarize select major highlights from each volume

  7. IAEA Activities on Uranium Resources and Production, and Databases for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, C.; Slezak, J. [Divison of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Vienna (Austria)

    2014-05-15

    In recent years rising expectation for nuclear power has led to a significant increase in the demand for uranium and in turn dramatic increases in uranium exploration, mining and ore processing activities worldwide. Several new countries, often with limited experience, have also embarked on these activities. The ultimate goal of the uranium raw material industry is to provide an adequate supply of uranium that can be delivered to the market place at a competitive price by environmentally sound, mining and milling practices. The IAEA’s programme on uranium raw material encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and ore processing, environmental issues in the uranium production cycle and databases for the uranium fuel cycle. Radiological safety and environmental protection are major challenges in uranium mines and mills and their remediation. The IAEA has revived its programme for the Uranium Production Site Appraisal Team (UPSAT) to assist Member States to improve operational and safety performances at uranium mines and mill sites. The present paper summarizes the ongoing activities of IAEA on uranium raw material, highlighting the status of global uranium resources, their supply and demand, the IAEA database on world uranium deposit (UDEPO) and nuclear fuel cycle information system (NFCIS), recent IAEA Technical Meetings (TM) and related ongoing Technical Cooperation (TC) projects. (author)

  8. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  9. Developments in uranium resources, production, demand and the environment. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2005-01-01

    Globalization has led to growing importance of the uranium production industries of the world's developing countries. Uranium supply from these countries could be increasingly important in satisfying worldwide reactor requirements over time. Along with the increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny from the nuclear power industry, the end-users of this supply, and from communities impacted by uranium mining and processing. The papers presented at the meeting on 'Developments in Uranium Resources, Production, Demand and the Environment' provide an important overview of uranium production operations and of their environmental consequences in developing countries, as well as offering insight into future production plans and potential. Along with their increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny from the nuclear power industry, the end users of this supply, and by communities impacted by uranium mining and processing. Therefore, the environmental consequences of uranium production were included in the meeting agenda as noted in the meeting title, 'Developments in uranium resources, production, demand and the environment'. Accordingly, the papers presented at this meeting are about evenly divided between discussions of known and potential uranium resources and uranium production technology and the environmental impact of uranium mining and processing, its related remediation technology and its costs. Though emphasis is placed on uranium programmes in developing countries, an overview of COGEMA's worldwide activities is also presented. This presentation provides insight into the strategies of arguably the Western world's most integrated and diversified uranium company, including the geographic diversity of its exploration and production

  10. Uranium production and environmental restoration at Priargunsky Centre (Russian Federation)

    International Nuclear Information System (INIS)

    Shatalov, V.V.; Boitsov, A.V.; Nikolsky, A.L.; Chernigov, V.G.; Ovseichuk, V.A.

    2002-01-01

    The state enterprise 'Priargunsky Mining and Chemical Production Association' (PPGHO) is the only active uranium production centre in Russia in last decade. Mining has been operated since 1968 by two open pits and four underground mines. It is based on resources of 19 volcanic-type deposits of Streltsovsk U-ore region situated at the area of 150 km 2 . Milling and processing has been carried out since 1974 at the local hydrometallurgical plant. Since the mid 1980s, limited amount of uranium is produced by heap and block leaching methods. High level of total production marks PPGHO as one of the outstanding uranium production centers worldwide. Significant amount of solid, liquid and gas wastes have been generated for more than 30 years. The principal environmental contamination comes from waste rock piles, mine water and tailing ponds. Liquid waste seepage through tailing pond bed can essentially contaminate underground waters. The principal environmental remediation activities are: waste rock dumps and open pits rehabilitation; waste rock utilization for industrial needs; heap and block leaching mining development, strengthening dam bodies and construction intercepting wells below the tailing pond dam, hydrogeological monitoring, upgrade of mine water treatment unit. Waste is being managed by the environmental service team of PPGHO. Environmental restoration activities, including rehabilitation of the territories and waste utilization, are implemented gradually in line with decommissioning of enterprise's particular facilities. (author)

  11. Method of converting uranium fluoride to intermediate product for uranium oxide manufacture with recycling or reusing valuable materials

    International Nuclear Information System (INIS)

    Baran, V.; Moltasova, J.

    1982-01-01

    Uranium fluoride is acted upon by water with nitrate containing a cation capable of binding fluoride ions. The uranium is extracted, for instance, with tributyl phosphate with the generated organic phase containing the prevalent proportion of uranium and representing the required intermediate product and the aqueous phase from which is isolated the fluorine component which may be used within the fuel cycle. The nitrate component of the aqueous phase is recycled following treatment. It is also possible to act on uranium fluoride directly with an aqueous solution. Here the cations of nitrate form with the fluorides soluble nondissociated complexes and reduce the concentration of free fluoride ions. The nitrate +s mostly used in an amount corresponding to its solubility in the system prior to the introduction of UF 6 . The uranium from the solution with the reduced concentration of free fluoride ions is extracted into the reaction system under such conditions as to make the prevalent majority of fluorides and an amount of uranium smaller than 5x10 -2 mol/l remain in the aqueous phase and that such an amount of fluorides should remain in the organic phase which is smaller than corresponds to the fluorine/uranium molar ratio in the organic phase. Uranium contained in the organic phase is processed into uranium oxide, with advantage into UO 2 . From the isolated compounds of fluorine and the cation of the nitrate gaseous HF is released which is used either inside or outside of the fuel cycle. (J.P.)

  12. Determination of {sup 90}Sr in uranium fission products

    Energy Technology Data Exchange (ETDEWEB)

    Bajo, S; Tobler, L [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-02-01

    A previously published radiochemical procedure for the determination of {sup 90}Sr in grass and soil has been successfully employed - with minor modifications - for the determination of this nuclide in a solution of uranium fission products. It is suitable for the determination of {sup 90}Sr in environmental materials following a nuclear accident. The procedure is based on tributylphosphate extraction of {sup 90}Y, precipitation of Y-oxalate, and counting in a proportional counter. (author) figs., tabs., 10 refs.

  13. Are uranium resources sufficient to face the expected revival of nuclear electricity production in the world?

    International Nuclear Information System (INIS)

    Seyve, C.

    2007-11-01

    This article proposes a table containing assessments of uranium resources in 2005 in different countries, and comments the evolution of uranium prices between 1968 and 2008. It discusses whether it would be possible to cope with a dramatic increase of uranium prices, whether it would be already possible to save uranium with the same level of electricity production, whether there is still some uranium resources to be discovered, whether we could rely on non conventional uranium sources (phosphates, sea water), and the role of future reactors

  14. Reactions of uranium hexafluoride photolysis products

    Science.gov (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of krUF6 and UF5 after laser photolysis of the UF6 gas sample.

  15. Process for separately recovering uranium, transuranium elements, and fission products of uranium from atomic reactor fuel

    International Nuclear Information System (INIS)

    Balal, A.L.; Metscher, K.; Muehlig, B.; Reichmuth, C.; Schwarz, B.; Zimen, K.E.

    1976-01-01

    Spent reactor fuel elements are dissolved in dilute nitric acid. After addition of acetic acid as a complexing agent, the nitric acid is partly decomposed and the mixture subjected to electrolysis while a carrier liquid, which may be dilute acetic acid or a dilute mixture of acetic acid and nitric acid is caused to flow in the electric field between the electrodes either against the direction of ion migration or transversely thereto. The ions of uranium, plutonium, and other transuranium elements, and of fission products accumulate in discrete portions of the electrolyte and are separately withdrawn as at least three fractions after one or more stages of electrolysis

  16. Mining-metallurgical projects for the production of uranium concentrates

    International Nuclear Information System (INIS)

    Ajuria-Garza, S.

    1983-01-01

    This report presents an overall view of a complete project for a mining-metallurgical complex for the production of uranium concentrates. Relevant aspects of each important topic are discussed as parts of an integrated methodology. The principal project activities are analyzed and the relationships among the various factors affecting the design are indicated. A list of 96 principal activities is proposed as an example. These activities are distributed in eight groups: initial evaluations preliminary feasibility studies, project engineering, construction, industrial operation, decommissioning and post-decommissioning activities. The environmental impact and the radiological risks due to the construction and operation of the mining metallurgical complex are analyzed. The principles of radiological protection and the regulations, standards and recommendations for radiological protection in uranium mines and mills are discussed. This report is also a guide to the specialized literature: a bibliography with 765 references is included. (author)

  17. Uranium refining in South Africa. The production of uranium trioxide, considering raw material properties and nuclear purity requirements

    International Nuclear Information System (INIS)

    Colborn, R.P.; Bayne, D.L.G.; Slabber, M.N.

    1980-01-01

    Conventional practice results in raw materials being delivered to the uranium refineries in a form more suitable for transportation than for processing, and therefore the refineries are required to treat these raw materials to produce an acceptable intermediate feed stock. During this treatment, it is advantageous to include a purification step to ensure that the feed stock is of the required purity for nuclear grade uranium hexafluoride production, and this usually results in ammonium diuranate slurries of the required quality being produced as the intermediate feed stock. All subsequent processing steps can therefore be standardized and are effectively independent of the origin of the raw materials. It is established practice in South Africa to transport uranium as an ammonium diuranate slurry from the various mines to the Nufcor central processing plant for UOC production, and therefore the process for the production of uranium hexafluoride in South Africa was designed to take cognizance of existing transport techniques and to accept ammonium diuranate slurries as the raw material. The South African refinery will be able to process these slurries directly to uranium trioxide. This paper discusses the conditions under which the various ammonium diuranate raw materials, exhibiting a wide range of properties, can be effectively processed to produce a uranium trioxide of acceptably consistent properties. Mention is also made of the uranium hexafluoride distillation process adopted

  18. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    OpenAIRE

    RYU, HO JIN; KIM, CHANG KYU; SIM, MOONSOO; PARK, JONG MAN; LEE, JONG HYUN

    2013-01-01

    Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compou...

  19. Variance of a product with application to uranium estimation

    International Nuclear Information System (INIS)

    Lowe, V.W.; Waterman, M.S.

    1976-01-01

    The U in a container can either be determined directly by NDA or by estimating the weight of material in the container and the concentration of U in this material. It is important to examine the statistical properties of estimating the amount of U by multiplying the estimates of weight and concentration. The variance of the product determines the accuracy of the estimate of the amount of uranium. This paper examines the properties of estimates of the variance of the product of two random variables

  20. Set up of Uranium-Molybdenum powder production (HMD process)

    International Nuclear Information System (INIS)

    Lopez, Marisol; Pasqualini, Enrique E.; Gonzalez, Alfredo G.

    2003-01-01

    Powder metallurgy offers different alternatives for the production of Uranium-Molybdenum (UMo) alloy powder in sizes smaller than 150 microns. This powder is intended to be used as a dispersion fuel in an aluminum matrix for research, testing and radioisotopes production reactors (MTR). A particular process of massive hydriding the UMo alloy in gamma phase has been developed. This work describes the final adjustments of process variables to obtain UMo powder by hydriding-milling-de hydriding (HMD) and its capability for industrial scaling up. (author)

  1. Fission products stability in uranium dioxide

    International Nuclear Information System (INIS)

    Brillant, G.; Gupta, F.; Pasturel, A.

    2011-01-01

    Fission product stability in nuclear fuels is investigated using density functional theory (DFT). In particular, incorporation and solution energies of He, Kr, Xe, I, Te, Ru, Sr and Ce in pre-existing trap sites of UO 2 (vacancies, interstitials, U-O divacancy, and Schottky trio defects) are calculated using the projector-augmented-wave method as implemented in the Vienna ab initio simulation package. Correlation effects are taken into account within the DFT+U approach. The stability of many binary and ternary compounds in comparison to soluted atoms is also explored. Finally the involvement of FP in the formation of metallic and oxide precipitates in oxide fuels is discussed in the light of experimental results.

  2. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  3. Vaal Reefs South uranium plant

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Vaal Reefs mining complex, part of the Anglo American Corporation, is the largest gold and uranium producing complex in the world, being South Africa's principal producer, accounting for about a quarter of the country's uranium production. Vaal Reefs South uranium plant in the Orkney district was recently officially opened by Dr AJA Roux, the retiring president of the Atomic Energy Board and chairman of the Uranium Enrichment Corporation and will increase the country's uranium production. In the field of technology, and particularly processing technology, South Africa has shown the world unprecedented technology achievement in the field of uranium extraction from low grade ores and the development of the unique uranium enrichment process. New technical innovations that have been incorporated in this new plant are discussed

  4. Minimizing the risk and impact of uranium hexafluoride production

    International Nuclear Information System (INIS)

    Clark, D.R.; Kennedy, T.W.

    2010-01-01

    Cameco Corporation's Port Hope conversion facility, situated on the shore of Lake Ontario in the Municipality of Port Hope, Ontario, Canada, converts natural uranium trioxide (UO_3) into uranium dioxide (UO_2) or natural uranium hexafluoride (UF_6). Conversion of UO_3 to UF_6 has been undertaken at the Port Hope conversion facility since 1970 and is currently carried out in a second-generation plant licensed to annually produce 12,500 tonnes U as UF_6. Consistent with Cameco's vision, values and measures of success, Cameco recognizes safety and health of its workers and the public, protection of the environment, and the quality of our processes as the highest corporate priorities. Production of UF_6 in a brownfield urban setting requires a commitment to design, build and maintain multiple layers of containment (defence-in-depth) and to continually improve in all operational aspects to achieve this corporate commitment. This paper will describe the conversion processes utilized with a focus on the cultural, management and physical systems employed to minimize the risk and impact of the operation. (author)

  5. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  6. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Chan Yeon Won; Dae-Seung Kang; Sung-Wook Kim; Ju-Sun Cha; Sung-Jai Lee; Wooshin Park; Hun Suk Im; Jin-Mok Hur

    2015-01-01

    Recovery of metallic uranium has been achieved by electrolytic reduction of uranium oxide in a molten LiCl-Li 2 O electrolyte at 650 deg C, followed by the removal of the residual salt by vacuum distillation at 850 deg C. Four types of stainless steel mesh baskets, with various mesh sizes (325, 1,400 and 2,300 meshes) and either three or five ply layers, were used both as cathodes and to contain the reduced product in the distillation stage. The recovered uranium had a metal fraction greater than 98.8 % and contained no residual salt. (author)

  7. Production, inventories and HEU in the world uranium market: Production's vital role

    International Nuclear Information System (INIS)

    Underhill, D.H.

    1997-01-01

    This paper analyses recent uranium supply and demand relationship and projects supply through 2010. The extremely depressed record low market prices have led to the ongoing annual inventory drawdown of over 25,000 t U resulting from the current 45% world production shortfall. The policy of the European Union and anti-dumping related activities in the USA are restricting imports of uranium from CIS producers to a majority of the world's nuclear utilities. These factors are reducing low priced uranium supply and forcing buyers to again obtain more of their requirements from producers. It discusses how the sale of Low Enriched Uranium (LEU) produced from of 550 t High Enriched Uranium (HEU) from Russia and Ukraine could potentially supply about 15% of world requirements through 2010. However, legislation currently being developed by the US Congress may ration the sale of this material, extending the LEU supply well into the next century. Nuclear generation capacity and its uranium requirements are projected to grow at about 1.5% through 2010. Demand for new uranium purchases is however, increasing at the much higher rate of 25-30% over the next 10-15 years. This increasing demand in the face of decreasing supply is resulting in a market recovery in which the spot price for non-CIS produced uranium has risen over 25% since October 1994. Prices will continue to increase as the market equilibrium shifts from a balance with alternative excess low priced supply to an equilibrium between production and demand. 19 refs, 14 figs, 2 tabs

  8. The release of fission products from uranium metal: a review

    International Nuclear Information System (INIS)

    Minshall, P.C.

    1989-03-01

    The literature on the release of fission products as gaseous species from irradiated uranium metal in oxidising atmospheres has been reviewed. Release of actinides and of fission products as spalled particulate were not considered. Data is given on the release in air, carbon dioxide, steam and mixtures of steam and air. The majority of data discussed lie between 800 and 1200 0 C though some results for xenon, krypton and iodine releases below 800 0 C are given. Two measures of fission product release are discussed: the release fraction, F(tot), which is the ratio of the total release to the initial inventory, and the fractional release, F(ox), which is the fraction released from the oxidised metal. The effect of burn-up, atmosphere and temperature on F(tot) and F(ox) is examined and the conditions under which the release fraction, F(tot) is proportional to the extent of oxidation discussed. (author)

  9. Dissolution testing of intermediary products in uranium dioxide production by the sol-gel method

    International Nuclear Information System (INIS)

    Melichar, F.; Landspersky, H.; Urbanek, V.

    1979-01-01

    A method was developed of dissolving polyuranates and uranium dioxides in sulphuric acid and in carbonate solutions for testing intermediate products in the sol-gel process preparation of uranium dioxide. A detailed granulometric analysis of spherical particle dispersion was included as part of the tests. Two different production methods were used for the two types of studied materials. The test results show that the test method is suitable for determining temperature sensitivity of the materials to dissolution reaction. The geometrical distribution of impurities in the spherical particles can be determined from the dissolution kinetics. The method allows the determination of the effect of carbon from impurities on the process of uranium dioxide leaching and is thus applicable for testing materials prepared by the sol-gel method. (Z.M.)

  10. The last twenty years of the IAEA technical cooperation on the uranium production cycle in Argentina

    International Nuclear Information System (INIS)

    Lopez, L.

    2014-01-01

    Since 1993, the National Atomic Energy Commission (Argentina) has been involved in several IAEA Technical Cooperation Projects at interregional, regional and national levels, covering different aspects of the uranium production cycle. The TC referred projects can be listed as follows: - INT 2/015 “Supporting Uranium Exploration Resource Augmentation and Production Using Advanced Techniques” (2012 – Present). - RLA 3/006 - 010 “Upgrading of Uranium Exploration, Exploitation and Yellowcake Production Techniques taking Environmental Problems into Account” (2007 - Present). - ARG 2/014 “Development and Strengthening of the Uranium Mining Cycle Human Resources” (2012 – Present). - ARG 3/012 - 014 "Geology favourability, production feasibility and environmental impact assessment of uranium deposits exploitable by the in situ leaching technology (ISL)'' (2007 - Present). - ARG 3/009 “Development and use of biological techniques for uranium production (ARG 3/009)” (2003 - 2006). - ARG 3/008 “Prospection of uranium and other elements using gamma-ray spectrometry surveys” (2001 – 2005). - ARG 3/007 “Uranium Favorability and Exploration in Argentina” (1993 - 1997). It can be considered that the role of the technological transfer by the IAEA has been highly relevant for increasing the capability of strategically plan and more efficiently carry out the uranium production cycle projects in Argentina. (author)

  11. Depleted uranium as a by product of nuclear technology

    International Nuclear Information System (INIS)

    Orlic, M.

    2000-01-01

    Depleted uranium (DU) has been used during the War in Yugoslavia in the year 1999 by NATO forces, as well as in Bosnia and Gulf War. In Yugoslavia it has been used in two modalities: as ammunition (mostly caliber 30 mm) and as a part of cruise missiles (counterweight penetrator). Total amount of DU in Yugoslavia was about 10 tons. DU is a by product of nuclear technology and represents low-level nuclear waste. Therefore it should be stored. But, because of military application it is in the environment where it could react chemo toxically or radio toxically and so endanger people and animals. This paper contains all relevant technology parameters of DU created as a by product, DU physical and chemical properties, DU ammunition effects, environmental DU transport, and estimation of consequences on people and environment

  12. Forty years of uranium resources, production and demand in perspective

    International Nuclear Information System (INIS)

    Price, R.; Barthel, F.; Blaise, J.R.; McMurray, J.

    2006-01-01

    The NEA has been collecting and analysing data on uranium for forty years. The data and experience provide a number of answers to the questions being asked today, as many countries begin to look at nuclear energy with renewed interest. In terms of uranium resources, the lessons of the past give confidence that uranium supply will remain adequate to meet demand. (authors)

  13. Uranium industry annual 1993

    International Nuclear Information System (INIS)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U 3 O 8 (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U 3 O 8 (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world's largest producer in 1993 with an output of 23.9 million pounds U 3 O 8 (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market

  14. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  15. International symposium on the uranium production cycle and the environment. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This document contains 74 extended synopses of the presentations delivered at the meeting. The five sessions of the meeting covered various aspects of uranium mining and energy production including global aspects of sustainable development, uranium supply and nuclear energy; socio-economic and environmental impacts; safety considerations; production technology; waste management and decommissioning; and regulatory affairs. Each of the presentations was indexed separately.

  16. International symposium on the uranium production cycle and the environment. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-10-01

    This document contains 74 extended synopses of the presentations delivered at the meeting. The five sessions of the meeting covered various aspects of uranium mining and energy production including global aspects of sustainable development, uranium supply and nuclear energy; socio-economic and environmental impacts; safety considerations; production technology; waste management and decommissioning; and regulatory affairs. Each of the presentations was indexed separately

  17. Processing of stored uranium tetrafluoride for productive use

    International Nuclear Information System (INIS)

    Whinnery, W.N. III

    1987-01-01

    Waste uranium tetrafluoride (UF4) was created from converting uranium hexafluoride (UF6) to UF4 for generation of hydrogen fluoride. This resulted in more tails cylinders being made available in the early days of the Paducah Gaseous Diffusion Plant. A need arose for the UF4; however, a large portion of the material was stored outside in 55-gallon drums where the material became caked and very hard. Chemical operations crushed, ground, and screened a large portion of the waste UF4 from 1981-1987. Over 111,935,000 pounds of the material has been processed and put into productive use at Westinghouse Materials Company of Ohio or at Department of Defense facilities. This long-term effort saved the disposal cost of the material which is estimated at $9,327,900. In addition, the work was for an outside contract which lowered the operating cost of the Chemical Operations Department by $4,477,400. Disposal options for the material still present in the current inventory are outlined

  18. The IAEA activities supporting implementation of best practice in uranium production cycle

    International Nuclear Information System (INIS)

    Slezak, J.

    2010-01-01

    'Full text:' Since the International Atomic Energy Agency's foundation in 1957, the Agency has had an increasing interest in uranium production cycle (UPC) developments. Recent activities cover tasks on uranium geology & deposits, exploration, mining & processing including environmental issues. The two projects titles are (1) Updating uranium resources, supply and demand and nuclear fuel cycle databases and (2) Supporting good practices in the UPC in particular for new countries. Based o the recent experience, one of the new activities is focused at human resources development to improve application of best practice called Uranium Production Cycle Network (UPNet). (author)

  19. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  20. The production of sinterable uranium dioxide from ammonium diuranate

    International Nuclear Information System (INIS)

    Fane, A.G.; Le Page, A.H.

    1975-02-01

    The development of a 0.13 m diameter pulsed fluidised bed reactor for the continuous production of sinterable uranium dioxide from ammonium diuranate is described. Calcination-reduction at 670 to 680 0 C produced powders with surface areas of 4 to 6 m 2 g -1 giving pellet densities in excess of 10.6 g cm -3 . Sinterability was relatively insensitive to changes in operating conditions, provided the availability of hydrogen was adequate, for gas flow rates in the range 0.95 to 1.4 l S -1 , pulse frequencies of 0.5 and 0.75 Hz and mean residence times of the solids from 0.6 to 1.4 hours. Sinterability was shown to be improved either by use of higher input concentrations, or by use of a secondary flow of hydrogen (about 5 per cent of input) fed into the powder collection system and flowing countercurrent to the UO 2 product. The maximum throughput of 17 kg UO 2 h -1 (0.6 hours mean residence time) required only 120 per cent of the stoichiometric requirement at an input concentration of 50 vol.per cent with secondary hydrogen flow. Results are given for studies of the kinetics of reduction of calcined ammonia diuranate in hydrogen and the residence time distribution of solids in a pulsed fluidised bed. Estimates based on these data suggested that the overall conversion of ammonium diuranate to uranium dioxide in the continuously operated pulsed fluidised bed reactor was in excess of 99 per cent. Continuous stabilisation of the UO 2 product was demonstrated at 12 kg h -1 or UO 2 , in a 0.15 m diameter glass stabiliser, using 10 vol.per cent air in nitrogen and a temperature of about 50 0 C. (author)

  1. Recovery of valuable products in liquid effluents from uranium and thorium pilot units

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-01-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra- and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the refinate from the solvent extraction column where uranium and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximise the recycle and reuse of the abovementioned chemicals. (author) [pt

  2. Recovery of valuable products from the raffinate of uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Martins, E.A.J.

    1990-01-01

    IPEN-CNEN/SP has being very active in refining yellow cake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra-and hexa-fluoride in sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the raffinate from purification via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid, ammonium nitrate, uranium, thorium and rare earth elements. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author)

  3. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  4. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  5. Commonwealth and state controls over uranium exploration and production

    International Nuclear Information System (INIS)

    Nicholson, R.D.

    1979-01-01

    This survey of Commonwealth and State controls relating to uranium exploration and production in Australia shows that legal controls can be imposed at the following points: on licensing or on the grant of an authority to mine by the Commonwealth; by application of a Commonwealth Code of Practice if it is applicable; by the Commonwealth as a condition to approval for export; by the Commonwealth with respect to foreign investment approval; by the Commonwealth or a state in a government agreement relating to the particular development; by the application of a state code of practice where legislation is made on that behalf and by the application of local government requirements to the extent they are not modified by government agreement. There is potential for much overlap and duplication

  6. Balancing needs. Global trends in uranium production and demand

    International Nuclear Information System (INIS)

    Nicolet, J.P.; Underhill, D.

    1998-01-01

    In many countries, uranium is a major energy resource, fueling nuclear power plants that collectively generate about 17% of the world's electricity. With global demand for energy especially electricity projected to grow rapidly over the coming decades, the price and availability of all energy sources, including uranium, are key components in the process of energy planning and decision-making. Particularly affecting the uranium market were changing projections about nuclear power's growth and the consequent demand for nuclear fuel; the emergence of a more integrated free market system including former centrally planned economies; and the emergence into the civilian market of uranium released from dismantled nuclear weapons. All these factors contributed to uncertainties in the commercial uranium market that raised questions about future fuel supplies for nuclear power plants. Signs today indicate that the situation is changing. The world uranium market is moving towards a more balanced relationship between supply and demand

  7. Product Stewardship in Uranium: A Way for the Industry to Demonstrate its High Performance

    International Nuclear Information System (INIS)

    Harris, Frank

    2014-01-01

    Conclusions: • Product stewardship is an means for communicating the high performance on health, safety and environment of the nuclear fuel cycle including uranium mining. • It has been effective with other products and is appropriate for uranium. • Can be a vehicle for addressing public concerns across the industry. • Due to uranium’s unique characteristics it has the potential to be a best practice example of product stewardship. • Work is underway in the international arena to progress uranium product stewardship and it represent a unique opportunity to provide whole of industry benefits

  8. Improvement of uranium production efficiency to meet China's nuclear power requirements

    International Nuclear Information System (INIS)

    Zhang, R.

    1997-01-01

    Recently China put the Qinshan Nuclear Power Plant, with an installed capacity of 300 MW, in the province of Zhejiang and the Daya Bay Nuclear Power Plant, with a total installed capacity of 2 x 900 MW, in commercial operation. China plans a rapid growth in nuclear power from 1995 to 2010. China's uranium production will therefore also enter a new period with nuclear power increasing. In order to meet the demand of nuclear power for uranium special attention has been paid to both technical progress improvement using management with the aim of reducing the cost of uranium production. The application of the trackless mining technique has enhanced the uranium mining productivity significantly. China has produced a radiometric sorter, model 5421-2 for pre-concentrating uranium run-of-mine ore. This effectively increases the uranium content in mill feed and decreases the operating cost of hydrometallurgical treatment. The in situ leach technique after blasting is applied underground in the Lantian Mine, in addition to the surface heap leaching, and has obtained a perfect result. The concentrated acid-curing, and ferric sulphate trickle leaching process, will soon be used in commercial operation for treating uranium ore grading -5 to -7 mm in size. The annual production capability of the Yining Mine will be extended to 100 tonnes U using improving in situ leaching technology. For the purpose of improving the uranium production efficiency much work has been done optimizing the distribution of production centres. China plans to expand its uranium production to meet the uranium requirements of the developing nuclear power plants. (author). 4 tabs

  9. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  10. Uranium mining and production of concentrates in India

    International Nuclear Information System (INIS)

    Bhasin, J.L.

    1997-01-01

    In order to meet the uranium requirements for the atomic power programme of the country, uranium deposits were explored, mined and concentrates were produced indigenously. The geology of the areas, mode of entries and the various extraction methods deployed in different mines with their constraints are described. The various equipments used in mining and processing activities are elaborated. The flow sheets for processing the uranium ore and that of the effluent treatment plant are given in detail. The future plans of the company for undertaking the new projects to meet the demand of uranium requirement for the increasing nuclear power programme are given. (author). 18 figs

  11. Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ``Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,`` the meeting was hosted by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base.

  12. Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany

    International Nuclear Information System (INIS)

    1993-01-01

    Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ''Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,'' the meeting was hosted by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base

  13. Influence of solvent radiolysis on extraction, scrubbing and stripping of uranium and some fission products

    International Nuclear Information System (INIS)

    Gawlowska, W.; Nowak, M.

    1978-01-01

    Radiolytically degraded TBP-n-paraffins solvent was used in the laboratory flow-sheet to study the influence of radiation exposure on decontamination of uranium. The influence of accumulated doses on extraction, scrubbing and stripping of uranium and some fission products has been discussed. (author)

  14. Separation and purification of uranium product from thorium in thorex process by precipitation technique

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Mukherjee, A.; Dhumwad, R.K.

    1989-01-01

    A sequential precipitation technique is reported for the separation of uranium and thorium present in the uranium product stream of a single cycle 5 per cent TBP Thorex Process. It involves the precipitation of thorium as oxalate in 1M HNO 3 medium at 60-70degC and after filtration, precipitation of uranium as ammonium diuranate at 80-90degC from the oxalate supernatant. This technique has several advantages over the ion-exchange process normally used for treating these products. In order to meet the varying feed conditions, this method has been tested for feeds containing 10 g/1 uranium and 1-50 g/1 thorium in 1-6M HNO 3 . Various parameters like feed acidities, uranium and thorium concentrations, excess oxalic acid concentrations in the oxalate supernatant, precipitation temperatures, precipitate wash volumes etc. have been optimised to obtain more than 99 per cent recovery of thorium and uranium as their oxides with less than 50 ppm uranium losses to ammonium diuranate filtrate. The distribution patterns of different fission products and stainless steel corrosion products during various steps of this procedure have also been studied. For simulating the actual Thorex plant scale operation, experiments have been conducted with 25g and 100g lots of uranium per batch. (author). 6 tabs., 8 figs., 22 refs

  15. Physicochemical basics for production of uranium concentrate from wastes of hydrometallurgical plants and technical waters

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Khojiyon, M.; Mirsaidov, I.U.; Nazarov, K.M.; Barotov, B.B.

    2012-01-01

    Physicochemical and technological basics for reprocessing of uranium industry wastes of Northern Tajikistan shows that the most perspective for reprocessing is Chkalovsk tailing's wastes. Engineer and geological condition and content of radionuclides in wastes are investigated. It is determined that considered wastes by radioactivity are low-active and they can be reprocessed with the purpose of U 3 O 8 production. Grinding, crumbling, thickening and etc. operations are decreased during the wastes reprocessing process. Uranium output is more than 90%. Optimal parameters of products extraction from uranium mining industry wastes are found. Characteristics of mine and technical waters of uranium industry wastes are studied. Characteristics of mine and technical waters of Kiik-Tal and Istiklol city (former Taboshar) showed the expediency of uranium oxide extraction from them. The reasons for non-additional recovery extraction from dumps of State Enterprise 'Vostokredmet' by classical methods of uranium leaching are studied. Kinetics of sulfuric leaching of residues from anthropogenic deposit of Map 1-9 (Chkalovsk city) is investigated. Carried out investigations are revealing the flow mechanism process of residues' sulfuric leaching and enable selection of radiation regime of U 3 O 8 production. Kinetics of sorption process of uranium extraction from mine and technical waters of uranium industry wastes is studied. High sorption properties of apricot's shell comparing to other sorbents are revealed. Basic process flow diagram for reprocessing of uranium tailing wastes is developed as well as diagram for uranium extraction from mine and technical waters from uranium industry wastes which consists of the following stages: acidification, sorption, burning, leaching, sedimentation, filtration, drying.

  16. Physicochemical basics for production of uranium concentrate from wastes of hydrometallurgical plants and technical waters

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Khojiyon, M.; Mirsaidov, I.U.; Nazarov, K.M.; Barotov, B.B.

    2012-01-01

    Physicochemical and technological basics for reprocessing of uranium industry wastes of Northern Tajikistan shows that the most perspective for reprocessing is Chkalovsk tailing's wastes. Engineer and geological condition and content of radionuclides in wastes are investigated. It is determined that considered wastes by radioactivity are low-active and they can be reprocessed with the purpose of U 3 O 8 production. Grinding, crumbling, thickening and etc. operations are decreased during the wastes reprocessing process. Uranium output is more than 90%. Optimal parameters of products extraction from uranium mining industry wastes are found. Characteristics of mine and technical waters of uranium industry wastes are studied. Characteristics of mine and technical waters of Kiik-Tal and Istiklol city (former Taboshar) showed the expediency of uranium oxide extraction from them. The reasons for non-additional recovery extraction from dumps of State Enterprise 'Vostokredmet' by classical methods of uranium leaching are studied. Kinetics of sulfuric leaching of residues from anthropogenic deposit of Map 1-9 (Chkalovsk city) is investigated. Carried out investigations are revealing the flow mechanism process of residues' sulfuric leaching and enable selection of radiation regime of U 3 O 8 production. Kinetics of sorption process of uranium extraction from mine and technical waters of uranium industry wastes is studied. High sorption properties of apricot's shell comparing to other sorbents are revealed. Basic process flow diagram for reprocessing of uranium tailing wastes is developed as well as diagram for uranium extraction from mine and technical waters from uranium industry wastes which consists of the following stages: acidification, sorption, burning, leaching, sedimentation, filtration, drying.

  17. Experience of IAEA UPSAT mission to Tanzanian uranium sites as a means of sustaining best practice for uranium production in Tanzania

    International Nuclear Information System (INIS)

    Mwalongo, D.; Kileo, A.

    2014-01-01

    Utilization of nuclear power has been escalating, hence the growing demand for Uranium for the world nuclear power worldwide and in particular Asia and Middle East. This has influenced uranium exploration, development and investment in different countries in the world. In 2007, Tanzania witnessed extensive uranium exploration investment and discovery of several sites with economically viable uranium deposits at Bahi, Manyoni and Mkuju River. The most advanced project is Mkuju River Project located in the Selous Game Reserve, which is a classified UNESCO World Heritage site. At a time of discovery, the country had no previous experience managing uranium production cycle, hence the necessity for cooperation with national and international stakeholders to ensure safe, secure and safeguarded Uranium mining. This development pressed a need to quickly and efficiently setting up of an internationally accepted best practice for uranium mining in the country. Preparations and stakeholder involvement in setting regulatory framework for uranium mining were initiated. Therefore, the request was submitted to International Atomic Energy Agency (IAEA) Uranium Production Site Appraisal Team (UPSAT) mission to review the country’s regulatory readiness for uranium governance. The review mission aimed at appraising the country’s preparedness for overseeing the Uranium Production Cycle in general and with emphasis on the planned Mkuju River Project (MRP) in the south of the country in particular. The mission comprehensively reviewed the regulatory system, sustainable uranium production life cycle, health, safety and environment, social licensing and capacity building and gave objective recommendations based on best practice. Therefore, this paper briefly reviews the impact of the first UPSAT mission in African soil for fostering sustainable best practice for uranium life cycle in Tanzania. (author)

  18. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  19. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  20. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  1. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  2. Nuclear purity and the production of uranium (1962); La purete nucleaire et la fabrication de l'uranium (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Verte, P [Commissariat a l' Energie Atomique, Centre du Bouchet, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    When the production of 'nuclear grade' uranium is dealt with, it is difficult, the author of this study points out, to separate its chemical, technical, and economical bearings. While recalling the evolution of chemical processes in various countries and describing the technic of uranium manufacture in the plant of the French 'Commissariat a l'Energie Atomique' at Le Bouchet, the author outlines the effect of economical contingencies on the problems the chemists and engineer are faced with. The question of cost price is also considered here with particular attention. (author) [French] Lorsqu'il s'agit de la production d'uranium de 'qualite nucleaire', il est difficile, souligne l'auteur de cette etude, de separer les aspects chimique, technique et economique. Aussi, en retracant l'evolution des procedes chimiques dans divers pays et decrivant les techniques de fabrication de l'uranium a l'usine du Bouchet du Commissariat a l'Energie Atomique, l'auteur ne manque-t-il pas de rappeler les incidences de la conjoncture economique sur les problemes posees au chimiste et a l'ingenieur. La question du prix de revient, egalement, est traitee ici avec une attention particuliere. (auteur)

  3. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  4. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  5. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  6. Discussion on the safety production risk managmeent of uranium mines

    International Nuclear Information System (INIS)

    Liu Bin; Luo Yun; Hu Penghua; Zhu Disi

    2009-01-01

    Based on the modern safety risk management theories and according to the actual situation, risk management for work safety in uranium mines is discussed from three aspects: risk identification,risk analysis and evaluation, and risk control. Referring to the '4M(Men,Machine,Medium,Management) factors' and 'Three types of hazards' theory, the classification of uranium mine accidents and risk factors are analyzed. In addition, the types and evaluation indexes of major risks of uranium mines as well as the 'spot, line, area' model of risk identification and analysis and the 'hierarchical' risk control mechanism are also studied. (authors)

  7. Improvements in process technology for uranium metal production

    International Nuclear Information System (INIS)

    Meghal, A.M.; Singh, H.; Koppiker, K.S.

    1991-01-01

    The research reactors in Trombay use uranium metal as a fuel. The plant to produce nuclear grade uranium metal ingots has been in operation at Trombay since 1959. Recently, the capacity of the plant has been expanded to meet the additional demand of the uranium metal. The operation of the expanded plant, has brought to the surface various shortcomings. This paper identifies various problems and describes the measures to be taken to upgrade the technology. Some comments are made on the necessity for development of technology for future requirement. (author). 6 refs., 1 fig

  8. Main means for reducing the production costs in process of leaching uranium

    International Nuclear Information System (INIS)

    Jiang Lang

    2000-01-01

    The production costs in process of leaching uranium have been reduced by controlling mixture ratio of crudes, milling particle size, liquid/solid mass ratio of leaching pulp, potential and residue acidity, and improving power equipment

  9. Production of annular blanks for Mo-99 using natural uranium, LEU uranium, nickel and structural Al-3003 plates

    International Nuclear Information System (INIS)

    Lisboa, J.R.; Barrera, M.E.; Marin, J.

    2010-01-01

    The Tc-99m radioisotope for medical use is the one most used in nuclear medicine worldwide. In Chile the Tc-99m is applied in more than 90% of nuclear medicine studies. In order to supply the whole country with this radioisotope, in 2005-2007 the CCHEN developed its own production of Tc-99m generators from Mo-99 imported from Canada, which are prepared with the activity needed by the Chilean hospitals and clinics. As of 2007 Mo-99 was no longer imported, and since then the Tc-99m is produced only by neutron activation of the Mo. The present challenge is to produce Mo-99 by irradiating blanks that contain enriched uranium foils, with locally produced LEU. The annular blank consists of 2 concentric tubes of A1-3003 structural aluminum that, in an interior annular space, contain a LEU foil, covered on both sides by a nickel foil. This work presents the development of the production technology for annular blanks using natural uranium and U-325 enriched uranium. The structural components are made with A1-3003 aluminum alloy, the foils are 13 grams of uranium measuring 100 x 50 mm and 120-150 μ thick. The blank was assembled using a methodology to control, adapt and assemble the blank's different internal components. A foil of natural uranium and LEU uranium, and a nickel foil are included, used as a barrier for the escape of fission products. During the blank's expansion, for analysis alcohol as lubricant was used, allowing the expander to move smoothly through the inside of the blank. The blank was sealed by TIG welding with a pulsed AC current and a mixture of Ar-5% He gases. Two methods were used for the water tightness test; for high escape levels the temperature was used as a promoter of the ΔP provided by hot water and liquid nitrogen, for low escape levels high vacuum technology was used where the ΔP is provided by a high pressure helium atmosphere. The technology for the production of annular LEU blanks was achieved by applying innovations to technologies

  10. The uranium (VI) determination method in the technological products

    International Nuclear Information System (INIS)

    Fursa, L.I.; Belykevich, N.A.

    1994-01-01

    The method includes an extraction of the uranyl nitrate by solution' hexa butyl tries amide of phosphoric acid in the hexane, a reextraction of uranium by arsenazo III solution under pH 2 and following the solution' photometry. With the purpose of excluding the emulsion' formation under uranium reextraction has been added chloroform in volume ratio to hexane 1:(3.0-7.5). tabs. 2

  11. Uranium mining and production: A legal perspective on regulating an important resource

    International Nuclear Information System (INIS)

    Thiele, Lisa

    2013-01-01

    The importance of uranium can be examined from several perspectives. First, natural uranium is a strategic energy resource because it is a key ingredient for the generation of nuclear power and, therefore, it can affect the energy security of a state. Second, natural uranium is also a raw material in relative abundance throughout the world, which can, through certain steps, be transformed into nuclear explosive devices. Thus, there is both an interest in the trade of uranium resources and a need for their regulatory control. The importance of uranium to the worldwide civilian nuclear industry means that its extraction and processing - the so-called 'front end' of the nuclear fuel cycle - is of regulatory interest. Like 'ordinary' metal mining, which is generally regulated within a country, uranium mining must also be considered from the more particular perspective of regulation and control, as part of the international nuclear law regime that is applied to the entire nuclear fuel cycle. The present overview of the regulatory role in overseeing and controlling uranium mining and production will outline the regulation of this resource from an international level, both from early days to the present day. Uranium mining is not regulated internationally; rather, it is a state responsibility. However, developments at the international level have, over time, led to better national regulation. One can note several changes in the approach to the uranium industry since the time that uranium was first mined on a significant scale, so that today the mining and trade of uranium is a well-established and regulated industry much less marked by secrecy and Cold War sentiment. At the same time, it is informed by international standards and conventions, proliferation concerns and a modern regard for environmental protection and the health and safety of workers and the public. (author)

  12. Evaluation of regional effects of effluents from uranium production in New Mexico

    International Nuclear Information System (INIS)

    Wilson, D.W.

    1977-01-01

    The Grants Uranium Region is a 2500 mile area of northcentral New Mexico which has produced about 40 percent of all domestic uranium, and holds over one-half of the current reserves. The increasing demand for uranium to fuel commercial nuclear power plants is resulting in rapid growth of the uranium industry and economic, social, and environmental changes are occurring. One of the environmental issues of this region is the concern for eventually unacceptable levels of air and water pollution from effluents from uranium mill tailings piles. This study addresses these potential impacts in relation to industrial environmental control practices, siting features, and other regional/temporal variables, including rates of production, locations and sizes of new mills, and population distributions

  13. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  14. On the separation of so-called non-volatile uranium fission products of uranium using the conversion of neutron-irradiated uranium dioxide and graphite

    International Nuclear Information System (INIS)

    Elhardt, W.

    1979-01-01

    The investigations are continued in the following work which arose from the concept of separating uranium fission products from uranium. This is achieved in that due to the lattice conversions occurring during the course of solid chemical reactions, fission products can easily pass from the uranium-contained solid to a second solid. The investigations carried out primarily concern the release behaviour of cerium and neodymium in the temperature region of 1200 to 1700 0 C. UO 2 + graphite, both in powder form, are selected as suitable reaction system having the preconditions needed for the lattice conversion for the release effect. The target aimed at from the practical aspect for the improved release of lanthanoids is achieved by an isobar test course - changing temperature from 1200 to 1500 0 C at constant pressure, with a cerium release of 75-80% and a neodynium release of 80-90% (maximum at 1400 0 C). The concepts on the mechanism of the fission product release are related to transport processes in crystal lattices, as well as chemical solid reactions and evaporation processes on the surface of UC 2 grains. (orig./RB) [de

  15. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  16. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    Directory of Open Access Journals (Sweden)

    HO JIN RYU

    2013-12-01

    Full Text Available Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99 production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional UAlx dispersion targets, while increasing the uranium density in the target plates

  17. Converting the Caetité Mill Process to Enhance Uranium Recovery and Expand Production

    Energy Technology Data Exchange (ETDEWEB)

    Gomiero, L. A.; Scassiotti Filho, W.; Veras, A., E-mail: gomiero@inb.gov.br [Indústrias Nucleares do Brasil S/A — INB, Caetité, BA (Brazil); Cunha, J. W. [Instituto de Engenharia Nuclear-IEN/CNEN, Rio de Janeiro, RJ (Brazil); Morais, C. A. [Centro do Desenvolvimento da Tec. Nuclear-CDTN/CNEN, Belo Horizonte, MG (Brazil)

    2014-05-15

    The Caetité uranium mill was commissioned in 2000 to produce about 340 t U per year from an uranium ore averaging 0.29% U{sub 3}O{sub 8}. This production is sufficient to supply the two operating nuclear power plants in the country. As the Brazilian government has recently confirmed its plan to start building another ones from 2009, the uranium production will have to expand its capacity in the next two years. This paper describes the changes in the milling process that are being evaluated in order to not only increase the production but also the uranium recovery, to fulfil the increasing local demand. The heap leaching process will be changed to conventional tank agitated leaching of ground ore slurry in sulphuric acid medium. Batch and pilot plant essays have shown that the uranium recovery can increase from the 77% historical average to about 93%. As the use of sodium chloride as the stripping agent has presented detrimental effects in the extraction and stripping process, two alternatives are being evaluated for the uranium recovery from the PLS: (a) uranium peroxide precipitation at controlled pH from a PLS that was firstly neutralized and filtered. Batch essays have shown good results with a final calcined precipitate averaging 99% U{sub 3}O{sub 8}. Conversely the results obtained at the first pilot plant essay has shown that the precipitation conditions of the continuous process calls for further evaluation. The pilot plant is being improved and another essay will be carried out. (b) uranium extraction with a tertiary amine followed by stripping with concentrated sulphuric acid solution. Efforts are being made to recover the excess sulphuric acid from the pregnant stripping solution to enhance the economic viability of the process and to avoid the formation of a large quantity of gypsum in the pre-neutralization step before the uranium peroxide precipitation. (author)

  18. Uranium from Coal Ash: Resource Assessment and Outlook on Production Capacities

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2014-01-01

    Conclusion: Uranium production from coal-ash is technically feasible: in some situations, it could reach commercial development, in such case, fast lead time will be a plus. Technically accessible resources are significant (1.1 to 4.5 MtU). Yet most of those are low grade. Potential reserves don’t exceed 200 ktU (cut-off grade = 200 ppm). • By-product uranium production => constrained production capacities; • Realistic production potential < 700 tU/year; • ~ 1% of current needs. → Coal ash will not be a significant source of uranium for the 21st century – even if production constrains are released (increase in coal consumption

  19. Accelerator based production of fissile nuclides, threshold uranium price and perspectives

    International Nuclear Information System (INIS)

    Djordjevic, D.; Knapp, V.

    1988-01-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  20. Study on technology for radioactive waste treatment and management from uranium production

    International Nuclear Information System (INIS)

    Vu Hung Trieu; Vu Thanh Quang; Nguyen Duc Thanh; Trinh Giang Huong; Tran Van Hoa; Hoang Minh Chau; Ngo Van Tuyen; Nguyen Hoang Lan; Vuong Huu Anh

    2007-01-01

    There is some solid and liquid radioactive waste created during producing Uranium that needs being treated and managed to keep our environment safe. This radioactive waste contains Uranium (U-238), Thorium (Th-232), Radium (Ra-226) and some heavy metals and mainly is low radioactive waste. Our project has researched and built up appropriate technology for treating and managing the radioactive waste. After researching and experimenting, we have built up four technology processes as follows: Technology for separating Radium from liquid waste; Technology for treating and managing solid waste containing Ra; Technology for separating Thorium from liquid waste after recovering radium; Technology for stabilizing solid waste from Uranium production. (author)

  1. Radiometric determination of uranium and its decay products found in uranium ores

    International Nuclear Information System (INIS)

    Alencar, D.M. de.

    1982-01-01

    Uranium is analysed by three different methods based on gamma spectroscopy. The first method evaluates the 205 KeV photopeak emitted in the U-235 decay. It consits of a direct way of measuring 235 U, is applicable to the fuel element control and its inherent uncertainty is 13%. The second method assumes that uranium is in secular equilibrium in the sample and thus, uses the 242 KeV peak of Ra-226 and also the ratio between the 186 and 242 KeV peak areas. The third method analyses the contributions of U-235 and Ra-226 for the 186 KeV peak area; its error is negligible and its uncertainty is of 3%. (C.L.B.) [pt

  2. Recovery of valuable products in the raffinate of the uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-11-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, tetra - and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major to be worked is the raffinate from the solvent extraction colum where and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium - free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author) [pt

  3. Rescue archaeology heritage valuation in Europe’s largest dam - Alqueva: ex‑situ products as elements of creative tourism

    Directory of Open Access Journals (Sweden)

    Idalina Dias Sardinha

    2014-01-01

    Full Text Available The study aims to determine how the knowledge obtained from the study of prehistoric heritage found during the construction of the Alqueva dam and irrigation system (Portugal can enhance the current tourist experience of the destination. A new approach is necessary given the inaccessibility of the archeological remains, thus creative tourims and experience economy frame the theoretical basis of this paper. Semi-directed interviews were carried out to 35 tourism stakeholders in order to assess their view of the regional tourism experience, their interest in ex-situ and virtual products based on the archeological knowledge and how these may add to the Alqueva destination. Findings show that stakeholders are still firmly attached to the conventional approach to archaeology but that, even though unaware of the archaeological findings, they believe that they could benefit form the introduction of creative products as a way of complementing the current offer.

  4. Uranium, resources, production and demand including other nuclear fuel cycle data

    International Nuclear Information System (INIS)

    1975-12-01

    The uranium reserves exploitable at a cost below 15 dollars/lb U 3 O 8 , are 210,000 tonnes. While present uranium production capacities amount to 26,000 tonnes uranium per year, plans have been announced which would increase this capacity to 44,000 tonnes by 1978. Given an appropriate economic climate, annual capacities of 60,000 tonnes and 87,000 tonnes could be attained by 1980 and 1985, respectively, based on presently known reserves. However, in order to maintain or increase such a capacity beyond 1985, substantial additional resources would have to be identified. Present annual demand for natural uranium amounts to 18,000 tonnes and is expected to establish itself at 50,000 tonnes by 1980 and double this figure by 1985. Influences to increase this demand in the medium term could come from shortages in other fuel cycle capacities, i.e. enrichment (higher tails assays) and reprocessing (no uranium and plutonium recycle). However, the analysis of the near term uranium supply and demand situation does not necessarily indicate a prolongation of the current tight uranium market. Concerning the longer term, the experts believe that the steep increase in uranium demand foreseen in the eighties, according to present reactor programmes, with doubling times of the order of 6 to 7 years, will pose formidable problems for the uranium industry. For example, in order to provide reserves sufficient to support the required production rates, annual additions to reserves must almost triple within the next 15 years. Efforts to expand world-wide exploration levels to meet this challenge would be facilitated if a co-ordinated approach were adopted by the nuclear industry as a whole

  5. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  6. New route for uranium concentrate production from Caetite ore, Bahia State, Brazil; dynamic leaching - direct precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: cmorais@cdtn.br; Gomiero, Luiz A.; Scassiotti Filho, Walter [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil)]. E-mails: gomiero@inb.gov.br; scassiotti@inb.gov.br

    2007-07-01

    The common uranium concentrate production consists of ore leaching, uranium purification/concentration by solvent extraction and uranium precipitation as ammonium diuranate steps. In the present work, a new route of uranium concentrate production from Caetite, BA-Brazil ore was investigated. The following steps were investigated: dynamic leaching of the ground ore with sulfuric acid; sulfuric liquor pre-neutralization until pH 3.7; uranium peroxide precipitation. The study was carried out in bath and continuous circuits. In the dynamic leaching of ground ore in agitated tanks the uranium content in the leached ore may be as low as 100 {mu}g/g U{sub 3}O{sub 8}, depending on grinding size. In the pre-neutralization step, the iron content in the liquor is decreased in 99 wt.%, dropping from 3.62 g/L to 0.030 g/L. The sulfate content in the liquor reduces from 46 g/L to 22 g/L. A calcinated final product assaying 99.7 wt.% U{sub 3}O{sub 8} was obtained. The full process recovery was over 94%. (author)

  7. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  8. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched Uranium] targets

    International Nuclear Information System (INIS)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99 Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved

  9. The Joint NEA/IAEA Uranium Group -- its role in assessing world uranium resources, production, demand and environmental activities and issues

    International Nuclear Information System (INIS)

    Barthel, F.H.; Vera, I.

    2002-01-01

    In 1965 a 20-page report entitled World Uranium and Thorium Resources was published by the OECD-European Nuclear Energy Agency. Today, 35 years later, the report is jointly prepared by the OECD/Nuclear Energy Agency and the IAEA and published by the OECD. The report: Uranium Resources, Production and Demand also known as the Red Book is in its 18th edition. It is the only official publication on world uranium statistics and provides information from 45 or more countries. One aim of the Red Book is to obtain a uniform, worldwide acceptable classification of uranium resources. The Red Book provides statistics and analyses for resources, exploration, production, demand, secondary sources, surplus defence material and the supply and demand relationship. The sales records indicate that it is used as reference material for various purposes including public and private libraries, energy companies, uranium production companies, national and international organisation, universities and other research and business institutions. In 1996 a study was started which led to the 1999 report: Environmental Activities in Uranium Mining and Milling, a companion to the Red Book. This complementary report provides information on the site characterization, dismantling and decommissioning, waste management, water remediation, long term monitoring policies and regulations for 29 countries. A second report entitled 'Environmental Remediation of Uranium Production Facilities' is being prepared. (author)

  10. Male hatchling production in sea turtles from one of the world’s largest marine protected areas, the Chagos Archipelago

    Science.gov (United States)

    Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.

    2016-02-01

    Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.

  11. Uranium-production forecasting: the simulation of a South African gold mine

    International Nuclear Information System (INIS)

    Boydell, D.W.

    1979-01-01

    A computer program is described that estimates the amount of uranium that will be produced from a mine as a co-product of gold subject to a changing economic environment. The program makes use of two models. The first simulates activities underground, whereas the second simulates the performance of processing plant on the surface. The combination of these models generates a description of the flow of ore from stopes and from development, through hoisting, sorting, and the metallurgical plant to the despatch of saleable product. The total production of uranium to the end of the life of the mine constitutes the uranium reserve. The effects on production forecasts and reserve estimates of future trends in cost and price factors are illustrated by results generated from the application of the program to a typical South African mine producing gold and uranium. The graphs presented show that South Africa's future uranium production from underground sources is critically dependent on the gold price in the years ahead. (author)

  12. Role of modern analytical techniques in the production of uranium metal

    International Nuclear Information System (INIS)

    Hareendran, K.N.; Roy, S.B.

    2009-01-01

    Production of nuclear grade uranium metal conforming to its stringent specification with respect to metallic and non metallic impurities necessitates implementation of a comprehensive quality control regime. Founding members of Uranium Metal Plant realised the importance of this aspect of metal production and a quality control laboratory was set up as part of the production plant. In the initial stages of its existence, the laboratory mainly catered to the process control analysis of the plant process samples and Spectroscopy Division and Analytical Division of BARC provided analysis of trace metallic impurities in the intermediates as well as in the product uranium metal. This laboratory also provided invaluable R and D support for the optimization of the process involving both calciothermy and magnesiothermy. Prior to 1985, analytical procedures used were limited to classical methods of analysis with minimal instrumental procedures. The first major analytical instrument, a Flame AAS was installed in 1985 and a beginning to the trace analysis was made. However during the last 15 years the Quality Control Section has modernized the analytical set up by acquiring appropriate instruments. Presently the facility has implemented a complete quality control and quality assurance program required to cover all aspects of uranium metal production viz analysis of raw materials, process samples, waste disposal samples and also determination of all the specification elements in uranium metal. The current analytical practices followed in QCS are presented here

  13. International Training Centre, WNU — School of Uranium Production (Three Years Experience)

    Energy Technology Data Exchange (ETDEWEB)

    Trojáček, J., E-mail: trojacek@diamo.cz [WNU-SUP. DIAMO, Straz pod Ralskem (Czech Republic)

    2014-05-15

    Following a joint meeting of the IAEA, OECD/NEA Uranium Group and the World Nuclear Association, in 2004 the shortage of skilled professional staff to support the expansion of the global uranium industry was a major topic of discussion. As a consequence of the concerns expressed at that meeting, in 2006 the World Nuclear University-School of Uranium Production was set up with the cooperation of the DIAMO State Enterprise at their site in the Czech Republic. The facility is now up and running and provides a range of technical training activities to help strengthen the skills base amongst all uranium producing countries, both current and future. The paper describes the history of the school so far and the range of activities on offer. (author)

  14. Role of continual environmental performance improvement in achieving sustainability in uranium production

    International Nuclear Information System (INIS)

    Jarrell, J.P.; Chad, G.M.S.

    2002-01-01

    Although the term sustainable development is commonly used today, there is not yet a commonly accepted definition. Various ways of measuring sustainability have been proposed. To show how these issues are being effectively addressed in modern uranium developments, we will review some methods of defining the environmental component of sustainable development in the mining and mineral-processing sector. Environmental impacts associated with uranium extraction and processing in modern facilities are modest. Air and water emissions are well controlled. Waste materials are subject to comprehensive management programmes. The size of the impacted area is smaller than in other energy sectors, providing good opportunity to minimize land impact. Experience over the past three decades facilitated gradual, persistent, but cumulatively significant environmental improvements in the uranium production sector. Cameco's uranium mining and processing facilities exemplify these improvements. These improvements can be expected to continue, supporting our argument of Cameco's environmental sustainability. (author)

  15. Uranium recovery in a pilot plant as by product of the phosphate fertilizers

    International Nuclear Information System (INIS)

    Dantas, C.C.; Santos, F.S.M. dos; Paula, H.C.B.; Santana, A.O. de

    1984-01-01

    A process was developed and a piloto plant was installed to recovery uranium from chloridric leach liquor of phosphate rocks. The extractor system is a mixture of di(2-ethylhexyl) phosphoric acid (DEHPA) and tributyl-phosphate (TBP) in a kerosene diluent. The phosphate rocks are leached for dicalcium phosphate (CaHPO 4 ) production, by the reactions: Ca 3 (PO 4 ) 2 + 4 HCl → Ca(H 2 PO 4 ) 2 + CaCl 2 and Ca(H 2 PO 4 ) 2 + Ca(OH) 2 → CaHPO 4 + 2 H 2 O. The uranium recovery process comprises the following steps:extraction, scrubbing, reextraction, iron removal and uranium precipitation. The uranium is precipited as ADU with 80% of U 3 O 8 .(Author) [pt

  16. The Y-12 National Security Complex Foreign Research Reactor Uranium Supply Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T. [Nuclear Technology and Nonproliferation Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States); Keller, A.P. [Disposition and Supply Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States)

    2011-07-01

    The Foreign Research Reactor (FRR) Uranium Supply Program at the Y-12 National Security Complex supports the nonproliferation objectives of the National Nuclear Security Administration (NNSA) HEU Disposition, the Reduced Enrichment Research and Test Reactors (RERTR), and the United States (U.S.) FRR Spent Nuclear Fuel (SNF) Acceptance Programs. The FRR Supply Program supports the important U.S. government nuclear nonproliferation commitment to serve as a reliable and cost-effective uranium supplier for those foreign research reactors that are converting or have converted to Low-Enriched Uranium (LEU) fuel under the RERTR Program. The NNSA Y-12 Site Office maintains the prime contracts with foreign government agencies for the supply of LEU for their research reactors. The LEU is produced by down blending Highly Enriched Uranium (HEU) that has been declared surplus to the U.S. national defense needs. The down blending and sale of the LEU supports the Surplus HEU Disposition Program Record of Decision to make the HEU non-weapons usable and to recover the economic value of the uranium to the extent feasible. In addition to uranium metal feedstock for fuel fabrication, Y-12 can produce LEU in different forms to support new fuel development or target fabrication for medical isotope production. With production improvements and efficient delivery preparations, Y-12 continues to successfully support the global research reactor community. (author)

  17. Uranium resources production and demand: a forty years evaluation 'Red book retrospective'

    International Nuclear Information System (INIS)

    2007-01-01

    Uranium Resources, Production and Demand, also familiarly known as the ''Red Book'' is a biennial publication produced jointly by the NEA and the IAEA under the auspices of the joint NEA/IAEA Uranium Group. The first edition was published in 1965. The red book retrospective was undertaken to collect, analyse and publish all of the key information collected in the 20 editions of the Red Book published between 1965 and 2004. The red book gives a full historical profile of the world uranium industry in the areas of exploration, resources, reactor-related requirements, inventories and price. It provides in depth information relating to the histories of the major uranium producing countries. Thus for the first time a comprehensive look at annual and cumulative production and demand of uranium since the inception of the atomic age is possible. Expert analysis provide fresh insights into important aspects of the industry including the cost of discovery, resources to production ratios and the time to reach production after discovery. (A.L.B.)

  18. Properties of raw materials and intermediate products in the production of uranium dioxide sintered tablets

    International Nuclear Information System (INIS)

    Landspersky, H.; Vanecek, I.; Podest, M.

    1977-01-01

    The properties are described of ammonium polyuranate and of powder uranium dioxide. Ammonium polyuranate, an intermediate product, is prepared by filtering the precipitate from uranyl nitrate solution precipitation, this either by an ammonia aqueous solution from a uranyl nitrate aqueous solution or by direct U 6+ precipitation from a TBP kerosene solution by aqueous concentrated ammonia. With relation to further processing, the major properties of the intermediate product include grain size, shape and appearance of crystallites, structure and thermal decomposition. These properties affect the properties of UO 2 , the following intermediate product obtained by reduction of ammonium polyuranate. Powder UO 2 is the final intermediate product; high-compacted UO 2 pellets are manufactured from it by compacting and sintering. The final product properties are affected by the following parameters: specific surface, grain size and shape, U/O ratio and compactibility. The effect of and the techniques of determining these parameters are shown. The necessity is emphasised of studying the properties of powder ammonium polyuranate because changes in its production technology affect the properties of further products. (J.P.)

  19. Production of uranium-molybdenum particles by spark-erosion

    International Nuclear Information System (INIS)

    Cabanillas, E.D.; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J.

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO 2 with a distinctive size distribution with peaks centered at 70 and 10 μm were obtained. The particles have central inclusions of U and Mo compounds

  20. Production of uranium-molybdenum particles by spark-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E.D. E-mail: cabanill@cnea.gov.ar; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO{sub 2} with a distinctive size distribution with peaks centered at 70 and 10 {mu}m were obtained. The particles have central inclusions of U and Mo compounds.

  1. Electric heating of a unit for uranium trioxide production

    International Nuclear Information System (INIS)

    Faron, R.; Striff, A.

    1985-01-01

    Ammonium diuranate U 2 O 7 (NH 4 ) 2 containing about 50% of water is dried and transformed by calcination in uranium trioxide UO 3 . Drying and calcination was obtained by air heated by two burners using domestic fuel. In 1984 the plant was transformed for utilization of electric heating improving maintenance cost, decreasing heat losses and by energy saving the payback period on investment is of 2.6 years [fr

  2. International symposium on uranium production and raw materials for the nuclear fuel cycle - Supply and demand, economics, the environment and energy security. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The IAEA periodically organizes nical meetings and international symposia on all areas of the uranium production cycle. This publication contains 160 extended synopses related to the 2005 international symposium on 'Uranium Production and Raw Materials for the Nuclear Fuel Cycle - Supply and Demand, Economics, the Environment and Energy Security'. They cover all areas of natural uranium resources and production cycle including uranium supply and demand; uranium geology and deposit; uranium exploration; uranium mining and milling; waste management; and environment and regulation. Each synopsis was indexed individually.

  3. Uranium and thorium recovery from a sub-product of monazite industrial processing

    International Nuclear Information System (INIS)

    Gomiero, L.A.; Ribeiro, J.S.; Scassiotti Filho, W.

    1994-01-01

    In the monazite alkaline leaching industrial process for the production of rare earth elements, a by-product is formed, which has a high concentration of thorium and a lower but significant one of uranium. A procedure for recovery of the thorium and uranium contents in this by-product is presented. The first step of this procedure is the leaching with sulfuric acid, followed by uranium extraction from the acid liquor with a tertiary amine, stripping with a Na Cl solutions and precipitation as ammonium diuranate with N H 4 O H. In order to obtain thorium concentrates with higher purity, it is performed by means of the extraction of thorium from the acid liquor, with a primary amine, stripping by a Na Cl solution and precipitation as thorium hydroxide or oxalate. (author)

  4. REIMEP-22 inter-laboratory comparison: "U Age Dating - Determination of the production date of a uranium certified test sample"

    OpenAIRE

    VENCHIARUTTI CELIA; VARGA ZSOLT; RICHTER Stephan; JAKOPIC Rozle; MAYER Klaus; AREGBE Yetunde

    2015-01-01

    The REIMEP-22 inter-laboratory comparison aimed at determining the production date of a uranium certified test sample (i.e. the last chemical separation date of the material). Participants in REIMEP-22 on "U Age Dating - Determination of the production date of a uranium certified test sample" received one low-enriched 20 mg uranium sample for mass spectrometry measurements and/or one 50 mg uranium sample for D-spectrometry measurements, with an undisclosed value for the production date. They ...

  5. Recovery of uranium in the production of concentrated phosphoric acid by a hemihydrate process

    International Nuclear Information System (INIS)

    Nakajima, S.; Miyamoto, M.

    1983-01-01

    Nissan Chemical Industries as manufacturers of phosphoric acid have studied the recovery of uranium, based on a concentrated phosphoric acid production process. The process consists of two stages, a hemihydrate stage with a formation of hemihydrate and a filtration section, followed by a dihydrate stage with hydration and a filtration section. In the hemihydrate stage, phosphate is treated with a mixture of phosphoric acid and sulphuric acid to produce phosphoric acid and hydrous calcium sulphate; the product is recovered in the filtration section and its concentration is 40-50% P 2 O 3 . In the dihydrate stage, the hemihydrate is transformed by re-dissolution and hydration, producing hydrous calcium sulphate, i.e. gypsum. This process therefore comprises two parts, each with different acid concentrations. As the extraction of uranium is easier in the case of a low concentration of phosphoric acid, the process consists of the recovery of uranium starting from the filtrate of the hydration section. The tests have shown that the yield of recovery of uranium was of the order of 80% disregarding the handling losses and no disadvantageous effect has been found in the combination of the process of uranium extraction with the process of concentrated phosphoric acid production. Compared with the classical process where uranium is recovered from acid with 30% P 2 O 5 , the process of producing high-concentration phosphoric acid such as the Nissan process, in which the uranium recovery is effected from acid with 15% P 2 O 5 from the hydration section, presents many advantages [fr

  6. A new methodology using mathematical treatment in uranium recovery of slags from U-metal production

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues; Araujo, Berta Floh de

    1999-01-01

    U 3 Si 2 fuel was developed by the Fuel Cycle Department of IPEN/CNEN - SP in order to provide high density fuel elements for the IEA-R1m swimming pool reactor. Uranium containing magnesium fluoride slags are produced during the reduction of U F 4 to metallic uranium, the first step of U 3 Si 2 production. Since enriched uranium is used and taking in account process economics and environmental impacts, the recovery of uranium from the slags is highly recommended. This work deals with the uranium recovery from magnesium fluoride slag via nitric acid leaching process using a new methodology for the study. A statistical procedure for process optimization was applied using a fractional factorial design at two levels and four variables represented as 2 4-1 . Variance analysis followed by multiple regression was used, setting up a first order polygonal model, as follow: y 92,409 +3,825 x 1 - 0,875 x 3 + 1,65 x 4 - 0,95 x 3 x 4 Standard error 1,04572. This equation represents the variables and the most suitable interactions in the uranium recovery process. By using this equation, one can obtain in advance and without making experiments the values from the process variables for a giving process yield. (author)

  7. Influence of humic substances and wood decay products on the valency state of uranium

    International Nuclear Information System (INIS)

    Abraham, A.

    2002-01-01

    The purpose of the present study was to investigate the influence of dissolved natural substances on the oxidation state of iron and uranium. The ongoing remediation of uranium mining areas in Saxony and Thuringia involves flooding of extended pits, submerging and subjecting to microbial decay considerable amounts of pit timber in the process. This gives rise to the problem whether the reductive environment which develops as a result of wood decay in the pit water is capable of reducing the uranium (VI) and iron (III) contained in the flood water. Measurements of the valency state of uranium and iron following their interaction with natural decay products were performed by means of electrochemical, photometric and laser spectroscopic methods. This was followed by sorption experiments with a view to collecting phenomenological data on the binding behaviour of uranium species with respect to the rock bed of the Western Erz Hills and the sediments of the Elbe valley under different redox potential conditions. The study was concluded with redox potential calculations aimed at describing the state of pit waters as well as characterising analogous natural waters. The study was performed using humic acids for alkaline brown coal extract, high moor humic substances originating from natural microbial wood decay for wood decay products, and products from hydrothermal wood decomposition as well as lignin for a methanolic wood extract [de

  8. The determination of radium-226 in uranium ores and mill products by alpha energy spectrometry

    International Nuclear Information System (INIS)

    Zimmerman, J.B.; Armstrong, V.C.

    1975-12-01

    A reliable routine procedure for determining 226 Ra by alpha energy spectrometry is described. Radium is isolated as sulphate from the sample matrix by co-precipitation with a small mass of barium and analysed using a ruggedized silicon surface barrier detector. The method is capable of providing high accuracy over a large 226 Ra concentration range and is applicable to materials such as uranium ores, uranium mill products and effluent streams. Samples resulting from nitric acid leach experiments with Elliot Lake ores were examined using the procedure. The distribution of 223 Ra, 224 Ra and 226 Ra between the leach products, (residue and leach liquor), is discussed. (author)

  9. Improvements made in the methods of purifying uranium compounds and in the production of uranium metal at the Bouchet plant

    International Nuclear Information System (INIS)

    Decrop, J.; Delange, M.; Holder, J.; Huet, H.; Sauteron, J.; Vertes, P.

    1958-01-01

    We intend to chart the development of the techniques used at the Bouchet plant since the First International Conference held in Geneva in 1955. During that Conference, the methods adopted at that time were described by B. GOLDSCHMIDT and P. VERTES. Generally speaking, the development since that time has been governed by the following factors: 1- Conversion to a mass-production scale: The metal output, which amounted to approximately 10 tons in 1952, practically doubled each year, reaching successive figures of 80 tons in 1955, 160 tons in 1956 and 300 tons in 1957. At this very moment the output capacity of the plant is approaching its maximum, set at 500 tons/year, which it will reach at the end of the year. Beyond this output figure, the work will be carried on by the second French uranium production plant, which is now being erected at Narbonne. 2- Gradual abandoning of ore treatment, resulting from the decentralization of the duties performed by the CEA; The Bouchet Plant had, as a matter of fact, the first French treatment facilities, operating on the basis of 10 to 20 tons of ore per day. This ore, first concentrated at the production site proper by means of physical or physico-chemical methods to at least a 2 per cent uranium content, was sufficiently valuable to warrant quite well the cost involved in shipping it. However, the increase in the production schedules led to the treatment of ores of lower and lower grades, and it became more profitable to proceed with the chemical treating of these low-grade ores at the site after more or less thorough grading and, if necessary, preconcentration. As a result, the Bouchet plant scarcely ever receives uranium ores; on the contrary, the mining companies send their chemical concentrates, uranous phosphate and then sodium uranate from the Gueugnon Works in Saone-et-Loire since 1955; magnesium uranate from the Ecarpiere Works in Vendee since the beginning of 1957 and, very soon, products from the works which are now

  10. Processing and Applications of Depleted Uranium Alloy Products

    Science.gov (United States)

    1976-09-01

    ammunition, weapons, gyrorotors, and ballast. Depleted uranium used in fly- wheel devices, nuclear fuel casks, and ammunition could consume a significant...from straight in the range of 0,002 to 0.060-inch TIR (total indicated runout ) with an average of 0.025-inch TIR.* Solution heat treatment of the as-cast...an envelope thickness of 0.050 inch to allow for runout and to clean up surface imperfections. The runout resulting from heat treatment was in the

  11. UPSAT guidelines. 1996 edition. Reference document for IAEA Uranium Productions Safety Assessment Teams (UPSATs)

    International Nuclear Information System (INIS)

    1996-05-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme provides advice and assistance to Member States to enhance the safety and environmental performance of uranium production facilities during construction, commissioning and operation. Sound design and construction are prerequisite for the safe and environmentally responsible operation of uranium mines and mills. However, the safety of the facility depends ultimately on sound policies, procedures and practices; on the capability and reliability of the construction, commissioning and operating personnel; on comprehensive instructions; and on adequate resources. A positive attitude and conscientiousness on the part of the management and staff in discharging their responsibilities is important to safety. The UPSAT guidelines have been developed in the following areas: (1) management, organization and administration; (2) training and qualification; (3) operation (4) maintenance; (5) safety, fire protection, emergency planning, and preparedness; (6) radiation protection; (7) environmental monitoring programme; (8) construction management; (9) commissioning and decommissioning

  12. Resources changes: a key factor in a new uranium production economic cycle

    International Nuclear Information System (INIS)

    Capus, G.; Caumartin, P.

    1996-01-01

    Since the end of 1994, a change has been underway in the uranium market. As usual in such cases, surprise and disbelief first dominated, but the market actors have been adjusting quickly to what now appears to be a return to primary production as the predominant factor in uranium supply. It is a matter of fact that the fundamentals will determine the course of the uranium market, as with other cyclical commodity markets. Comparing 1995 with 1975, a time of rocketing prices and production, and forecasting another cycle with similar characteristics to the last one is tempting, but illusory. However, examining the relative conditions prevailing at these times provides keys that may be helpful in understanding future developments. (author)

  13. Enabling sustainable uranium production: The Inter-regional Technical Cooperation experience

    International Nuclear Information System (INIS)

    Tulsidas, H.; Zhang, J.

    2014-01-01

    Uranium production cycle activities are increasing worldwide, often in countries with little or no previous experience in such activities. Initial efforts in uranium exploration and mining were limited to a few countries, which progressed through a painful learning curve often associated with high socioeconomic costs. With time, good practices for the sustainable conduct of operations became well established, but new projects in different regional contexts continue to face challenges. Moreover, there have been highs and lows in the levels of activities and operations in the uranium industry, which has disrupted the stabilizing of the experiences and lessons learned, into a coherent body of knowledge. This collective experience, assimilated over time, has to be transferred to a new generation of experts, who have to be enabled to use this knowledge effectively in their local contexts in order to increase efficiency and reduce the footprint of the operations. This makes it sustainable and socially acceptable to local communities, as well as in the global context. IAEA has implemented several projects in the last five years to address gaps in transferring a coherent body of knowledge on sustainable uranium production from a well experienced generation of experts to a new generation facing similar challenges in different geographical, technological, economic and social contexts. These projects focused on enabling the new practitioners in the uranium production industry to avoid the mistakes of the past and to apply good practices established elsewhere, adapted to local needs. The approach was intended to bring considerable cost savings while attracting elevated levels of social acceptance. These projects were effective in introducing experts from different areas of the uranium production cycle and with different levels of experience to the availability of advanced tools that can make operations more efficient and productive, reduce footprint, increase competencies in

  14. Analyses of radionuclides in soil, water, and agriculture products near the Urgeirica uranium mine in Portugal

    International Nuclear Information System (INIS)

    Carvalho, F.P.; Oliveira, J.M.; Malta, M.

    2009-01-01

    Analyses of soils, irrigation waters, agriculture products (lettuce), green pasture, and cheese were performed in samples collected in the area of the old Urgeirica uranium mine and milling facilities, Centre-North of Portugal, in order to assess the transfer of uranium series radionuclides in the environment and to man. Soils close to milling tailings display an enhancement of radioactivity. In the drainage basin of the stream Ribeira da Pantanha, receiving drainage from the tailings piles and discharges from the acid mine water treatment plant, there was enhancement of uranium series radionuclide concentrations in water and suspended matter. Agriculture products from kitchen gardens irrigated with water from the Ribeira da Pantanha show an increase of radioactivity, mainly due to uranium isotopes. Agriculture products from other kitchen gardens in this area, irrigated with groundwater, as well pasture and cheese produced locally from sheep milk did not show enhanced radionuclide concentrations. In the Urgeirica area, some soils display radionuclide concentrations higher than soils in reference areas and, in agriculture products grown there, 226 Ra was the radionuclide more concentrated by vegetables. Through ingestion of these products 226 Ra may be the main contributor to the increment of radiation dose received by local population. (author)

  15. Calibration of X-ray densitometers for the determination of uranium and plutonium concentrations in reprocessing input and product solutions

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.; Michel-Piper, I.; Kuhn, E.; Johnson, E.

    1985-11-01

    In June 1985 a calibration exercise has been carried out, which included the calibration of the KfK K-Edge Densitometer for uranium assay in the uranium product solutions from reprocessing, and the calibration of the Hybrid K-Edge/K-XRF Instrument for the determination of total uranium and plutonium in reprocessing input solutions. The calibration measuremnts performed with the two X-ray densitometers are described and analyzed, and calibration constants are evaluated from the obtained results. (orig.)

  16. Analysis of accidents in uranium mines and suggestions on safety in production

    International Nuclear Information System (INIS)

    Xue Shiqian.

    1989-01-01

    The serious and fatal accidents happening in the uranium mines in China are descibed and analysed based on the classification, cause, age of the dead and economic losses brought by the accidents. The suggestions on safety in production are also presented

  17. Solubility classification of airborne products from uranium ores and tailings piles

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1979-01-01

    Airborne products generated at uranium mills were assigned solubility classifications for use in the ICRP Task Group Lung Model. No significant difference was seen between the dissolution behavior of airborne samples and sieved ground samples of the same product. If the product contained radionuclides that dissolved at different rates, composite classifications were assigned to show the solubility class of each component. If the dissolution data indicated that a radionuclide was present in two chemical forms that dissolved at different rates, a mixed classification was assigned to show the percentage of radionuclide in each solubility class. Uranium-ore dust was assigned the composite classification: ( 235 U, 238 U) W; ( 226 Ra) 10% D, 90% Y; ( 230 Th, 210 Pb, 210 Po) Y. Tailings-pile dust was classified: ( 226 Ra) 10% D, 90% Y; ( 230 Th, 210 Pb, 210 Po) Y. Uranium octoxide was classified Y, uranium tetrafluoride was also classified Y, ammonium diuranate was classified D, and yellow-cake dust was classified ( 235 U, 238 U) 60% D, 40% W. The term yellow cake, however, covers a variety of materials which differ significantly in dissolution rate. Solubility classifications based on the dissolution half-times of particular yellow-cake products should, thus, be used when available. The D, W, and Y classifications refer to biological half-times for clearance from the human respiratory tract of 0 to 10 days, 11 to 100 days, and > 100 days, respectively

  18. Mechanism of 232U production in MTR fuel evolution of activity in reprocessed uranium

    International Nuclear Information System (INIS)

    Harbonnier, G.; Lelievre, B.; Fanjas, Y.; Naccache, S.J.P.

    1993-01-01

    The use of reprocessed uranium for research reactor fuel fabrication implies to keep operators safe from the hard gamma rays emitted by 232 U daughter products. CERCA has carried out, with the help of French CEA and COGEMA, a detailed study to determine the evolution of the radiation dose rate associated with the use of this material. (author)

  19. The uranium recovery from UO{sub 2} kernel production effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaotong, E-mail: chenxiaotong@tsinghua.edu.cn; He, Linfeng; Liu, Bing; Tang, Yaping; Tang, Chunhe

    2016-12-15

    Graphical abstract: In this study, a flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the UO{sub 2} kernel production effluent of HTR spherical fuel elements. The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced. Based on the above experimental results, the treating flow process in this study would be feasible for laboratory- and engineering-scale treatment of UO{sub 2} kernel production effluent of HTR spherical fuel elements. - Highlights: • A flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the UO{sub 2} kernel production effluent. • The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced. • The treating flow process would be feasible for laboratory- and engineering-scale treatment of UO{sub 2} kernel production effluent. - Abstract: For the fabrication of coated particle fuel elements of high temperature gas cooled reactors, the ceramic UO{sub 2} kernels are prepared through chemical gelation of uranyl nitrate solution droplets, which produces radioactive effluent with components of ammonia, uranium, organic compounds and ammonium nitrate. In this study, a flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the effluent treating. The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced.

  20. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  1. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  2. Surface area and chemical reactivity characteristics of uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m 2 /g. The reactivity of the products in Ar-9%O 2 and Ar-20%O 2 were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal

  3. Some Thoughts after the Inaugural Meeting of the International Forum on Sustainable Options in Uranium Production

    International Nuclear Information System (INIS)

    Tano, M.L.

    2009-01-01

    This paper examines the discussions at the inaugural meeting International Forum on Sustainable Options in Uranium Production and suggests that to be successful, IFSOUP should be organized as a network of disparate entities whose activities are related to a broad range of effects, including not only the actual mining, processing and regulation of uranium, but also social, cultural, economic, political, informational, educational, and other factors. The endeavor called IFSOUP is made up of those entities that are cooperating (consciously or deliberately) in some particular context and those whose behavior is expected to aid those actors who have chosen to cooperate. (authors)

  4. Some environmental challenges which the uranium production industry faces in the 21st century

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2004-01-01

    Some of the environmental challenges which the uranium production industry faces in the 21st century have been discussed in the paper. They are: the use of the linear non-threshold (LNT) model for radiation protection, the concept of 'controllable dose' as an alternative to the current International Commission on Radiological Protection (ICRP) system of dose limitation, the future of collective dose and the ALARA (As low As Reasonably Achievable) principle and the application of a risk-based framework for managing hazards. The author proposes that, the risk assessment/risk management framework could be used for managing the environmental, safety and decommissioning issues associated with the uranium fuel cycle. (author)

  5. Cleaning up a toxic legacy: Environmental remediation of former uranium production sites in Central Asia

    International Nuclear Information System (INIS)

    Green, Andrew

    2016-01-01

    Nearly 60 abandoned uranium production sites dot the landscape and represent a hazard to the environment and inhabitants throughout rural Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Each site poses a challenge for local and national governments that lack technical expertise and resources for remediation. The sites were used to produce uranium until the 1990s. They were built before proper regulatory infrastructure was in place to ensure eventual decommissioning, so leftover residues with long-lived radioactive and highly toxic chemical contaminants still pose substantial risks to the health of the public and the environment.

  6. Cleaning up a toxic legacy: Environmental remediation of former uranium production sites in Central Asia

    International Nuclear Information System (INIS)

    Green, Andrew

    2016-01-01

    Nearly 60 abandoned uranium production sites dot the landscape and represent a hazard to the environment and inhabitants throughout rural Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Each site poses a challenge for local and national governments that lack technical expertise and resources for remediation. The sites were used to produce uranium until the 1990s. They were built before proper regulatory infrastructure was in place to ensure eventual decommissioning, so leftover residues with long-lived radioactive and highly toxic chemical contaminants still pose substantial risks to the health of the public and the environment

  7. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, Brent [Innovative Solutions Unlimited, LLC

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  8. Membrane extraction in preconcentration of some uranium fission products

    International Nuclear Information System (INIS)

    Macasek, F.; Rajec, P.; Kopunec, R.; Mikulaj, V.

    1984-01-01

    Theoretical comparison of the equilibria and kinetics of solvent extraction (SX) and emulsion liquid membrane extraction (MX) was performed using the distribution ratios at the outer inner boundaries of liquid membrane. Enhancement factors, pertraction factor (p) and mulitplication factor (N), were proposed to express efficiency of the MX technique. The extraction of cesium, strontium, cobalt(II), uranium(VI), cerium(III) and technetium(VII) was investigated from this point of view. The most perspective systems are those with chelating agents (e.g. di-2-ethylhexyl-phosporic acid and 8-hydroquinoline), especially at low concentrations (substioichiometric amounts), with which high enhancement factors can be achieved. The results with the ion-exchange systems (bis(1,2-dicarbollyl)-cobalt(III) and quaternary ammonium salts) may be interpreted as indicating some surface barriers which prevent the transport of ions. 20 references, 14 figures, 6 tables

  9. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    Science.gov (United States)

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Influence of radiolytic products on the chemistry of uranium VI in brines

    International Nuclear Information System (INIS)

    Lucchini, J-F.; Reed, D.T.; Borkowski, M.; Rafalski, A.; Conca, J.

    2004-01-01

    In the near field of a salt repository of nuclear waste, ionizing radiations can strongly affect the chemistry of concentrated saline solutions. Radiolysis can locally modify the redox conditions, speciation, solubility and mobility of the actinide compounds. In the case of uranium VI, radiolytic products can not only reduce U(VI), but also react with uranium species. The net effect on the speciation of uranyl depends on the relative kinetics of the reactions and the buildup of molecular products in brine solutions. The most important molecular products in brines are expected to be hypochlorite ion, hypochlorous acid and hydrogen peroxide. Although U(VI) is expected not to be significantly affected by radiolysis, the combined effects of the major molecular radiolytic products on the chemistry of U(VI) in brines have not been experimentally established previously. (authors)

  11. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  12. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  13. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  14. Uranium industry update

    International Nuclear Information System (INIS)

    Poissonnet, M.

    1994-01-01

    Canada is the world's largest producer of uranium. With stockpiles becoming depleted, new sources of production will soon be needed. Production in Ontario was expected to cease in 1996, leaving decommissioning as the main activity there. Present production in Canada is almost entirely from the Athabasca basin in Saskatchewan, and mainly from three mines, Key Lake and Rabbit Lake (both owned by Cameco and Uranerz), and Cluff Lake (owned by Cogema). Following hearings in 1993, extensions to Cluff Lake and Rabbit Lake, and a new project at McClean Lake (by Minatco) received environmental approval, while the Midwest project as presented by Denison was rejected, but Cogema was revising it (at the time of the conference). An environmental impact statement for Cigar Lake was due to be submitted to the Assessment panel in October 1994. The author regrets that discussion of 'natural analogues' has created confusion between uranium mining and nuclear waste disposal in the public mind. 2 ills

  15. Largest College Endowments, 2011

    Science.gov (United States)

    Chronicle of Higher Education, 2012

    2012-01-01

    Of all endowments valued at more than $250-million, the UCLA Foundation had the highest rate of growth over the previous year, at 49 percent. This article presents a table of the largest college endowments in 2011. The table covers the "rank," "institution," "market value as of June 30, 2011," and "1-year change" of institutions participating in…

  16. Physico-chemical basics for production of uranium concentrate from wastes of hydrometallurgical plants and technical waters

    International Nuclear Information System (INIS)

    Mirsaidov, I.; Nazarov, K.

    2014-01-01

    Physico-chemical and technological basics for reprocessing of uranium industry wastes of Northern Tajikistan shows that the most perspective site for reprocessing is Chkalovkst tailings wastes. The engineering and geological conditions and content of radionuclides in wastes were investigated. It was determined that considered by radioactivity the wastes are low activity and they can be reprocessed for the purpose of U_3O_8 production. Characteristics of mine and technical waters of uranium industry wastes were studied. Characteristics of mine and technical waters of Kiik-Tal and Istiklol city (former Taboshar) showed the expediency of uranium oxide extraction from them. The reasons for non-additional recovery extraction from dumps of SE “Vostokredmet” by classical methods of uranium leaching are studied. The kinetics of sulfuric leaching of residues from anthropogenic deposit of Map 1-9 (Chkalovsk City) were also investigated. Further investigations are to reveal the flow mechanism process of sulfuric leaching of residues and to enable the selection of a radiation regime for U_3O_8 production. The kinetics of sorption process of uranium extraction from mine and technical waters of uranium industry wastes were studied. High sorption properties of apricot shell compared to other sorbents were revealed. A basic process flow diagram for reprocessing of uranium tailing wastes was developed as well as diagrams for uranium extraction from mine and technical waters from uranium industry wastes. The process consists of the following stages: acidification, sorption, burning, leaching, sedimentation, filtration and drying. The possibility of uranium extraction from natural uranic waters of a complicated salt composition was considered. Investigations revealed that uranium extraction from brines containing chloride ion is possible. A developed uranium extraction scheme from Sasik-Kul lake’s brine consists of the following main stages: evaporation, leaching, chloride

  17. Recent developments in Australia's uranium mining industry

    International Nuclear Information System (INIS)

    Lambert, I.B.; McKay, A.D.

    1998-01-01

    Australia's economic, demonstrated resources of uranium (U) at the end of 1996 amounted to 622,000 tonnes U, the largest of any country. Uranium is currently produced at two mining/milling operations in Australia - Ranger in the Alligator Rivers Region of the Northern Territory, and Olympic Dam in South Australia. Improved market conditions and recent changes to Government policies have encouraged Australian companies to commit to the expansion of existing operations and the development of new uranium mines. Australia's annual production is likely to increase from its present level of 6000 tonncs (t) U 3 O 8 to approximately 12 000 t U 3 O 8 by the year 2000. (author)

  18. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  19. LiCl-KCl-UCl3 Salt production and Transfer for the Uranium Electrorefining

    International Nuclear Information System (INIS)

    Woo, Moon Sik; Kang, Hee Suk; Lee, Han Soo

    2009-01-01

    A pyrometallurgical partitioning technology to recover uranium from an uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . The apparatus for producing UCl 3 consists of a chlorine gas generator, a chlorinator, and a off-gas wet scrubber. The temperature of the reactants are maintained at about 600 .deg. C . After the reaction is completed, the product salt is transferred from the vessel to the electrorefiner by a transfer system

  20. Uranium as an energy source: resources, production and reserves from the point of view of technological development

    International Nuclear Information System (INIS)

    Lersow, M.

    2008-01-01

    A reliable evaluation of the uranium resources available in the future and associated strategic reserves must take into account trends in prospecting, degree of technological development of the different stages of the nuclear fuel cycle (starting with the mining industry and preparation), but in particular also the specific raw material and energy yield of future generations of fuel and reactor technology. Uranium deposits are categorised with regard to ore content and probable production costs. The intensified prospecting following the increase in the uranium price will lead to discovery of further reserves and thus continue to follow the historical trend. Uranium production is subject to increasingly stringent legal boundary conditions - mining and preparation are approved according to strict international standards to minimise the environmental effects during operation and to restore and recultivate the sites after closure. New or extended/modernised uranium production sites are based on modern semi- or fully automated technologies. Exposure to radiation and environmental effects are minimised by avoidance of tailings (in situ leaching), by relocation of preparation partial processes underground or by storage of the residues from conventional plants according to international standards. In addition to a rough prediction based on currently available data trends in resource development, uranium production, fuel production and the energy yield from uranium including the option of utilisation of transuranic elements for energy production in order to minimise the radioactive waste are discussed and applied qualitatively to estimation of the reserves. (orig.)

  1. Recent developments in uranium resources and production with emphasis on in situ leach mining. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-06-01

    An important role of the International Atomic Energy Agency is establishing contacts between Member States in order to foster the exchange of scientific and technical information on uranium production technologies. In situ leach (ISL) mining is defined as, the extraction of uranium from the host sandstone by chemical solutions and the recovery of uranium at the surface. ISL extraction is conducted by injecting a suitable leach solution into the ore zone below the water table; oxidizing, complexing, and mobilizing the uranium; recovering the pregnant solutions through production wells; and, finally, pumping the uranium bearing solution to the surface for further processing. As compared with conventional mining, in situ leach is recognized as having economic and environmental advantages when properly employed by knowledgeable specialists to extract uranium from suitable sandstone type deposits. Despite its limited applicability to specific types of uranium deposits, in recent years ISL uranium mining has been producing 15 to 21 per cent of world output. In 2002, ISL production was achieved in Australia, China, Kazakhstan, the United States of America and Uzbekistan. Its importance is expected to increase with new projects in Australia, China, Kazakhstan and the Russian Federation. The Technical Meeting on Recent Development in Uranium Resources and Production with Special Emphasis on In Situ Leach Mining, was held in Beijing from 18 to 20 September 2002, followed by the visit of the Yili ISL mine, Xinjiang Autonomous Region, China, from 21 to 23 September 2002. The meeting, held in cooperation with the Bureau of Geology, China National Nuclear Cooperation, was successful in bringing together 59 specialists representing 18 member states and one international organization (OECD/Nuclear Energy Agency). The papers describe a wide variety of activities related to the theme of the meeting. Subjects such as geology, resources evaluation, licensing, and mine restoration were

  2. DUPoly process for treatment of depleted uranium and production of beneficial end products

    International Nuclear Information System (INIS)

    Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.; Cooley, C.R.

    2000-01-01

    The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles

  3. Production of uranium hexafluoride by fluorination tetra-fluoride with elemental fluorine under pressure; Proizvodnja uraovega heksafluorida s tlacnim fluoriranjem uranovega tetrafluorida z elementarnim fluorom

    Energy Technology Data Exchange (ETDEWEB)

    Lutar, K; Smalc, A; Zemljic, A [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    In the introduction a brief description of some activities of fluorine chemistry department at the J. Stefan Institute is given - from production of elemental fluorine to the investigations in the field of uranium technology. Furthermore, a new method for the production of uranium hexafluoride is described more in detail. The method is based on the fluorination of uranium tetrafluoride with elemental fluorine. (author)

  4. Uranium market

    International Nuclear Information System (INIS)

    Rubini, L.A.; Asem, M.A.D.

    1990-01-01

    The historical development of the uranium market is present in two periods: The initial period 1947-1970 and from 1970 onwards, with the establishment of a commercial market. The world uranium requirements are derived from the corresponding forecast of nuclear generating capacity, with, particular emphasis to the brazilian requirements. The forecast of uranium production until the year 2000 is presented considering existing inventories and the already committed demand. The balance between production and requirements is analysed. Finally the types of contracts currently being used and the development of uranium prices in the world market are considered. (author)

  5. Research on geochronology and uranium source of sandstone-hosted uranium ore-formation in major uranium-productive basins, Northern-China

    International Nuclear Information System (INIS)

    Xia Yuliang; Liu Hanbin; Lin Jinrong; Fan Guang; Hou Yanxian

    2004-12-01

    A method is developed for correcting uranium content in uranium ore samples by considering the U-Ra equilibrium coefficient, then a U-Pb isochron is drawn up. By performing the above correction ore-formation ages of sandstone-hosted uranium mineralization which may be more realistic have been obtained. The comparative research on U-Pb isotopic ages of detritic zircon in ore-hosting sandstone and zircon in intermediate-acid igneous rocks in corresponding provenance area indicates that the ore-hosting sandstone is originated from the erosion of intermediate-acid igneous rocks and the latters are the material basis for the formation of the uranium-rich sandstone beds. On the basis of the study on U-Pb isotopic system evolution of the provenance rocks and sandstones from ore-hosting series, it is verified that the uranium sources of the sandstone-hosted uranium deposit are: the intermediate-acid igneous rocks with high content of mobile uranium, and the sandstone bodies pre-concentrated uranium. (authors)

  6. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  7. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  8. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  9. Social Licensing in the Uranium Cycle Production (Case of Niger)

    Energy Technology Data Exchange (ETDEWEB)

    Dari, A., E-mail: dariayouba@yahoo.fr [Ministry of Mining and Energy, Mines Direction/DEM, Niamey (Niger)

    2014-05-15

    In Niger Republic, uranium exploitation has begun since 1970. It is an economic resource but also causes social and environmental problems. To exploit according to the rule, to protect social environment, to work in safe conditions and contribute to the development of local population one side and Niger Republic in the other side, a mining law was voted in March 1993. It is about the ordinance n°93-16 on mining law which was modified in August 2006 by a new mining law, the ordinance n°2006-26 of 9 August 2006. As well as the presidential decree affecting the application of this new law was issued. Other legislative and regulatory texts have been taken as far as exploration and exploitation mining. For example, the mining agreement, the order n°0073/PM of 4 July 2005 relative to the transparency on mining exploitation; ordinance n°97-001 of 10 January 1997 appointing the environmental studying impact and the law 98–56 of 29 December 1998 relative to the management of environment. For acquisition of an exploration licence or a mining licence, a mining agreement is signed between the mining company and Niger Republic which makes clear social, environmental, financial, and economic conditions in which the mining company must exploit natural resources. The ordinance n°93-16 of 2 March 1993 related to the mining law in chapter IV, clarifies conditions for acquisition of exploration and mining licence in Niger Republic. It clarifies again in the same chapter, title VI, rights and obligations relating to mine or quarry operations for companies and tax provisions relative those activities. In the same order, in title VIII, hygiene and security conditions in mines are been specified. The mining agreement in title IV, specify rights, obligations and administration in mining activities, particularly article 18.2 which stipulates “the mining company undertakes to contribute to the development of municipalities in which it shall carry out activities, by contributing to

  10. Uranium production - needs and 'in the ground' resources, situation in 2007 and perspectives

    International Nuclear Information System (INIS)

    Capus, G.

    2007-01-01

    Under the combined effect of energies price increase and of the worldwide growing fear of global warming effects, nuclear power is again entering a favorable era. The questions of how much and how long it might bring a significant contribution to global power supplies must be addressed. In particular, it is worth considering uranium production capability and its long term perspective, in accordance to the currently available knowledge about uranium resources. Also, the issue of world resources geographic distribution should be analyzed from a security of supply viewpoint. The careful analysis of all available information leads us to the following conclusive remarks. The current tension on uranium market prices is by no mean a signal of 'in the ground' resources depletion. It is just the temporary consequence of a too long depressed market. There are enough identified and foreseen uranium resources to quietly start a huge power plant fleet increase (a doubling or tripling the current installed capacity by 2030). Ultimately, several types within the generation 4 reactors allow us to envisage a very far extended use of currently available fissile and fertile nuclear material, along with a significant expansion of fission based nuclear power. (author)

  11. Joint Panel on Occupational and Environmental Research for Uranium Production 1981 annual report

    International Nuclear Information System (INIS)

    1982-09-01

    Occupational health and environmental effects associated with the production of uranium are of concern to labour, industry, government and the public. To alleviate this concern the knowledge base for the industry must be expanded. At present there is no single Canadian organization with the authority, expertise or research resources to perform this task independently. The Joint Panel on Occupational and Environmental Research for Uranium Production is a voluntary association of organizations with an active and continuing involvement in this research. Members accept the obligation to inform each other of progress in their on-going work, to contribute to the development of a comprehensive program of research and to make final research results available to the public. This report delineates guiding principles and procedures, lists member organizations, gives highlights of activities during 1981, and provides an update on the status of research projects and publications

  12. The potential of centrifugal casting for the production of near net shape uranium parts

    International Nuclear Information System (INIS)

    Robertson, E.

    1993-09-01

    This report was written to provide a detailed summary of a literature survey on the near net shape casting process of centrifugal casting. Centrifugal casting is one potential casting method which could satisfy the requirements of the LANL program titled Near Net Shape Casting of Uranium for Reduced Environmental, Safety and Health Impact. In this report, centrifugal casting techniques are reviewed and an assessment of the ability to achieve the near net shape and waste minimization goals of the LANL program by using these techniques is made. Based upon the literature reviewed, it is concluded that if properly modified for operation within a vacuum, vertical or horizontal centrifugation could be used to safely cast uranium for the production of hollow, cylindrical parts. However, for the production of components of geometries other than hollow tubes, vertical centrifugation could be combined with other casting methods such as semi-permanent mold or investment casting

  13. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.

  14. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U 233 in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U 233 , Pu 239 , and H 3 production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m -2 ) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids

  15. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  16. Evaluation of a measurement system for Uranium electrodeposition control to radiopharmaceuticals production

    International Nuclear Information System (INIS)

    Tufic Madi Filho; Adonis Marcelo Saliba Silva; Jose Patricio Nahuel Cardenas; Maria da Conceicao Costa Pereira; Valdir Maciel Lopes; Alexandre, P. S.; Diogo, F. S.; Rafael, T. P.; Vitor, O. A; Anderson, F. L.; Lucas, R. S.; Brianna, S.; Eduardo, L. C.

    2015-01-01

    For 2016, studies by international bodies forecast a crisis in the supply of Molybdenum ( 99 Mo), which is the generator of 99m Tc, widely used for medical diagnoses and treatments. As a result, many countries are making efforts to prevent this crisis. Brazil is developing the Brazilian Multipurpose Reactor (RMB) project, under the responsibility of the National Nuclear Energy Commission (CNEN). The RMB is a nuclear reactor for research and production of radioisotopes used in the production of radiopharmaceuticals and radioactive sources, broadly used in industrial and research areas in Brazil. Electrodeposition of uranium is a common practice to create samples for alpha spectrometry and this methodology may be an alternative way to produce targets of low enriched uranium (LEU) to fabricate radiopharmaceuticals, as 99 Mo, used for cancer diagnosis. To study the electrodeposition, a solution of 10 mM uranyl nitrate, in 2-propanol, containing uranium enriched to 2.4% in 235 U, with pH = 1, was prepared and measurements with an alpha spectrometer were performed. These studies are justified by the need to produce 99 Mo since, despite using molybdenum in bulk, Brazil is totally dependent on its import. In this project, we intend to obtain a process that may be technologically feasible to control the radiation targets for 99 Mo production. (authors)

  17. Evaluation of a measurement system for Uranium electrodeposition control to radiopharmaceuticals production

    Energy Technology Data Exchange (ETDEWEB)

    Tufic Madi Filho; Adonis Marcelo Saliba Silva; Jose Patricio Nahuel Cardenas; Maria da Conceicao Costa Pereira; Valdir Maciel Lopes; Alexandre, P. S.; Diogo, F. S.; Rafael, T. P.; Vitor, O. A; Anderson, F. L.; Lucas, R. S.; Brianna, S.; Eduardo, L. C. [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Univers. CEP: 05508-000- Sao Paulo-SP, (Brazil)

    2015-07-01

    For 2016, studies by international bodies forecast a crisis in the supply of Molybdenum ({sup 99}Mo), which is the generator of {sup 99m}Tc, widely used for medical diagnoses and treatments. As a result, many countries are making efforts to prevent this crisis. Brazil is developing the Brazilian Multipurpose Reactor (RMB) project, under the responsibility of the National Nuclear Energy Commission (CNEN). The RMB is a nuclear reactor for research and production of radioisotopes used in the production of radiopharmaceuticals and radioactive sources, broadly used in industrial and research areas in Brazil. Electrodeposition of uranium is a common practice to create samples for alpha spectrometry and this methodology may be an alternative way to produce targets of low enriched uranium (LEU) to fabricate radiopharmaceuticals, as {sup 99}Mo, used for cancer diagnosis. To study the electrodeposition, a solution of 10 mM uranyl nitrate, in 2-propanol, containing uranium enriched to 2.4% in {sup 235}U, with pH = 1, was prepared and measurements with an alpha spectrometer were performed. These studies are justified by the need to produce {sup 99}Mo since, despite using molybdenum in bulk, Brazil is totally dependent on its import. In this project, we intend to obtain a process that may be technologically feasible to control the radiation targets for {sup 99}Mo production. (authors)

  18. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  19. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  20. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  1. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  2. International uranium supply to the US market

    International Nuclear Information System (INIS)

    Bonny, J.

    1987-01-01

    The 1980s have seen a major redistribution of global uranium production. Since 1984, the first full year of production from the Key Lake Mine, Canada has displaced the US as the world's largest uranium producer. Uranium production in the US has stabilized in the range of 10 to 15 million lb U 3 O 8 per year, having declined from a peak of over 43 million lb in 1980. Production from Africa and Europe has declined slightly, and Australia, with the startup of Ranger Mine, has emerged as a significant producer. The main factors that have affected the distribution of production aside from price and demand are ore grades and production costs, currency exchange rates, long-term contracts, and tied supply. It is interesting to examine uranium supply and demand for the North American continent. In 1980 and 1981, North American production was more than twice reactor requirements. By 1985, however, requirements were only slightly lower than production, a situation that has persisted into 1987. Indeed, given the export commitments by Canadian and US producers to Europe and Asia, it is apparent that the US must import uranium from other countries. The relative balance in North American supply and demand suggests that free trade between Canada and the US for both uranium and conversion services would be beneficial to both countries

  3. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    Science.gov (United States)

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  4. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  5. International symposium on uranium raw material for the nuclear fuel cycle: Exploration, mining, production, supply and demand, economics and environmental issues (URAM-2009). Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    The International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009) addressed all aspects of the uranium fuel cycle, from the availability of raw materials to the long-term sustainability of nuclear power. The revival of the uranium industry in recent years has caused a dramatic increase in uranium exploration and mining activities in several countries. URAM-2009 was intended to bring together scientists, exploration and mining geologists, engineers, operators, regulators and fuel cycle specialists to exchange information and discuss updated research and current issues in uranium geology and deposits, exploration, mining and processing, production economics, and environmental and legal issues. Contributed papers covered uranium markets and economics (including supply and demand); social licensing in the uranium production cycle; uranium exploration (including uranium geology and deposits); uranium mining and processing; environmental and regulatory issues; human resources development. There was a poster session throughout the symposium, as well as an exhibition of topical photographs. A workshop on recent developments in Technical Cooperation Projects relevant to the Uranium Production Cycle area was also organized. On the last day of the symposium, there was an experts' Panel Discussion. The presentations and discussions at URAM-2009 (a) led to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand, (b) provided information on new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources, (c) described new production technology having the potential to more efficiently and economically exploit new uranium resources; (d) documented the environmental compatibility of uranium production and the overall effectiveness of the final

  6. In situ production of 36CI in uranium ore: a hydrogeological assessment tool

    International Nuclear Information System (INIS)

    Cornett, R.J.; Cramer, J.; Andrews, H.R.; Chant, L.A.; Davies, W.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.; McKay, J.; Milton, G.M.; Milton, J.C.D.

    1996-01-01

    In situ neutron activation of 35 Cl within the rock and groundwater of geologic deposits that have elevated concentrations of uranium provides a hydrogeological tracer. We determine the production rate and mobility of 36 Cl in the 1.3-billion-year-old Cigar Lake uranium ore deposit. Accelerator mass spectrometry was used to map the Concentrations of 36 Cl in the ore and in the groundwater that were up to 100 times greater than those encountered in unmineralized portions of the host sandstone aquifer. The residence time of this mobile anion in groundwater within the mineralized zone ranged from 14 to 280 kyr. These residence times are consistent with the hydraulic and geochemical data, suggesting significant control of Cl - and groundwater movement by the clay-rich matrix of the mineralized zone. (author)

  7. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009). Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    2014-05-01

    This IAEA symposium is a third in a series which began in 2000 to discuss issues related to uranium raw materials. The symposia covered all areas of the uranium production cycle — including uranium geology, exploration, mining; milling and refining of uranium concentrates; and safety, environmental, social, training and regulatory issues — and reported on uranium supply and demand, and market scenarios. The first symposium was held in October 2000 — a time of extremely depressed market prices for uranium and of mines being closed — and primarily addressed environmental and safety issues in the uranium production cycle. By the time the second symposium was held in June 2005, the uranium market had started to improve after nearly two decades of depressed activity because of increased demand due to rising expectations for nuclear power expansion. Since then, there has been a dramatic rise in the uranium spot price, which in turn has promoted a significant increase in uranium exploration activities all over the world. The international symposium on Uranium Raw Material for the Nuclear Fuel Cycle (URAM-2009) was held at the IAEA, Vienna, 22–26 June 2009, at a time when nuclear energy was emerging as a viable alternative to meet the ever increasing demand of electricity in a sustainable manner, without degrading the environment. However, the global recession and credit crunch could impact the growth of the uranium industry. Since 2000, the identified uranium resource base has grown by more than 75%, exploration efforts have continued to increase in greenfield as well as brownfield sites, annual uranium production has risen, and the issue of social licensing and uranium stewardship has become increasingly important for public acceptance of the uranium industry. Some 210 delegates from 33 States and four international organizations participated in the symposium. In total, 120 technical papers were presented in the oral and poster sessions, and an exhibition on

  8. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009). Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    This IAEA symposium is a third in a series which began in 2000 to discuss issues related to uranium raw materials. The symposia covered all areas of the uranium production cycle — including uranium geology, exploration, mining; milling and refining of uranium concentrates; and safety, environmental, social, training and regulatory issues — and reported on uranium supply and demand, and market scenarios. The first symposium was held in October 2000 — a time of extremely depressed market prices for uranium and of mines being closed — and primarily addressed environmental and safety issues in the uranium production cycle. By the time the second symposium was held in June 2005, the uranium market had started to improve after nearly two decades of depressed activity because of increased demand due to rising expectations for nuclear power expansion. Since then, there has been a dramatic rise in the uranium spot price, which in turn has promoted a significant increase in uranium exploration activities all over the world. The international symposium on Uranium Raw Material for the Nuclear Fuel Cycle (URAM-2009) was held at the IAEA, Vienna, 22–26 June 2009, at a time when nuclear energy was emerging as a viable alternative to meet the ever increasing demand of electricity in a sustainable manner, without degrading the environment. However, the global recession and credit crunch could impact the growth of the uranium industry. Since 2000, the identified uranium resource base has grown by more than 75%, exploration efforts have continued to increase in greenfield as well as brownfield sites, annual uranium production has risen, and the issue of social licensing and uranium stewardship has become increasingly important for public acceptance of the uranium industry. Some 210 delegates from 33 States and four international organizations participated in the symposium. In total, 120 technical papers were presented in the oral and poster sessions, and an exhibition on

  9. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009). Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    2014-06-01

    This IAEA symposium is a third in a series which began in 2000 to discuss issues related to uranium raw materials. The symposia covered all areas of the uranium production cycle — including uranium geology, exploration, mining; milling and refining of uranium concentrates; and safety, environmental, social, training and regulatory issues — and reported on uranium supply and demand, and market scenarios. The first symposium was held in October 2000 — a time of extremely depressed market prices for uranium and of mines being closed — and primarily addressed environmental and safety issues in the uranium production cycle. By the time the second symposium was held in June 2005, the uranium market had started to improve after nearly two decades of depressed activity because of increased demand due to rising expectations for nuclear power expansion. Since then, there has been a dramatic rise in the uranium spot price, which in turn has promoted a significant increase in uranium exploration activities all over the world. The international symposium on Uranium Raw Material for the Nuclear Fuel Cycle (URAM-2009) was held at the IAEA, Vienna, 22–26 June 2009, at a time when nuclear energy was emerging as a viable alternative to meet the ever increasing demand of electricity in a sustainable manner, without degrading the environment. However, the global recession and credit crunch could impact the growth of the uranium industry. Since 2000, the identified uranium resource base has grown by more than 75%, exploration efforts have continued to increase in greenfield as well as brownfield sites, annual uranium production has risen, and the issue of social licensing and uranium stewardship has become increasingly important for public acceptance of the uranium industry. Some 210 delegates from 33 States and four international organizations participated in the symposium. In total, 120 technical papers were presented in the oral and poster sessions, and an exhibition on

  10. About the risk factors on the organs of vision of uranium production workers

    International Nuclear Information System (INIS)

    Ajtakhanova, A. K.

    2010-01-01

    The analysis of the results of the preventive medical examination at the uranium production has been conducted by order of Ministry of Health of Kazakhstan, number 243 from 2004.03.12. 352 people have been surveyed, including 36 women, 69 people have been revealed with the pathology, 293 are healthy. Distribution by length of service up to 5 years - 93,5%, up to 8 years: 3 men (6,5%), aged on average 38,9 years. Certain patterns have been revealed at the distribution by ages of 21-30 years, 12 people (26%), from 31-40 years old, 7 patients (15,2%), from 41 to 50 years, 18 men (39,1%), from 51-60 years, 8 persons (17,4%), more than 60 years, 1 person (2,1%). There are 58 people who contact with the hazards of uranium production are in the main production facilities, and 9 people who do not contact with harmful factors are in the additional production facilities. The most common pathology is pathology of vision: 68,6 per 100 employees. 3% of 100 workers have pathology of respiratory diseases. Prevalence of the circulatory system - 22,3%, nervous system diseases - 8,95%, 7,46% of the digestive system, diseases of the blood-7,46%, and other -5,97%. Health status of the working group was estimated by the index of health, i.e. on the basis of the percentage of healthy workers. The index of health among workers at a uranium production is 83,2% of persons per 100 workers. 41 patients-89% of workers were revealed with diseases of the eye and adnexa, 5 of them (10,86%) have an experience more than 5 years in secondary production facilities. With an experience more than 5 years hyperopia increases.

  11. State policies and requirements for management of uranium mining and milling in New Mexico. Volume IV. The supply of electric power and natural gas fuel as possible constraints on uranium production

    International Nuclear Information System (INIS)

    Page, G.B.

    1980-04-01

    The report contained in this volume considers the availability of electric power to supply uranium mines and mills. The report, submited to Sandia Laboratories by the New Mexico Department of Energy and Minerals (EMD), is reproduced without modification. The state concludes that the supply of power, including natural gas-fueled production, will not constrain uranium production

  12. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Knott, Alexander

    2016-01-01

    Environmental sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken as swipe samples on cotton. These swipes contain minute quantities of particulates which have an inherent signature of their production and release scenario. These inspection samples are assessed for their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial role in determining the isotopic ratios of uranium. Method validation and instrument calibration with well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, oxides and various uranium and plutonium containing solutions are commercially available. Therefore, the IAEA's Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum Juelich GmbH in a joint task entitled ''Production of Particle Reference Materials''. The work presented in this thesis has been partially funded by the IAEA, Forschungszentrum Juelich GmbH and the Federal Ministry of Economic Affairs and Energy (BMWi) through the ''Joint Program on the Technical Development and Further Improvement of IAEA Safeguards between the Government of the Federal Republic of Germany and the IAEA''. The first step towards monodisperse microparticles was the development of pure uranium oxide particles made from certified reference materials. The focus of the dissertation is (1) the implementation of a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these particles towards the application as QC-material. Monodisperse uranium oxide particles were produced by spray pyrolysis. It was demonstrated that the particle size can be

  13. Accelerator based production of fissile nuclides, threshold uranium price and perspectives; Akceleratorska proizvodnja fisibilnih nuklida, granicna cijena urana i perspektive

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, D [INIS-Inzenjering, Sarajevo (Yugoslavia); Knapp, V [Elektrotehnicki fakultet, zagreb (Yugoslavia)

    1988-07-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  14. Department of Energy depleted uranium recycle

    International Nuclear Information System (INIS)

    Kosinski, F.E.; Butturini, W.G.; Kurtz, J.J.

    1994-01-01

    With its strategic supply of depleted uranium, the Department of Energy is studying reuse of the material in nuclear radiation shields, military hardware, and commercial applications. the study is expected to warrant a more detailed uranium recycle plan which would include consideration of a demonstration program and a program implementation decision. Such a program, if implemented, would become the largest nuclear material recycle program in the history of the Department of Energy. The bulk of the current inventory of depleted uranium is stored in 14-ton cylinders in the form of solid uranium hexafluoride (UF 6 ). The radioactive 235 U content has been reduced to a concentration of 0.2% to 0.4%. Present estimates indicate there are about 55,000 UF 6 -filled cylinders in inventory and planned operations will provide another 2,500 cylinders of depleted uranium each year. The United States government, under the auspices of the Department of Energy, considers the depleted uranium a highly-refined strategic resource of significant value. A possible utilization of a large portion of the depleted uranium inventory is as radiation shielding for spent reactor fuels and high-level radioactive waste. To this end, the Department of Energy study to-date has included a preliminary technical review to ascertain DOE chemical forms useful for commercial products. The presentation summarized the information including preliminary cost estimates. The status of commercial uranium processing is discussed. With a shrinking market, the number of chemical conversion and fabrication plants is reduced; however, the commercial capability does exist for chemical conversion of the UF 6 to the metal form and for the fabrication of uranium radiation shields and other uranium products. Department of Energy facilities no longer possess a capability for depleted uranium chemical conversion

  15. Uranium production and environmental restoration at the Priargunsky Centre, Russian Federation

    International Nuclear Information System (INIS)

    Boitsov, A.V.; Nikolsky, A.L.; Chernigov, V.G.; Ovseichuk, V.A.

    2002-01-01

    State JSK 'Priargunsky Mining-Chemical Production Association' (PPGHO) has been the only active uranium production centre in Russia during the last decade. Mining has operated since 1968, and derives from resources in 19 volcanic-type deposits of Streltsovsk U-ore region, which covers an area of 150 km 2 . The average U grade is about 0.2%. Ten deposits have been brought into production: eight by underground mines and two by open pits. Milling and processing has been carried out since 1974 at the local hydrometallurgical plant by sulphuric acid leaching with subsequent recovery by a sorption-extraction ion exchange scheme. The high level of total production (over 100,000 mtU through 2000) marks it as one of the outstanding uranium production districts worldwide. Significant amounts of wastes have been accumulated. The main sources of the environmental contamination are: 30 piles of waste rocks and sub-grade ores, mine waters, milling and sulphuric acid plant tailings. The following activities are performed to decrease the negative impact on the environment: rehabilitation of waste rock dumps and open pits utilization of waste rock for industrial needs, heap and in situ leach mining of low-grade ores, construction of dams and intercepting wells below the tailings, hydrogeological monitoring and waste water treatment plant modernization. Environmental activities, including rehabilitation of the impacted territories and also waste utilization will be realized after final closure takes place. (author)

  16. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  17. Sequential separation of transuranic elements and fission products from uranium metal ingots in electrolytic reduction process of spent PWR fuels

    International Nuclear Information System (INIS)

    Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee

    2009-01-01

    A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  19. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  20. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  1. An attempt for economic estimate of the shutdown of uranium production

    International Nuclear Information System (INIS)

    Jonchev, L.

    1997-01-01

    Uranium ore has been obtained since the end of 30s till 1992. No measures for protection of the environment and restricting the risk for the population during the production have been taken. Among the three possible models of shutting down the most inexpedient from economic point of view has been applied . It meant that the beginning of closing down took place far behind ceasing the production itself and the expenses for restoration were as big as fourteen times more in comparison to the two ones. The investments for prospecting and preparing new resources were lost. The whole process was made extremely inefficiently and unprofessionally. Because of the sudden closing down of production activities there was no enough time for gathering, processing and analyzing of necessary data, even the radioecological and hydro-ecological evaluations were doubtfully reliable. The shutdown of uranium production as worldwide practice takes place considering ALARA (As Low As Reasonably Achievable) principle. The aim is to achieve maximum possible results by minimum investments taking into account the radioecological risk, socially accounted for and psychologically conditioned expenses. There is no statement of the radioecological risk in the preliminary evaluations of the uranium mines in Bulgaria. The investment funds for the period 1992-1996 were about 2.1 bill. leva, (equally allocated for each year) which was about 46.5 mil. US$. Because of inflation process the investments crucially decreased during the last years when most capital-intensive activities had to be carried out - the engineering shutdown and land-reclamations procedures. The biggest share of investments (about 30 mil. US$) was for environmental status maintenance, 2.5 times less (about 13 mil. US$) - for technical shutdown and only 2.1 mil. US$ - for land reclamation. The investments for the shutdown process referred to the whole production obtained were only 2.5 US$/kg U 3 O 8 while the most effective model

  2. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  3. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  4. Production of high-purity uranium at a South African gold mine

    Energy Technology Data Exchange (ETDEWEB)

    Faure, A; Finney, S; Hart, H P; Jordaan, C L; Heerden, D van; Viljoen, E B; Robinson, R E; Lloyd, P J.D. [National Institute for Metallurgy, Pelindaba (South Africa)

    1967-06-15

    The chemistry of the Bufflex solvent-extraction process is described. Uranium is extracted by a tertiary amine solvent, from which the impurities are removed by means of dilute ammonia, and the uranium is stripped by an ammonium sulphate strip. In the pilot plant, these processes are carried out in mixer-settlers. Details of pumps, flow controllers, and materials of construction are given. The operation of the extraction, scrub, strip, precipitation and thickening, and regeneration sections is described. Comparative tests on the elution of ion-exchange resin with 10% sulphuric acid, and with nitrate, are described. The results of resin analyses and plant tests are given. A breakdown of the costs of reagents in the Bufflex process, compared with the conventional process, is given. It is concluded that a solvent-extraction process treating the sulphuric acid eluate from ion-exchange columns is technically feasible. As regards the resin itself, elution with 10% sulphuric acid is satisfactory. There is more polythionate build-up than with nitrate elution, and the capacity of the resin is slightly lower, but the difference is small. The operating cost of the Bufflex process is cheaper by at least 5 cents/lb U{sub 3}O{sub 8} produced. The product satisfies the most stringent specification for nuclear-grade uranium, except as regards cobalt, molybdenum, silicon, and hafnium. (author)

  5. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  6. Vibrational spectra of monouranates and uranium hydroxides as reaction products of alkali with uranyl nitrate

    International Nuclear Information System (INIS)

    Komyak, A.I.; Umrejko, D.S.; Posledovich, M.R.

    2013-01-01

    Vibrational (IR absorption and Raman scattering) spectra for the reaction products of uranyl nitrate hexahydrate with NaOH and KOH have been studied. As a result of exchange reactions, the uranyl-ion coordinated nitrate groups are completely replaced by hydroxyl ions and various uranium and uranyl oxides or hydrates are formed. An analysis of the vibrations has been performed in terms of the frequencies of a free or coordinated nitrate group; comparison with the vibrations of the well-known uranium oxides and of the uranyl group UO 2 2+ has been carried out. Vibrational spectra of a free nitrate group are characterized by four vibrational frequencies 1050, 724, 850, and 1380 cm -1 , among which the frequencies at 724 and 1380 cm -1 are doubly degenerate and attributed to E’ symmetry of the point group D 3h . When this group is uranium coordinated, its symmetry level is lowered to C 2v , all vibrations of this group being active both in Raman and IR spectra. The doubly degenerate vibrations are exhibited as two bands and a frequency of the out-of-plane vibration is lowered to 815 cm -1 . (authors)

  7. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  8. The use of recoil for the separation of uranium fission products; Utilisation du recul pour la separation des produits de fission de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Herczec, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The recoil distance of fission fragments in U{sub 3}O{sub 8} is about 8 microns. By using highly diluted suspensions of uranium oxide particles having dimension much smaller than this figure (mean diameter 0,5 micron), we were able to study the re-adsorption of fission products on uranium oxide. Separation results have been studied as a function of the nature of the irradiation medium (solid or liquid) and the separation medium, of particle size and of concentration of particles in the dispersing medium. Decay curves can be used to discriminate between {sup 239}Np and mixed fission products. Most of the {sup 239}Np is found in the U{sub 3}O{sub 8} particles. The location of fission products in solid dispersing media has been determined, fission products being found always inside the dispersing medium particles. The results obtained can be applied to the rapid separation of short-lived fission products from a uranium-free starting material. (author) [French] Le parcours de recul des fragments de fission est en moyenne de 8 microns dans l'U{sub 3}O{sub 8}. En prenant des suspensions d'oxyde d'uranium dont les particules, tres diluees, ont des dimensions nettement inferieures a cette valeur (diametre moyen 0,5 micron), on a pu etudier directement la readsorption des produits de fission sur l'oxyde d'uranium. Les resultats de separation ont ete etudies en fonction de la nature du milieu d'irradiation (solide ou liquide) et du milieu de separation, de la taille des particules d'oxyde et de leur concentration dans le milieu dispersant. Les courbes de decroissance permettent de determiner la perturbation apportee dans les mesures par le {sup 239}Np qui reste en majorite dans les grains d'U{sub 3}O{sub 8}. On a determine enfin l'emplacement des produits de fission dans le cas des melanges solides; ils se trouvent toujours a l'interieur des grains du milieu recepteur. Les resultats obtenus permettent d'envisager la separation rapide de produits de fission a periode courte a

  9. An alternate procedure in the recovery of no fissioned remainder uranium in the production of molybdenum 99 from fission

    International Nuclear Information System (INIS)

    Acosta Chavez, A.L.

    1992-01-01

    An effective modification of the chemical processes to dissolve the U-IV in the dissolver has been obtained, using its highly alkaline pH and extracting it as Uranyl Triperoxidate soluble anionic complex, in its experimental design without fission products. Even when the extraction of uranium is usually more complete through acidic dissolution, the characteristics for the dissolver used in production of fission Mo-99 do not allow this kind of extraction and alkaline option is more adecuate for this purpose. The dissolution of the insoluble residue, through the production of the anionic Triperoxidate Uranyl complexes, arises rapidly due to the presence of and oxidizing agent. The best results in the extraction of soluble Uranium were obtained with and organic solvent and a mixture of carbonate/bicarbonate. The concentrated Uranium in the aqueous alkaline solution was separated through fixation as an anion Tricarbonate of Uranyl in columns of anionic resin, moderately basic in dynamic conditions. The superiority of the resin used, over other exchangers, was evident in the elution with nitric acid that may be done for small volumes with a quite favorable separation of Uranium. The eluate contains the Uranium as an hexahydrated Uranyl Nitrate with a high degree of purity in reduced volume, in an average concentration of 90.2 % with respect to the initial concentration of Uranium (Author)

  10. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  11. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Directory of Open Access Journals (Sweden)

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  12. Uranium, thorium and their decay products in human food-chain

    International Nuclear Information System (INIS)

    Jeambrun, M.

    2012-01-01

    Uranium, thorium and their decay products are present in trace amounts in all rocks on Earth. Weathering, Mechanisms of soil formation and soil-plant transfers lead to the presence of these radionuclides in all the components of the environment and, through the food-chain transfers, they are also present in animals and men. The objective of this study consists in improving the knowledge on the levels and the variability of the activities of these radionuclides in various foodstuffs and on their sources and transfers. This study is based on the geological variability of the studied sites (granitic, volcanic and alluvial areas) where various foodstuffs are sampled (vegetables, cereals, meat, eggs and dairy products). The possible sources of radionuclides (irrigation waters and soils for plants; water, food and soils for animals) are also sampled in order to study their contribution to the measured activities in the foodstuffs. The results obtained present high variability of the activities in plants, less pronounced in animal products. For plants, the main radionuclide source seems to be the crop soils. Irrigation water, soil particle resuspension and their adhesion to plant surface seems to be important in some cases. For the activities in animal products, a significant contribution of the soil to thorium activity was highlighted. Water contribution to uranium activity in meat and eggs is an area worth further researches. Thus, this study of the possible sources of radionuclides highlights the importance of their role in the understanding of the radionuclide transfers to foodstuffs. (author)

  13. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  14. Possible uranium sources of Streltsovsky uranium ore field

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    The uranium deposit of the Late Jurassic Streltsovaky caldera in Transbaikalia of Russia is the largest uranium field associated with volcanics in the world, its uranium reserves are 280 000 t U, and it is the largest uranium resources in Russia. About one third of the caldera stratigraphic pile consists of strongly-altered rhyolites. Uranium resources of the Streltsovsky caldera are much larger than any other volcanic-related uranium districts in the world. Besides, the efficiency of hydrothermal alteration, uranium resources appear to result from the juxtaposition of two major uranium sources; highly fractionated peralkaline rhyolites of Jurassic age in the caldera, and U-rich subalkaline granites of Variscan age in the basement in which the major uranium-bearing accessory minerals were metamict at the time of the hydrothermal ore formation. (authors)

  15. Analysis of nuclear reaction products and materials; Preliminary treatment of uranium analysis

    International Nuclear Information System (INIS)

    Soedyartomo.

    1976-01-01

    Pre-treatment of samples is necessary to be done in order to achieve the efficient steps and accurate results of uranium analysis. The pre-treatment is particularly affected by the type of sample, the uranium concentration predicated in the sample, and the uranium analytical method which will be applied. A brief discussion about the pre-treatment of uranium analysis in the uranium ore processing and the reprocessing of spent fuel is given. (author)

  16. Stake holder involvement in the Canadian review process for uranium production projects in Northern Saskatchewan

    International Nuclear Information System (INIS)

    Underhill, D.

    2004-01-01

    This report describes the Canadian environmental review process for uranium production projects as a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. While the Canadian review process potentially applies to any development, this case study focuses on the assessment of the uranium projects of northern Saskatchewan conducted during the 1990's. It describes the environmental assessment (EA) conducted in the 1990's for six new uranium facilities (including mines and mills and related tailings disposal sites) planned in northern Saskatchewan. Both the Canadian federal and the Saskatchewan provincial government have extensive environmental review processes that must under law be complete before any major industrial development judged to have potential environmental impacts is undertaken within their respective territories. However, even in those instances where no clear potential environmental impacts are evident, Canadian law mandates 'if public concern about the proposal is such that a public review is desirable, the initiating department shall refer the proposal to the Minister for review by a Panel'. (Wh95) As a stakeholder under law, in both Canada and Saskatchewan, the public plays an important role in the environmental review process. To encourage participation and assist the public in its review the two governments may provide funding (as done in this review) to assist qualified individuals or groups to participant in the review process. The first section of this case study sets the scene. It describes the Saskatchewan uranium mining story, focusing on how the importance of the public stakeholder evolved to become a major component, under law, in the EA process for new uranium mines. This increase in stakeholder involvement opportunities coincided with heightened public concern for the socio-economic impacts of the projects. In the late 1980's both governments were advised by

  17. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  18. Prospects for the Canadian uranium industry

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1988-01-01

    Canada became the world's largest uranium producer in 1984. That leadership position is likely to be maintained for many years into the future because of a firm production base, many undeveloped known deposits with commercial promise, and a large geological potential for new discoveries. There are some uncertainties on the horizon, principally because of restrictive actions in process within the USA, which are aimed at preserving a deteriorating domestic uranium industry. Should such actions result in import restriction, for example, there would be a negative effect on foreign producers at least in the short term. Canada may avoid such difficulties under a tentative U.S.-Canada free-trade agreement where restrictions on the import of Canadian uranium into the United States would be eliminated. Over the longer term, demand for Canada's uranium resources will grow because of the foreseen growth in the world's installed nuclear power capacity

  19. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level

  20. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  1. Separation of cesium-137 from uranium fission products via a NeoflonR column supporting tetraphenylboron

    International Nuclear Information System (INIS)

    Whitney, C.D.; Landsberger, S.

    2009-01-01

    Cesium is a member of the Group I alkali metals, very reactive earth metals that react vigorously with both air and water. The chemistry of cesium is much like the chemistry of neighboring elements on the periodic table, potassium and rubidium. This close relation creates many problems in plant-life exposed to cesium because it is so easily confused for potassium, an essential nutrient to plants. Radioactive 134 Cs and 137 Cs are also chemically akin to potassium and stable cesium. Uptake of these radioactive isotopes from groundwater by plant-life destroys the plant-life and can potentially expose humans to the radioactive affects of 134 Cs and 137 Cs. Much experimental work has been focused on the separation of 137 Cs from uranium fission products. In previous experimental work performed a column consisting of Kel-F supporting tetraphenylboron (TPB) was utilized to separate 137 Cs from uranium fission products. It is of interest at this time to attempt the separation of 134 Cs from 0.01M EDTA using the same method and Neoflon in the place of Kel-F as the inert support. The results of this experiment give a separation efficiency of 88% and show a linear relationship between the column bed length and the separation efficiency obtained. (author)

  2. 36Cl production and mobility in the Cigar Lake uranium deposit

    International Nuclear Information System (INIS)

    Cornett, R.J.; Fabryka-Martin, J.; Cramer, J.J.; Andrew, H.R.; Koslowsky, V.T.

    2010-01-01

    Can accelerator mass spectrometry (AMS) studies validate risk assessments of the long-term behaviour of contaminants such as radionuclides? AMS measurements on samples from the 1.3 billion-year-old Cigar Lake uranium ore deposit provide one approach to address this question. In Cigar Lake, elevated concentrations of uranium enhance the in situ neutron flux that produces 36 Cl and other radionuclides. We calculated the production of 36 Cl using a Monte Carlo neutron transport code. We then tested for the loss of 36 Cl from ore samples collected from an 8 m stratigraphic section through the deposit by comparing the predicted values (assuming equilibrium between production and decay) with the concentrations measured by AMS. The 36 Cl:Cl atom ratios within the ore were more than two orders of magnitude higher than in the surrounding host rock and ranged from 4 to 64 x 10 -12 . The 36 Cl concentrations in the ore, rock, clay and fracture infilling minerals all agree with the values predicted by the Monte Carlo simulations. We conclude that 36 Cl has very limited mobility. Even in matrix adjacent to more permeable fractures, there is no evidence that the measured isotopic ratios deviate significantly from the predicted values.

  3. Contribution to the study of the diffusion of fission products in uranium; Contribution a l'etude de la diffusion des produits de fission dans l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-10-15

    In this work we have developed a simple method for determining the diffusion constants and the solid-state solubilities of a metal which is volatile and only slightly soluble in second metal. This method has been applied to the behaviour of certain fission products in {gamma} uranium: strontium, barium, lanthanum, samarium and cerium. This work has made it possible to show the effect of the atomic radius of the solute on the diffusion constants. (author) [French] Dans ce travail nous avons mis au point une methode simple permettant de determiner les constantes de diffusion ainsi que les solubilites a l'etat solide d'un metal volatil et peu soluble dans un autre. Cette methode a ete appliquee au comportement de certains produits de fission dans l'uranium {gamma}: strontium, baryum, lanthane, samarium et cerium. Cette etude a permis de mettre en evidence le role du rayon atomique du solute sur les constantes de diffusion. (auteur)

  4. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    Science.gov (United States)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  5. Study on uranium metallization yield of spent Pressurized Water Reactor fuels and oxidation behavior of fission products in uranium metals

    International Nuclear Information System (INIS)

    Choi, Ke Chon; Lee, Chang Heon; Kim, Won Ho

    2003-01-01

    Metallization yield of uranium oxide to uranium metal from lithium reduction process of spent Pressurized Water Reactor (PWR) fuels was measured using thermogravimetric analyzer. A reduced metal produced in the process was divided into a solid and a powder part, and each metallization yield was measured. Metallization yield of the solid part was 90.7∼95.9 wt%, and the powder being 77.8∼71.5 wt% individually. Oxidation behaviour of the quarternary alloy was investigated to take data on the thermal oxidation stability necessary for the study on dry storage of the reduced metal. At 600∼700 .deg. C, weight increments of allow of No, Ru, Rh and Pd was 0.40∼0.55 wt%. Phase change on the surface of the allow was started at 750 .deg. C. In particular, Mo was rapidly oxidized and then the alloy lost 0.76∼25.22 wt% in weight

  6. Occurrence forms of uranium in the production solutions in the areas of underground leaching of epigenetic uranium deposits

    International Nuclear Information System (INIS)

    Serebrennikov, V.S.; Dorofeeva, V.A.

    1980-01-01

    Redox, acid-basic features of solutions (Eh changes from + 50 to 650 mV, pH from 7.5 to 1.5) and their chemical composition are studied in the process of hydrogeochemical investigations at the areas of underground leaching (UL) of epigenetic uranium deposits. It is shown that at studied areas of UL under neutral and weakly acidic conditions up to (pH 6.0-5.8), carbonate complexes of uranyl are the prevailing form of uranium existence in the solution, and sulfate complexes prevail under more acidic conditions. A supposition is made that it is expedient to process separate ore blocks with increased carbonate contents, particularly with oxidant additions under near-neutral acid-basic conditions (pH 7.2-6.8) with the use of weakly acid pumping solutions, which act (at the expense of their interaction with carbonates of ore-containing rocks) for enrichment of working solutions with HCO 3 - and CO 3 2- ions, promoting uranium transfer into solution

  7. Study of the behaviour of cesium fission product in uranium dioxide by the ab initio method

    International Nuclear Information System (INIS)

    Gupta, Florence

    2008-01-01

    The knowledge of the behaviour of fission products in the nuclear fuel is very important for safety considerations and for understanding the evolution of the fuel properties under irradiation. In this work, we focussed mainly on the behaviour of caesium in UO 2 through ab initio studies of its solubility at point defects in the matrix, its diffusion and its contribution to the formation of solid phases in the fuel. The role of electronic correlation effects of the f electrons of uranium on these properties and on the description of the defect free crystal, is assessed. The formation energies of the main point defects are calculated and their concentration as a function of fuel stoichiometry and temperature is estimated. The migration barriers and migration paths for the self-diffusion of oxygen and uranium vacancies and oxygen interstitials in UO 2 are discussed. The solubility of Cs is found to be very low in UO 2 in agreement with experimental findings. The most favourable trapping sites are determined as a function of oxygen concentration in the fuel. Our results show that in the hyper-stoichiometric regime, the diffusion of Cs from its most favourable trapping site is limited by the uranium vacancy diffusion mechanism. We also considered the formation of the main solid phases of caesium resulting from its oxidation (Cs 2 O, Cs 2 O 2 , CsO 2 ) and from its interaction with the fuel (Cs 2 UO 4 ), with molybdenum (Cs 2 MoO 4 ) and with the zirconium of the clad (Cs 2 ZrO 3 ), since the formation of such phases, their solubility and their interdependence will affect the release of caesium. (author)

  8. Recovery of fluorine, uranium, and rare earth metal values from phosphoric acid by-product brine raffinate

    International Nuclear Information System (INIS)

    Wamser, C.A.; Bruen, C.P.

    1976-01-01

    A method for recovering substantially all of the fluorine and uranium values and at least 90 percent of the rare earth metal values from brine raffinate obtained as by-product in the production of phosphoric acid by the hydrochloric acid decomposition of tricalcium phosphate minerals is described. A basically reacting compound is added to the brine raffinate to effect a pH 9 or greater, whereby fluorine, uranium and rare earth metal values are simultaneously precipitated. These values may then be separately recovered from the precipitate by known processes

  9. Investigation of efficient {sup 131}I production from natural uranium at Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khalafi, H. [Nuclear Research Center, AEOI, No. 54 North Kargar Avenue, P.O. Box 14155/1339, Tehran (Iran, Islamic Republic of)]. E-mail: hossein_khalafi@yahoo.com; Nazari, K. [Jaber-Ibne-Hayan Research laboratories, AEOI, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of); Ghannadi-Maragheh, M. [Jaber-Ibne-Hayan Research laboratories, AEOI, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of)

    2005-05-15

    Iodine-131, which has a half-life of 8.05 days, is the one of the most widely used radionuclides in medical diagnosis and treats some diseases of thyroid gland. Optimization of {sup 131}I production in Tehran research reactor (TRR) was studied by two different methods. Primarily, standard nuclear codes such as ORIGEN, WIMS and CITATION were applied and then analytical solutions technique was followed. Calculated results and experimental works in the bench scale indicate that, by irradiation of 100 g natural Uranium (UO{sub 2}) for 100 h at 3.5 x 10{sup 13} (n's/cm{sup 2} s) thermal neutron flux in the TRR, one can produce about 5 Ci of {sup 131}I for medical purposes, on the other hand can produce very useful radionuclides like {sup 99}Mo and {sup 133}Xe in one batch irradiation in the unique production line.

  10. Investigation of efficient 131I production from natural uranium at Tehran research reactor

    International Nuclear Information System (INIS)

    Khalafi, H.; Nazari, K.; Ghannadi-Maragheh, M.

    2005-01-01

    Iodine-131, which has a half-life of 8.05 days, is the one of the most widely used radionuclides in medical diagnosis and treats some diseases of thyroid gland. Optimization of 131 I production in Tehran research reactor (TRR) was studied by two different methods. Primarily, standard nuclear codes such as ORIGEN, WIMS and CITATION were applied and then analytical solutions technique was followed. Calculated results and experimental works in the bench scale indicate that, by irradiation of 100 g natural Uranium (UO 2 ) for 100 h at 3.5 x 10 13 (n's/cm 2 s) thermal neutron flux in the TRR, one can produce about 5 Ci of 131 I for medical purposes, on the other hand can produce very useful radionuclides like 99 Mo and 133 Xe in one batch irradiation in the unique production line

  11. Biological treatment of nitrate bearing wastewater from a uranium production plant

    International Nuclear Information System (INIS)

    Benear, A.K.; Kneip, R.W.

    1988-01-01

    The Feed Materials Production Center (FMPC) produces uranium metal products used for DOE defense programs resulting in the generation of nitrate-bearing wastewaters. To treat these wastewaters, a two-column fluidized bed biodenitrification facility (BDN) was constructed at the FMPC. The operation of the BDN resulted in substantial compliance with the design criteria limits for nitrate from July through November, 1987. Since the BDN surge lagoon (BSL) proved inadequate for providing nitrate concentration equalization, the BDN feed nitrate concentration fluctuated widely throughout this period of operation. BDN effluent caused a doubling of the hydraulic loading and a tripling of the organic loading on the FMPC sewage treatment plant (STP). Better control of the methanol feed to the BDN, coupled with reduced throughput and improved preaeration, caused a significant improvement in the operation of the STP. The overloading of the STP prompted a decision to add a stand-alone effluent treatment system to the BDN

  12. Uranium supply and demand projections in the pacific basin Australia's role

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    By the year 2000 O.E.C.D. estimates indicate that somewhere between 22% to 33% of the world's base load electrical energy will originate from nuclear power plants. In all major pacific basin countries, Australia has the world's largest known uranium reserves and is currently supplying around 12% of world uranium production. She should be preparing to compete on the world markets for uranium sales and should anticipate increased uranium fuel demands despite the possibility the Canada and China might further penerate this market. (Liu Wencai)

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  14. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. Presentations

    International Nuclear Information System (INIS)

    2014-01-01

    The long term sustainability of nuclear power will depend on, among several factors, an adequate supply of uranium resources that can be delivered to the marketplace at competitive prices. New exploration technologies and a better understanding of the genesis of uranium ores will be required to discover often deep-seated and increasingly hard to find uranium deposits. Exploration, mining and milling technologies should be environmentally benign, and site decommissioning plans should meet the requirements of increasingly stringent environmental regulations and societal expectations. The purpose of this symposium is to analyse uranium supply–demand scenarios and to present and discuss new developments in uranium geology, exploration, mining and processing, as well as in environmental requirements for uranium operations and site decommissioning. The presentations and discussions at URAM-2014 will: - Lead to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand; - Provide information on geological models, new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources; - Describe new production technologies that have the potential to more efficiently and sustainably develop new uranium resources; and - Document the environmental compatibility of uranium production and the overall effectiveness of progressive final decommissioning and, where required, remediation of production facilities.

  15. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. Book of Abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The long term sustainability of nuclear power will depend on, among several factors, an adequate supply of uranium resources that can be delivered to the marketplace at competitive prices. New exploration technologies and a better understanding of the genesis of uranium ores will be required to discover often deep-seated and increasingly hard to find uranium deposits. Exploration, mining and milling technologies should be environmentally benign, and site decommissioning plans should meet the requirements of increasingly stringent environmental regulations and societal expectations. The purpose of this symposium is to analyse uranium supply–demand scenarios and to present and discuss new developments in uranium geology, exploration, mining and processing, as well as in environmental requirements for uranium operations and site decommissioning. The presentations and discussions at URAM-2014 will: - Lead to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand; - Provide information on geological models, new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources; - Describe new production technologies that have the potential to more efficiently and sustainably develop new uranium resources; and - Document the environmental compatibility of uranium production and the overall effectiveness of progressive final decommissioning and, where required, remediation of production facilities.

  16. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  17. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  18. Canadian resources of uranium and thorium

    International Nuclear Information System (INIS)

    Griffith, J.W.; Roscoe, S.M.

    1964-01-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U 3 O 8 produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U 3 O 8 valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  19. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  20. Industrial realities: Uranium

    International Nuclear Information System (INIS)

    Thiron, H.

    1990-01-01

    In this special issue are examined ores and metals in France and in the world for 1988. The chapter on uranium gives statistical data on the uranium market: Demand, production, prices and reserves [fr

  1. Operation of the joint panel on occupational and environmental research for uranium production in Canada

    International Nuclear Information System (INIS)

    Stocker, H.; Duport, P.J.; Brown, L.D.

    1993-07-01

    The Joint Panel, formed in 1976, is a Canadian organization (composed of federal and provincial government departments and agencies, uranium mining companies, labour unions, and non-profit research institutions) whose members have voluntarily agreed to share information regarding planned, ongoing and completed research on the effects of uranium (and thorium) production on the radiological health and safety of workers and on the environment. The objectives of the Joint Panel are: the identification of areas (within its purview of interest) where research is required; the stimulation of research in areas where the needs have been identified; the dissemination of subsequent research results; and, the avoidance of unnecessary duplication in research activities. The operation of this unique organization permits a free and open discussion of a wide variety of research activities, draws upon its member institutions to form working groups for the preparation of technical documents, and complements its more formal business sessions with technical presentations on topics of current interest. Copies of reports of completed research are maintained by a secretariat, which also issues the minutes of all meetings as well as the annual reports

  2. Extraction of hexavalent uranium, tetravalent plutonium and fission products by N, N'-tetraalkyldiamides

    International Nuclear Information System (INIS)

    Charbonnel, M.C.

    1988-10-01

    This study deals with the extractive properties of N, N'-tetraalkylglutaramides of generic formula R 2 NC(0)(CH 2 ) 3 C(0)NR 2 . These molecules were considered as alternative extractants to tributylphosphate in nuclear fuels reprocessing. They are selective extractants of uranium and plutonium as far as trivalent actinides and lanthanides remain in aqueous nitric solutions. Distribution ratios measurements and F.T. Infra-Red investigations show that HN0 3 extraction takes place via the formation of the following species: 2L.HN0 3 , L.HN0 3 and L.2HN0 3 in the organic phase (L: glutaramide). Distribution ratios of actinide ions followed by UV-visible spectroscopy and Infra-Red investigations agree with formation of the following neutral organometallic complexes in low nitric acidity conditions: L.U0 2 (N0 3 ) 2 and L.Pu(N0 3 ) 4 and the anionic species at higher acidities: L.U0 2 (N0 3 ) 3 H and L.Pu(N0 3 ) 6 H 2 . Interactions occur through neutral complexes and free molecules of diamides which explain the non ideality of the organic phase. Degradation products of these molecules don't seem to alter the extractive properties of these extractants towards uranium and plutonium [fr

  3. Some parameters of uranium hexafluoride plasma produced by products of nuclear reaction

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Belyakova, Eh.A.

    1996-01-01

    The probe experimental results of investigation of uranium hexafluoride plasma produced in the centre of nuclear reactor core were demonstrated. Study of uranium hexafluoride plasma is continued by the following reasons: a possibility of U F 6 utilization as nuclear fuel, the utilization of U F 6 as volume source o ionization, search of active laser media compatible with U F 6 that is complicated by lack of constant rates data for most of plasma-chemical reactions with U F 6 and his dissociation products. Cylindrical probe volt-ampere characteristics (VAC) measured in U F 6 plasma at pressure 20 Torr and different thermal neutron fluxes and have following features: -firstly, it is possible to choose a linear part in the field of small positive potentials of probe (0-1) V; - secondary, ion branches of VAC have typical break which current of satiation corresponds to; -thirdly, probe VAC measured at small values of thermal neutron flux density are symmetrical. Diagnostics approaches were used for interpretation VAC of probe. The values of satiation current and linear part of electron branch were calculated, and such plasma parameters as conductivity, diffusion coefficient values of positive and negative ions were determined. The resonance recharge cross section was estimated on diffusion coefficient value

  4. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  5. Introduction of 'Physicochemical and manufacturing basis for uranium concentrates production from wastes of hydrometallurgical plants and technical waters (Second edition, revised)'

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    The uranium deposits of Tajikistan played an immensely significant role in the practical solution of a radioactive raw materials problem which appeared during the post-World War II years in the USSR. The pioneer in this field became complex №6 (currently known as 'Vostokredmet'). The first soviet uranium was produced from the ores extracted from the republic's deposits. For 50 years (1945-1995 y.) , uranium bearing raw materials from all over the former USSR were delivered to Tajikistan, and uranium oxide was produced, which was later delivered back to Russia for further production of enriched uranium. The total volume of uranium produced in Tajikistan plants was approximately 100 thousands tons. In Soghd region, during that period, more than 55 million tons of uranium waste was accumulated. The total activity of the waste, according to different calculations, is approximately 240-285 TBq. The total amount of waste in dumps and tailings piles is estimated to be more than 170 million tons, most of which are located in the neighborhoods of hydrometallurgical plants and heap leaching locations. Uranium industry wastes in Northern Tajikistan have become attractive for different investors and commercial companies, from secondary reprocessing of mines and tailings' point of view, since the uranium price is increasing. In this regard, research on developing uranium extraction methods from wastes is broadening. The study of the possibility and economic reasonability of reprocessing former year's dumps requires comprehensive examination, and relates not only to uranium extraction but to safe extraction of dumps from tailings as well.

  6. EPR study of the production of OH radicals in aqueous solutions of uranium irradiated by ultraviolet light

    Directory of Open Access Journals (Sweden)

    MARKO DAKOVIĆ

    2009-06-01

    Full Text Available The aim of the study was to establish whether hydroxyl radicals (•OH were produced in UV-irradiated aqueous solutions of uranyl salts. The production of •OH was studied in uranyl acetate and nitrate solutions by an EPR spin trap method over a wide pH range, with variation of the uranium concentrations. The production of •OH in uranyl solutions irradiated with UV was unequivocally demonstrated for the first time using the EPR spin-trapping method. The production of •OH can be connected to speciation of uranium species in aqueous solutions, showing a complex dependence on the solution pH. When compared with the results of radiative de-excitation of excited uranyl (*UO22+ by the quenching of its fluorescence, the present results indicate that the generation of hydroxyl radicals plays a major role in the fluorescence decay of *UO22+. The role of the presence of carbonates and counter ions pertinent to environmental conditions in biological systems on the production of hydroxyl radicals was also assessed in an attempt to reveal the mechanism of *UO22+ de-excitation. Various mechanisms, including •OH production, are inferred but the main point is that the generation of •OH in uranium containing solutions must be considered when assessing uranium toxicity.

  7. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  8. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Alexander

    2016-07-01

    Environmental sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken as swipe samples on cotton. These swipes contain minute quantities of particulates which have an inherent signature of their production and release scenario. These inspection samples are assessed for their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial role in determining the isotopic ratios of uranium. Method validation and instrument calibration with well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, oxides and various uranium and plutonium containing solutions are commercially available. Therefore, the IAEA's Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum Juelich GmbH in a joint task entitled ''Production of Particle Reference Materials''. The work presented in this thesis has been partially funded by the IAEA, Forschungszentrum Juelich GmbH and the Federal Ministry of Economic Affairs and Energy (BMWi) through the ''Joint Program on the Technical Development and Further Improvement of IAEA Safeguards between the Government of the Federal Republic of Germany and the IAEA''. The first step towards monodisperse microparticles was the development of pure uranium oxide particles made from certified reference materials. The focus of the dissertation is (1) the implementation of a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these particles towards the application as QC-material. Monodisperse uranium oxide particles were produced by spray pyrolysis. It was

  9. ERA's Ranger uranium mine

    International Nuclear Information System (INIS)

    Davies, W.

    1997-01-01

    Energy Resource of Australia (ERA) is a public company with 68% of its shares owned by the Australian company North Limited. It is currently operating one major production centre - Ranger Mine which is 260 kilometres east of Darwin, extracting and selling uranium from the Ranger Mine in the Northern Territory to nuclear electricity utilities in Japan, South Korea, Europe and North America. The first drum of uranium oxide from Ranger was drummed in August 1981 and operations have continued since that time. ERA is also in the process of working towards obtaining approvals for the development of a second mine - Jabiluka which is located 20 kilometres north of Ranger. The leases of Ranger and Jabiluka adjoin. The Minister for the Environment has advised the Minister for Resources and Energy that there does not appear to be any environmental issue which would prevent the preferred Jabiluka proposal from proceeding. Consent for the development of ERA's preferred option for the development of Jabiluka is being sought from the Aboriginal Traditional Owners. Ranger is currently the third largest producing uranium mine in the world producing 4,237 tonnes of U 3 O 8 in the year to June 1997

  10. Case study: Financing growth in uranium production despite today’s serious challenges – from concept to production in five years

    International Nuclear Information System (INIS)

    Adnani, A.

    2014-01-01

    Uranium Energy Corp (UEC) is an NYSE-listed uranium exploration, development and production company headquartered in Corpus Christi, Texas. The Company was launched in late 2005 and commenced production in November 2010 using low-cost, environmentally friendly in-situ recovery (ISR) methods. The Company’s assets include a pipeline of exploration and development properties, with ISR operations in Texas built around a hub-and-spoke expansion model. Assets include significant conventional uranium mining properties in Arizona and Colorado, as well as potentially world-class exploration/development projects in an emerging uranium district in the Parana Basin, Paraguay, South America. Securing financing for an array of uranium projects in various stages of development is clearly challenging in a volatile economic environment. Yet, the potential of a compelling long-term uranium supply/demand deficit has attracted contrarian investors despite the difficulties. Since going public in 2006, UEC has relied primarily on raising capital through public equity offerings. UEC has raised over $130M in equity capital since going public as well as recently arranging a $20M debt financing with a group of lenders led by Sprott Resources and Li Ka Shing, one of Asia’s wealthiest and most influential investors. In addition to traditional equity and debt offerings, UEC has benefited from a variety of non-equity vehicles utilized by many metals and mining companies including timely acquisitions and timely divestitures. With a volatile uranium price over this period, as possible, the company has been making acquisitions during periods of low prices, and raising cash through divestitures when prices are higher, while reviewing royalty and streaming opportunities. With a plan to combine cash flow from operations and strategic partnerships, UEC is expanding production while advancing its diversified portfolio for maximum financial and sector flexibility. (author)

  11. Environmental monitoring in the various phases of the uranium nuclear fuel production

    International Nuclear Information System (INIS)

    Pego, V.D.

    1981-10-01

    To systematize the water radioactive monitoring works in the various phases of the uranium nuclear fuel production, a sequence of procedures has been worked out, for the assessment of the water radioactive contamination. This sequence is based on the determination of gross alpha and gross beta activities, on the maximum permissible concentration of radionuclides in potable water, and on previously established reference levels. The procedures will provide a mean to avoid exceeding the annual incorporation limits by ingestion, recommended by the radiation protection regulatory agencies. Accordingly, it is expected that if these recommended procedures are adequately followed, the objectives of an water environmental monitoring program will be reached in a quite efficient and economical manner. (Author) [pt

  12. First-principles study of defects and fission product behavior in uranium diboride

    Science.gov (United States)

    Jossou, Ericmoore; Oladimeji, Dotun; Malakkal, Linu; Middleburgh, Simon; Szpunar, Barbara; Szpunar, Jerzy

    2017-10-01

    A Systematic study of defects and incorporation of xenon (Xe) and zirconium (Zr) fission products in uranium diboride (UB2) has been investigated using density functional theory (DFT) calculations as implemented in Quantum ESPRESSO code. The incorporation and solution energies show that both FPs (Xe and Zr) are most stable in U vacancies with Zr being more stable than Xe. A volume expansion is observed as the concentration of Xe increases in the fuel matrix while Zr incorporation leads to a contraction. Bader charge analysis is used to establish the formation of Zr-B ionic/covalent bond due to large electron transfer observed while there is only a weak electronic interaction between Xe and the UB2 lattice. Finally, using climbing-image nudged elastic band calculation, we found that the energy barrier of U in UB2 is 0.08 eV higher than B migration energy.

  13. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  14. Separation of uranium, plutonium and fission products on zirconium phosphate, Part 1 - Adsorption equilibria and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1963-01-01

    The distribution coefficients of UO 2 ++ , PuO 2 ++ , Pu 3+ , Pu 4+ , Fe 3+ , 137 Cs + , 90 Sr ++ , 95 Zr + + 95 Nb 5+ , 106 Ru and 144 Ce 3+ were determined in the system zirconium phosphate-aqueous solution of HNO 3 . As for the exchange reation Cs + /H + and Sr ++ /2H + , it has been shown that the mass action law can be applied. For these reactions the corresponding equilibrium constants were calculated. The rates of adsorption of Cs + , Sr ++ , Fe 3+ and Pu 4+ from solutions of a fixed HNO 3 concentration were studied, and empirical rate equations were derived. The experimental data confirm that UO 2 ++ can be separated from Pu 4+ . Among the fission products, 90 Sr, 106 Ru and 144 Ce mainly follow the fraction of uranium, while 137 Cs, 95 Zr and 95 Nb follow the plutonium fraction. Separations within the fractions are possible (author)

  15. Hydrogeochemistry of uranium, daughter products and associated elements (lanthanides), application to ore prospection

    International Nuclear Information System (INIS)

    Toulhoat, P.

    1987-09-01

    The behavior in ground water of uranium, daughter products with long half life (U 234 , Th 230 , Ra 226 ) and stable (radiogenic lead) and lanthanides is studied by two complementary methods: 1) In situ multielement tracing in fracturated granitic rocks and porous sedimentary rocks of low permeability allowing to understand interactions between hydrodynamics and geochemistry. 2) Study of the properties of U 234 and Pb 236 which are mineralization tracers and are relatively independent of redox conditions, on the contrary U 238 has a low solubility in reducing medium. Three areas are studied: Bazois and Lodeve basin (France) and Cigar Lake (Canada). Radioactive disequilibriums are thoroughly studied when required by ore/rock interaction. Adsorption-desorption phenomena are of great importance in proposed prospection models. If prospection models based on alpha activity ratio U 234 /U 238 and lead isotope ratio in ground water can be applied, an integrated prospection model requires more in situ and laboratory experiments [fr

  16. Speciation of uranium with respect to hydrogeological aspects

    International Nuclear Information System (INIS)

    Meinrath, G.

    1997-01-01

    Until 1991, eastern Germany has been third largest uranium producer in the world. After the cease of uranium production, larger areas remained contaminated by uranium mining debris, mill-tailings and mining areas. Since 1991 these areas are in the process of remediation by intervention. In Germany, legal stipulations require the prognosis of the likely mid-term impact of an intervention. The benefit of a planned remediation procedure must be evident against the Zero option (doing nothing) and alternative actions. Thermodynamic data of geochemically relevant reactions for uranium under conditions of natural aqueous solution serve as important input data into geochemical reactive transport codes. Especially hydrolysis and carbonato complexation of hexavalent uranium influence the geochemical behaviour of uranium. The first part of the report report summarizes the fundamental chemical facts on mineralogy, electronic structure, UV-Vis and emission spectroscopy of hexavalent uranium. A second part reports in depth the experimental and numerical procedures to study the hydrolytic and carbonate complexation behaviour of hexavalent uranium. The evaluation of single component spectra of the relevant uranium species is discussed. Spectral curves are quantitatively deconcoluted into single components. In all cases the associated uncertainties are given. Thermodynamic data on hydrolysis and carbonato species derived from these experiments are compared to existing data in the literature. (orig.)

  17. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  18. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  19. The US uranium mining industry: 1980 and today

    International Nuclear Information System (INIS)

    Stover, D.E.

    1991-01-01

    In 1980, 16 800 tonnes of uranium were produced in the United States, making it the largest producing nation with about 40% of Western World (WOCA) production. By 1990, US production had fallen to approximately 3500 tonnes U, representing only about 10% of WOCA production. Clearly the US uranium mining industry was strongly altered by the events of the intervening years. Widespread focus on declining prices overshadowed a second important set of events. Namely, the rapidly changing regulatory and environmental atmosphere in the United States which continues adversely to affect conventional uranium mining. As a result of these events, the size and structure of the US uranium mining industry was irrevocably changed. Within this altered industry is a rapidly maturing technology that provides a more efficient and lower-cost means of uranium production, in-situ leaching (ISL). By exploiting the advantages of relatively low capital investments, shorter development times, reduced labour costs, and increased production flexibility of ISL mining, the US uranium mining industry will be a competitive component of the world's uranium supply for the 1990s. (author)

  20. Enabling Sustainable Uranium Production: The Inter-regional Technical Cooperation experience

    International Nuclear Information System (INIS)

    Tulsidas, Harikrishnan; Zhang Jing

    2014-01-01

    The challenges in uranium mining: Technology: Systematic efforts to understand uranium is only a few decades old, compared to other energy or mineral sources that may have centuries of study and research. Planning: Interest in uranium peaked in the 1970s, but fell in the three decades following that due to many reasons, notably due a deluge 'cheap oil'. Uranium exploration is driven by a relatively small market demand as of now, which could change in a major way in the future. Optimization: Very little research and development has gone into making uranium extraction more efficient. There are many processing plants in the world with grossly poor extraction efficiency that up to 1000 ppm of uranium is left behind in the tailings. Sustainability: Extraction of uranium from unconventional is another indicator on how seriously we are thinking about sustainability. Every year some 12000 tonnes of uranium is being permanently lost because of our lack of interest in recovering uranium from phosphoric acid. Coordination: Certain amount of competitiveness is unavoidable in a market driven economy. But the challenges of uranium can better managed only if a higher level of unified action by all stakeholders is realized.

  1. Metabolic fate and evaluation of injury in rats and dogs following exposure to the hydrolysis products of uranium hexafluoride: implications for a bioassay program related to potential releases of uranium hexafluoride, July 1979-October 1981

    International Nuclear Information System (INIS)

    Morrow, P.E.; Leach, L.J.; Smith, F.A.

    1982-12-01

    This final report summarizes the experimental studies undertaken in rats and dogs in order to help provide adequate biological bases for quantifying and evaluating uranium hexafluoride (UF 6 ) exposures. Animals were administered the hydrolysis products of UF 6 by inhalation exposures, intratracheal instillations and intravenous injections. Attention was given to dose-effect relationships appropriate to the kidney, the unique site of subacute toxicity; to the rates of uranium excretion; and to uranium retention in renal tissue. These criteria were examined in both naive and multiply-exposed animals. The findings of these studies partly substantiate the ICRP excretion model for hexavalent uranium; generally provide a lower renal injury threshold concentration than implicit in the MPC for natural uranium; indicate distinctions in response (for example, uranium excretion) are based on exposure history; compare and evaluate various biochemical indices of renal injury; raise uncertainties about prevailing views of reversible renal injury, renal tolerance and possible hydrogen fluoride synergism with uranium effects; and reveal species differences in several areas, for example, renal retention of uranium. While these studies present some complicating features to extant bioassay practice, they nevertheless supply data supportive of the bioassay concept

  2. Uranium ore mining in Spain with a focus on the closure and remediation measures in former production facilities

    International Nuclear Information System (INIS)

    Koch, H.; Blunck, S.; Lopez Romero, A.R.

    2004-01-01

    In early 2000, the uranium ore mining activities in Spain ceased. Since the middle of the last century, Spain had pushed ahead its own production of uranium concentrate with the formation of several companies (ENUSA, J.E.N.). In that period, Spain produced around 6000 t of uranium. With the completion of the operations at Andujar, La Haba and Elephante as well as Quercus at Saelices el Chico, the corporate tasks have shifted from building-up of a strategic uranium reserve to remediation and subsequent use of the locations. The operations have reached different remediation phases. While at Saelices el Chico remediation is still proceeding, the Andujar and La Haba locations are undergoing a monitoring phase as agreed for all former operating facilities. The estimated closure and remediation costs for the three operating facilities described amount to approx. 85 mio. Euro. In all three cases dealt with, however, these limited financial resources have been sufficient to successfully implement a closure and remediation concept that minimizes the risks from the facilities of uranium ore mining and processing with regard to the environment. (orig.)

  3. Long-term management and use of depleted uranium

    International Nuclear Information System (INIS)

    Max, A.

    2001-01-01

    The products resulting from the process of enrichment of natural uranium, or reprocessed uranium, are enriched uranium products as the light fraction and depleted uranium (uranium tails) as the heavy fraction. If the source material is natural uranium, the mass ratios of uranium products and uranium tails can be derived relatively easily from the required enrichment level of the uranium product (product assay (% of U-235)) and the selected depletion level of the uranium tails (tails assay (% of U-235)). The paper discusses among other aspects the dependence of the tails mass on the required enrichment level of the relevant uranium product, for various tails assays. (orig./CB) [de

  4. Recovery of uranium as a by product of phosphorites from Brazilian northeast area

    International Nuclear Information System (INIS)

    Gonzaga, M.; Abrao, A.

    1976-01-01

    The extraction and recobery of uranium contained in marine phosphates of northeast Brazil were investigated by treating ores with hydrochloric acid. The average content of uranium in the ore was found to be about 0,03 percent which corresponds to the highest worldly known content of uranium in phoshorite. The solutions obtained in laboratory, by leaching the phosphorite with hydrochloric acid, contained 40-70mg U/1. A method to control the uranium solubilization was outlined. A liquid-liquid extrction of uranium from these liquors was performed using a mixture of 3 percent di (2-ethyl hexyl)-phosphoric acid and 2.2 percent TBP in Kerosene. An overall uranium recovery of about 85 percent was reached

  5. U3O8 production analysis for nonsandstone uranium deposits. Final report

    International Nuclear Information System (INIS)

    Toth, G.W.; Chase, C.K.; Lewis, N.; Clem, W.L.

    1980-03-01

    The findings of an investigation into the commercialization potential of producing U 3 O 8 from non-sandstone sources are presented. A variety of these non-conventional uranium resources were initially examined to arrive at a selection of seven major resource categories for detailed analysis. The seven categories are: (1) vein-type deposits, (2) wet process phosphoric acid, (3) copper leach solutions, (4) uraniferous coal, (5) black shales, (6) extrusive rocks, and (7) intrusive igneous rocks. Detailed analyses of each resource addressed the following: characterization of the resource in terms of geologic environment and magnitude; current industry interest in production; overview of information available and research being conducted on resource; mining and milling implications of production; and production cost analysis. The results of the individual resource analyses were subsequently compared relative to each other on the basis of production cost, resource magnitude, and qualitative factors such as technical, environmental/land use, political/legal, labor, and capital requirement issues. In addition to the relative rankings, a set of commercialization criteria was employed to evaluate the potential time frames within which commercial production might be possible. In some cases, a specific occurrence within a resource category served as the basis for cost analysis. The analysis revealed findings of economically feasible resources having limited magnitude (e.g., veins, by product recovery from phosphoric acid, copper leach, and coal) and, conversely, resources of large magnitude being economically unattractive (e.g., shales, extrusive, intrusives). In addition to the economic constraint associated with these large resources, there are also numerous environmental, technical, labor, and capital generation constraints to commercial production

  6. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  7. Usage statistics and usage patterns on the NorduGrid: Analyzing the logging information collected on one of the largest production Grids of the world

    OpenAIRE

    Kónya, B; Eerola, Paule Anna Mari; Ekelöf, T J C; Ellert, M; Hansen, J; Konstantinov, A; Nielsen, J; Ould-Saada, F; Smirnova, O; Wäänänen, A; Erkarslan, U; Pajchel, K

    2005-01-01

    The Nordic Grid facility (NorduGrid [1]) came into operation during summer 2002 when the Scandinavian ATLAS HEP group started to use the Grid for the ATLAS Data Challenges (DC) and was thus the first Grid ever contributing to an ATLAS production. Since then, the Grid facility has been in continuous 24/7 operation. NorduGrid is being used by a growing set of active users from various scientific areas including physics, chemistry, biology and informatics. It has given ma...

  8. Mass balances by uranium-series disequilibria in natural phosphate deposits and mine products

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1985-01-01

    In a closed system U-238 is in radioactive equilibrium with its longer lived daughters, U-234, Th-230, and Ra-226. In a system that is open on a time scale of 10 4 to 10 5 years, as in rock weathering, the various daughters and isotopes become separated. Nevertheless, equilibrium still pertains to the total system, so that material balances between weathering components and residual products can be calculated, based on parent-daughter radioactivity ratios. The authors have applied this balancing concept to the weathering of phosphatic ores in central Florida and to phosphate mining products. In the natural system studied in Florida, the leached zones are ten times more extensive than enriched zones, and have higher concentrations of Th-230 and Ra-226 relative to U-238 and U-234. Although there are significant movements of long-lived radio-elements locally, and occasional notable disequilibria of short-lived daughters, leaching by ground water is not a major factor in the regional budget. In the mining process, uranium follows the enriched phosphate and also the clay residues. Thorium and radium follow the clay residues and the gypsum by-product. Mine effluent waters, although somewhat higher in radioactivity than natural waters, do not remove appreciable amounts of the radio-elements

  9. Recent trends in monitoring radon and daughter products in Indian uranium mines

    International Nuclear Information System (INIS)

    Khan, A.H.; Raghavayya, M.

    1977-01-01

    Uranium mining is of comparatively recent origin in India. In keeping with the ICRP (1959) and IAEA (1967) recommendations on the subject, the radiation practice in this country has been to monitor the mine air for radon. But the fact that radon daughter products are responsible for a major contribution to the radiation dose to the lungs and the comparative ease of correlating incidence of lung cancer with cumulative exposure to radon daughters (WLM), as demonstrated by epidemiologists, cannot be lost sight of. The results of a series of simultaneous measurements of radon, its decay products and their unattached fractions are presented. These measurements of radon have been carried out under different operational and passive conditions in mines. It has been observed that in the mine air, not only RaA but significant fractions of RaB and RaC too, exist in 'free state'. Wide variations have been observed in the unattached fractions with median values around 6% for RaA, 3% for RaB and 1% for RaC. The unattached daughter activities in the return air are maximum under passive conditions and show declining trend as the mining operations assume momentum causing increase in the aerosol concentrations. Relative merits of monitoring the mine air for radon and/or its decay products are also discussed

  10. Uranium update

    International Nuclear Information System (INIS)

    Steane, R.

    1997-01-01

    This paper is about the current uranium mining situation, especially that in Saskatchewan. Canada has a unique advantage with the Saskatchewan uranium deposits. Making the most of this opportunity is important to Canada. The following is reviewed: project development and the time and capital it takes to bring a new project into production; the supply and demand situation to show where the future production fits into the world market; and our foreign competition and how we have to be careful not to lose our opportunity. (author)

  11. Determination of internal exposure doses of the personnel of uranium-mining company due to radon isotopes decay products

    International Nuclear Information System (INIS)

    Sevostyanov, V.N.

    2004-01-01

    This work carries out a determination of individual doses of internal exposure of the staff of the uranium-mining company in Kazakhstan due to radon decay products. The company extracts uranium by in-situ leaching. After leaching, uranium is sorbed from a solution in facilities where the staff is located. The state of three uranium mines was analyzed. The dose determination was conducted in tune with the proposed method by using integral alpha-tracking detectors to identify the content of 222 Rn and express appliances to identify the content of radio-active aerosols in air of the working area for determination the equilibrium coefficient. The measurements were performed within one year. The work produced the results in average annual values of radon and thoron decay products activity concentration and variation, equilibrium coefficient variation, and so-called expressive-to-integral value conversion factor. The obtained personnel's individual radiation doses due to radon exposure for this period lie within the range of < 1 mSv/year. (author)

  12. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  13. Recovery of uranium and lanthanides during the production of nitrophosphate fertilizers using tertiary amyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Habashi, F; Awadalla, F T

    1986-01-01

    When phosphate rock is dissolved in nitric acid, phosphoric acid and uranium can be selectively extracted by tertiary amyl alcohol; other impurities including the lanthanides remain in the aqueous phase. Uranium can be recovered from the alcohol phase by selective stripping and the lanthanides from the raffinate by extraction with tributyl phosphate.

  14. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  15. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  16. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  17. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  18. Uranium producers foresee new boom

    International Nuclear Information System (INIS)

    McIntyre, H.

    1979-01-01

    The status of uranium production in Canada is reviewed. Uranium resources in Saskatchewan and Ontario are described and the role of the Cluff Lake inquiry in securing a government decision in favour of further uranium development is mentioned. There have been other uranium strikes near Kelowna, British Columbia and in the Northwest Territories. Increasing uranium demand and favourable prices are making the development of northern resources economically attractive. In fact, all uranium currently produced has been committed to domestic and export contracts so that there is considerable room for expanding the production of uranium in Canada. (T.I.)

  19. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France); Desequilibres des series de l'uranium dans les aquiferes: quantification des mecanismes de transport de l'uranium et de ses descendants: cas de l'aquifere de la craie (Champagne, France)

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, A

    2005-09-15

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ({sup 234}U et {sup 238}U), thorium ({sup 230}Th et {sup 232}Th), {sup 226}Ra and {sup 222}Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during {alpha}-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and {alpha}-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  20. Influence of Uranium and Polivinyl Alcohol Concentration in the Feed of Sol Gel Process on the Gel Spherical Product

    International Nuclear Information System (INIS)

    Indra Suryawan; Endang Susiantini

    2007-01-01

    The gel particles have been made at various uranium and polyvinyl alcohol concentration in the sol gel process. The variables of uranium concentration were 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9 and 2.1 M The variables of polyvinyl alcohol concentration were 0.3; 0.6; 0.9; 1.2; 1.5; 1.8; 2.1 and 2.4 M After drying the sol gel process products were heated at 300, 500 and 750°C during 4 hours. The gel particles were characterized using an optic microscope to know the shape and condition morphology of gel. From experimental result using uranium concentration of 0.3 until 2.1 M and polyvinyl alcohol of 1.8 until 2.4 M spherical and gel was formed elastic, after heating at 750°C it was unbreakable. At the concentration of polyvinyl alcohol from 0.3 to 0.5 M, the gel product was soft and broken after being dried. At the concentration of polyvinyl alcohol from 0.6 to 0.8 M, the dried gel product was not perfect. At the concentration of polyvinyl alcohol from 0.9 to 1.7 M, the gel product of gelation process was spherical and it was broken after being heated up to 300°C. (author)

  1. The Oklo natural nuclear reactors: neutron parameters, age and duration of the reactions, uranium and fission products migrations

    International Nuclear Information System (INIS)

    Ruffenach, J.-C.

    1979-09-01

    Mass spectrometry and isotopic dilution technique are used in order to carry out, on various samples from the fossil nuclear reactors at Oklo, Gabon, isotopic and chemical analyses of some particular elements involved in the nuclear reactions: uranium, lead, bismuth, thorium, rare gases (krypton, xenon), rare earths (neodymium, samarium, europium, gadolinium, dysprosium), ruthenium and palladium. Interpretations of these analyses lead to the determination of many neutron parameters such as the neutron fluence received by the samples, the spectrum index, the conversion coefficient, and also the percentages of fissions due to uranium-238 and plutonium-239 and the total number of fissions relative to uranium. All these results make it possible to determine the age of the nuclear reactions by measuring the amounts of fission rare earths formed, i.e. 1.97 billion years. This study brings some informations to the general problem of radioactive wastes storage in deep geological formations, the storage of uranium, plutonium and many fission products having been carried out naturally, and for about two billion years [fr

  2. REIMEP-22 inter-laboratory comparison. ''U Age Dating - determination of the production date of a uranium certified test sample''

    Energy Technology Data Exchange (ETDEWEB)

    Venchiarutti, Celia; Richter, Stephan; Jakopic, Rozle; Aregbe, Yetunde [European Commission, Joint Research Centre (JRC), Geel (Belgium). Institute for Reference Materials and Measurements (IRMM); Varga, Zsolt; Mayer, Klaus [European Commission, Joint Research Centre (JRC), Karlsruhe (Germany). Institute for Transuranium Elements (ITU)

    2015-07-01

    The REIMEP-22 inter-laboratory comparison aimed at determining the production date of a uranium certified test sample (i.e. the last chemical separation date of the material). Participants in REIMEP-22 on ''U Age Dating - Determination of the production date of a uranium certified test sample'' received one low-enriched 20 mg uranium sample for mass spectrometry measurements and/or one 50 mg uranium sample for a-spectrometry measurements, with an undisclosed value for the production date. They were asked to report the isotope amount ratios n({sup 230}Th)/n({sup 234}U) for the 20 mg uranium sample and/or the activity ratios A({sup 230}Th)/A({sup 234}U) for the 50 mg uranium sample in addition to the calculated production date of the certified test samples with its uncertainty. Reporting of the {sup 231}Pa/{sup 235}U ratio and the respective calculated production date was optional. Eleven laboratories reported results in REIMEP-22. Two of them reported results for both the 20 mg and 50 mg uranium certified test samples. The measurement capability of the participants was assessed against the independent REIMEP-22 reference value by means of z- and zeta-scores in compliance with ISO 13528:2005. Furthermore a performance assessment criterion for acceptable uncertainty was applied to evaluate the participants' results. In general, the REIMEP-22 participants' results were satisfactory. This confirms the analytical capabilities of laboratories to determine accurately the age of uranium materials with low amount of ingrown thorium (young certified test sample). The Joint Research Centre of the European Commission (EC-JRC) organised REIMEP-22 in parallel to the preparation and certification of a uranium reference material certified for the production date (IRMM-1000a and IRMM-1000b).

  3. Uranium resources and supply

    International Nuclear Information System (INIS)

    Cameron, J.

    1973-01-01

    The future supply of uranium has to be considered against a background of forecasts of uranium demand over the next decades which show increases of a spectacular nature. It is not necessary to detail these forecasts, they are well known. A world survey by the Joint NEA/IAEA Working Party on 'Uranium Resources, Production and Demand', completed this summer, indicates that from a present production level of just over 19,000 tonnes uranium per year, the demand will rise to the equivalent of an annual production requirement of 50,000 tonnes uranium by 1980, 100,000 by 1985 and 180,000 by 1990. Few, if any, mineral production industries have been called upon to plan for a near tenfold increase in production in a space of about 15 years as these forecasts imply. This might possibly mean that, perhaps, ten times the present number of uranium mines will have to be planned and engineered by 1990

  4. Operational experience in the production of 131Molybdenum and 99Iodine with high and low uranium enrichment

    International Nuclear Information System (INIS)

    Bravo, C.; Cristini, Pablo R..; Novello, A.; Bronca, M.; Cestau, Daniel; Centurion, R.; Bavaro, R.; Cestau, J.; Gualda, E.; Bronca, P.; Carranza, Eduardo C.

    2009-01-01

    In 1992, in an effort to curtail use of Highly Enriched Uranium (HEU), hoping to alleviate nuclear security concerns, United States passed the Schumer amendment to the Energy Policy Act. This legislation conditioned U.S. export of HEU to foreign companies, understanding that these companies would switch as soon as possible to Lowly Enriched Uranium (LEU). This paper describes 99 Mo production flow chart, characteristics of process cells, shielding, systems of manipulation at distance, cell ventilation system and the method for personal dose monitoring. Production evolution for the span of years 1998 to 2007 is given by indicators, keeping in mind enrichment proportion change. Evolution shown on the indicators is directly related to the application of Safety Culture concepts adopted by personnel. (author)

  5. Uranium and thorium occurrences in New Mexico: distribution, geology, production, and resources. Appendix 1

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1983-09-01

    The following compilation of uranium and thorium occurrences, prospects, deposits, and mines and their descriptions is the most comprehensive tabulation of natural-occurring radioactive occurrences in New Mexico to date. It is possible that many additional occurrences will be discovered in the future. For the purposes of this compilation any locality where uranium or thorium mineralization is reported or produced, or where uranium or thorium concentration exceeds 0.001%, or where the radioactivity is twice background radioactivity or greater is considered an occurrence

  6. Observations concerning the particle-size of the oxidation products of uranium formed in air or in carbon dioxide

    International Nuclear Information System (INIS)

    Baque, P.; Leclercq, D.

    1964-01-01

    This report brings together the particle-size analysis results obtained on products formed by the oxidation or the ignition of uranium in moist air or dry carbon dioxide. The results bring out the importance of the nature of the oxidising atmosphere, the combustion in moist air giving rise to the formation of a larger proportion of fine particles than combustion in carbon dioxide under pressure. (authors) [fr

  7. Separation of uranium, plutonium and fission products on zirconium phosphate, Part 1 - Adsorption equilibria and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    The distribution coefficients of UO{sub 2}{sup ++}, PuO{sub 2}{sup ++}, Pu{sup 3+}, Pu{sup 4+}, Fe{sup 3+}, {sup 137}Cs{sup +}, {sup 90}Sr{sup ++}, {sup 95}Zr{sup +}+{sup 95}Nb{sup 5+}, {sup 106}Ru and {sup 144}Ce{sup 3+} were determined in the system zirconium phosphate-aqueous solution of HNO{sub 3}. As for the exchange reation Cs{sup +}/H{sup +} and Sr{sup ++}/2H{sup +}, it has been shown that the mass action law can be applied. For these reactions the corresponding equilibrium constants were calculated. The rates of adsorption of Cs{sup +}, Sr{sup ++}, Fe{sup 3+} and Pu{sup 4+} from solutions of a fixed HNO{sub 3} concentration were studied, and empirical rate equations were derived. The experimental data confirm that UO{sub 2}{sup ++} can be separated from Pu{sup 4+}. Among the fission products, {sup 90}Sr, {sup 106}Ru and {sup 144}Ce mainly follow the fraction of uranium, while {sup 137}Cs, {sup 95}Zr and {sup 95}Nb follow the plutonium fraction. Separations within the fractions are possible (author)

  8. The recycle of depleted uranium waste products by a hydrometallurgical process

    International Nuclear Information System (INIS)

    Nachtrab, William T.; Schlier, David S.; Pollock, Eugene N.; Shinopulos, George

    1992-01-01

    Nuclear Metals, Inc. has developed a process for recycling uranium scrap materials into high quality metal. The process involves the dissolution of scrap metal in an aqueous solution of 2.4 N HCI and 0.16 N HBF 4 , followed by precipitation of UF 4 through the addition of HF. The precipitated green salt is Filtered, washed, dried, and heat treated after which it is suitable for reduction to metal. The product and the process are referred to as Hydromet, since it is a hydrometallurgical approach to producing green salt. Conventionally, green salt is produced by a pyrometallurgical technique. The steps of the process are described and results presented for derbies produced using Hydromet green salt. With proper process selection and appropriate heat treatment, green salt produced by Hydromet is fully equivalent to pyrometallurgical green salt. Hydromet green salt can be reduced to metal using the identical process used for pyromet green salt. Good quality, well-formed derbies can be readily produced. (author)

  9. Largest particle detector nearing completion

    CERN Multimedia

    2006-01-01

    "Construction of another part of the Large Hadron Collider (LHC), the worl's largest particle accelerator at CERN in Switzerland, is nearing completion. The Compact Muon Solenoid (CMS) is oner of the LHC project's four large particle detectors. (1/2 page)

  10. The structure of Canada's uranium industry and its future market prospects

    International Nuclear Information System (INIS)

    1981-01-01

    Production of uranium in Canada began in the 1940s to supply the needs of US weapons development. After 1966 a growing demand for uranium for nuclear power production stimulated exploration, and since then the health of the Canadian uranium industry has been tied to the state of the nuclear power industry. Uranium exploration in Canada is carried out mainly by private enterprise, although the federal and two provincial governments compete through crown corporations. Seven companies produce ore, and six have processing plants. Expansion is underway at several existing operations, and some new projects are underway. The industry is strongly dependent on export markets; only about 15 percent of Canadian production is used in the country. There is one uranium refinery which produces UO 2 powder for CANDU reactor fuel and UF 6 for export. The uranium hexafluoride facility is being expanded. Federal government policy affects the uranium industry in the fields of regulation, ownership, safeguards, protection of the domestic industry, and international marketing. The short-term outlook for the industry is deteriorating, with declining uranium prices, but prospects seem considerably brighter in the longer term. Canada has about 12 percent of the world's uranium reserves, and is the second-largest producer. Discovery potential is believed to be excellent

  11. The impact of new technology on the economics of uranium production from low-grade ores

    International Nuclear Information System (INIS)

    Simonsen, H.A.; Boydell, D.W.; James, H.E.

    1981-01-01

    The subject is discussed under the following headings: influence of a depressed market on uranium supply from low-grade ores; potential areas for a reduction in uranium ore processing costs; in-situ leaching (solution mining; heap leaching; resin-in-pulp; solvent-in-pulp; belt filtration; continuous ion exchange; solvent extraction); preconcentration (upgrading of coarse rock; upgrading in the mill; wet high-intensity magnetic separation; flotation); summary and conclusions. (U.K.)

  12. Strong demand for natural uranium

    International Nuclear Information System (INIS)

    Kalinowski, P.

    1975-01-01

    The Deutsches Atomforum and the task group 'fuel elements' of the Kerntechnische Gesellschaft had organized an international two-day symposium in Mainz on natural uranium supply which was attended by 250 experts from 20 countries. The four main themes were: Demand for natural uranium, uranium deposits and uranium production, attitude of the uranium producing countries, and energy policy of the industrial nations. (orig./AK) [de

  13. The uranium equation in 1982

    International Nuclear Information System (INIS)

    Bonny, J.; Fulton, M.

    1983-01-01

    The subject is discussed under the headings: comparison of world nuclear generating capacity forecasts; world uranium requirements; comparison of uranium production capability forecasts; supply and demand situation in 1990 and 1995; a perspective on the uranium equation (economic factors; development lead times as a factor affecting market stability; the influence of uncertainty; the uranium market in perspective; the uranium market in 1995). (U.K.)

  14. Ore leaching processing for yellow cake production and assay of their uranium content by radiometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College, Kobry El-Kobbah, Cairo (Egypt); El-Mongy, Sayed A. [Nuclear and Radiological Regularity Authority (ENRRA), Nasr City, Cairo (Egypt)

    2018-01-17

    In this study, Ore granite samples were collected from Gattar site for leashing of yellow cake. The process involves heap leaching of uranium through four main steps; size reduction, leaching, uranium purification, and finally precipitation and filtration. The separation process has been given in details and as flow chart. Gamma spectrometry based on HpGe detector and energy dispersive X-ray (EDX) were used to assay uranium content and activity before and after separation. The uranium weight percentage value as measured by EDX were found to be 40.5 and 67.5 % before and after purification respectively. The results of the calculations based on gamma measurements show high uranium activity and the uranium activity ratios values are 0.045 ± 4.9, 0.043 ± 4.7, and 0.046 ± 2.3 %, before purification, whereas these values were found to be 0.050 ± 3.3, 0.049 ± 3.3, and 0.050 ± 2.7 %, after purification, respectively. The results are discussed in details in the paper. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Australia's Uranium and thorium resources and their global significance

    International Nuclear Information System (INIS)

    Lambert, I.B.; McKay, A.; Miezitis, Y.

    2006-01-01

    Full text: Full text: Australia's world-leading uranium endowment appears to result from the emplacement of uranium enriched felsic igneous rocks in three major periods during the geological evolution of the continent. Australia has over 27% of the world's total reasonably assured uranium resources (RAR) recoverable at < US$80/kgU (which approximates recent uranium spot prices). Olympic Dam is the largest known uranium deposit, containing approximately 19% of global RAR (and over 40% of global inferred resources) recoverable at < US$80/kg U; the uranium is present at low concentrations and the viability of its recovery is underpinned by co-production of copper and gold. Most of Australia's other identified resources are within Ranger, Jabiluka, Koongarra, Kintyre and Yeelirrie, the last four of which are not currently accessible for mining. In 2004, Australia's three operating uranium mines - Ranger, Olympic Dam, and Beverley -produced 22% of global production. Canada was the only country to produce more uranium (29%) and Kazakhstan (9%) ranked third. Considerably increased uranium production has been recently foreshadowed from Australia (through developing a large open pit at Olympic Dam), Canada (mainly through opening of the Cigar Lake mine), and Kazakhstan (developing several new in situ leach mines). These increases should go a long way towards satisfying demand from about 2010. Olympic Dam has sufficient resources to sustain such increased production over many decades. Thorium is expected to be used in some future generations of nuclear reactors. Australia also has major (but incompletely quantified) resources of this commodity, mainly in heavy mineral sands deposits and associated with alkaline igneous rocks. It is inevitable that the international community will be looking increasingly to Australia to sustain its vital role in providing fuels for future nuclear power generation, given its world-leading identified resources, considerable potential for new

  16. Uranium and thorium occurrences in New Mexico: distribution, geology, production, and resources, with selected bibliography. Open-file report OF-183

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1983-09-01

    Over 1300 uranium and thorium occurrences are found in over 100 formational units in all but two counties, in all 1- by 2-degree topographic quadrangles, and in all four geographic provinces in New Mexico. Uranium production in New Mexico has surpassed yearly production from all other states since 1956. Over 200 mines in 18 counties in New Mexico have produced 163,010 tons (147,880 metric tons) of U 3 O 8 from 1948 to 1982, 40% of the total uranium production in the United States. More than 99% of this production has come from sedimentary rocks in the San Juan Basin area in northwestern New Mexico; 96% has come from the Morrison Formation alone. All of the uranium reserves and the majority of the potential uranium resources in New Mexico are in the Grants uranium district. About 112,500 tons (102,058 metric tons) of $30 per pound of U 3 O 8 reserves are in the San Juan Basin, about 55% of the total $30 reserves in the United States. Thorium reserves and resources in New Mexico have not been adequately evaluated and are unknown. Over 1300 uranium and thorium occurrences are described in this report, about 400 of these have been examined in the field by the author. The occurrence descriptions include information on location, commodities, production, development, geology, and classification. Over 1000 citations are included in the bibliography and referenced in the occurrence descriptions. Production statistics for uranium mines that operated from 1948 to 1970 are also included. Mines that operated after 1970 are classified into production categories. 43 figures, 9 tables

  17. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  18. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  19. Jabiluka uranium project

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Jabiluka uranium and gold deposit located in the Northern Territory of Australia is the world's largest known primary uranium deposits and as such has the potential to become one of the most important uranium projects in the world. Despite the financial and structural challenges facing the major owner Pancontinental Mining Limited and the changing political policies in Australia, Jabiluka is well situated for development during the 1990's. With the availability of numerous financial and development alternatives, Jabiluka could, by the turn of the century, take its rightful place among the first rank of world uranium producers. The paper discusses ownership, location, property rights, licensing, environmental concerns, marketing and development, capital costs, royalties, uranium policy considerations, geologic exploration history, regional and site geology, and mining and milling operations

  20. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    Science.gov (United States)

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  1. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  2. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  3. Uranium update: geo-socio-political factors of U.S. production, or you wonder where the yellow went

    International Nuclear Information System (INIS)

    Odell, R.D.

    1986-01-01

    Industry developments of 1986 indicate a steady but modest confidence for recovery of the domestic nuclear raw materials business. Concerns of oversupply and foreign inroads into utility contracts were somewhat alleviated with long-overdue recognition by the US Department of Energy in November 1985 that the industry in 1984 failed to meet viability tests, as required of government by public law. However, by February of this year, the government had initiated no perceptive corrective help for the domestic industry, and the DOE was accused of enhancing its competitive position as a provider of enrichment services. New Mexico, once the leader in production of domestic uranium, is compared with Wyoming for remaining and potential reserves. The monopoly by south Texas of low-production-cost uranium in the in-situ-leach (ISL) extractive industry is threatened by oncoming ISL operations in Wyoming and the Crawford, Nebraska, area. Arizona breccia-pipe occurrence of high-grade uranium, domestically speaking, bodes well for mining operators there to compete in what is left of the domestic market

  4. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  5. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  6. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  7. Radioactivity of uranium production cycle facilities in the Czech Republic compared to the natural environment

    International Nuclear Information System (INIS)

    Matolin, M.

    2002-01-01

    Forty-five years (1946-1990) of intensive uranium exploration and exploitation in the Czech Republic led to mining at 64 uranium deposits. These mining and milling activities left numerous accumulations of waste rock material in the landscape. The radioactivity of these man-made accumulations was measured and compared to the natural radiation environment. Waste rock dumps at the uranium deposits Pribram, Rozna, Jachymov, Straz-Hamr and deposits in the Zelezne Hory area show surface gamma dose rates mostly in the range of 200-1000 nGy/h, with a uranium concentration 10-100 ppm eU. An extremely high radioactivity of 3000-4200 nGy/h was detected at the extensive uranium processing tailings impoundments at Straz. Terrestrial gamma dose rate of regional geological units in the Czech Republic is in the range of 6-245 nGy/h. Reclamation and recultivation of dumps, control of their radioactivity and restriction of their accessibility are the major measures introduced to protect the public. (author)

  8. Recovery of uranium by chlorination

    International Nuclear Information System (INIS)

    Komoto, Shigetoshi; Taki, Tomihiro

    1988-01-01

    The recovery of uranium from uraniferous phosphate by conventional process is generally uneconomic, except that uranium is recovered as a by-product. If an economical process by which uranium is recovered efficiently as a chief product is discovered, uraniferous phosphate will be used effectively as uranium ore. By using chiorination which will be expected to be favorable in comparison with conventional process, the recovery of uranium from uraniferous phosphate has been carried out. The paper describes the reaction machanism and general characteristics of the uranium chiorination, and the research done so for. (author)

  9. ''Uranium for Moscow''. Highlights of the history of Wismut AG

    International Nuclear Information System (INIS)

    Karlsch, Rainer

    2013-01-01

    The Wismut AG was the worldwide largest mining operation for the promotion of uranium ores and the production of chemical uranium concentrates. The author of the contribution under consideration reports on the historical aspects of Wismut AG. In May 1947, Wismut AG was founded as a branch of the State Soviet stock company of the nonferrous metal industry. This branch resided at first in Aue (Saxony, Federal Republic of Germany) and from 1949 in Chemnitz (Saxony, Federal Republic of Germany). By means of the company name Wismut, the actual business purpose should not be disclosed. Until after the end of the Cold War historians could deal with the history of the Wismut AG.

  10. Uranium in Niger; L'uranium au Niger

    Energy Technology Data Exchange (ETDEWEB)

    Gabelmann, E

    1978-03-15

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities. [French] Le document presente la politique de l'Etat dans le cadre de la mise en valeur des ressources d'uranium, les societes minieres existantes et leurs productions, les projets d'exploitation d'uranium et les retombees economiques liees aux activites uraniferes et connexes.

  11. Production of molybdenum-99 by heterogeneous and homogeneous uranium fueled reactors

    International Nuclear Information System (INIS)

    Carlin, G.E.; Bonin, H.W.

    2012-01-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. At the forefront of the medical isotope list is molybdenum-99 and its daughter isotope technetium-99m, which encompass over 80% of radiopharmaceutical procedures. Fission of uranium-235 to produce molybdenum-99 is the most widely used method for producing this radioisotope. The heterogeneous reactor and the aqueous homogeneous reactor are looked at here with emphasis on the use of low enriched uranium as the fuel source. Methods of technetium-99m generation and its medical use are also reviewed. (author)

  12. Production of molybdenum-99 by heterogeneous and homogeneous uranium fueled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2012-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. At the forefront of the medical isotope list is molybdenum-99 and its daughter isotope technetium-99m, which encompass over 80% of radiopharmaceutical procedures. Fission of uranium-235 to produce molybdenum-99 is the most widely used method for producing this radioisotope. The heterogeneous reactor and the aqueous homogeneous reactor are looked at here with emphasis on the use of low enriched uranium as the fuel source. Methods of technetium-99m generation and its medical use are also reviewed. (author)

  13. The solubility of solid fission products in carbides and nitrides of uranium and plutonium. Part I: literature review on experimental results

    International Nuclear Information System (INIS)

    Benedict, U.

    1977-01-01

    This review compiles the available data on the solubility of the most important non-volatile fission products in the carbides, nitrides, and carbonitrides of uranium and plutonium. It includes some elements which are not fission products, but belong to a group of the Periodic Table which contains one or more fission products elements

  14. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  15. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  16. Uranium, Thorium and Potassium concentrations and volumetric heat production rates at the eastern border of the Parana basin

    International Nuclear Information System (INIS)

    Andrade, Telma C.Q.; Ribeiro, Fernando B.

    1997-01-01

    Uranium, thorium and potassium concentrations were measured and volumetric heat production rates were calculated for rocks from the exposed basement at the eastern-southeastern border of the Parana Basin between 23 deg S and 32 deg S. Heat generating element concentration data available in the literature were also used when possible, for volumetric heat production calculations. The uranium concentrations vary from below determination limit (0.51 ppm) and 16 ppm whereas the thorium concentrations vary from below the determination limit (1.26 ppm) and 68 ppm, and K concentrations vary between 0.08% and 5.6%. Volumetric heat production rates vary between 0.07 μW/m 3 to 6.2 μW/m 3 , and the obtained results show a variable heat generation rate with high heat producing bodies scattered along this Parana Basin border. The higher observed values concentrate in the Ribeira fold belt at about 23 deg S and between 30 deg S and 32 deg S in the Down Feliciano fold belt. Isolated high heat production rates can also be observed between 26 deg S and 28 deg S. (author). 11 refs., 3 tabs

  17. Canadian resources of uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J W; Roscoe, S M [Dept. of Mines and Technical Surveys, Ottawa, Ontario (Canada)

    1964-07-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U{sub 3}O{sub 8} produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U{sub 3}O{sub 8} valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  18. Irradiated uranium reprocessing, Final report I-VI, Part VI - Separation of uranium, plutonium and fission products from HNO3 solution on the zirconium phosphate (part I), Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1961-12-01

    Separation of uranium, plutonium and long-lived fission products was investigated on a inorganic ion exchanger. Zirconium phospate was chosen for this purpose because its ion exchanger properties were well known. This report deals with the study of equilibrium and kinetics of the adsorption

  19. Recovery treatment for the non fissioned uranium in the production of Mo-99

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Acosta C, A.L.; Lopez M, B.E.

    1991-09-01

    An effective modification of the chemical processes has been obtained to dissolve at the uranium-IV and to extract it as uranyl triperoxidate that facilitates its manipulation and final conversion to uranyl nitrate like a concentrate of high purity. (Author)

  20. Cycle for fuel elements. Uranium production, programs for nuclear power stations and capital expenditure involved

    International Nuclear Information System (INIS)

    Andriot, J.; Gaussens, J.

    1958-01-01

    A number of different possible programs for nuclear power stations of various types are presented in this survey. These programs are established in relation to the use of uranium and thorium in amounts similar to those that shall probably be produced in France during the next fifteen years. As it is possible to draw plans for nuclear power stations in which several processes exist simultaneously, an unlimited number of variations being thinkable, this survey is limited to successive analysis of the results obtained by use of only one of each of the following three systems: - system natural uranium-graphite, - system natural uranium-heavy water, -system enriched uranium-pressurised light water. All schemes are considered as assemblages of these three simple systems. The effects of plutonium recycling are also considered for each system. The electric power installed and the capacity of stations situated up-stream and down-stream have been calculated by this method and an attempt has been made to establish the sum to be invested during the fifteen years necessary for the launching of the programs scheduled. A table of timing for the investments groups the results obtained. Considering the fact that French availabilities in capital shall not be unlimited during the coming years, this way of presenting the results seems to be interesting. (author) [fr

  1. Comparison of spallation-model calculations with experiment on neutron production in uranium

    International Nuclear Information System (INIS)

    Kazaritskij, V.D.; Sibirtsev, A.A.; Stepanov, N.V.

    1988-01-01

    Calculated differential cross-sections for neutrons emitted from a thin uranium target due to 590 MeV protons are compared with experiment. The HETC, HAMLET, D2N2 and EVAP codes were applied. The HAMLET results are most consistent with experiment. 12 refs.; 3 figs

  2. Irradiated uranium reprocessing; Prerada ozracenog urana

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorijaza visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products.

  3. Speculative resources of uranium. A review of International Uranium Resources Evaluation Project (IUREP) estimates 1982-1983

    International Nuclear Information System (INIS)

    1983-01-01

    On a country by country basis the International Uranium Resources Evaluation Project (IUREP) estimates 1982-1983 are reviewed. Information provided includes exploration work, airborne survey, radiometric survey, gamma-ray spectrometric survey, estimate of speculative resources, uranium occurrences, uranium deposits, uranium mineralization, agreements for uranium exploration, feasibilities studies, geological classification of resources, proposed revised resource range, production estimate of uranium

  4. Project development for mining-metallurgical complexes for production of uranium concentrates - an analysis and a methodology

    International Nuclear Information System (INIS)

    Ajuria G, S.; Blanco P, B.; Pena A, J.; Manzanera Q, C.

    1978-10-01

    Activities comprising the development of a project for a mining-metallurgical complex for production of uranium concentrates, from sampling and evaluation of an orebody until plant start-up, are analyzed. The analysis of the orebody, characterization of the ore, bench scale and pilot plant metallurgical studies, environmental studies and economic analyses of the project are described. The mining project and mine preparation and engineering and construction of the plant are reviewed in less detail. The estimated time lapse for the development of a typical project under ideal conditions is 66 months. A bar diagram is included showing an approximate timetable for each activity. (author)

  5. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Gill, R.L.

    1977-10-01

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  6. Changes and events in uranium deposit development, exploration, resources, production and the world supply-demand relationship. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-09-01

    This report consists of the proceedings of the Technical Committee Meeting on Recent Changes and Events in Uranium Deposit Development, Exploration, Resources, Production and the World Supply/Demand Relationship, held in co-operation with the OECD Nuclear Energy Agency (OECD/NEA) in Kiev, Ukraine, from 22 to 26 May 1995. Some of the information from this meeting was also used in preparation of the 1995 edition of ''Uranium - Resources, Production and Demand'' a joint report by the OECD/NEA and the IAEA. At the Beginning of 1995 there were 432 nuclear power plants in operation with a combined electricity generating capacity of 340 GW(e). This represents nearly a 100% increase over the last decade. In 1995 over 2228 TW·h of electricity were generated, equivalent to about 17% of the world's total electricity. To achieve this, about 61,000 t U were required as nuclear fuel. For about a decade and a half uranium production and related activities have been decreasing because of declining uranium prices. For many participants in the nuclear industry there has been little interest in uranium supply because of the oversupplied market condition. The declining production led to the development of a supply and demand balance were production is currently meeting a little over 50% of reactor requirements and the excess inventory is being rapidly drawn down. This very unstable relationship has resulted in great uncertainty about the future supply or uranium. One of the objectives of this Technical Committee meeting was to bring together specialists in the field of uranium supply and demand to collect information on new developments. This helps provide a better understanding of the current situation, as well as providing information to plan for the future. Refs, figs, tabs

  7. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  8. Uranium mining

    International Nuclear Information System (INIS)

    Cheeseman, E.W.

    1980-01-01

    The international uranium market appears to be currently over-supplied with a resultant softening in prices. Buyers on the international market are unhappy about some of the restrictions placed on sales by the government, and Canadian sales may suffer as a result. About 64 percent of Canada's shipments come from five operating Ontario mines, with the balance from Saskatchewan. Several other properties will be producing within the next few years. In spite of the adverse effects of the Three Mile Island incident and the default by the T.V.A. of their contract, some 3 600 tonnes of new uranium sales were completed during the year. The price for uranium had stabilized at US $42 - $44 by mid 1979, but by early 1980 had softened somewhat. The year 1979 saw the completion of major environmental hearings in Ontario and Newfoundland and the start of the B.C. inquiry. Two more hearings are scheduled for Saskatchewan in 1980. The Elliot Lake uranium mining expansion hearings are reviewed, as are other recent hearings. In the production of uranium for nuclear fuel cycle, environmental matters are of major concern to the industry, the public and to governments. Research is being conducted to determine the most effective method for removing radium from tailings area effluents. Very stringent criteria are being drawn up by the regulatory agencies that must be met by the industry in order to obtain an operating licence from the AECB. These criteria cover seepages from the tailings basin and through the tailings retention dam, seismic stability, and both short and long term management of the tailings waste management area. (auth)

  9. Los Alamos National Laboratory Support for Commercial U.S. Production of 99Mo without the Use of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    There is currently a serious shortage of 99Mo, from which to generate the medically significant isotope 99mTc. Most of the world's supply comes from the fission of highly enriched uranium targets--this is a proliferation concern. This document focuses on the technology involved in two alternative methods: electron accelerator production of 99Mo from the 100Mo(γ,n)99Mo reaction and production of 99Mo as a fission product in a subcritical, DT accelerator-driven low enriched uranium salt solution.

  10. Determination of Uranium in Aqueous and Organic Medium From Product and Waste Processes by Potentiometric Titration Using Modified Davies Gray Method

    International Nuclear Information System (INIS)

    Putro, K.P; Suripto, A

    1998-01-01

    Determination of uranium in aqueous and organic solution generated from nuclear fuels production and liquid radioactive waste at Fuel Element Production Installation for Research Reactor, by modified Davies-Gray method using phosphoric acid as medium and vanadium as catalyst has been carried out. The performed at different concentration of phosphoric acid, vanadium and the effect of impurities, as Al, Fe, Si, Cl and F in sample are measurement. Determination of uranium in organic solvent are the sample volume, agitation time and the optimum concentration of uranium to measurement. It was observed that, the optimum conditions for uranium analysis were : 5 -400 mg uranium in 3.2 M phosphoric acid medium containing 220 mg/l vanadium as catalyst. The impurities of Al ≤ 40.5 μg/ml, Fe ≤ 67.6 μg/ml, Si ≤ 20.3 μg/ml, Cl ≤ 135.1 μg/ml and F 13.5 μg/ml have not effect, but the concentration of F ≥ 40.5 μg/ml have effect in analysis result. The uranium content detectable in organic medium has been found between 0.01 to 0.10 g/l and the reproducibility range between 0.09 to 0.15 as well as the sample volume should be in the range of 5 and 10 ml by the agitation time for 4 minute

  11. Recent developments in Australia's uranium mining industry

    International Nuclear Information System (INIS)

    McKay, A.D.

    2001-01-01

    Uranium is produced at two mining/milling operations in Australia - Ranger in the Alligator Rivers Region of the Northern Territory, and Olympic Dam in South Australia. In 1996, Ranger produced 4138 tonnes (t) U 3 O 8 from stockpiled ore mined from Ranger No. 1 Orebody. The capacity of the Ranger mill is being expanded to 5000 tonnes per annum (tpa) U 3 O 8 to coincide with the commencement of mining from No. 3 Orebody in mid-1997. The Olympic Dam copper-uranium-gold-silver deposit is the world's largest deposit of low cost uranium. The operation currently has an annual production of 85,000 t copper, 1700 t U 3 O 8 and associated gold and silver. WMC Ltd proposes to expand annual production to 200 000 t copper and approximately 4600 t U 3 O 8 by end of 1999. The environmental impact of the expansion is being assessed jointly by both Commonwealth and South Australian Governments. A draft Environmental Impact Statement (EIS) was released in May. Since its election in March 1996, the Liberal/National Party Coalition Government has made a number of changes to the Commonwealth Government's policies relating to uranium mining, including removal of the former Government's 'three mines' policy, and relaxation of the guidelines for foreign investment in Australian uranium mines. These changes, together with an improved outlook for the uranium market, have resulted in proposals to develop new mines at Jabiluka (Northern Territory), Kintyre (Western Australia) and Beverley (South Australia). Energy Resources of Australia Ltd proposes to develop an underground mine at Jabiluka with the ore to be processed at Ranger mill. Initial production will be 1800 tpa U 3 O 8 which will increase to 4000 tpa U 3 O 8 by the 14th year. The draft EIS was released for public comment in October 1996, and the final EIS is to be released in June 1997. Canning Resources Ltd proposes to mine the Kintyre deposit by open cut methods commencing in 1999 with an annual production of 1200 tpa U 3 O 8

  12. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  13. Guidebook on the development of regulations for uranium deposit development and production

    International Nuclear Information System (INIS)

    1996-02-01

    The main purpose of this guidebook is to discuss the various factors and questions that need to be considered by Government organizations in formulating and implementing a regulatory regime to control uranium resource projects. It also provides examples of regulatory requirements in countries where such regulations have evolved into more mature stages. It provides useful policy and technical guidance and directs the user to where greater detail can be found in the existing literature

  14. Politics of Uranium

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Uranium is the most political of all the elements, the material for the production of both the large amounts of electricity and the most destructive weapons in the world. The problems that its dual potential creates are only now beginning to become evident. Author Norman Moss looks at this situation and sheds light on many of the questions that emerge. The nuclear issue always comes back to how much uranium there is, what can be done with it, and which countries have it. Starting with a concise history of uranium and explaining its technology in terms the nonspecialist can understand, The Politics of Uranium considers the political issues that technical arguments obscure. It tells the little-known story of the international uranium cartel, explains the entanglements of governments with the uranium trade, and describes the consequences of wrong decisions and blunders-especially the problems of nuclear waste. It also examines the intellectual and emotional roots of the anti-nuclear movement

  15. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  16. Uranium Newsletter. No. 1

    International Nuclear Information System (INIS)

    1987-03-01

    The new Uranium Newsletter is presented as an IAEA annual newsletter. The organization of the IAEA and its involvement with uranium since its founding in 1957 is described. The ''Red Book'' (Uranium Resources, Production and Demand) is mentioned. The Technical Assistance Programme of the IAEA in this field is also briefly mentioned. The contents also include information on the following meetings: The Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks, Advisory Group Meeting on the Use of Airborne Radiometric Data, and the Technical Committee Meeting on Metallogenesis. Recent publications are listed. Current research contracts in uranium exploration are mentioned. IAEA publications on uranium (in press) are listed also. Country reports from the following countries are included: Australia, Brazil, Canada, China (People's Republic of), Denmark, Finland, Germany (Federal Republic of), Malaysia, Philippines, Portugal, South Africa (Republic of), Spain, Syrian Arab Republic, United Kingdom, United States of America, Zambia, and Greece. There is also a report from the Commission of European Communities

  17. Production of chelating agents by Pseudomonas aeruginosa grown in the presence of thorium and uranium

    International Nuclear Information System (INIS)

    Premuzic, E.T.; Lin, M.; Francis, A.J.; Schubert, J.

    1986-01-01

    Chelating agents produced by microorganisms enhance the dissolution of iron increasing the mobility and bioavailability of the metal. Since some similarities exist in the biological behavior of ferric, thorium and uranyl ions, microorganisms resistant to these metals and which grow in their presence may produce sequestering agents of Th and U, and other metals in a manner similar to the complexation of iron by siderophores. The ability of P. aeruginosa to elaborate sequestering agents in medium containing thorium or uranium salts was tested. Uranium has a stronger inhibitory effect on growth of the organism than thorium at similar concentrations. Analyses of the culture media have shown, that relative to the control, and under the experimental conditions used, the microorganisms have produced several new chelating agents for thorium and uranium. Extracts containing these chelating agents have been tested for their decorporation potential. In vitro mouse liver bioassay and in vivo mouse toxicity tests indicate that their efficiency is comparable to DTPA and DFOA and that they are virtually non-toxic to mice. The bacterially produced compounds resemble, but are not identical to the known iron chelating siderophores isolated from microorganisms. Some of their chemical properties are also discussed. (author)

  18. The reaction of sintered aluminium products with uranium dioxide and monocarbide

    DEFF Research Database (Denmark)

    Lauritzen, T.; Knudsen, Per

    1965-01-01

    The compatibility of SAP 930 with uranium dioxide and uranium monocarbide was investigated in the temperature range 450–600° C. The results indicate that a severe reaction occurs between SAP 930 and UO2 within 8000 hours at 600° C, a slight reaction at 600° C for 1000 hours and after 11 900 hours...... at 525° C, and no reaction in 14 300 hours at 450° C. Of the three grades of UC tested (hot pressed, arc cast, cold pressed and sintered) the slightly substoichiometric, hot-pressed UC is judged to be least compatible with SAP 930, reaction occurring after 7300 hours at 450° C. No reaction was observed...... between SAP 930 and the other carbides at this temperature. All SAP−UC combinations are incompatible at 600° C for as little as 100 hours of heat treatment. Tests designed to study the effect of a diffusion barrier on the SAP−UC reaction have shown that anodized SAP 930 and the three uranium carbides...

  19. Uranium industry in the USSR

    International Nuclear Information System (INIS)

    Nikipelov, B.V.; Chernov, A.G.

    1990-01-01

    A brief historical account of the Soviet production of natural and enriched uranium is given. The geological and geographical location of major uranium deposits are mentioned. The processing of natural ores including in-situ leaching (ISL) is also briefly described. Gas centrifuges play a large part in uranium enrichment. The role of Techsnabexport for the export of nuclear materials is explained

  20. Enhanced natural radiation exposure enhanced by human activity: the largest contributor to the Chinese population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Liu Yanyang

    2011-01-01

    For the radiation exposure caused by human activities, the enhanced natural radiation exposure is the largest contributor to Chinese population dose. This problem has attracted social attention in recent years. Efforts have been made in several fields, such as radon indoors and in workplace, environmental problems associated with NORMs, occupational radiation hazards of non-uranium mine, and radiation dose evaluation for energy chain, but there are still many problems to be solved. In order to protect the health of workers and the public, while ensuring industrial production and economic development, it is also necessary to continue to strengthen research in all aspects above mentioned, and gradually promote the control of natural radiation exposure enhanced by human activities. (authors)

  1. Uranium exploration, mining and ore enrichment techniques

    International Nuclear Information System (INIS)

    Fuchs, H.D.; Wentzlau, D.

    1985-01-01

    The paper describes the different types of uranium deposits and their importance. It is shown that during the present depressed uranium market situation, mainly high grade deposits such as unconformity-related deposits can be mined economically. The different successive exploration steps are outlined including methods used for uranium. Uranium mining does not greatly differ from normal mining, but the uranium metallurgy needs its own specialized but already classic technology. Only a relative small amount of uranium can be expected from projects where uranium is produced by in situ leach methods or by extraction from phosphoric acid. A short summary of investment costs and operating costs is given for an average uranium mine. The last chapter deals with the definition of different reserve categories and outlines the uranium reserves of the western world including the uranium production (1983) and the expected uranium production capacity for 1985 and 1990. (orig.) [de

  2. Influence of a productive solution of uranium on some biochemical parameters of blood of an organism at experimental animals

    International Nuclear Information System (INIS)

    Svambaev, Z.A.; Svambaev, E.A.; Sultanbekov, G.A; Tusupbekova, S.T.

    2010-01-01

    In the work authors inform results on studying influence of a productive solution of uranium on some biochemical parameters of blood of an organism at experimental animals. It is established that all samples of a productive solution of uranium possesses high toxicity and causes destruction of experimental animals with infringement of a picture of blood. Experiments on influence on biochemical and hematology defined parameters of blood on chickens - broilers and on which female quails from daily age raised on cellular batteries in communities on 50 heads in conditions adequate to the requirement. Fed in plenty with the dry forages prepared according to 'Recommendations on the normalized feeding an agricultural bird' (1996), recipes 5-2; 6-1. To chickens in plenty allowed water from auto drinking bowls. Conditions of a micro climate corresponded to hygienic requirements. At carrying out of experiences studied the following parameters: preservation of a livestock, the reason of a withdrawal, weight of a body - weekly up to the end of experience, consumption of a forage, an expense of a forage for 1 kg of a gain have established weight of a body the methods standard in poultry farming. After application of a productive solution took blood from under wings of a vein and in blood have established maintenance of hemoglobin, quantity of red cells, leukocytes and a leukocyte of the formula, the maintenance of calcium and phosphorus. An application of a productive solution for experimental birds for the fifth day has caused clinical symptoms of a poisoning and destruction in groups. At the survived birds in blood it has been established changes biochemical and hematology. Week age chickens of skilled group lagged behind in growth development in comparison with control group on 30 % and at the end of the skilled period skilled have lagged behind in growth and development on 62 %. Among a livestock of chickens of skilled group of a case was more on 53 % on comparisons with the

  3. The economics of uranium demand

    International Nuclear Information System (INIS)

    Owen, A.D.

    1983-01-01

    The major characteristics of the demand for uranium are identified, and a number of factors which determine the actual level of uranium requirements of the nuclear power industry are discussed. Since the role of inventories is central to the process of short-term price formation, by comparing projections of uranium production and apparent consumption, the relative level of total inventories is calculated and an assessment is made of its likely impact on the uranium market during the 1980s. (author)

  4. Heap-leaching of low-grade uranium ore at SOMAIR: from laboratory tests to production of 700 tonnes U per year

    Energy Technology Data Exchange (ETDEWEB)

    Durupt, N.; Blanvillain, J.J., E-mail: nicolas.durupt@areva.com [AREVA NC, Service d' Etudes de Procedes et d' Analyses (SEPA), Bessines sur Gartempe (France)

    2010-07-01

    In 2006, SOMAIR decided to increase the uranium production by 50% using heap leaching for the treatment of low grade ores. These ores, which come from different ores with various properties, have been studied in four steps: Lab tests: to compare the ores (characterization, acid consumptions, recovery); Column tests on an average sample: to define significant parameters for a feasibility study; Column tests on specific samples: to optimize recovery for each ore and identify problems of percolation due to the clays; and, Pilot tests in large boxes (stalls): to validate process parameters. Uranium production by heap leaching started commercially in July 2009. (author)

  5. REIMEP-22 U age dating - Determination of the production date of a uranium certified test sample Inter-laboratory comparison, Report to participants

    OpenAIRE

    VENCHIARUTTI CELIA; VARGA ZSOLT; RICHTER Stephan; NICHOLL Adrian; KRAJKO JUDIT; JAKOPIC Rozle; MAYER Klaus; AREGBE Yetunde

    2015-01-01

    The REIMEP-22 inter-laboratory comparison (ILC) "U Age Dating - Determination of the production date of a uranium certified test sample" was organised by JRC-IRMM as support to the Nuclear Forensics International Technical Working Group (ITWG) This ILC was organised prior to the release of the candidate certified reference material IRMM-1000, produced in cooperation with JRC-ITU. The aim of REIMEP-22 was to determine the production date of the uranium certified test sample (i.e. the last chem...

  6. Case study: Financing growth in uranium production despite today’s serious challenges – From concept to production in five years

    International Nuclear Information System (INIS)

    Adnani, Amir

    2014-01-01

    Summary: – Perspective: • Our place in the nuclear market versus our place in the exploration and mining sectors; • We’re a smaller piece of the pie but can incorporate best practices from other metal companies and sectors. – Potential for Growth Despite Downturn: • There’s more to funding than just equity / debt; • An array of new financial products being utilized in other commodities can inject life into uranium sector. – Success Breeds Success: • Financial success stories are a major boost for the entire sector; • Plenty to do during the downturn

  7. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  8. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched (<20% {sup 235}U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  9. Assessment of uncertainty associated with measuring exposure to radon and decay products in the French uranium miners cohort

    International Nuclear Information System (INIS)

    Allodji, Rodrigue S; Leuraud, Klervi; Laurier, Dominique; Bernhard, Sylvain; Henry, Stéphane; Bénichou, Jacques

    2012-01-01

    The reliability of exposure data directly affects the reliability of the risk estimates derived from epidemiological studies. Measurement uncertainty must be known and understood before it can be corrected. The literature on occupational exposure to radon ( 222 Rn) and its decay products reveals only a few epidemiological studies in which uncertainty has been accounted for explicitly. This work examined the sources, nature, distribution and magnitude of uncertainty of the exposure of French uranium miners to radon ( 222 Rn) and its decay products. We estimated the total size of uncertainty for this exposure with the root sum square (RSS) method, which may be an alternative when repeated measures are not available. As a result, we identified six main sources of uncertainty. The total size of the uncertainty decreased from about 47% in the period 1956–1974 to 10% after 1982, illustrating the improvement in the radiological monitoring system over time.

  10. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S.

    2011-01-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched ( 235 U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  11. Uranium's scientific history

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1990-01-01

    The bicentenary of the discovery of uranium coincides with the fiftieth anniversary of the discovery of fission, an event of worldwide significance and the last episode in the uranium -radium saga which is the main theme of this paper. Uranium was first identified by the German chemist Martin Klaproth in 1789. He extracted uranium oxide from the ore pitchblende which was a by-product of the silver mines at Joachimsthal in Bohemia. For over a century after its discovery, the main application for uranium derived from the vivid colours of its oxides and salts which are used in glazes for ceramics, and porcelain. In 1896, however, Becquerel discovered that uranium emitted ionizing radiation. The extraction by Pierre and Marie Curie of the more radioactive radium from uranium in the early years of the twentieth century and its application to the treatment of cancer shifted the chief interest to radium production. In the 1930s the discovery of the neutron and of artificial radioactivity stimulated research in a number of European laboratories which culminated in the demonstration of fission by Otto Frisch in January 1939. The new found use of uranium for the production of recoverable energy, and the creation of artificial radioelements in nuclear reactors, eliminated the radium industry. (author)

  12. Possibilities of uranium recovering as by product of copper lixiviation solution in Salobo 3-Alfa-Carajas

    International Nuclear Information System (INIS)

    Hohn, H.; Ferraioli, R.N.M.

    1983-05-01

    Geochemical and geophysics regional surveys performed by Nuclebras in 'Carajas, Para' State, show several favourable areas for uranium prospecting, including the 'Salobo 3-Alfa' copper mine. Some studies for increasing the Knowledge of uranium quantity and proportion and for accompanying the pilot plant installation, aiming the uranium extraction during the cycel of ore treatment in 'Salobo 3-Alfa' mine are described [pt

  13. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  14. Water management of the uranium production facility in Brazil (Caetite, BA): potential impacts over groundwater quality

    International Nuclear Information System (INIS)

    Lamego, Fernando; Santos, Robson Rodger; Silva, L. Ferreira da; Fernandes, Horst Monken

    2008-01-01

    The uranium unit of Caetite - in charge of all the 'yellow cake' produced in Brazil - is located in the semi-arid Northeast region at Bahia State. The geological uranium content of the ore is 3000 ppm, which is mainly associated with albite (NaAlSi 8 O 8 ), and its extraction is achieved by means of a Heap-Leach process. This process has a low water demand, which is supplied by a network of wells, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. The managing of liquid mining wastes formed by drainage waters from mine pit and solid waste piles is not enough to avoid unwarranted releases in the environment, which turn necessary the waste treatment through passing them into the industrial plant in order to reduce radionuclide concentrations. The groundwater is Na-HCO 3 type water and relative high concentration of Cl are observed in some groundwater. It seems that levels of uranium in groundwaters are mainly a consequence of the complexation of the metal by carbonates (or other anions) and not by any sort of the contamination of these waters by the drainage accumulated in the open pit. The speciation modelling allows identifying some areas where the replenishment of the aquifer is more active, but in general the recharge is a fast process run by direct infiltration. The stable isotope data (δ 2 H and δ 18 O) showed that evaporation plays a role during the infiltration, causing the groundwater salinization. These data discard the possibility that groundwater salinization was caused by discharge of deeper saline groundwater through faults associated to a regional groundwater flow system. The presence of an active shallow groundwater flow system offers better possibility for sustainable use of the groundwater resources in this semi-arid region of Brazil. (author)

  15. Criticality analysis in uranium enrichment plant

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Kiyose, Ryohei

    1977-01-01

    In a large scale uranium enrichment plant, uranium inventory in cascade rooms is not very large in quantity, but the facilities dealing with the largest quantity of uranium in that process are the UF 6 gas supply system and the blending system for controlling the product concentration. When UF 6 spills out of these systems, the enriched uranium is accumulated, and the danger of criticality accident is feared. If a NaF trap is placed at the forestage of waste gas treatment system, plenty of UF 6 and HF are adsorbed together in the NaF trap. Thus, here is the necessity of checking the safety against criticality. Various assumptions were made to perform the computation surveying the criticality of the system composed of UF 6 and HF adsorbed on NaF traps with WIMS code (transport analysis). The minimum critical radius resulted in about 53 cm in case of 3.5% enriched fuel for light water reactors. The optimum volume ratio of fissile material in the double salt UF 6 .2NaF and NaF.HF is about 40 vol. %. While, criticality survey computation was also made for the annular NaF trap having the central cooling tube, and it was found that the effect of cooling tube radius did not decrease the multiplication factor up to the cooling tube radius of about 5 cm. (Wakatsuki, Y.)

  16. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  17. Concentration of gold, sulphide minerals, and uranium oxide minerals by flotation from ores and metallurgical plant products

    International Nuclear Information System (INIS)

    Weston, D.

    1976-01-01

    A process is described for the concentration by flotation of gold, gold bearing minerals and uranium oxide minerals from ores and metallurgical plant products. A pulp of a ground ore is agitation conditioned in at least two agitation conditioning stages wherein in at least one stage the pH of the pulp is lowered with an acid agent to within the pH range of about 1.5 to 5.0, and wherein in at least one additional agitation conditioning stage the pH of the pulp is raised to within the pH range of about 6.0 to 11.0 and wherein in at least the last stage prior to flotation at least one collector selected from the group of sulfhydryl anionic collectors is present. Subsequently, the at least two stage agitation conditioned pulp is subjected to flotation to produce a flotation concentrate enriched in at least one of the mineral values from the group consisting of gold, gold bearing minerals and uranium minerals

  18. The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946-95

    International Nuclear Information System (INIS)

    McGeoghegan, D.; Binks, K.

    2000-01-01

    The results presented here are from the follow-up of the cohort of workers ever employed at the Springfields site of British Nuclear Fuels plc (BNFL) between 1946 and 1995. The main activity of the site is uranium fuel fabrication and uranium hexafluoride production. The study cohort consists of 19 454 current and former employees, 13 960 of which were classified as radiation workers, and contains 479 146 person-years of follow-up. The mean follow-up period is 24.6 years. To the end of 1995 there have been 4832 deaths recorded for this cohort, 3476 of which were amongst radiation workers and 1356 were amongst non-radiation workers. The standardised mortality ratios (SMRs) for all causes were 84 and 98 for radiation workers and non-radiation workers respectively. For all cancers the SMRs were 86 and 96 respectively. For cancer morbidity the standardised registration ratios (SRRs) for all cancers were 81 and 81 respectively. Significant associations were noted for both mortality and morbidity due to Hodgkin's disease and cumulative external dose. A strong association was also noted for morbidity, but not mortality, due to non-Hodgkin's lymphoma. These associations, however, are unlikely to be causal. The excess relative risk estimates for cancer other than leukaemia and for leukaemia excluding chronic lymphatic leukaemia are consistent with other occupationally exposed cohorts and estimates from the high-dose studies. (author)

  19. Recent developments and on-line tests of uranium carbide targets for production of nuclides far from

    CERN Document Server

    V.N. Panteleev et al.

    The capacity of uranium carbide target materials of different structure and density for production of neutron-rich and heavy neutron-deficient isotopes have been investigated at the IRIS facility (PNPI) in the collaboration with Legnaro – GANIL – Orsay laboratories. The yields and release times of the species produced in the targets by the reactions induced by a 1 GeV proton beam of the PNPI synchrocyclotron have been measured. For the purpose to elaborate the most efficient and fast uranium carbide target prototype three kinds of the target materials were studied: a) a high density UC target material having ceramic-like structure with the density of 11 g/cm3 and the grain dimensions of about 200 microns; b) a high density UC target material with the density of 12 g/cm3 and the grain dimensions of about 20 microns prepared by the method of the powder metallurgy; c) a low density UCx target material with the density 3g/cm3 and the grain dimensions of about 20 microns prepared by the ISOLDE method. The comp...

  20. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  1. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  2. Worldwide developments in uranium

    International Nuclear Information System (INIS)

    Hoellen, E.E.

    1987-01-01

    World uranium production will continue to change in most major producing nations. Canadian production will increase and will be increasingly dominated by western producers as eastern Canadian high-cost production declines. Australian production will increase as major projects come into operation before 2000. US production will stabilize through the end of the century. South African production will be dependent upon the worldwide support for economic sanctions. China's entry into the world market injects yet another variable into the already cloudy supply picture. Many risks and uncertainties will face uranium producers through the 1980s. Recognizing that the uranium industry is not a fast-growing market, many existing and potential producers are seeking alternate investment courses, causing a restructuring of the world uranium production industry in ways not anticipated even a few years ago. During the restructuring process, world uranium production will most likely continue to exceed uranium consumption, resulting in a further buildup of world uranium inventories. Inventory sales will continue to redistribute this material. As inventory selling runs its course, users will turn to normal sources of supply, stimulating additional production to meet needs. Stimulation in the form of higher prices will be determined by how fast producers are willing and able to return to the market. Production costs are expected to have an increasing impact as it has become apparent that uranium resources are large in comparison to projected consumption. Conversely, security-of-supply issues have seemed to be of decreasing magnitude as Canada, Australia, and other non-US producers continue to meet delivery commitments

  3. Trends in uranium supply

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M [International Atomic Energy Agency, Division of Nuclear Power and Reactors, Nuclear Materials and Fuel Cycle Section, Vienna (Austria)

    1976-07-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  4. Trends in uranium supply

    International Nuclear Information System (INIS)

    Hansen, M.

    1976-01-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  5. Radioactive Waste Issues related to Production of Fission-based Mo-99 by using Low Enriched Uranium (LEU)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhmood ul; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In order to produce fission-based Mo-99 from research reactors, two types of targets are being used and they are highly enriched uranium (HEU) targets with {sup 235}U enrichment more than 90wt% of {sup 235}U and low enriched uranium (LEU) targets with {sup 235}U enrichment less than 20wt% of {sup 235}U. It is worth noting that medium enriched uranium i.e. 36wt% of {sup 235}U as being used in South Africa is also regarded as non-LEU from a nuclear security point of view. In order to cope with the proliferation issues, international nuclear security policy is promoting the use of LEU targets in order to minimize the civilian use of HEU. It is noteworthy that Mo-99 yield of the LEU target is less than 20% of the HEU target, which requires approximately five times more LEU targets to be irradiated and consequently results in increased volume of waste. The waste generated from fission Mo-99 production can be mainly due to: target fabrication, assembling of target, irradiation in reactor and processing of irradiated targets. During the fission of U-235 in a reactor, a large number of radionuclides with different chemical and physical properties are formed. The waste produced from these practices may be a combination of low level waste (LLW) and intermediate level waste (ILW) comprised of all three types, i.e., solid, liquid and gas. Handling and treatment of the generated waste are dependent on its form and activity. In case of the large production facility, waste storage facility should be constructed in order to limit the radiation exposures of the workers and the environment. In this study, we discuss and compare mainly the radioactive waste generated by alkaline digestion of both HEU and LEU targets to assist in planning and deciding the choice of the technology with better arrangements for proper handling and disposal of generated waste. With the use of the LEU targets in Mo-99 production facility, significant increase in liquid and solid waste has been expected.

  6. The world's largest LNG producer's next market

    International Nuclear Information System (INIS)

    Fuller, R.; Isworo Suharno; Simandjuntak, W.M.P.

    1996-01-01

    The development of the domestic gas market in Indonesia, the world's largest liquefied natural gas producing country, is described as part of the overall impact of the country's oil and gas production. The first large scale use of natural gas in Indonesia was established in 1968 when a fertiliser plant using gas as the feedstock was built. Ultimately, through increased yields, this has enabled Indonesia to be self-sufficient in rice and an exporter of fertiliser. Problems which stand in the way of further developments include: capital, though Pertamina and PGN are perceived as attractive for foreign investment; the lack of a regulatory framework for gas; geographical constraints, among them the fact that the gas deposits are remote from the largest population concentrations; lack of infrastructure. There are nevertheless plans for expansion and the provision of an integrated gas pipeline system. Pertamina, which has responsibility for all oil and gas developments, and PGN, whose primary role has been as a manufacturer and distributor of gas, are now working together in the coordination of all gas activities. (10 figures). (UK)

  7. Uranium: Memories of the Little Big Horn

    International Nuclear Information System (INIS)

    White, G. Jr.

    1985-01-01

    In this work the author discusses the future of the uranium industry. The author believes that uranium prices are unlikely to rise to a level that predicates the rebirth of the uranium industry, and doubts that U.S. production of uranium will exceed 30 to 35 percent of U.S. requirements. The author doubts that the U.S. government will take any action toward protecting the U.S. uranium production industry, but he does believe that a U.S. uranium production industry will survive and include in-situ and by product producers and producers with higher grades and rigorous cost control

  8. Uranium resources in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.; Chenoweth, W.L.

    1989-01-01

    For nearly three decades (1951-1980), the Grants uranium district in northwestern New Mexico produced more uranium than any other district in the world. The most important host rocks containing economic uranium deposits in New Mexico are sandstones within the Jurassic Morrison Formation. Approximately 334,506,000 lb of U 3 O 8 were produced from this unit from 1948 through 1987, accounting for 38% of the total uranium production from the US. All of the economic reserves and most of the resources in New Mexico occur in the Morrison Formation. Uranium deposits also occur in sandstones of Paleozoic, Triassic, Cretaceous, Tertiary, and Quaternary formations; however, only 468,680 lb of U 3 O 8 or 0.14% of the total production from New Mexico have been produced from these deposits. Some of these deposits may have a high resource potential. In contrast, almost 6.7 million lb of U 3 O 8 have been produced from uranium deposits in the Todilto Limestone of the Wanakah Formation (Jurassic), but potential for finding additional economic uranium deposits in the near future is low. Other uranium deposits in New Mexico include those in other sedimentary rocks, vein-type uranium deposits, and disseminated magmatic, pegmatitic, and contact metasomatic uranium deposits in igneous and metamorphic rocks. Production from these deposits have been insignificant (less than 0.08% of the total production from New Mexico), but there could be potential for medium to high-grade, medium-sized uranium deposits in some areas. Total uranium production from New Mexico from 1948 to 1987 amounts to approximately 341,808,000 lb of U 3 O 8 . New Mexico has significant uranium reserves and resources. Future development of these deposits will depend upon an increase in price for uranium and lowering of production costs, perhaps by in-situ leaching techniques

  9. Uranium Location Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — A GIS compiled locational database in Microsoft Access of ~15,000 mines with uranium occurrence or production, primarily in the western United States. The metadata...

  10. 238U, and its decay products, in grasses from an abandoned uranium mine

    Science.gov (United States)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  11. Research and Development of Crystal Purification for Product of Uranium Crystallization Process

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K. [Japan Atomic Energy Agency - JAEA (Japan)

    2009-06-15

    Uranium crystallization has been developed as a part of advanced aqueous reprocessing for FBR spent fuel. Although the purity of uranyl nitrate hexahydrate (UNH) crystal from the crystallization process is supposed to meet a specification of FBR blanket fuel, an improvement of its purity is able to reduce the cost of fuel fabrication and storage (in case interim storage of recovered uranium is required). In this work, UNH crystal purification was developed as additional process after crystallization. Contamination of the crystal is caused by mother solution and solid state impurities. They are inseparable by washing and filtration. Mother solution on the surface of UNH crystals is removable by washing, but it is difficult to remove that in an obstructed part of crystalline aggregate by washing. Major elements of solid state impurities are cesium and barium. Cesium precipitates with tetravalent plutonium as a double nitrate, Cs{sub 2}Pu(NO{sub 3}){sub 6}. Barium crystallizes as Ba(NO{sub 3}){sub 2} because of its low solubility in nitric acid solution. It is difficult to separate their particle from UNH crystal by solid-liquid separation such as simple filtration. As a kind of crystal purification, there are some methods using sweating. Sweating is a phenomenon that a crystal melts partly below its melting point and it is caused by depression of freezing point due to impurity. It is considerably applicable for removal of mother solution. Concerning the solid state impurities, which has higher melting point than that of UNH crystal, it is supposed that they are separable by melting UNH crystal and filtration. The behaviors of impurities and applicability of sweating and melting-filtration operations to the purification for UNH crystal were investigated experimentally on a beaker and an engineering scale. With regard to behaviors of impurities, the conditions of cesium and barium precipitation were surveyed and it was clarified that there were most impurities on the

  12. Long-term forecasting of sales of the products of a company in International markets of enriched uranium under restrictions and quotas

    International Nuclear Information System (INIS)

    Klimanov, S.G.; Kryanev, A.V.; Rostovskij, N.S.; Sliva, D.E.; Smirnov, D.S.; Kharitonov, V.V.

    2016-01-01

    A technique of forecasting company sales in the international regional markets of enriched uranium under imposed restrictions and quotas has been developed by the authors on the basis on scenario forecasts of the demand for company products and has been implemented as a set of computer software [ru

  13. Managing the Ranger uranium mine in the Alligator Rivers Region -there is much more to this business enterprise than just production

    International Nuclear Information System (INIS)

    Leggate, J.

    1984-01-01

    Environmental protection is very closely and continuously regulated at the Ranger uranium mine. Since the commencement of operations at Ranger the company has operated within these regulations and demonstrated clearly that yellowcake can be produced efficiently, economically and safely. The company also recognises that in order to ensure continuity of production, it will have to continue to operate within these strictly supervised regulations

  14. Norms of radiation protection in uranium and thorium production cycles. Normas de protecao radiologica nos ciclos de producao do uranio e torio

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    A deliberation aiming to complement the basic norms of radiation protection for applying to uranium and thorium production cycle is presented. The activitires of excavation, remotion, storage, and physical and chemical processing of the ores, are included. The transport of radioactive materials into the establishments is governed by these norms. (M.C.K.).

  15. Cross Sections for the Production of Residual Nuclides by Proton-Induced Reactions with Uranium at Medium Energies

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Michel, R.; Uosif, M.A.M.; Issa, S.A.M.; Flamentc, J.L.; David, J.C.; Leray, S.

    2009-01-01

    The production of residual nuclides by proton-induced reactions on uranium is investigated using activated targets from irradiation experiments at Saturne II synchrocyclotron at the Laboratory National Saturne/Saclay. These investigations contribute to the European research project NUDATRA within the IP EUROTRANS in which the feasibility of accelerator-driven transmutation of nuclear waste is evaluated. Experimental cross sections are derived from gamma-spectrometric measurements. A total of 1894 cross-section was deter-mined covering 44 residual nuclides in the energy range from 211 MeV to 2530 MeV. The experimental data together with those of earlier work of our group are discussed in the context of theoretical excitation functions calculated by the newly developed INCL4 + ABLA and the TALYS codes

  16. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  17. U for uranium

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Beisa Mine is unique in South Africa - it is the only underground mine with uranium as its main product and gold as a by-product. At the rate of 1,2 Mt/a, the life of Beisa is estimated on 26 years. Beisa's metallurgical plant is designed to handle initially a monthly throughput of 100 000t of ore, from which uranium, gold and silver will be extracted

  18. Uranium - the nuclear fuel

    International Nuclear Information System (INIS)

    Smith, E.E.N.

    1976-01-01

    A brief history is presented of Canadian uranium exploration, production, and sales. Statistics show that Canada is a good customer for its own uranium due to a rapidly expanding nuclear power program. Due to an average 10 year lag between commencement of exploration and production, and with current producers sold out through 1985, it is imperative that exploration efforts be increased. (E.C.B.)

  19. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  20. Simulation of time variation of Uranium, Plutonium and fission product hold up in mixer settler contactors

    International Nuclear Information System (INIS)

    Dionisi, M.; D'Agostino, F.; Remetti, R.

    1990-01-01

    A simulation model of PUREX process extraction phase for a contactors (mixer-settlers) battery has been developed. This model has been implemented in a FORTRAN code tailored both for mainframe and PC. The main goal of the code is to determine Uranium and Plutonium hold-ups vs.time within contactors in order to implement a NRTA project for a reprocessing plant. These results are extremely important for a complete analysis of NRTA system perfomance particularly to overcome the difficulty of executing physical inventory within liquid-liquid contactors of extraction lines. The chemical process simulation has been carried out conventional theoretical models with the exeption of hydrodynamic simulation which has been developed utilizing a model based on experimental results